Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight

The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along th...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 35; no. 12; pp. 1607 - 1618
Main Author 管子武 余永亮
Format Journal Article
LanguageEnglish
Published Heidelberg Shanghai University 01.12.2014
Subjects
Online AccessGet full text
ISSN0253-4827
1573-2754
DOI10.1007/s10483-014-1882-6

Cover

Abstract The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.
AbstractList The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.
The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.
O351.2%O355; The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.
Author 管子武 余永亮
AuthorAffiliation Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China; The Laboratory for Biomechanics of Animal Locomotion,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Author_xml – sequence: 1
  fullname: 管子武 余永亮
BookMark eNp9kEtr3DAUhUVJoZO0P6A70VUpKNVbmmUIfQQC3bR0KWRZ9ijY0kTSMPG_r4xDC11kc3UF57vn3nMJLmKKHoD3BF8TjNXnQjDXDGHCEdGaIvkK7IhQDFEl-AXYYSoY4pqqN-CylAeMMVec78DvG59Tv0Q7Bwdn7w42hjLDNMAhZecLHH302Vbfw26B9RxKDXGEc-r9hM5rGyLsbIXDZI_H9T9MYTzUt-D1YKfi3z2_V-DX1y8_b7-j-x_f7m5v7pHjglVkidRdT-ieCGrxvhNeiE47wiUduOOWWG6dVpwyLYjb95xwr6QSTOhOs3bfFfi0zT3bONg4mod0yrE5mmUpT4fpyXjaQiGt4Cb-uImPOT2efKlmDsX5abLRp1MxRArC9gyrVUo2qcuplOwHc8xhtnkxBJs1cbMlbtpwsyZuZGPUf4wL1daQYs02TC-SdCNLc4mjz__OeAn68Gx3SHF8bNzfHaVkmDGpMfsD1WChcQ
CitedBy_id crossref_primary_10_1007_s10483_015_1931_7
crossref_primary_10_3390_biomimetics9120737
crossref_primary_10_1109_TIE_2021_3112964
crossref_primary_10_1016_j_ast_2018_07_017
crossref_primary_10_1063_5_0169938
crossref_primary_10_1016_j_taml_2015_01_009
crossref_primary_10_1007_s10409_023_22495_x
crossref_primary_10_1115_1_4053686
crossref_primary_10_1007_s42235_024_00521_7
crossref_primary_10_1098_rsfs_2016_0083
crossref_primary_10_2514_1_J055994
crossref_primary_10_1142_S0218127423501274
crossref_primary_10_1088_1748_3190_acb7ba
crossref_primary_10_1017_jfm_2019_181
crossref_primary_10_3390_aerospace11040325
crossref_primary_10_1063_5_0053721
Cites_doi 10.1146/annurev-fluid-121108-145456
10.1016/j.jtbi.2008.06.011
10.1242/jeb.02704
10.1242/bio.20122964
10.1088/1748-3182/1/4/S02
10.1088/1748-3182/8/1/016009
10.1242/jeb.029777
10.1007/BF02484543
10.1126/science.1142281
10.1126/science.284.5422.1954
10.1242/jeb.02446
10.2514/1.J051593
10.1038/321162a0
10.2514/3.13250
10.1242/jeb.00739
10.2514/1.J050827
10.1016/S0029-8018(98)00018-3
10.1016/j.jfluidstructs.2012.12.005
10.1017/S002211200200143X
10.1017/CBO9780511810329
10.1126/science.1153019
10.1063/1.4794753
10.1242/jeb.008649
10.1007/s10409-005-0032-z
10.1242/jeb.205.1.55
10.1242/jeb.59.1.169
10.1242/jeb.65.1.179
10.1242/jeb.126.1.479
10.1242/jeb.65.2.459
10.1242/jeb.199.5.1073
ClassificationCodes O351.2%O355
ContentType Journal Article
Copyright Shanghai University and Springer-Verlag Berlin Heidelberg 2014
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Shanghai University and Springer-Verlag Berlin Heidelberg 2014
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s10483-014-1882-6
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight
EISSN 1573-2754
EndPage 1618
ExternalDocumentID yysxhlx_e201412010
10_1007_s10483_014_1882_6
663033680
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: (10602061)
GroupedDBID -01
-0A
-52
-5D
-5G
-BR
-EM
-SA
-S~
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
1SB
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
5XL
67Z
6NX
8RM
8TC
8UJ
92E
92I
92L
92M
92Q
93N
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT4
PT5
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RT1
RZC
RZE
RZK
S..
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T8Q
TCJ
TEORI
TGP
TSG
TSK
TSV
TUC
TUS
U1F
U1G
U2A
U5A
U5K
UG4
UGNYK
UNUBA
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
ZMTXR
ZWQNP
~8M
~A9
~L9
~LB
~WA
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABJNI
ABQSL
ACDTI
ACPIV
ACUHS
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
H13
UY8
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
4A8
PSX
ID FETCH-LOGICAL-c453t-a168bd129152a09b5e55b8c1462f4c4a1a4ac87423851c9d414e7675358b83573
IEDL.DBID AGYKE
ISSN 0253-4827
IngestDate Thu May 29 03:56:06 EDT 2025
Fri Sep 05 10:09:50 EDT 2025
Tue Jul 01 02:11:04 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Fri Feb 21 02:26:45 EST 2025
Wed Feb 14 10:33:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords O355
O351.2
76B47
panel method
bat wing
76Z10
twisting
aerodynamic mechanism
76M23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-a168bd129152a09b5e55b8c1462f4c4a1a4ac87423851c9d414e7675358b83573
Notes Zi-wu GUAN , Yong-liang YU
The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.
31-1650/O1
bat wing, twisting, panel method, aerodynamic mechanism
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651393070
PQPubID 23500
PageCount 12
ParticipantIDs wanfang_journals_yysxhlx_e201412010
proquest_miscellaneous_1651393070
crossref_primary_10_1007_s10483_014_1882_6
crossref_citationtrail_10_1007_s10483_014_1882_6
springer_journals_10_1007_s10483_014_1882_6
chongqing_primary_663033680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationSubtitle English Edition
PublicationTitle Applied mathematics and mechanics
PublicationTitleAbbrev Appl. Math. Mech.-Engl. Ed
PublicationTitleAlternate Applied Mathematics and Mechanics(English Edition)
PublicationTitle_FL Applied Mathematics and Mechanics
PublicationYear 2014
Publisher Shanghai University
Publisher_xml – name: Shanghai University
References Bahlman, Swartz, Breuer (CR3) 2013; 8
Von Busse, Hedenström, Winter, Johansson (CR5) 2012; 1
Dong (CR20) 2007
Yu, Tong, Ma (CR14) 2003; 19
Ramamurti, Sandberg (CR27) 2007; 210
Dickinson, Lehmann, Sane (CR30) 1999; 284
Shelley, Zhang (CR32) 2011; 43
Riskin, Willis, Iriarte-Díaz, Hedrick, Kostandov, Chen, Laidlaw, Breuer, Swartz (CR26) 2008; 254
Zhu, Wolfgang, Yue, Triantafyllou (CR18) 2002; 468
Visbal, Yilmaz, Rockwell (CR31) 2013; 38
Sun, Tang (CR1) 2002; 205
Aldridge (CR8) 1986; 126
Tian, Iriarte-Diaz, Middleton, Galvao, Israeli, Roemer, Sullivan, Song, Swartz, Breuer (CR25) 2006; 1
Norberg (CR6) 1976; 65
Garmann, Visbal, Orkwis (CR24) 2013; 25
Kenneth, Michael, Luis (CR23) 2011
Aono, Liang, Liu (CR28) 2008; 211
Weis-Fogh (CR33) 1973; 59
Rayner, Jones, Thomas (CR10) 1986; 321
Muijres, Johansson, Barfield, Wolf, Spedding, Hedenström (CR12) 2008; 319
Katz, Plotkin (CR21) 2001
Wang, Birch, Dickinsonet (CR34) 2004; 207
Taylor, Carruthers, Hube, Walker (CR13) 2012
Trizila, Kang, Aono, Shyy, Miguel (CR29) 2011; 49
Wolf, Johansson, von Busse, Winter, Hedenström (CR4) 2010; 213
Norberg, Winter (CR9) 2006; 209
Willis, Israeli, Persson, Drela, Peraire, Swartzk, Breuer (CR17) 2007
Kang, Aono, Baik, Bernal, Shyy (CR22) 2013; 51
Smith, Wilkin, Williams (CR16) 1996; 199
Yu, Tong (CR2) 2005; 21
Vest, Katz (CR15) 1996; 34
Norberg (CR7) 1976; 65
Liu, Bose (CR19) 1999; 26
Hedenström, Johansson, Wolf, von Busse, Winter, Spedding (CR11) 2007; 316
M Vest (1882_CR15) 1996; 34
Q Zhu (1882_CR18) 2002; 468
H D J N Aldridge (1882_CR8) 1986; 126
G K Taylor (1882_CR13) 2012
P Trizila (1882_CR29) 2011; 49
J W Bahlman (1882_CR3) 2013; 8
H Aono (1882_CR28) 2008; 211
Y L Yu (1882_CR2) 2005; 21
X X Dong (1882_CR20) 2007
D K Riskin (1882_CR26) 2008; 254
J M V Rayner (1882_CR10) 1986; 321
M Sun (1882_CR1) 2002; 205
Y L Yu (1882_CR14) 2003; 19
M J Shelley (1882_CR32) 2011; 43
G Kenneth (1882_CR23) 2011
X D Tian (1882_CR25) 2006; 1
T Weis-Fogh (1882_CR33) 1973; 59
M Wolf (1882_CR4) 2010; 213
J Katz (1882_CR21) 2001
D J Willis (1882_CR17) 2007
Z J Wang (1882_CR34) 2004; 207
UM Norberg (1882_CR9) 2006; 209
P Liu (1882_CR19) 1999; 26
M H Dickinson (1882_CR30) 1999; 284
A Hedenström (1882_CR11) 2007; 316
R Ramamurti (1882_CR27) 2007; 210
M Visbal (1882_CR31) 2013; 38
C K Kang (1882_CR22) 2013; 51
D J Garmann (1882_CR24) 2013; 25
UM Norberg (1882_CR7) 1976; 65
F T Muijres (1882_CR12) 2008; 319
M Smith (1882_CR16) 1996; 199
U M Norberg (1882_CR6) 1976; 65
R Busse Von (1882_CR5) 2012; 1
References_xml – volume: 43
  start-page: 449
  year: 2011
  end-page: 465
  ident: CR32
  article-title: Flapping and bending bodies interacting with fluid flows
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev-fluid-121108-145456
– volume: 254
  start-page: 604
  year: 2008
  end-page: 615
  ident: CR26
  article-title: Quantifying the complexity of bat wing kinematics
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2008.06.011
– volume: 210
  start-page: 881
  year: 2007
  end-page: 896
  ident: CR27
  article-title: A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.02704
– volume: 1
  start-page: 1226
  year: 2012
  end-page: 1238
  ident: CR5
  article-title: Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae
  publication-title: Biology Open
  doi: 10.1242/bio.20122964
– volume: 1
  start-page: S10
  year: 2006
  end-page: S18
  ident: CR25
  article-title: Direct measurements of the kinematics and dynamics of bat flight
  publication-title: Bioinspiration and Biomimetics
  doi: 10.1088/1748-3182/1/4/S02
– volume: 8
  start-page: 016009
  year: 2013
  ident: CR3
  article-title: Design and characterization of a multi-articulated robotic bat wing
  publication-title: Bioinspiration and Biomimetics
  doi: 10.1088/1748-3182/8/1/016009
– volume: 213
  start-page: 2142
  year: 2010
  end-page: 2153
  ident: CR4
  article-title: Kinematics of flight and the relationship to the vortex wake of a Pallas’ long tongued bat (Glossophaga soricina)
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.029777
– volume: 126
  start-page: 479
  year: 1986
  end-page: 497
  ident: CR8
  article-title: Kinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at various flight speeds
  publication-title: The Journal of Experimental Biology
– volume: 19
  start-page: 508
  year: 2003
  end-page: 516
  ident: CR14
  article-title: An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/BF02484543
– start-page: 13
  year: 2012
  end-page: 40
  ident: CR13
  article-title: Wing morphing in insects, birds and bats: mechanism and function
  publication-title: Morphing Aerospace Vehicles and Structures
– volume: 316
  start-page: 894
  year: 2007
  end-page: 897
  ident: CR11
  article-title: Bat flight generates complex aerodynamic tracks
  publication-title: Science
  doi: 10.1126/science.1142281
– volume: 284
  start-page: 1954
  year: 1999
  end-page: 1960
  ident: CR30
  article-title: Wing rotation and the aerodynamic basis of insect flight
  publication-title: Science
  doi: 10.1126/science.284.5422.1954
– volume: 209
  start-page: 3887
  year: 2006
  end-page: 3897
  ident: CR9
  article-title: Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.02446
– volume: 51
  start-page: 315
  year: 2013
  end-page: 329
  ident: CR22
  article-title: Fluid dynamics of pitching and plunging flat plate at intermediate Reynolds numbers
  publication-title: AIAA Journal
  doi: 10.2514/1.J051593
– volume: 321
  start-page: 162
  issue: 6066
  year: 1986
  end-page: 164
  ident: CR10
  article-title: Vortex flow visualizations reveal change in upstroke function with flight speed in bats
  publication-title: nature
  doi: 10.1038/321162a0
– volume: 34
  start-page: 1240
  year: 1996
  end-page: 1246
  ident: CR15
  article-title: Unsteady aerodynamic model of flapping wings
  publication-title: AIAA Journal
  doi: 10.2514/3.13250
– volume: 207
  start-page: 449
  year: 2004
  end-page: 460
  ident: CR34
  article-title: Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.00739
– volume: 49
  start-page: 806
  year: 2011
  end-page: 823
  ident: CR29
  article-title: Low-Reynolds-number aerodynamics of a flapping rigid flat plate
  publication-title: AIAA Journal
  doi: 10.2514/1.J050827
– year: 2007
  ident: CR20
  publication-title: Boundary Element Simulation of Oscillating Foil with Leading-Edge Separation
– volume: 26
  start-page: 519
  year: 1999
  end-page: 530
  ident: CR19
  article-title: Hydrodynamic characteristics of a lunate shape oscillating propulsor
  publication-title: Ocean Engineering
  doi: 10.1016/S0029-8018(98)00018-3
– volume: 38
  start-page: 58
  year: 2013
  end-page: 76
  ident: CR31
  article-title: Three-dimensional vortex formation on a heaving low-aspect-ratio wing: computations and experiments
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2012.12.005
– volume: 468
  start-page: 1
  year: 2002
  end-page: 28
  ident: CR18
  article-title: Three-dimensional flow structures and vorticity control in fish-like swimming
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S002211200200143X
– year: 2001
  ident: CR21
  publication-title: Low-Speed Aerodynamics: From Wing Theory to Panel Methods
  doi: 10.1017/CBO9780511810329
– volume: 319
  start-page: 1250
  issue: 5867
  year: 2008
  end-page: 1253
  ident: CR12
  article-title: Leading-edge vortex improves lift in slow-flying bats
  publication-title: Science
  doi: 10.1126/science.1153019
– volume: 25
  start-page: 034101
  year: 2013
  ident: CR24
  article-title: Three-dimensional flow structure and aerodynamic loading on a revolving wing
  publication-title: Physics of Fluids
  doi: 10.1063/1.4794753
– volume: 59
  start-page: 169
  year: 1973
  end-page: 230
  ident: CR33
  article-title: Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production
  publication-title: The Journal of Experimental Biology
– volume: 65
  start-page: 179
  year: 1976
  end-page: 212
  ident: CR6
  article-title: Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus
  publication-title: The Journal of Experimental Biology
– year: 2011
  ident: CR23
  article-title: Experiments on pitching plates: force and flowfield measurements at low Reynolds numbers
  publication-title: 49
– volume: 211
  start-page: 239
  year: 2008
  end-page: 257
  ident: CR28
  article-title: Near- and far-field aerodynamic in insect hovering flight: an integrated computational study
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.008649
– year: 2007
  ident: CR17
  article-title: A computational framework for fluid structure interaction in biologically inspired flapping flight
  publication-title: 25
– volume: 199
  start-page: 1073
  year: 1996
  end-page: 1083
  ident: CR16
  article-title: The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings
  publication-title: The Journal of Experimental Biology
– volume: 205
  start-page: 55
  year: 2002
  end-page: 70
  ident: CR1
  article-title: Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion
  publication-title: The Journal of Experimental Biology
– volume: 21
  start-page: 218
  year: 2005
  end-page: 227
  ident: CR2
  article-title: A flow control mechanism in wing flapping with Stroke asymmetry during insect forward flight
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/s10409-005-0032-z
– volume: 65
  start-page: 459
  year: 1976
  end-page: 470
  ident: CR7
  article-title: Aerodynamics of hovering flight in the long-eared bat Plecotus auritus
  publication-title: The Journal of Experimental Biology
– volume-title: Boundary Element Simulation of Oscillating Foil with Leading-Edge Separation
  year: 2007
  ident: 1882_CR20
– volume-title: Low-Speed Aerodynamics: From Wing Theory to Panel Methods
  year: 2001
  ident: 1882_CR21
  doi: 10.1017/CBO9780511810329
– volume: 205
  start-page: 55
  year: 2002
  ident: 1882_CR1
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.205.1.55
– volume: 468
  start-page: 1
  year: 2002
  ident: 1882_CR18
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S002211200200143X
– volume: 25
  start-page: 034101
  year: 2013
  ident: 1882_CR24
  publication-title: Physics of Fluids
  doi: 10.1063/1.4794753
– volume: 43
  start-page: 449
  year: 2011
  ident: 1882_CR32
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev-fluid-121108-145456
– volume: 38
  start-page: 58
  year: 2013
  ident: 1882_CR31
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2012.12.005
– volume: 319
  start-page: 1250
  issue: 5867
  year: 2008
  ident: 1882_CR12
  publication-title: Science
  doi: 10.1126/science.1153019
– volume: 21
  start-page: 218
  year: 2005
  ident: 1882_CR2
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/s10409-005-0032-z
– volume: 321
  start-page: 162
  issue: 6066
  year: 1986
  ident: 1882_CR10
  publication-title: nature
  doi: 10.1038/321162a0
– volume: 284
  start-page: 1954
  year: 1999
  ident: 1882_CR30
  publication-title: Science
  doi: 10.1126/science.284.5422.1954
– volume: 59
  start-page: 169
  year: 1973
  ident: 1882_CR33
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.59.1.169
– volume: 65
  start-page: 179
  year: 1976
  ident: 1882_CR6
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.65.1.179
– volume: 213
  start-page: 2142
  year: 2010
  ident: 1882_CR4
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.029777
– volume-title: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
  year: 2011
  ident: 1882_CR23
– volume: 126
  start-page: 479
  year: 1986
  ident: 1882_CR8
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.126.1.479
– volume: 1
  start-page: 1226
  year: 2012
  ident: 1882_CR5
  publication-title: Biology Open
  doi: 10.1242/bio.20122964
– volume: 1
  start-page: S10
  year: 2006
  ident: 1882_CR25
  publication-title: Bioinspiration and Biomimetics
  doi: 10.1088/1748-3182/1/4/S02
– volume: 65
  start-page: 459
  year: 1976
  ident: 1882_CR7
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.65.2.459
– start-page: 13
  volume-title: Morphing Aerospace Vehicles and Structures
  year: 2012
  ident: 1882_CR13
– volume: 49
  start-page: 806
  year: 2011
  ident: 1882_CR29
  publication-title: AIAA Journal
  doi: 10.2514/1.J050827
– volume: 254
  start-page: 604
  year: 2008
  ident: 1882_CR26
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2008.06.011
– volume: 34
  start-page: 1240
  year: 1996
  ident: 1882_CR15
  publication-title: AIAA Journal
  doi: 10.2514/3.13250
– volume: 210
  start-page: 881
  year: 2007
  ident: 1882_CR27
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.02704
– volume: 26
  start-page: 519
  year: 1999
  ident: 1882_CR19
  publication-title: Ocean Engineering
  doi: 10.1016/S0029-8018(98)00018-3
– volume: 51
  start-page: 315
  year: 2013
  ident: 1882_CR22
  publication-title: AIAA Journal
  doi: 10.2514/1.J051593
– volume: 207
  start-page: 449
  year: 2004
  ident: 1882_CR34
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.00739
– volume: 8
  start-page: 016009
  year: 2013
  ident: 1882_CR3
  publication-title: Bioinspiration and Biomimetics
  doi: 10.1088/1748-3182/8/1/016009
– volume: 209
  start-page: 3887
  year: 2006
  ident: 1882_CR9
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.02446
– volume-title: 25th AIAA Applied Aerodynamics Conference
  year: 2007
  ident: 1882_CR17
– volume: 19
  start-page: 508
  year: 2003
  ident: 1882_CR14
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/BF02484543
– volume: 199
  start-page: 1073
  year: 1996
  ident: 1882_CR16
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.199.5.1073
– volume: 316
  start-page: 894
  year: 2007
  ident: 1882_CR11
  publication-title: Science
  doi: 10.1126/science.1142281
– volume: 211
  start-page: 239
  year: 2008
  ident: 1882_CR28
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.008649
SSID ssj0004744
Score 2.0883634
Snippet The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA)...
The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA)...
O351.2%O355; The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1607
SubjectTerms Aerodynamics
Applications of Mathematics
Bats
Classical Mechanics
Drag
Flapping wings
Fluid- and Aerodynamics
Lift
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Partial Differential Equations
Three dimensional
Twisting
Wings (aircraft)
动力学机理
扑翼
扭动
昆虫飞行
机制
模型
空气动力
蝙蝠
Title Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight
URI http://lib.cqvip.com/qk/86647X/201412/663033680.html
https://link.springer.com/article/10.1007/s10483-014-1882-6
https://www.proquest.com/docview/1651393070
https://d.wanfangdata.com.cn/periodical/yysxhlx-e201412010
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QUOUF5iKV0ZwQmUKg_bcY7bx1KByqkrysmyHSet2GaBZFWWX89MNtktCFXqLQfHSfz45otn5huAt2FWyDhO8TdV2DzgSEkCE-YyyJxHAxcVedIe5px-lidT_vFcnHd53HUf7d67JFukvpHsxhXF_vAgIloot2BbRCpTA9gef_j66XiTDpm2NVzRmicBqVz2zsz_dUKSChfzqvyBD_zbNG345tpF2ib2VIWpyhs2aPIIzvq3X4WefNtfNHbf_f5H2PGOn7cDDztOysarRfQY7vnqCTw4XQu61k_hy9gj0q6q17MrT-nCl_UVmxcMSS9CDStb-Wqkr8wuWXNNyFGVrK2zE1zT5WXFrGlYMTOkCFHiBR0LPIPp5Pjs8CToajIEjoukCUwklc2RJKDdN2FmhRfCKod4GxfccRMZbpwi9y9SOZflPOKe9GISoSySvTR5DoNqXvkXwFyYFwVChotSj3BtjaJCyCZ0CL9WZukQdtdTo7-vtDc0EqQwSaQKhxD2k6VdJ2dOVTVmeiPETCOqcUQ1jaiWQ3i3vqXv75bGr_sVoHHHkRvFVH6-qHUkBdJmwsohvO_nUndbv76txzfd6tk0Xi7rXxczhKiYAm4pMuHlnfrchftxu2QovuYVDJqfC7-HLKmxI9wVB0cHk1G3O0awNY3HfwBIggdX
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAceCOW8jCCEyiVkzhOclyhloV2e9qKcrJsx0krtt6WZFWWX89MNtktCFXqzYfESfz45nNm5huA9zwvZRSleExNTBEIpCSB5oUMcuvQwIVlEbc_cyaHcnwkvh4nx10ed91Hu_cuyRapryS7iYxif0QQEi2Ut2FL4BGcD2Br9Pn7_u4mHTJta7iiNY8DUrnsnZn_64QkFU7mvrrAB_5tmjZ8c-0ibRN7fKl9dcUG7T2Aaf_2q9CTHzuLxuzY3_8IO97w8x7C_Y6TstFqET2CW84_hnuTtaBr_QS-jRwi7ap6PTtzlC58Wp-xecmQ9CLUsKqVr0b6ysySNZeEHL5ibZ2d4JKap54Z3bBypkkRosIG_RZ4Ckd7u9NP46CryRBYkcRNoEOZmQJJAtp9zXOTuCQxmUW8jUphhQ610DYj9y9SOZsXIhSO9GLiJDNI9tL4GQz83LvnwCwvyhIhw4apQ7g2OqNCyJpbhF8j83QI2-upUecr7Q2FBInHscz4EHg_Wcp2cuZUVWOmNkLMNKIKR1TRiCo5hA_rW_r-rrn4bb8CFO44cqNo7-aLWoUyQdpMWDmEj_1cqm7r19f1-K5bPZuLl8v618kMISqigFuKTHhxoz7fwJ3xdHKgDr4c7m_D3ahdPhRr8xIGzc-Fe4WMqTGvux3yByYxB9k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwQJSHuhSoEZxAVvNwnOS4AlZtoRUHVvRm2Y6dVtp6C0lV9t8zk012i1RV6i0HZyJ5PDOfMzPfAHyISi-TJMdramYqLhCScB1VkpfWYYCLfZV2P3OOT-TBVBydZqf9nNNmqHYfUpLLngZiaQrt_mXl9280vomC6oAEjwkiygewhd44poM-Tcbrxsi8m-aKcT3lxHc5pDVvE0HkCmfzUP_GT_8fpNbIc5Us7Vp8gtehvhGNJk_hSQ8j2Xip923YcOEZPD5ecbA2z-HX2KFzXA6cZxeOOnzPmws29wxxKnoHVneM04g4mVmw9pqMPdSsG43Dr-nxPDCjW-Znmkgcanygm_wLmE6-_vx8wPsxCtyKLG25jmVhKozrGKp1VJrMZZkpLLrIxAsrdKyFtgVlbBF92bISsXBE8ZJmhUF8lqcvYTPMg9sBZqPKe7RyG-cOPazRBc0u1pFFj2lkmY9gd7WH6nJJl6EQ00RpKotoBNGwq8r2DOQ0CGOm1tzJpBSFSlGkFCVH8HH1yiDvjsXvBlUpNBLKfOjg5leNimWGSJfc2wg-DTpUvbU2d0l836t5vXixaP6ezdCrJFQjS8UEr-4lcw8e_vgyUd8PT77twqOkO4BUHfMaNts_V-4NYpzWvO3O8T-Cdu9B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerodynamic+mechanism+of+forces+generated+by+twisting+model-wing+in+bat+flapping+flight&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Guan%2C+Zi-wu&rft.au=Yu%2C+Yong-liang&rft.date=2014-12-01&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=35&rft.issue=12&rft.spage=1607&rft.epage=1618&rft_id=info:doi/10.1007%2Fs10483-014-1882-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10483_014_1882_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86647X%2F86647X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg