Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight
The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along th...
Saved in:
Published in | Applied mathematics and mechanics Vol. 35; no. 12; pp. 1607 - 1618 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Shanghai University
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0253-4827 1573-2754 |
DOI | 10.1007/s10483-014-1882-6 |
Cover
Abstract | The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight. |
---|---|
AbstractList | The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight. The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight. O351.2%O355; The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight. |
Author | 管子武 余永亮 |
AuthorAffiliation | Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China; The Laboratory for Biomechanics of Animal Locomotion,University of Chinese Academy of Sciences, Beijing 100049, P. R. China |
Author_xml | – sequence: 1 fullname: 管子武 余永亮 |
BookMark | eNp9kEtr3DAUhUVJoZO0P6A70VUpKNVbmmUIfQQC3bR0KWRZ9ijY0kTSMPG_r4xDC11kc3UF57vn3nMJLmKKHoD3BF8TjNXnQjDXDGHCEdGaIvkK7IhQDFEl-AXYYSoY4pqqN-CylAeMMVec78DvG59Tv0Q7Bwdn7w42hjLDNMAhZecLHH302Vbfw26B9RxKDXGEc-r9hM5rGyLsbIXDZI_H9T9MYTzUt-D1YKfi3z2_V-DX1y8_b7-j-x_f7m5v7pHjglVkidRdT-ieCGrxvhNeiE47wiUduOOWWG6dVpwyLYjb95xwr6QSTOhOs3bfFfi0zT3bONg4mod0yrE5mmUpT4fpyXjaQiGt4Cb-uImPOT2efKlmDsX5abLRp1MxRArC9gyrVUo2qcuplOwHc8xhtnkxBJs1cbMlbtpwsyZuZGPUf4wL1daQYs02TC-SdCNLc4mjz__OeAn68Gx3SHF8bNzfHaVkmDGpMfsD1WChcQ |
CitedBy_id | crossref_primary_10_1007_s10483_015_1931_7 crossref_primary_10_3390_biomimetics9120737 crossref_primary_10_1109_TIE_2021_3112964 crossref_primary_10_1016_j_ast_2018_07_017 crossref_primary_10_1063_5_0169938 crossref_primary_10_1016_j_taml_2015_01_009 crossref_primary_10_1007_s10409_023_22495_x crossref_primary_10_1115_1_4053686 crossref_primary_10_1007_s42235_024_00521_7 crossref_primary_10_1098_rsfs_2016_0083 crossref_primary_10_2514_1_J055994 crossref_primary_10_1142_S0218127423501274 crossref_primary_10_1088_1748_3190_acb7ba crossref_primary_10_1017_jfm_2019_181 crossref_primary_10_3390_aerospace11040325 crossref_primary_10_1063_5_0053721 |
Cites_doi | 10.1146/annurev-fluid-121108-145456 10.1016/j.jtbi.2008.06.011 10.1242/jeb.02704 10.1242/bio.20122964 10.1088/1748-3182/1/4/S02 10.1088/1748-3182/8/1/016009 10.1242/jeb.029777 10.1007/BF02484543 10.1126/science.1142281 10.1126/science.284.5422.1954 10.1242/jeb.02446 10.2514/1.J051593 10.1038/321162a0 10.2514/3.13250 10.1242/jeb.00739 10.2514/1.J050827 10.1016/S0029-8018(98)00018-3 10.1016/j.jfluidstructs.2012.12.005 10.1017/S002211200200143X 10.1017/CBO9780511810329 10.1126/science.1153019 10.1063/1.4794753 10.1242/jeb.008649 10.1007/s10409-005-0032-z 10.1242/jeb.205.1.55 10.1242/jeb.59.1.169 10.1242/jeb.65.1.179 10.1242/jeb.126.1.479 10.1242/jeb.65.2.459 10.1242/jeb.199.5.1073 |
ClassificationCodes | O351.2%O355 |
ContentType | Journal Article |
Copyright | Shanghai University and Springer-Verlag Berlin Heidelberg 2014 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Shanghai University and Springer-Verlag Berlin Heidelberg 2014 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10483-014-1882-6 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight |
EISSN | 1573-2754 |
EndPage | 1618 |
ExternalDocumentID | yysxhlx_e201412010 10_1007_s10483_014_1882_6 663033680 |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China funderid: (10602061) |
GroupedDBID | -01 -0A -52 -5D -5G -BR -EM -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 1SB 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 5XL 67Z 6NX 8RM 8TC 8UJ 92E 92I 92L 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG CAJEA CAJUS CCEZO CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UGNYK UNUBA UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB ~WA AACDK AAJBT AASML AAXDM AAYZH ABAKF ABJNI ABQSL ACDTI ACPIV ACUHS AEFQL AEMSY AGQEE AGRTI AIGIU BSONS H13 UY8 AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 4A8 PSX |
ID | FETCH-LOGICAL-c453t-a168bd129152a09b5e55b8c1462f4c4a1a4ac87423851c9d414e7675358b83573 |
IEDL.DBID | AGYKE |
ISSN | 0253-4827 |
IngestDate | Thu May 29 03:56:06 EDT 2025 Fri Sep 05 10:09:50 EDT 2025 Tue Jul 01 02:11:04 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Fri Feb 21 02:26:45 EST 2025 Wed Feb 14 10:33:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | O355 O351.2 76B47 panel method bat wing 76Z10 twisting aerodynamic mechanism 76M23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-a168bd129152a09b5e55b8c1462f4c4a1a4ac87423851c9d414e7675358b83573 |
Notes | Zi-wu GUAN , Yong-liang YU The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight. 31-1650/O1 bat wing, twisting, panel method, aerodynamic mechanism ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1651393070 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_yysxhlx_e201412010 proquest_miscellaneous_1651393070 crossref_primary_10_1007_s10483_014_1882_6 crossref_citationtrail_10_1007_s10483_014_1882_6 springer_journals_10_1007_s10483_014_1882_6 chongqing_primary_663033680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationSubtitle | English Edition |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationTitleAlternate | Applied Mathematics and Mechanics(English Edition) |
PublicationTitle_FL | Applied Mathematics and Mechanics |
PublicationYear | 2014 |
Publisher | Shanghai University |
Publisher_xml | – name: Shanghai University |
References | Bahlman, Swartz, Breuer (CR3) 2013; 8 Von Busse, Hedenström, Winter, Johansson (CR5) 2012; 1 Dong (CR20) 2007 Yu, Tong, Ma (CR14) 2003; 19 Ramamurti, Sandberg (CR27) 2007; 210 Dickinson, Lehmann, Sane (CR30) 1999; 284 Shelley, Zhang (CR32) 2011; 43 Riskin, Willis, Iriarte-Díaz, Hedrick, Kostandov, Chen, Laidlaw, Breuer, Swartz (CR26) 2008; 254 Zhu, Wolfgang, Yue, Triantafyllou (CR18) 2002; 468 Visbal, Yilmaz, Rockwell (CR31) 2013; 38 Sun, Tang (CR1) 2002; 205 Aldridge (CR8) 1986; 126 Tian, Iriarte-Diaz, Middleton, Galvao, Israeli, Roemer, Sullivan, Song, Swartz, Breuer (CR25) 2006; 1 Norberg (CR6) 1976; 65 Garmann, Visbal, Orkwis (CR24) 2013; 25 Kenneth, Michael, Luis (CR23) 2011 Aono, Liang, Liu (CR28) 2008; 211 Weis-Fogh (CR33) 1973; 59 Rayner, Jones, Thomas (CR10) 1986; 321 Muijres, Johansson, Barfield, Wolf, Spedding, Hedenström (CR12) 2008; 319 Katz, Plotkin (CR21) 2001 Wang, Birch, Dickinsonet (CR34) 2004; 207 Taylor, Carruthers, Hube, Walker (CR13) 2012 Trizila, Kang, Aono, Shyy, Miguel (CR29) 2011; 49 Wolf, Johansson, von Busse, Winter, Hedenström (CR4) 2010; 213 Norberg, Winter (CR9) 2006; 209 Willis, Israeli, Persson, Drela, Peraire, Swartzk, Breuer (CR17) 2007 Kang, Aono, Baik, Bernal, Shyy (CR22) 2013; 51 Smith, Wilkin, Williams (CR16) 1996; 199 Yu, Tong (CR2) 2005; 21 Vest, Katz (CR15) 1996; 34 Norberg (CR7) 1976; 65 Liu, Bose (CR19) 1999; 26 Hedenström, Johansson, Wolf, von Busse, Winter, Spedding (CR11) 2007; 316 M Vest (1882_CR15) 1996; 34 Q Zhu (1882_CR18) 2002; 468 H D J N Aldridge (1882_CR8) 1986; 126 G K Taylor (1882_CR13) 2012 P Trizila (1882_CR29) 2011; 49 J W Bahlman (1882_CR3) 2013; 8 H Aono (1882_CR28) 2008; 211 Y L Yu (1882_CR2) 2005; 21 X X Dong (1882_CR20) 2007 D K Riskin (1882_CR26) 2008; 254 J M V Rayner (1882_CR10) 1986; 321 M Sun (1882_CR1) 2002; 205 Y L Yu (1882_CR14) 2003; 19 M J Shelley (1882_CR32) 2011; 43 G Kenneth (1882_CR23) 2011 X D Tian (1882_CR25) 2006; 1 T Weis-Fogh (1882_CR33) 1973; 59 M Wolf (1882_CR4) 2010; 213 J Katz (1882_CR21) 2001 D J Willis (1882_CR17) 2007 Z J Wang (1882_CR34) 2004; 207 UM Norberg (1882_CR9) 2006; 209 P Liu (1882_CR19) 1999; 26 M H Dickinson (1882_CR30) 1999; 284 A Hedenström (1882_CR11) 2007; 316 R Ramamurti (1882_CR27) 2007; 210 M Visbal (1882_CR31) 2013; 38 C K Kang (1882_CR22) 2013; 51 D J Garmann (1882_CR24) 2013; 25 UM Norberg (1882_CR7) 1976; 65 F T Muijres (1882_CR12) 2008; 319 M Smith (1882_CR16) 1996; 199 U M Norberg (1882_CR6) 1976; 65 R Busse Von (1882_CR5) 2012; 1 |
References_xml | – volume: 43 start-page: 449 year: 2011 end-page: 465 ident: CR32 article-title: Flapping and bending bodies interacting with fluid flows publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev-fluid-121108-145456 – volume: 254 start-page: 604 year: 2008 end-page: 615 ident: CR26 article-title: Quantifying the complexity of bat wing kinematics publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2008.06.011 – volume: 210 start-page: 881 year: 2007 end-page: 896 ident: CR27 article-title: A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.02704 – volume: 1 start-page: 1226 year: 2012 end-page: 1238 ident: CR5 article-title: Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae publication-title: Biology Open doi: 10.1242/bio.20122964 – volume: 1 start-page: S10 year: 2006 end-page: S18 ident: CR25 article-title: Direct measurements of the kinematics and dynamics of bat flight publication-title: Bioinspiration and Biomimetics doi: 10.1088/1748-3182/1/4/S02 – volume: 8 start-page: 016009 year: 2013 ident: CR3 article-title: Design and characterization of a multi-articulated robotic bat wing publication-title: Bioinspiration and Biomimetics doi: 10.1088/1748-3182/8/1/016009 – volume: 213 start-page: 2142 year: 2010 end-page: 2153 ident: CR4 article-title: Kinematics of flight and the relationship to the vortex wake of a Pallas’ long tongued bat (Glossophaga soricina) publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.029777 – volume: 126 start-page: 479 year: 1986 end-page: 497 ident: CR8 article-title: Kinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at various flight speeds publication-title: The Journal of Experimental Biology – volume: 19 start-page: 508 year: 2003 end-page: 516 ident: CR14 article-title: An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects publication-title: Acta Mechanica Sinica doi: 10.1007/BF02484543 – start-page: 13 year: 2012 end-page: 40 ident: CR13 article-title: Wing morphing in insects, birds and bats: mechanism and function publication-title: Morphing Aerospace Vehicles and Structures – volume: 316 start-page: 894 year: 2007 end-page: 897 ident: CR11 article-title: Bat flight generates complex aerodynamic tracks publication-title: Science doi: 10.1126/science.1142281 – volume: 284 start-page: 1954 year: 1999 end-page: 1960 ident: CR30 article-title: Wing rotation and the aerodynamic basis of insect flight publication-title: Science doi: 10.1126/science.284.5422.1954 – volume: 209 start-page: 3887 year: 2006 end-page: 3897 ident: CR9 article-title: Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.02446 – volume: 51 start-page: 315 year: 2013 end-page: 329 ident: CR22 article-title: Fluid dynamics of pitching and plunging flat plate at intermediate Reynolds numbers publication-title: AIAA Journal doi: 10.2514/1.J051593 – volume: 321 start-page: 162 issue: 6066 year: 1986 end-page: 164 ident: CR10 article-title: Vortex flow visualizations reveal change in upstroke function with flight speed in bats publication-title: nature doi: 10.1038/321162a0 – volume: 34 start-page: 1240 year: 1996 end-page: 1246 ident: CR15 article-title: Unsteady aerodynamic model of flapping wings publication-title: AIAA Journal doi: 10.2514/3.13250 – volume: 207 start-page: 449 year: 2004 end-page: 460 ident: CR34 article-title: Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.00739 – volume: 49 start-page: 806 year: 2011 end-page: 823 ident: CR29 article-title: Low-Reynolds-number aerodynamics of a flapping rigid flat plate publication-title: AIAA Journal doi: 10.2514/1.J050827 – year: 2007 ident: CR20 publication-title: Boundary Element Simulation of Oscillating Foil with Leading-Edge Separation – volume: 26 start-page: 519 year: 1999 end-page: 530 ident: CR19 article-title: Hydrodynamic characteristics of a lunate shape oscillating propulsor publication-title: Ocean Engineering doi: 10.1016/S0029-8018(98)00018-3 – volume: 38 start-page: 58 year: 2013 end-page: 76 ident: CR31 article-title: Three-dimensional vortex formation on a heaving low-aspect-ratio wing: computations and experiments publication-title: Journal of Fluids and Structures doi: 10.1016/j.jfluidstructs.2012.12.005 – volume: 468 start-page: 1 year: 2002 end-page: 28 ident: CR18 article-title: Three-dimensional flow structures and vorticity control in fish-like swimming publication-title: Journal of Fluid Mechanics doi: 10.1017/S002211200200143X – year: 2001 ident: CR21 publication-title: Low-Speed Aerodynamics: From Wing Theory to Panel Methods doi: 10.1017/CBO9780511810329 – volume: 319 start-page: 1250 issue: 5867 year: 2008 end-page: 1253 ident: CR12 article-title: Leading-edge vortex improves lift in slow-flying bats publication-title: Science doi: 10.1126/science.1153019 – volume: 25 start-page: 034101 year: 2013 ident: CR24 article-title: Three-dimensional flow structure and aerodynamic loading on a revolving wing publication-title: Physics of Fluids doi: 10.1063/1.4794753 – volume: 59 start-page: 169 year: 1973 end-page: 230 ident: CR33 article-title: Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production publication-title: The Journal of Experimental Biology – volume: 65 start-page: 179 year: 1976 end-page: 212 ident: CR6 article-title: Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus publication-title: The Journal of Experimental Biology – year: 2011 ident: CR23 article-title: Experiments on pitching plates: force and flowfield measurements at low Reynolds numbers publication-title: 49 – volume: 211 start-page: 239 year: 2008 end-page: 257 ident: CR28 article-title: Near- and far-field aerodynamic in insect hovering flight: an integrated computational study publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.008649 – year: 2007 ident: CR17 article-title: A computational framework for fluid structure interaction in biologically inspired flapping flight publication-title: 25 – volume: 199 start-page: 1073 year: 1996 end-page: 1083 ident: CR16 article-title: The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings publication-title: The Journal of Experimental Biology – volume: 205 start-page: 55 year: 2002 end-page: 70 ident: CR1 article-title: Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion publication-title: The Journal of Experimental Biology – volume: 21 start-page: 218 year: 2005 end-page: 227 ident: CR2 article-title: A flow control mechanism in wing flapping with Stroke asymmetry during insect forward flight publication-title: Acta Mechanica Sinica doi: 10.1007/s10409-005-0032-z – volume: 65 start-page: 459 year: 1976 end-page: 470 ident: CR7 article-title: Aerodynamics of hovering flight in the long-eared bat Plecotus auritus publication-title: The Journal of Experimental Biology – volume-title: Boundary Element Simulation of Oscillating Foil with Leading-Edge Separation year: 2007 ident: 1882_CR20 – volume-title: Low-Speed Aerodynamics: From Wing Theory to Panel Methods year: 2001 ident: 1882_CR21 doi: 10.1017/CBO9780511810329 – volume: 205 start-page: 55 year: 2002 ident: 1882_CR1 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.205.1.55 – volume: 468 start-page: 1 year: 2002 ident: 1882_CR18 publication-title: Journal of Fluid Mechanics doi: 10.1017/S002211200200143X – volume: 25 start-page: 034101 year: 2013 ident: 1882_CR24 publication-title: Physics of Fluids doi: 10.1063/1.4794753 – volume: 43 start-page: 449 year: 2011 ident: 1882_CR32 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev-fluid-121108-145456 – volume: 38 start-page: 58 year: 2013 ident: 1882_CR31 publication-title: Journal of Fluids and Structures doi: 10.1016/j.jfluidstructs.2012.12.005 – volume: 319 start-page: 1250 issue: 5867 year: 2008 ident: 1882_CR12 publication-title: Science doi: 10.1126/science.1153019 – volume: 21 start-page: 218 year: 2005 ident: 1882_CR2 publication-title: Acta Mechanica Sinica doi: 10.1007/s10409-005-0032-z – volume: 321 start-page: 162 issue: 6066 year: 1986 ident: 1882_CR10 publication-title: nature doi: 10.1038/321162a0 – volume: 284 start-page: 1954 year: 1999 ident: 1882_CR30 publication-title: Science doi: 10.1126/science.284.5422.1954 – volume: 59 start-page: 169 year: 1973 ident: 1882_CR33 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.59.1.169 – volume: 65 start-page: 179 year: 1976 ident: 1882_CR6 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.65.1.179 – volume: 213 start-page: 2142 year: 2010 ident: 1882_CR4 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.029777 – volume-title: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition year: 2011 ident: 1882_CR23 – volume: 126 start-page: 479 year: 1986 ident: 1882_CR8 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.126.1.479 – volume: 1 start-page: 1226 year: 2012 ident: 1882_CR5 publication-title: Biology Open doi: 10.1242/bio.20122964 – volume: 1 start-page: S10 year: 2006 ident: 1882_CR25 publication-title: Bioinspiration and Biomimetics doi: 10.1088/1748-3182/1/4/S02 – volume: 65 start-page: 459 year: 1976 ident: 1882_CR7 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.65.2.459 – start-page: 13 volume-title: Morphing Aerospace Vehicles and Structures year: 2012 ident: 1882_CR13 – volume: 49 start-page: 806 year: 2011 ident: 1882_CR29 publication-title: AIAA Journal doi: 10.2514/1.J050827 – volume: 254 start-page: 604 year: 2008 ident: 1882_CR26 publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2008.06.011 – volume: 34 start-page: 1240 year: 1996 ident: 1882_CR15 publication-title: AIAA Journal doi: 10.2514/3.13250 – volume: 210 start-page: 881 year: 2007 ident: 1882_CR27 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.02704 – volume: 26 start-page: 519 year: 1999 ident: 1882_CR19 publication-title: Ocean Engineering doi: 10.1016/S0029-8018(98)00018-3 – volume: 51 start-page: 315 year: 2013 ident: 1882_CR22 publication-title: AIAA Journal doi: 10.2514/1.J051593 – volume: 207 start-page: 449 year: 2004 ident: 1882_CR34 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.00739 – volume: 8 start-page: 016009 year: 2013 ident: 1882_CR3 publication-title: Bioinspiration and Biomimetics doi: 10.1088/1748-3182/8/1/016009 – volume: 209 start-page: 3887 year: 2006 ident: 1882_CR9 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.02446 – volume-title: 25th AIAA Applied Aerodynamics Conference year: 2007 ident: 1882_CR17 – volume: 19 start-page: 508 year: 2003 ident: 1882_CR14 publication-title: Acta Mechanica Sinica doi: 10.1007/BF02484543 – volume: 199 start-page: 1073 year: 1996 ident: 1882_CR16 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.199.5.1073 – volume: 316 start-page: 894 year: 2007 ident: 1882_CR11 publication-title: Science doi: 10.1126/science.1142281 – volume: 211 start-page: 239 year: 2008 ident: 1882_CR28 publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.008649 |
SSID | ssj0004744 |
Score | 2.0883634 |
Snippet | The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA)... The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA)... O351.2%O355; The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1607 |
SubjectTerms | Aerodynamics Applications of Mathematics Bats Classical Mechanics Drag Flapping wings Fluid- and Aerodynamics Lift Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Partial Differential Equations Three dimensional Twisting Wings (aircraft) 动力学机理 扑翼 扭动 昆虫飞行 机制 模型 空气动力 蝙蝠 |
Title | Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight |
URI | http://lib.cqvip.com/qk/86647X/201412/663033680.html https://link.springer.com/article/10.1007/s10483-014-1882-6 https://www.proquest.com/docview/1651393070 https://d.wanfangdata.com.cn/periodical/yysxhlx-e201412010 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QUOUF5iKV0ZwQmUKg_bcY7bx1KByqkrysmyHSet2GaBZFWWX89MNtktCFXqLQfHSfz45otn5huAt2FWyDhO8TdV2DzgSEkCE-YyyJxHAxcVedIe5px-lidT_vFcnHd53HUf7d67JFukvpHsxhXF_vAgIloot2BbRCpTA9gef_j66XiTDpm2NVzRmicBqVz2zsz_dUKSChfzqvyBD_zbNG345tpF2ib2VIWpyhs2aPIIzvq3X4WefNtfNHbf_f5H2PGOn7cDDztOysarRfQY7vnqCTw4XQu61k_hy9gj0q6q17MrT-nCl_UVmxcMSS9CDStb-Wqkr8wuWXNNyFGVrK2zE1zT5WXFrGlYMTOkCFHiBR0LPIPp5Pjs8CToajIEjoukCUwklc2RJKDdN2FmhRfCKod4GxfccRMZbpwi9y9SOZflPOKe9GISoSySvTR5DoNqXvkXwFyYFwVChotSj3BtjaJCyCZ0CL9WZukQdtdTo7-vtDc0EqQwSaQKhxD2k6VdJ2dOVTVmeiPETCOqcUQ1jaiWQ3i3vqXv75bGr_sVoHHHkRvFVH6-qHUkBdJmwsohvO_nUndbv76txzfd6tk0Xi7rXxczhKiYAm4pMuHlnfrchftxu2QovuYVDJqfC7-HLKmxI9wVB0cHk1G3O0awNY3HfwBIggdX |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAceCOW8jCCEyiVkzhOclyhloV2e9qKcrJsx0krtt6WZFWWX89MNtktCFXqzYfESfz45nNm5huA9zwvZRSleExNTBEIpCSB5oUMcuvQwIVlEbc_cyaHcnwkvh4nx10ed91Hu_cuyRapryS7iYxif0QQEi2Ut2FL4BGcD2Br9Pn7_u4mHTJta7iiNY8DUrnsnZn_64QkFU7mvrrAB_5tmjZ8c-0ibRN7fKl9dcUG7T2Aaf_2q9CTHzuLxuzY3_8IO97w8x7C_Y6TstFqET2CW84_hnuTtaBr_QS-jRwi7ap6PTtzlC58Wp-xecmQ9CLUsKqVr0b6ysySNZeEHL5ibZ2d4JKap54Z3bBypkkRosIG_RZ4Ckd7u9NP46CryRBYkcRNoEOZmQJJAtp9zXOTuCQxmUW8jUphhQ610DYj9y9SOZsXIhSO9GLiJDNI9tL4GQz83LvnwCwvyhIhw4apQ7g2OqNCyJpbhF8j83QI2-upUecr7Q2FBInHscz4EHg_Wcp2cuZUVWOmNkLMNKIKR1TRiCo5hA_rW_r-rrn4bb8CFO44cqNo7-aLWoUyQdpMWDmEj_1cqm7r19f1-K5bPZuLl8v618kMISqigFuKTHhxoz7fwJ3xdHKgDr4c7m_D3ahdPhRr8xIGzc-Fe4WMqTGvux3yByYxB9k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwQJSHuhSoEZxAVvNwnOS4AlZtoRUHVvRm2Y6dVtp6C0lV9t8zk012i1RV6i0HZyJ5PDOfMzPfAHyISi-TJMdramYqLhCScB1VkpfWYYCLfZV2P3OOT-TBVBydZqf9nNNmqHYfUpLLngZiaQrt_mXl9280vomC6oAEjwkiygewhd44poM-Tcbrxsi8m-aKcT3lxHc5pDVvE0HkCmfzUP_GT_8fpNbIc5Us7Vp8gtehvhGNJk_hSQ8j2Xip923YcOEZPD5ecbA2z-HX2KFzXA6cZxeOOnzPmws29wxxKnoHVneM04g4mVmw9pqMPdSsG43Dr-nxPDCjW-Znmkgcanygm_wLmE6-_vx8wPsxCtyKLG25jmVhKozrGKp1VJrMZZkpLLrIxAsrdKyFtgVlbBF92bISsXBE8ZJmhUF8lqcvYTPMg9sBZqPKe7RyG-cOPazRBc0u1pFFj2lkmY9gd7WH6nJJl6EQ00RpKotoBNGwq8r2DOQ0CGOm1tzJpBSFSlGkFCVH8HH1yiDvjsXvBlUpNBLKfOjg5leNimWGSJfc2wg-DTpUvbU2d0l836t5vXixaP6ezdCrJFQjS8UEr-4lcw8e_vgyUd8PT77twqOkO4BUHfMaNts_V-4NYpzWvO3O8T-Cdu9B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerodynamic+mechanism+of+forces+generated+by+twisting+model-wing+in+bat+flapping+flight&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Guan%2C+Zi-wu&rft.au=Yu%2C+Yong-liang&rft.date=2014-12-01&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=35&rft.issue=12&rft.spage=1607&rft.epage=1618&rft_id=info:doi/10.1007%2Fs10483-014-1882-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10483_014_1882_6 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86647X%2F86647X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg |