Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria

Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobact...

Full description

Saved in:
Bibliographic Details
Published inDNA research Vol. 24; no. 4; pp. 387 - 396
Main Authors Hirose, Yuu, Misawa, Naomi, Yonekawa, Chinatsu, Nagao, Nobuyoshi, Watanabe, Mai, Ikeuchi, Masahiko, Eki, Toshihiko
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.
AbstractList Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.
Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.
Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.
Author Nagao, Nobuyoshi
Watanabe, Mai
Hirose, Yuu
Misawa, Naomi
Yonekawa, Chinatsu
Ikeuchi, Masahiko
Eki, Toshihiko
AuthorAffiliation 2 Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
1 Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
AuthorAffiliation_xml – name: 1 Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
– name: 2 Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
Author_xml – sequence: 1
  givenname: Yuu
  surname: Hirose
  fullname: Hirose, Yuu
– sequence: 2
  givenname: Naomi
  surname: Misawa
  fullname: Misawa, Naomi
– sequence: 3
  givenname: Chinatsu
  surname: Yonekawa
  fullname: Yonekawa, Chinatsu
– sequence: 4
  givenname: Nobuyoshi
  surname: Nagao
  fullname: Nagao, Nobuyoshi
– sequence: 5
  givenname: Mai
  surname: Watanabe
  fullname: Watanabe, Mai
– sequence: 6
  givenname: Masahiko
  surname: Ikeuchi
  fullname: Ikeuchi, Masahiko
– sequence: 7
  givenname: Toshihiko
  surname: Eki
  fullname: Eki, Toshihiko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28338901$$D View this record in MEDLINE/PubMed
BookMark eNptkUtPJCEUhcnEiY_WpVvD0k0pjyqK2piYzoyamLgZ1wToWzaTKmiBVnt-_aClRo0rCHz3nJtz9tCWDx4QOqTkhJKOny68jpBOF-mJUPoD7dK2ERUVgm-VO69JxSSXO2gvpb-E1LTh7TbaKW9cdoTuIjNf6qhthuj-6eyCx6HHeQn4DvzaecB5swLMsF3GMBbAYm3t4MaJdf6FzY8BX8DofLCblF3CdqN9MJOs3kc_ez0kOHg9Z-j2968_88vq-ubian5-Xdm64bnqeqs1Z7JnouVCEkOY6UzHem1Iw0wNltOWCUOEaFhtqGylJpwaCk3H2l7zGTqbdFdrM8LCgs9RD2oVy7Zxo4J26vOPd0t1Fx5U0_K2KVnO0PGrQAz3a0hZjS5ZGAbtIayTolJSJmpBSUGPPnq9m7wFWwA-ATaGlCL0yrr8ElqxdoOiRD3Xp6b61FRfmaq-TL0Jf8__Bw1koZE
CitedBy_id crossref_primary_10_3390_pr12122733
crossref_primary_10_1016_j_molp_2019_02_010
crossref_primary_10_1093_plphys_kiac284
crossref_primary_10_1007_s00248_019_01480_x
crossref_primary_10_4490_algae_2023_38_6_12
crossref_primary_10_1146_annurev_micro_020518_115738
crossref_primary_10_1074_jbc_RA119_010384
crossref_primary_10_1111_tpj_16666
crossref_primary_10_3390_md17080460
crossref_primary_10_5685_plmorphol_29_41
crossref_primary_10_1073_pnas_2024583118
crossref_primary_10_1016_j_pbiomolbio_2023_11_005
Cites_doi 10.1093/bioinformatics/btp698
10.1093/mp/ssr054
10.1111/mmi.13242
10.1073/pnas.0801826105
10.1099/mic.0.27498-0
10.1186/1471-2105-9-376
10.1128/jb.179.12.3914-3921.1997
10.1073/pnas.1104242108
10.1093/pcp/pcr155
10.1126/science.273.5280.1409
10.1039/b802660m
10.1111/j.1742-4658.2007.05751.x
10.1007/s11120-013-9905-3
10.1111/1462-2920.12992
10.1073/pnas.1217107110
10.1128/JB.130.1.82-91.1977
10.1093/pcp/pch214
10.1111/j.1365-2958.2005.04491.x
10.1046/j.1365-2958.2002.02966.x
10.1146/annurev.arplant.57.032905.105215
10.3389/fmicb.2015.01303
10.1007/s11120-016-0257-7
10.1016/j.jmb.2010.10.038
10.1104/pp.107.099267
10.1021/acs.biochem.6b00940
10.1126/science.1256963
10.1186/1471-2105-10-421
10.1002/cphc.200900894
10.1073/pnas.1600625113
10.1073/pnas.1320599111
10.1093/bioinformatics/btm404
10.1128/JB.186.13.4338-4349.2004
10.1128/jb.184.4.962-970.2002
10.1128/JB.188.9.3345-3356.2006
10.1007/s11120-004-7762-9
10.1039/C4PP00486H
10.1073/pnas.1000177107
10.1128/MMBR.57.3.725-749.1993
10.1105/tpc.015016
10.1073/pnas.1302909110
10.1093/bioinformatics/btu638
10.1111/j.1365-2958.2012.08106.x
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017
Copyright_xml – notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
– notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/dnares/dsx011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-1663
EndPage 396
ExternalDocumentID PMC5737509
28338901
10_1093_dnares_dsx011
Genre Journal Article
GroupedDBID ---
.I3
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
5WA
70E
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ADBBV
ADHZD
ADRAZ
AEGXH
AENEX
AENZO
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
KQ8
KSI
M48
O5R
O5S
OAWHX
OJQWA
OK1
OVT
P2P
PEELM
RD5
RNS
ROZ
RPM
RXO
SV3
TOX
TR2
WG7
X7H
ZKX
~91
~D7
~S-
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c453t-9fcaa328f2673680b02b9b92fab052b4ec31726b066524b1878a031b1e5927fa3
IEDL.DBID M48
ISSN 1340-2838
1756-1663
IngestDate Thu Aug 21 18:24:24 EDT 2025
Fri Jul 11 15:44:48 EDT 2025
Mon Jul 21 05:55:51 EDT 2025
Tue Jul 01 03:08:55 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords chromatic acclimation
phycobilisome
Cyanobacteria
cyanobacteriochrome
Language English
License The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-9fcaa328f2673680b02b9b92fab052b4ec31726b066524b1878a031b1e5927fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Dr. Naotake Ogasawara
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/dnares/dsx011
PMID 28338901
PQID 1881264610
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5737509
proquest_miscellaneous_1881264610
pubmed_primary_28338901
crossref_citationtrail_10_1093_dnares_dsx011
crossref_primary_10_1093_dnares_dsx011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle DNA research
PublicationTitleAlternate DNA Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20171218123542_dsx011-B7) 2012; 5
( key 20171218123542_dsx011-B39) 2011; 52
( key 20171218123542_dsx011-B42) 2007; 274
( key 20171218123542_dsx011-B28) 2015; 31
( key 20171218123542_dsx011-B46) 2002; 184
( key 20171218123542_dsx011-B15) 2013; 110
( key 20171218123542_dsx011-B29) 2002; 44
( key 20171218123542_dsx011-B30) 2003; 15
( key 20171218123542_dsx011-B34) 2015; 14
( key 20171218123542_dsx011-B37) 2008; 7
( key 20171218123542_dsx011-B6) 1977; 130
( key 20171218123542_dsx011-B18) 2010; 107
( key 20171218123542_dsx011-B3) 2013; 116
( key 20171218123542_dsx011-B44) 2016; 128
( key 20171218123542_dsx011-B38) 2016; 7
( key 20171218123542_dsx011-B17) 2005; 55
( key 20171218123542_dsx011-B43) 2004; 186
( key 20171218123542_dsx011-B40) 2011; 108
( key 20171218123542_dsx011-B2) 1993; 57
( key 20171218123542_dsx011-B19) 2015; 6
( key 20171218123542_dsx011-B25) 2007; 23
( key 20171218123542_dsx011-B24) 2008; 9
( key 20171218123542_dsx011-B1) 1995
( key 20171218123542_dsx011-B45) 2015; 98
( key 20171218123542_dsx011-B5) 2014; 111
( key 20171218123542_dsx011-B27) 2010; 26
( key 20171218123542_dsx011-B35) 2004; 45
( key 20171218123542_dsx011-B4) 2007; 144
( key 20171218123542_dsx011-B16) 1997; 179
( key 20171218123542_dsx011-B20) 2016; 113
( key 20171218123542_dsx011-B23) 2015; 3
( key 20171218123542_dsx011-B11) 2014; 345
( key 20171218123542_dsx011-B47) 2004; 150
( key 20171218123542_dsx011-B8) 2006; 57
( key 20171218123542_dsx011-B33) 2010; 11
( key 20171218123542_dsx011-B41) 2012; 85
( key 20171218123542_dsx011-B32) 2008; 7
( key 20171218123542_dsx011-B48) 2011; 405
( key 20171218123542_dsx011-B10) 2013; 8
( key 20171218123542_dsx011-B22) 2015; 3
( key 20171218123542_dsx011-B26) 2009; 10
( key 20171218123542_dsx011-B14) 2008; 105
( key 20171218123542_dsx011-B21) 2013; 110
( key 20171218123542_dsx011-B36) 2016; 55
( key 20171218123542_dsx011-B12) 2015; 17
( key 20171218123542_dsx011-B13) 1996; 273
( key 20171218123542_dsx011-B9) 2006; 188
( key 20171218123542_dsx011-B31) 2005; 84
8246846 - Microbiol Rev. 1993 Sep;57(3):725-49
20155775 - Chemphyschem. 2010 Apr 26;11(6):1172-80
18846291 - Photochem Photobiol Sci. 2008 Oct;7(10):1253-9
18793444 - BMC Bioinformatics. 2008 Sep 16;9:376
26234306 - Environ Microbiol. 2015 Oct;17(10):3450-65
14508001 - Plant Cell. 2003 Oct;15(10):2448-63
22065076 - Plant Cell Physiol. 2011 Dec;52(12 ):2214-24
18846279 - Photochem Photobiol Sci. 2008 Oct;7(10):1159-67
25931605 - Genome Announc. 2015 Apr 30;3(2):null
9190806 - J Bacteriol. 1997 Jun;179(12):3914-21
16621829 - J Bacteriol. 2006 May;188(9):3345-56
27152022 - Proc Natl Acad Sci U S A. 2016 May 24;113(21):6077-82
16049785 - Photosynth Res. 2005 Jun;84(1-3):269-73
25214622 - Science. 2014 Sep 12;345(6202):1312-7
12067341 - Mol Microbiol. 2002 Jun;44(6):1517-31
20003500 - BMC Bioinformatics. 2009 Dec 15;10:421
21670284 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10780-5
22625406 - Mol Microbiol. 2012 Jul;85(2):239-51
8703080 - Science. 1996 Sep 6;273(5280):1409-12
25738434 - Photochem Photobiol Sci. 2015 May;14(5):929-41
26447922 - Mol Microbiol. 2015 Dec;98(6):998-1001
15205436 - J Bacteriol. 2004 Jul;186(13):4338-49
17468217 - Plant Physiol. 2007 Jun;144(2):1200-10
11807056 - J Bacteriol. 2002 Feb;184(4):962-70
26861023 - MBio. 2016 Feb 09;7(1):e02130-15
24081814 - Photosynth Res. 2013 Oct;116(2-3):265-76
27935696 - Biochemistry. 2016 Dec 20;55(50):6981-6995
25953174 - Genome Announc. 2015 May 07;3(3):null
21772031 - Mol Plant. 2012 Jan;5(1):1-13
21035461 - J Mol Biol. 2011 Jan 14;405(2):315-24
24550276 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2512-7
17388813 - FEBS J. 2007 Apr;274(8):2088-98
16669758 - Annu Rev Plant Biol. 2006;57:127-50
27071628 - Photosynth Res. 2016 Jun;128(3):325-40
18621684 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9528-33
15583167 - Microbiology. 2004 Dec;150(Pt 12):4147-56
26635768 - Front Microbiol. 2015 Nov 25;6:1303
23479641 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4974-9
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
15653792 - Plant Cell Physiol. 2004 Dec;45(12):1729-37
23277585 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8
20404166 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8854-9
24391958 - PLoS One. 2013 Dec 31;8(12):e84459
20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
15720559 - Mol Microbiol. 2005 Mar;55(5):1538-52
856789 - J Bacteriol. 1977 Apr;130(1):82-91
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – volume: 26
  start-page: 589
  year: 2010
  ident: key 20171218123542_dsx011-B27
  article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
– volume: 5
  start-page: 1
  year: 2012
  ident: key 20171218123542_dsx011-B7
  article-title: Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr054
– volume: 98
  start-page: 998
  year: 2015
  ident: key 20171218123542_dsx011-B45
  article-title: Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors
  publication-title: Mol. Microbiol
  doi: 10.1111/mmi.13242
– volume: 105
  start-page: 9528
  year: 2008
  ident: key 20171218123542_dsx011-B14
  article-title: Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0801826105
– volume: 150
  start-page: 4147
  year: 2004
  ident: key 20171218123542_dsx011-B47
  article-title: Phycobilisome rod mutants in Synechocystis sp. strain PCC6803
  publication-title: Microbiology
  doi: 10.1099/mic.0.27498-0
– volume: 9
  start-page: 376
  year: 2008
  ident: key 20171218123542_dsx011-B24
  article-title: GenomeMatcher: a graphical user interface for DNA sequence comparison
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-9-376
– volume: 179
  start-page: 3914
  year: 1997
  ident: key 20171218123542_dsx011-B16
  article-title: New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system
  publication-title: J. Bacteriol
  doi: 10.1128/jb.179.12.3914-3921.1997
– volume: 108
  start-page: 10780
  issue: 26
  year: 2011
  ident: key 20171218123542_dsx011-B40
  article-title: Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1104242108
– volume: 52
  start-page: 2214
  year: 2011
  ident: key 20171218123542_dsx011-B39
  article-title: Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803
  publication-title: Plant. Cell. Physiol
  doi: 10.1093/pcp/pcr155
– volume: 273
  start-page: 1409
  year: 1996
  ident: key 20171218123542_dsx011-B13
  article-title: Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors
  publication-title: Science
  doi: 10.1126/science.273.5280.1409
– volume: 3
  year: 2015
  ident: key 20171218123542_dsx011-B22
  article-title: Complete genome sequence of Cyanobacterium Geminocystis sp. strain NIES-3708, which performs type ii complementary chromatic acclimation
  publication-title: Genome Announc
– volume: 7
  start-page: 1159
  year: 2008
  ident: key 20171218123542_dsx011-B32
  article-title: Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria
  publication-title: Photochem. Photobiol. Sci
  doi: 10.1039/b802660m
– volume: 274
  start-page: 2088
  year: 2007
  ident: key 20171218123542_dsx011-B42
  article-title: Homologous expression of a bacterial phytochrome - The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05751.x
– volume: 116
  start-page: 265
  year: 2013
  ident: key 20171218123542_dsx011-B3
  article-title: Phycobilisome: architecture of a light-harvesting supercomplex
  publication-title: Photosynth Res
  doi: 10.1007/s11120-013-9905-3
– volume: 17
  start-page: 3450
  year: 2015
  ident: key 20171218123542_dsx011-B12
  article-title: Adaptive and acclimative responses of cyanobacteria to far-red light
  publication-title: Environ. Microbiol
  doi: 10.1111/1462-2920.12992
– volume: 110
  start-page: 1053
  year: 2013
  ident: key 20171218123542_dsx011-B21
  article-title: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1217107110
– volume: 130
  start-page: 82
  year: 1977
  ident: key 20171218123542_dsx011-B6
  article-title: Occurrence and nature of chromatic adaptation in cyanobacteria
  publication-title: J. Bacteriol
  doi: 10.1128/JB.130.1.82-91.1977
– volume: 45
  start-page: 1729
  year: 2004
  ident: key 20171218123542_dsx011-B35
  article-title: Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms
  publication-title: Plant. Cell. Physiol
  doi: 10.1093/pcp/pch214
– volume: 55
  start-page: 1538
  year: 2005
  ident: key 20171218123542_dsx011-B17
  article-title: In vivo analysis of the roles of conserved aspartate and histidine residues within a complex response regulator
  publication-title: Mol. Microbiol
  doi: 10.1111/j.1365-2958.2005.04491.x
– volume: 44
  start-page: 1517
  year: 2002
  ident: key 20171218123542_dsx011-B29
  article-title: CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR)
  publication-title: Mol. Microbiol
  doi: 10.1046/j.1365-2958.2002.02966.x
– volume: 57
  start-page: 127
  year: 2006
  ident: key 20171218123542_dsx011-B8
  article-title: Responding to color: the regulation of complementary chromatic adaptation
  publication-title: Annu. Rev. Plant. Biol
  doi: 10.1146/annurev.arplant.57.032905.105215
– volume: 6
  start-page: 1303
  year: 2015
  ident: key 20171218123542_dsx011-B19
  article-title: RfpA, RfpB, and RfpC are the Master Control Elements of Far-Red Light Photoacclimation (FaRLiP)
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2015.01303
– volume: 128
  start-page: 325
  year: 2016
  ident: key 20171218123542_dsx011-B44
  article-title: The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes
  publication-title: Photosynth Res
  doi: 10.1007/s11120-016-0257-7
– volume: 405
  start-page: 315
  year: 2011
  ident: key 20171218123542_dsx011-B48
  article-title: Multichromatic control of gene expression in Escherichia coli
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2010.10.038
– volume: 144
  start-page: 1200
  year: 2007
  ident: key 20171218123542_dsx011-B4
  article-title: The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.099267
– volume: 55
  start-page: 6981
  issue: 50
  year: 2016
  ident: key 20171218123542_dsx011-B36
  article-title: Cyanobacteriochrome photoreceptors lacking the canonical cys residue
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00940
– volume: 345
  start-page: 1312
  year: 2014
  ident: key 20171218123542_dsx011-B11
  article-title: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light
  publication-title: Science
  doi: 10.1126/science.1256963
– volume: 10
  start-page: 421
  year: 2009
  ident: key 20171218123542_dsx011-B26
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 11
  start-page: 1172
  year: 2010
  ident: key 20171218123542_dsx011-B33
  article-title: A brief history of phytochromes
  publication-title: Chemphyschem
  doi: 10.1002/cphc.200900894
– volume: 7
  start-page: 1253
  year: 2008
  ident: key 20171218123542_dsx011-B37
  article-title: Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium
  publication-title: Synechocystis sp. PCC 6803. Photochem. Photobiol. Sci.
– volume: 113
  start-page: 6077
  issue: 21
  year: 2016
  ident: key 20171218123542_dsx011-B20
  article-title: Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1600625113
– volume: 111
  start-page: 2512
  year: 2014
  ident: key 20171218123542_dsx011-B5
  article-title: Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1320599111
– volume: 23
  start-page: 2947
  year: 2007
  ident: key 20171218123542_dsx011-B25
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 186
  start-page: 4338
  year: 2004
  ident: key 20171218123542_dsx011-B43
  article-title: Genomic DNA microarray analysis: identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon
  publication-title: J. Bacteriol
  doi: 10.1128/JB.186.13.4338-4349.2004
– volume: 8
  year: 2013
  ident: key 20171218123542_dsx011-B10
  article-title: A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus
  publication-title: PloS one
– volume: 184
  start-page: 962
  year: 2002
  ident: key 20171218123542_dsx011-B46
  article-title: A turquoise mutant genetically separates expression of genes encoding phycoerythrin and its associated linker peptides
  publication-title: J. Bacteriol
  doi: 10.1128/jb.184.4.962-970.2002
– volume: 188
  start-page: 3345
  year: 2006
  ident: key 20171218123542_dsx011-B9
  article-title: Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp
  publication-title: J. Bacteriol
  doi: 10.1128/JB.188.9.3345-3356.2006
– volume: 84
  start-page: 269
  year: 2005
  ident: key 20171218123542_dsx011-B31
  article-title: Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803
  publication-title: Photosynth. Res
  doi: 10.1007/s11120-004-7762-9
– volume: 3
  year: 2015
  ident: key 20171218123542_dsx011-B23
  article-title: Complete genome sequence of Cyanobacterium Geminocystis sp. strain NIES-3709, which harbors a phycoerythrin-rich phycobilisome
  publication-title: Genome Announc
– volume: 7
  start-page: e02130
  year: 2016
  ident: key 20171218123542_dsx011-B38
  article-title: Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light
  publication-title: mBio
– volume: 14
  start-page: 929
  year: 2015
  ident: key 20171218123542_dsx011-B34
  article-title: Identification of DXCF cyanobacteriochrome lineages with predictable photocycles
  publication-title: Photochem. Photobiol. Sci
  doi: 10.1039/C4PP00486H
– volume: 107
  start-page: 8854
  year: 2010
  ident: key 20171218123542_dsx011-B18
  article-title: Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1000177107
– volume: 57
  start-page: 725
  year: 1993
  ident: key 20171218123542_dsx011-B2
  article-title: The phycobilisome, a light-harvesting complex responsive to environmental conditions
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.57.3.725-749.1993
– volume: 15
  start-page: 2448
  year: 2003
  ident: key 20171218123542_dsx011-B30
  article-title: Lesions in phycoerythrin chromophore biosynthesis in Fremyelia diplosiphon reveal coordinated light regulation of apoprotein and pigment biosynthetic enzyme gene expression
  publication-title: Plant Cell
  doi: 10.1105/tpc.015016
– start-page: 641
  volume-title: The Molecular Biology of Cyanobacteria
  year: 1995
  ident: key 20171218123542_dsx011-B1
– volume: 110
  start-page: 4974
  year: 2013
  ident: key 20171218123542_dsx011-B15
  article-title: Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1302909110
– volume: 31
  start-page: 166
  year: 2015
  ident: key 20171218123542_dsx011-B28
  article-title: HTSeq–a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 85
  start-page: 239
  year: 2012
  ident: key 20171218123542_dsx011-B41
  article-title: Light-induced alteration of c-di-GMP level controls motility of Synechocystis sp. PCC 6803
  publication-title: Mol. Microbiol
  doi: 10.1111/j.1365-2958.2012.08106.x
– reference: 18793444 - BMC Bioinformatics. 2008 Sep 16;9:376
– reference: 15653792 - Plant Cell Physiol. 2004 Dec;45(12):1729-37
– reference: 8246846 - Microbiol Rev. 1993 Sep;57(3):725-49
– reference: 18621684 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9528-33
– reference: 15720559 - Mol Microbiol. 2005 Mar;55(5):1538-52
– reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
– reference: 24550276 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2512-7
– reference: 856789 - J Bacteriol. 1977 Apr;130(1):82-91
– reference: 14508001 - Plant Cell. 2003 Oct;15(10):2448-63
– reference: 25214622 - Science. 2014 Sep 12;345(6202):1312-7
– reference: 20003500 - BMC Bioinformatics. 2009 Dec 15;10:421
– reference: 21035461 - J Mol Biol. 2011 Jan 14;405(2):315-24
– reference: 22065076 - Plant Cell Physiol. 2011 Dec;52(12 ):2214-24
– reference: 24081814 - Photosynth Res. 2013 Oct;116(2-3):265-76
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 18846279 - Photochem Photobiol Sci. 2008 Oct;7(10):1159-67
– reference: 23479641 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4974-9
– reference: 12067341 - Mol Microbiol. 2002 Jun;44(6):1517-31
– reference: 26234306 - Environ Microbiol. 2015 Oct;17(10):3450-65
– reference: 9190806 - J Bacteriol. 1997 Jun;179(12):3914-21
– reference: 21670284 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10780-5
– reference: 17388813 - FEBS J. 2007 Apr;274(8):2088-98
– reference: 27935696 - Biochemistry. 2016 Dec 20;55(50):6981-6995
– reference: 16621829 - J Bacteriol. 2006 May;188(9):3345-56
– reference: 21772031 - Mol Plant. 2012 Jan;5(1):1-13
– reference: 26861023 - MBio. 2016 Feb 09;7(1):e02130-15
– reference: 16049785 - Photosynth Res. 2005 Jun;84(1-3):269-73
– reference: 11807056 - J Bacteriol. 2002 Feb;184(4):962-70
– reference: 24391958 - PLoS One. 2013 Dec 31;8(12):e84459
– reference: 15205436 - J Bacteriol. 2004 Jul;186(13):4338-49
– reference: 27152022 - Proc Natl Acad Sci U S A. 2016 May 24;113(21):6077-82
– reference: 27071628 - Photosynth Res. 2016 Jun;128(3):325-40
– reference: 22625406 - Mol Microbiol. 2012 Jul;85(2):239-51
– reference: 23277585 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8
– reference: 26447922 - Mol Microbiol. 2015 Dec;98(6):998-1001
– reference: 26635768 - Front Microbiol. 2015 Nov 25;6:1303
– reference: 15583167 - Microbiology. 2004 Dec;150(Pt 12):4147-56
– reference: 20155775 - Chemphyschem. 2010 Apr 26;11(6):1172-80
– reference: 8703080 - Science. 1996 Sep 6;273(5280):1409-12
– reference: 25931605 - Genome Announc. 2015 Apr 30;3(2):null
– reference: 25953174 - Genome Announc. 2015 May 07;3(3):null
– reference: 16669758 - Annu Rev Plant Biol. 2006;57:127-50
– reference: 20404166 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8854-9
– reference: 25738434 - Photochem Photobiol Sci. 2015 May;14(5):929-41
– reference: 17468217 - Plant Physiol. 2007 Jun;144(2):1200-10
– reference: 18846291 - Photochem Photobiol Sci. 2008 Oct;7(10):1253-9
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
SSID ssj0041537
Score 2.2377734
Snippet Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 387
SubjectTerms Acclimatization
Cyanobacteria - metabolism
Cyanobacteria - physiology
Light
Photosynthesis
Phycobilisomes - metabolism
Phycobilisomes - physiology
Phycoerythrin - metabolism
Protein Isoforms - metabolism
Title Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/28338901
https://www.proquest.com/docview/1881264610
https://pubmed.ncbi.nlm.nih.gov/PMC5737509
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbarZB6QVAeDY-VK1WcCCR-xTmgqkI8VKmcWIlbZHttsdIqofsQu_-esZ0NBdoL50x8mPF4PntmvkHoO3Fa5FaAf3NJU8ZhG2viuQiFZtQxa4QLBbI34nrAft3xu2dKoVaB039e7fw8qcFkfLL4s_wBDn_WkiGdDmvfqnM6nC4y3-X7CYJS4YcZ_GZdQgHCVKDPzCnLUoiosqXbfPO7JweWcG0r2ykxXaR6Az9fV1H-FZYuN9B6iyfxz7gBNtEHW39Ba3HC5HIL6fOOkDn2W-LGYcB8GPbNHAAm9k-wmGBzP2kCeStWxoxHsZ8Rj-ogO3ts8JUnIWnMEk6EKTZLVcM5EJZV22hweXF7fp22YxVSwzidpaUzSlEiHfE1XTLTGdGlLolTOuNEg30AUxChfVKGMJ3LQipwfZ1bXpLCKbqDenVT268IDzM7dJYTR1XJNLclEzIv4H4uKHPEiAQdr1RYmZZz3I--GFcx902rqPwqKj9BR534QyTb-J_gt5U9KnAHn-NQtW3m0yqXgFiEJ5FP0G60T7fUyrAJKl5YrhPwVNsvv9Sj-0C5zQvqodXeu__cR5-JBwShdPAA9WaTuT0EODPTffSxyC764TGgHzbtE3g6-3E
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+genuine+type+2+chromatic+acclimation+in+the+two+Geminocystis+cyanobacteria&rft.jtitle=DNA+research&rft.au=Hirose%2C+Yuu&rft.au=Misawa%2C+Naomi&rft.au=Yonekawa%2C+Chinatsu&rft.au=Nagao%2C+Nobuyoshi&rft.date=2017-08-01&rft.pub=Oxford+University+Press&rft.issn=1340-2838&rft.eissn=1756-1663&rft.volume=24&rft.issue=4&rft.spage=387&rft.epage=396&rft_id=info:doi/10.1093%2Fdnares%2Fdsx011&rft_id=info%3Apmid%2F28338901&rft.externalDocID=PMC5737509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-2838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-2838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-2838&client=summon