Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria
Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobact...
Saved in:
Published in | DNA research Vol. 24; no. 4; pp. 387 - 396 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. |
---|---|
AbstractList | Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of
Geminocystis
sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. |
Author | Nagao, Nobuyoshi Watanabe, Mai Hirose, Yuu Misawa, Naomi Yonekawa, Chinatsu Ikeuchi, Masahiko Eki, Toshihiko |
AuthorAffiliation | 2 Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan 1 Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan |
AuthorAffiliation_xml | – name: 1 Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan – name: 2 Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan |
Author_xml | – sequence: 1 givenname: Yuu surname: Hirose fullname: Hirose, Yuu – sequence: 2 givenname: Naomi surname: Misawa fullname: Misawa, Naomi – sequence: 3 givenname: Chinatsu surname: Yonekawa fullname: Yonekawa, Chinatsu – sequence: 4 givenname: Nobuyoshi surname: Nagao fullname: Nagao, Nobuyoshi – sequence: 5 givenname: Mai surname: Watanabe fullname: Watanabe, Mai – sequence: 6 givenname: Masahiko surname: Ikeuchi fullname: Ikeuchi, Masahiko – sequence: 7 givenname: Toshihiko surname: Eki fullname: Eki, Toshihiko |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28338901$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtPJCEUhcnEiY_WpVvD0k0pjyqK2piYzoyamLgZ1wToWzaTKmiBVnt-_aClRo0rCHz3nJtz9tCWDx4QOqTkhJKOny68jpBOF-mJUPoD7dK2ERUVgm-VO69JxSSXO2gvpb-E1LTh7TbaKW9cdoTuIjNf6qhthuj-6eyCx6HHeQn4DvzaecB5swLMsF3GMBbAYm3t4MaJdf6FzY8BX8DofLCblF3CdqN9MJOs3kc_ez0kOHg9Z-j2968_88vq-ubian5-Xdm64bnqeqs1Z7JnouVCEkOY6UzHem1Iw0wNltOWCUOEaFhtqGylJpwaCk3H2l7zGTqbdFdrM8LCgs9RD2oVy7Zxo4J26vOPd0t1Fx5U0_K2KVnO0PGrQAz3a0hZjS5ZGAbtIayTolJSJmpBSUGPPnq9m7wFWwA-ATaGlCL0yrr8ElqxdoOiRD3Xp6b61FRfmaq-TL0Jf8__Bw1koZE |
CitedBy_id | crossref_primary_10_3390_pr12122733 crossref_primary_10_1016_j_molp_2019_02_010 crossref_primary_10_1093_plphys_kiac284 crossref_primary_10_1007_s00248_019_01480_x crossref_primary_10_4490_algae_2023_38_6_12 crossref_primary_10_1146_annurev_micro_020518_115738 crossref_primary_10_1074_jbc_RA119_010384 crossref_primary_10_1111_tpj_16666 crossref_primary_10_3390_md17080460 crossref_primary_10_5685_plmorphol_29_41 crossref_primary_10_1073_pnas_2024583118 crossref_primary_10_1016_j_pbiomolbio_2023_11_005 |
Cites_doi | 10.1093/bioinformatics/btp698 10.1093/mp/ssr054 10.1111/mmi.13242 10.1073/pnas.0801826105 10.1099/mic.0.27498-0 10.1186/1471-2105-9-376 10.1128/jb.179.12.3914-3921.1997 10.1073/pnas.1104242108 10.1093/pcp/pcr155 10.1126/science.273.5280.1409 10.1039/b802660m 10.1111/j.1742-4658.2007.05751.x 10.1007/s11120-013-9905-3 10.1111/1462-2920.12992 10.1073/pnas.1217107110 10.1128/JB.130.1.82-91.1977 10.1093/pcp/pch214 10.1111/j.1365-2958.2005.04491.x 10.1046/j.1365-2958.2002.02966.x 10.1146/annurev.arplant.57.032905.105215 10.3389/fmicb.2015.01303 10.1007/s11120-016-0257-7 10.1016/j.jmb.2010.10.038 10.1104/pp.107.099267 10.1021/acs.biochem.6b00940 10.1126/science.1256963 10.1186/1471-2105-10-421 10.1002/cphc.200900894 10.1073/pnas.1600625113 10.1073/pnas.1320599111 10.1093/bioinformatics/btm404 10.1128/JB.186.13.4338-4349.2004 10.1128/jb.184.4.962-970.2002 10.1128/JB.188.9.3345-3356.2006 10.1007/s11120-004-7762-9 10.1039/C4PP00486H 10.1073/pnas.1000177107 10.1128/MMBR.57.3.725-749.1993 10.1105/tpc.015016 10.1073/pnas.1302909110 10.1093/bioinformatics/btu638 10.1111/j.1365-2958.2012.08106.x |
ContentType | Journal Article |
Copyright | The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017 |
Copyright_xml | – notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. – notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/dnares/dsx011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1756-1663 |
EndPage | 396 |
ExternalDocumentID | PMC5737509 28338901 10_1093_dnares_dsx011 |
Genre | Journal Article |
GroupedDBID | --- .I3 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS 5WA 70E AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ADBBV ADHZD ADRAZ AEGXH AENEX AENZO AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ KQ8 KSI M48 O5R O5S OAWHX OJQWA OK1 OVT P2P PEELM RD5 RNS ROZ RPM RXO SV3 TOX TR2 WG7 X7H ZKX ~91 ~D7 ~S- CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-9fcaa328f2673680b02b9b92fab052b4ec31726b066524b1878a031b1e5927fa3 |
IEDL.DBID | M48 |
ISSN | 1340-2838 1756-1663 |
IngestDate | Thu Aug 21 18:24:24 EDT 2025 Fri Jul 11 15:44:48 EDT 2025 Mon Jul 21 05:55:51 EDT 2025 Tue Jul 01 03:08:55 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | chromatic acclimation phycobilisome Cyanobacteria cyanobacteriochrome |
Language | English |
License | The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-9fcaa328f2673680b02b9b92fab052b4ec31726b066524b1878a031b1e5927fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Dr. Naotake Ogasawara |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/dnares/dsx011 |
PMID | 28338901 |
PQID | 1881264610 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5737509 proquest_miscellaneous_1881264610 pubmed_primary_28338901 crossref_citationtrail_10_1093_dnares_dsx011 crossref_primary_10_1093_dnares_dsx011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | DNA research |
PublicationTitleAlternate | DNA Res |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20171218123542_dsx011-B7) 2012; 5 ( key 20171218123542_dsx011-B39) 2011; 52 ( key 20171218123542_dsx011-B42) 2007; 274 ( key 20171218123542_dsx011-B28) 2015; 31 ( key 20171218123542_dsx011-B46) 2002; 184 ( key 20171218123542_dsx011-B15) 2013; 110 ( key 20171218123542_dsx011-B29) 2002; 44 ( key 20171218123542_dsx011-B30) 2003; 15 ( key 20171218123542_dsx011-B34) 2015; 14 ( key 20171218123542_dsx011-B37) 2008; 7 ( key 20171218123542_dsx011-B6) 1977; 130 ( key 20171218123542_dsx011-B18) 2010; 107 ( key 20171218123542_dsx011-B3) 2013; 116 ( key 20171218123542_dsx011-B44) 2016; 128 ( key 20171218123542_dsx011-B38) 2016; 7 ( key 20171218123542_dsx011-B17) 2005; 55 ( key 20171218123542_dsx011-B43) 2004; 186 ( key 20171218123542_dsx011-B40) 2011; 108 ( key 20171218123542_dsx011-B2) 1993; 57 ( key 20171218123542_dsx011-B19) 2015; 6 ( key 20171218123542_dsx011-B25) 2007; 23 ( key 20171218123542_dsx011-B24) 2008; 9 ( key 20171218123542_dsx011-B1) 1995 ( key 20171218123542_dsx011-B45) 2015; 98 ( key 20171218123542_dsx011-B5) 2014; 111 ( key 20171218123542_dsx011-B27) 2010; 26 ( key 20171218123542_dsx011-B35) 2004; 45 ( key 20171218123542_dsx011-B4) 2007; 144 ( key 20171218123542_dsx011-B16) 1997; 179 ( key 20171218123542_dsx011-B20) 2016; 113 ( key 20171218123542_dsx011-B23) 2015; 3 ( key 20171218123542_dsx011-B11) 2014; 345 ( key 20171218123542_dsx011-B47) 2004; 150 ( key 20171218123542_dsx011-B8) 2006; 57 ( key 20171218123542_dsx011-B33) 2010; 11 ( key 20171218123542_dsx011-B41) 2012; 85 ( key 20171218123542_dsx011-B32) 2008; 7 ( key 20171218123542_dsx011-B48) 2011; 405 ( key 20171218123542_dsx011-B10) 2013; 8 ( key 20171218123542_dsx011-B22) 2015; 3 ( key 20171218123542_dsx011-B26) 2009; 10 ( key 20171218123542_dsx011-B14) 2008; 105 ( key 20171218123542_dsx011-B21) 2013; 110 ( key 20171218123542_dsx011-B36) 2016; 55 ( key 20171218123542_dsx011-B12) 2015; 17 ( key 20171218123542_dsx011-B13) 1996; 273 ( key 20171218123542_dsx011-B9) 2006; 188 ( key 20171218123542_dsx011-B31) 2005; 84 8246846 - Microbiol Rev. 1993 Sep;57(3):725-49 20155775 - Chemphyschem. 2010 Apr 26;11(6):1172-80 18846291 - Photochem Photobiol Sci. 2008 Oct;7(10):1253-9 18793444 - BMC Bioinformatics. 2008 Sep 16;9:376 26234306 - Environ Microbiol. 2015 Oct;17(10):3450-65 14508001 - Plant Cell. 2003 Oct;15(10):2448-63 22065076 - Plant Cell Physiol. 2011 Dec;52(12 ):2214-24 18846279 - Photochem Photobiol Sci. 2008 Oct;7(10):1159-67 25931605 - Genome Announc. 2015 Apr 30;3(2):null 9190806 - J Bacteriol. 1997 Jun;179(12):3914-21 16621829 - J Bacteriol. 2006 May;188(9):3345-56 27152022 - Proc Natl Acad Sci U S A. 2016 May 24;113(21):6077-82 16049785 - Photosynth Res. 2005 Jun;84(1-3):269-73 25214622 - Science. 2014 Sep 12;345(6202):1312-7 12067341 - Mol Microbiol. 2002 Jun;44(6):1517-31 20003500 - BMC Bioinformatics. 2009 Dec 15;10:421 21670284 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10780-5 22625406 - Mol Microbiol. 2012 Jul;85(2):239-51 8703080 - Science. 1996 Sep 6;273(5280):1409-12 25738434 - Photochem Photobiol Sci. 2015 May;14(5):929-41 26447922 - Mol Microbiol. 2015 Dec;98(6):998-1001 15205436 - J Bacteriol. 2004 Jul;186(13):4338-49 17468217 - Plant Physiol. 2007 Jun;144(2):1200-10 11807056 - J Bacteriol. 2002 Feb;184(4):962-70 26861023 - MBio. 2016 Feb 09;7(1):e02130-15 24081814 - Photosynth Res. 2013 Oct;116(2-3):265-76 27935696 - Biochemistry. 2016 Dec 20;55(50):6981-6995 25953174 - Genome Announc. 2015 May 07;3(3):null 21772031 - Mol Plant. 2012 Jan;5(1):1-13 21035461 - J Mol Biol. 2011 Jan 14;405(2):315-24 24550276 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2512-7 17388813 - FEBS J. 2007 Apr;274(8):2088-98 16669758 - Annu Rev Plant Biol. 2006;57:127-50 27071628 - Photosynth Res. 2016 Jun;128(3):325-40 18621684 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9528-33 15583167 - Microbiology. 2004 Dec;150(Pt 12):4147-56 26635768 - Front Microbiol. 2015 Nov 25;6:1303 23479641 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4974-9 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 15653792 - Plant Cell Physiol. 2004 Dec;45(12):1729-37 23277585 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8 20404166 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8854-9 24391958 - PLoS One. 2013 Dec 31;8(12):e84459 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 15720559 - Mol Microbiol. 2005 Mar;55(5):1538-52 856789 - J Bacteriol. 1977 Apr;130(1):82-91 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – volume: 26 start-page: 589 year: 2010 ident: key 20171218123542_dsx011-B27 article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 5 start-page: 1 year: 2012 ident: key 20171218123542_dsx011-B7 article-title: Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria publication-title: Mol. Plant doi: 10.1093/mp/ssr054 – volume: 98 start-page: 998 year: 2015 ident: key 20171218123542_dsx011-B45 article-title: Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors publication-title: Mol. Microbiol doi: 10.1111/mmi.13242 – volume: 105 start-page: 9528 year: 2008 ident: key 20171218123542_dsx011-B14 article-title: Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0801826105 – volume: 150 start-page: 4147 year: 2004 ident: key 20171218123542_dsx011-B47 article-title: Phycobilisome rod mutants in Synechocystis sp. strain PCC6803 publication-title: Microbiology doi: 10.1099/mic.0.27498-0 – volume: 9 start-page: 376 year: 2008 ident: key 20171218123542_dsx011-B24 article-title: GenomeMatcher: a graphical user interface for DNA sequence comparison publication-title: BMC bioinformatics doi: 10.1186/1471-2105-9-376 – volume: 179 start-page: 3914 year: 1997 ident: key 20171218123542_dsx011-B16 article-title: New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system publication-title: J. Bacteriol doi: 10.1128/jb.179.12.3914-3921.1997 – volume: 108 start-page: 10780 issue: 26 year: 2011 ident: key 20171218123542_dsx011-B40 article-title: Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803 publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1104242108 – volume: 52 start-page: 2214 year: 2011 ident: key 20171218123542_dsx011-B39 article-title: Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803 publication-title: Plant. Cell. Physiol doi: 10.1093/pcp/pcr155 – volume: 273 start-page: 1409 year: 1996 ident: key 20171218123542_dsx011-B13 article-title: Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors publication-title: Science doi: 10.1126/science.273.5280.1409 – volume: 3 year: 2015 ident: key 20171218123542_dsx011-B22 article-title: Complete genome sequence of Cyanobacterium Geminocystis sp. strain NIES-3708, which performs type ii complementary chromatic acclimation publication-title: Genome Announc – volume: 7 start-page: 1159 year: 2008 ident: key 20171218123542_dsx011-B32 article-title: Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria publication-title: Photochem. Photobiol. Sci doi: 10.1039/b802660m – volume: 274 start-page: 2088 year: 2007 ident: key 20171218123542_dsx011-B42 article-title: Homologous expression of a bacterial phytochrome - The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore publication-title: FEBS J doi: 10.1111/j.1742-4658.2007.05751.x – volume: 116 start-page: 265 year: 2013 ident: key 20171218123542_dsx011-B3 article-title: Phycobilisome: architecture of a light-harvesting supercomplex publication-title: Photosynth Res doi: 10.1007/s11120-013-9905-3 – volume: 17 start-page: 3450 year: 2015 ident: key 20171218123542_dsx011-B12 article-title: Adaptive and acclimative responses of cyanobacteria to far-red light publication-title: Environ. Microbiol doi: 10.1111/1462-2920.12992 – volume: 110 start-page: 1053 year: 2013 ident: key 20171218123542_dsx011-B21 article-title: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1217107110 – volume: 130 start-page: 82 year: 1977 ident: key 20171218123542_dsx011-B6 article-title: Occurrence and nature of chromatic adaptation in cyanobacteria publication-title: J. Bacteriol doi: 10.1128/JB.130.1.82-91.1977 – volume: 45 start-page: 1729 year: 2004 ident: key 20171218123542_dsx011-B35 article-title: Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms publication-title: Plant. Cell. Physiol doi: 10.1093/pcp/pch214 – volume: 55 start-page: 1538 year: 2005 ident: key 20171218123542_dsx011-B17 article-title: In vivo analysis of the roles of conserved aspartate and histidine residues within a complex response regulator publication-title: Mol. Microbiol doi: 10.1111/j.1365-2958.2005.04491.x – volume: 44 start-page: 1517 year: 2002 ident: key 20171218123542_dsx011-B29 article-title: CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR) publication-title: Mol. Microbiol doi: 10.1046/j.1365-2958.2002.02966.x – volume: 57 start-page: 127 year: 2006 ident: key 20171218123542_dsx011-B8 article-title: Responding to color: the regulation of complementary chromatic adaptation publication-title: Annu. Rev. Plant. Biol doi: 10.1146/annurev.arplant.57.032905.105215 – volume: 6 start-page: 1303 year: 2015 ident: key 20171218123542_dsx011-B19 article-title: RfpA, RfpB, and RfpC are the Master Control Elements of Far-Red Light Photoacclimation (FaRLiP) publication-title: Front. Microbiol doi: 10.3389/fmicb.2015.01303 – volume: 128 start-page: 325 year: 2016 ident: key 20171218123542_dsx011-B44 article-title: The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes publication-title: Photosynth Res doi: 10.1007/s11120-016-0257-7 – volume: 405 start-page: 315 year: 2011 ident: key 20171218123542_dsx011-B48 article-title: Multichromatic control of gene expression in Escherichia coli publication-title: J. Mol. Biol doi: 10.1016/j.jmb.2010.10.038 – volume: 144 start-page: 1200 year: 2007 ident: key 20171218123542_dsx011-B4 article-title: The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna publication-title: Plant Physiol doi: 10.1104/pp.107.099267 – volume: 55 start-page: 6981 issue: 50 year: 2016 ident: key 20171218123542_dsx011-B36 article-title: Cyanobacteriochrome photoreceptors lacking the canonical cys residue publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00940 – volume: 345 start-page: 1312 year: 2014 ident: key 20171218123542_dsx011-B11 article-title: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light publication-title: Science doi: 10.1126/science.1256963 – volume: 10 start-page: 421 year: 2009 ident: key 20171218123542_dsx011-B26 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 11 start-page: 1172 year: 2010 ident: key 20171218123542_dsx011-B33 article-title: A brief history of phytochromes publication-title: Chemphyschem doi: 10.1002/cphc.200900894 – volume: 7 start-page: 1253 year: 2008 ident: key 20171218123542_dsx011-B37 article-title: Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium publication-title: Synechocystis sp. PCC 6803. Photochem. Photobiol. Sci. – volume: 113 start-page: 6077 issue: 21 year: 2016 ident: key 20171218123542_dsx011-B20 article-title: Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1600625113 – volume: 111 start-page: 2512 year: 2014 ident: key 20171218123542_dsx011-B5 article-title: Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1320599111 – volume: 23 start-page: 2947 year: 2007 ident: key 20171218123542_dsx011-B25 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 186 start-page: 4338 year: 2004 ident: key 20171218123542_dsx011-B43 article-title: Genomic DNA microarray analysis: identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon publication-title: J. Bacteriol doi: 10.1128/JB.186.13.4338-4349.2004 – volume: 8 year: 2013 ident: key 20171218123542_dsx011-B10 article-title: A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus publication-title: PloS one – volume: 184 start-page: 962 year: 2002 ident: key 20171218123542_dsx011-B46 article-title: A turquoise mutant genetically separates expression of genes encoding phycoerythrin and its associated linker peptides publication-title: J. Bacteriol doi: 10.1128/jb.184.4.962-970.2002 – volume: 188 start-page: 3345 year: 2006 ident: key 20171218123542_dsx011-B9 article-title: Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp publication-title: J. Bacteriol doi: 10.1128/JB.188.9.3345-3356.2006 – volume: 84 start-page: 269 year: 2005 ident: key 20171218123542_dsx011-B31 article-title: Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803 publication-title: Photosynth. Res doi: 10.1007/s11120-004-7762-9 – volume: 3 year: 2015 ident: key 20171218123542_dsx011-B23 article-title: Complete genome sequence of Cyanobacterium Geminocystis sp. strain NIES-3709, which harbors a phycoerythrin-rich phycobilisome publication-title: Genome Announc – volume: 7 start-page: e02130 year: 2016 ident: key 20171218123542_dsx011-B38 article-title: Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light publication-title: mBio – volume: 14 start-page: 929 year: 2015 ident: key 20171218123542_dsx011-B34 article-title: Identification of DXCF cyanobacteriochrome lineages with predictable photocycles publication-title: Photochem. Photobiol. Sci doi: 10.1039/C4PP00486H – volume: 107 start-page: 8854 year: 2010 ident: key 20171218123542_dsx011-B18 article-title: Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1000177107 – volume: 57 start-page: 725 year: 1993 ident: key 20171218123542_dsx011-B2 article-title: The phycobilisome, a light-harvesting complex responsive to environmental conditions publication-title: Microbiol Rev doi: 10.1128/MMBR.57.3.725-749.1993 – volume: 15 start-page: 2448 year: 2003 ident: key 20171218123542_dsx011-B30 article-title: Lesions in phycoerythrin chromophore biosynthesis in Fremyelia diplosiphon reveal coordinated light regulation of apoprotein and pigment biosynthetic enzyme gene expression publication-title: Plant Cell doi: 10.1105/tpc.015016 – start-page: 641 volume-title: The Molecular Biology of Cyanobacteria year: 1995 ident: key 20171218123542_dsx011-B1 – volume: 110 start-page: 4974 year: 2013 ident: key 20171218123542_dsx011-B15 article-title: Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1302909110 – volume: 31 start-page: 166 year: 2015 ident: key 20171218123542_dsx011-B28 article-title: HTSeq–a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 85 start-page: 239 year: 2012 ident: key 20171218123542_dsx011-B41 article-title: Light-induced alteration of c-di-GMP level controls motility of Synechocystis sp. PCC 6803 publication-title: Mol. Microbiol doi: 10.1111/j.1365-2958.2012.08106.x – reference: 18793444 - BMC Bioinformatics. 2008 Sep 16;9:376 – reference: 15653792 - Plant Cell Physiol. 2004 Dec;45(12):1729-37 – reference: 8246846 - Microbiol Rev. 1993 Sep;57(3):725-49 – reference: 18621684 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9528-33 – reference: 15720559 - Mol Microbiol. 2005 Mar;55(5):1538-52 – reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 – reference: 24550276 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2512-7 – reference: 856789 - J Bacteriol. 1977 Apr;130(1):82-91 – reference: 14508001 - Plant Cell. 2003 Oct;15(10):2448-63 – reference: 25214622 - Science. 2014 Sep 12;345(6202):1312-7 – reference: 20003500 - BMC Bioinformatics. 2009 Dec 15;10:421 – reference: 21035461 - J Mol Biol. 2011 Jan 14;405(2):315-24 – reference: 22065076 - Plant Cell Physiol. 2011 Dec;52(12 ):2214-24 – reference: 24081814 - Photosynth Res. 2013 Oct;116(2-3):265-76 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 18846279 - Photochem Photobiol Sci. 2008 Oct;7(10):1159-67 – reference: 23479641 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4974-9 – reference: 12067341 - Mol Microbiol. 2002 Jun;44(6):1517-31 – reference: 26234306 - Environ Microbiol. 2015 Oct;17(10):3450-65 – reference: 9190806 - J Bacteriol. 1997 Jun;179(12):3914-21 – reference: 21670284 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10780-5 – reference: 17388813 - FEBS J. 2007 Apr;274(8):2088-98 – reference: 27935696 - Biochemistry. 2016 Dec 20;55(50):6981-6995 – reference: 16621829 - J Bacteriol. 2006 May;188(9):3345-56 – reference: 21772031 - Mol Plant. 2012 Jan;5(1):1-13 – reference: 26861023 - MBio. 2016 Feb 09;7(1):e02130-15 – reference: 16049785 - Photosynth Res. 2005 Jun;84(1-3):269-73 – reference: 11807056 - J Bacteriol. 2002 Feb;184(4):962-70 – reference: 24391958 - PLoS One. 2013 Dec 31;8(12):e84459 – reference: 15205436 - J Bacteriol. 2004 Jul;186(13):4338-49 – reference: 27152022 - Proc Natl Acad Sci U S A. 2016 May 24;113(21):6077-82 – reference: 27071628 - Photosynth Res. 2016 Jun;128(3):325-40 – reference: 22625406 - Mol Microbiol. 2012 Jul;85(2):239-51 – reference: 23277585 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8 – reference: 26447922 - Mol Microbiol. 2015 Dec;98(6):998-1001 – reference: 26635768 - Front Microbiol. 2015 Nov 25;6:1303 – reference: 15583167 - Microbiology. 2004 Dec;150(Pt 12):4147-56 – reference: 20155775 - Chemphyschem. 2010 Apr 26;11(6):1172-80 – reference: 8703080 - Science. 1996 Sep 6;273(5280):1409-12 – reference: 25931605 - Genome Announc. 2015 Apr 30;3(2):null – reference: 25953174 - Genome Announc. 2015 May 07;3(3):null – reference: 16669758 - Annu Rev Plant Biol. 2006;57:127-50 – reference: 20404166 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8854-9 – reference: 25738434 - Photochem Photobiol Sci. 2015 May;14(5):929-41 – reference: 17468217 - Plant Physiol. 2007 Jun;144(2):1200-10 – reference: 18846291 - Photochem Photobiol Sci. 2008 Oct;7(10):1253-9 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
SSID | ssj0041537 |
Score | 2.2377734 |
Snippet | Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 387 |
SubjectTerms | Acclimatization Cyanobacteria - metabolism Cyanobacteria - physiology Light Photosynthesis Phycobilisomes - metabolism Phycobilisomes - physiology Phycoerythrin - metabolism Protein Isoforms - metabolism |
Title | Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28338901 https://www.proquest.com/docview/1881264610 https://pubmed.ncbi.nlm.nih.gov/PMC5737509 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbarZB6QVAeDY-VK1WcCCR-xTmgqkI8VKmcWIlbZHttsdIqofsQu_-esZ0NBdoL50x8mPF4PntmvkHoO3Fa5FaAf3NJU8ZhG2viuQiFZtQxa4QLBbI34nrAft3xu2dKoVaB039e7fw8qcFkfLL4s_wBDn_WkiGdDmvfqnM6nC4y3-X7CYJS4YcZ_GZdQgHCVKDPzCnLUoiosqXbfPO7JweWcG0r2ykxXaR6Az9fV1H-FZYuN9B6iyfxz7gBNtEHW39Ba3HC5HIL6fOOkDn2W-LGYcB8GPbNHAAm9k-wmGBzP2kCeStWxoxHsZ8Rj-ogO3ts8JUnIWnMEk6EKTZLVcM5EJZV22hweXF7fp22YxVSwzidpaUzSlEiHfE1XTLTGdGlLolTOuNEg30AUxChfVKGMJ3LQipwfZ1bXpLCKbqDenVT268IDzM7dJYTR1XJNLclEzIv4H4uKHPEiAQdr1RYmZZz3I--GFcx902rqPwqKj9BR534QyTb-J_gt5U9KnAHn-NQtW3m0yqXgFiEJ5FP0G60T7fUyrAJKl5YrhPwVNsvv9Sj-0C5zQvqodXeu__cR5-JBwShdPAA9WaTuT0EODPTffSxyC764TGgHzbtE3g6-3E |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+genuine+type+2+chromatic+acclimation+in+the+two+Geminocystis+cyanobacteria&rft.jtitle=DNA+research&rft.au=Hirose%2C+Yuu&rft.au=Misawa%2C+Naomi&rft.au=Yonekawa%2C+Chinatsu&rft.au=Nagao%2C+Nobuyoshi&rft.date=2017-08-01&rft.pub=Oxford+University+Press&rft.issn=1340-2838&rft.eissn=1756-1663&rft.volume=24&rft.issue=4&rft.spage=387&rft.epage=396&rft_id=info:doi/10.1093%2Fdnares%2Fdsx011&rft_id=info%3Apmid%2F28338901&rft.externalDocID=PMC5737509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-2838&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-2838&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-2838&client=summon |