Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures

The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling,...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 5; no. 1; p. 5622
Main Authors He, Jiaqi, Kumar, Nardeep, Bellus, Matthew Z., Chiu, Hsin-Ying, He, Dawei, Wang, Yongsheng, Zhao, Hui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.11.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene–tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics. Two-dimensional materials get their unusual properties because the motion of their electrons is confined to a single plane, but combining two such materials adds an extra degree of freedom: interlayer coupling. Here, the authors use ultrafast spectroscopy to show that this electron motion is highly efficient.
AbstractList The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.
The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.
The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene–tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics. Two-dimensional materials get their unusual properties because the motion of their electrons is confined to a single plane, but combining two such materials adds an extra degree of freedom: interlayer coupling. Here, the authors use ultrafast spectroscopy to show that this electron motion is highly efficient.
ArticleNumber 5622
Author Bellus, Matthew Z.
He, Dawei
Wang, Yongsheng
Kumar, Nardeep
Zhao, Hui
He, Jiaqi
Chiu, Hsin-Ying
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: He
  fullname: He, Jiaqi
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Department of Physics and Astronomy, The University of Kansas
– sequence: 2
  givenname: Nardeep
  surname: Kumar
  fullname: Kumar, Nardeep
  organization: Department of Physics and Astronomy, The University of Kansas
– sequence: 3
  givenname: Matthew Z.
  surname: Bellus
  fullname: Bellus, Matthew Z.
  organization: Department of Physics and Astronomy, The University of Kansas
– sequence: 4
  givenname: Hsin-Ying
  surname: Chiu
  fullname: Chiu, Hsin-Ying
  organization: Department of Physics and Astronomy, The University of Kansas
– sequence: 5
  givenname: Dawei
  surname: He
  fullname: He, Dawei
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University
– sequence: 6
  givenname: Yongsheng
  surname: Wang
  fullname: Wang, Yongsheng
  email: yshwang@bjtu.edu.cn
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University
– sequence: 7
  givenname: Hui
  surname: Zhao
  fullname: Zhao, Hui
  email: huizhao@ku.edu
  organization: Department of Physics and Astronomy, The University of Kansas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25421098$$D View this record in MEDLINE/PubMed
BookMark eNpt0clKBDEQANAgiutc_ABp8CLKaNaenqOIGwx4UbzZpJPqMdKdjFkEb_6Df-iXmGHcUHPIxquiUtlAy9ZZQGib4EOCWXVklev7UJaULqF1ijkZkhFlyz_2a2gQwgPOg41JxfkqWqOCU4LH1Tq6O-1ARe9sEb20oQVfSKsL5dKsM3ZaGFtMvZzdg4W3l9eY7DREsIU2IXWt0VA8yXzKUbdSdqG4hwjeheiTislD2EIrbb6Hwce6iW7OTq9PLoaTq_PLk-PJUHHB4nDMGNdAhGAY83HLSaN4qUSjBIOKSVUpRkYlliB0q0toZCYaayZa0pa8oWwT7S3yzrx7TBBi3ZugoOukBZdCTUpaUZ7nOd39RR9c8jZXN1ejEREVJ1ntfKjU9KDrmTe99M_1Z-cy2F8Ald8bPLRfhOB6_jP1989kjH9hZaKMxtncddP9H3KwCAk5r52C_1HmX_0OreGiUw
CitedBy_id crossref_primary_10_1088_1361_6528_ab13fd
crossref_primary_10_1088_1674_1056_ac1b8b
crossref_primary_10_1039_C8TA11442K
crossref_primary_10_1021_acs_chemmater_9b02157
crossref_primary_10_1088_2053_1583_3_4_042001
crossref_primary_10_1364_OE_26_015867
crossref_primary_10_1016_j_matlet_2023_134839
crossref_primary_10_1016_j_carbon_2016_05_075
crossref_primary_10_1063_1_4953152
crossref_primary_10_1021_acsami_9b06017
crossref_primary_10_1016_j_omx_2021_100097
crossref_primary_10_1021_acs_jpcc_8b05684
crossref_primary_10_1016_j_optmat_2019_109426
crossref_primary_10_1021_acs_jpclett_0c00706
crossref_primary_10_1016_j_nantod_2018_02_007
crossref_primary_10_1021_acs_nanolett_0c01722
crossref_primary_10_1002_cnma_201700031
crossref_primary_10_1088_2053_1583_ab2822
crossref_primary_10_1021_acs_jpclett_8b00260
crossref_primary_10_1088_2053_1583_acdaab
crossref_primary_10_1063_5_0020396
crossref_primary_10_1088_1361_6463_ab77dc
crossref_primary_10_1039_C5CC00262A
crossref_primary_10_1038_nnano_2015_227
crossref_primary_10_1016_j_ijleo_2018_08_059
crossref_primary_10_1002_adfm_201604509
crossref_primary_10_1002_adfm_201704797
crossref_primary_10_1002_smll_201804661
crossref_primary_10_1039_D1NR07698A
crossref_primary_10_1103_PhysRevB_100_165426
crossref_primary_10_1021_acs_nanolett_6b00801
crossref_primary_10_1002_smll_201906775
crossref_primary_10_1021_acs_jpcc_4c02680
crossref_primary_10_1063_1_5122262
crossref_primary_10_1063_5_0002396
crossref_primary_10_1021_acsnano_8b02843
crossref_primary_10_1515_nanoph_2018_0185
crossref_primary_10_1016_j_apmt_2020_100600
crossref_primary_10_1016_j_mseb_2022_115936
crossref_primary_10_1021_acsphotonics_6b00846
crossref_primary_10_1021_acs_jpclett_2c01197
crossref_primary_10_1021_acsnano_5b02345
crossref_primary_10_1016_j_physrep_2022_09_005
crossref_primary_10_1073_pnas_2119726119
crossref_primary_10_1103_PhysRevB_97_115445
crossref_primary_10_1002_adfm_202400218
crossref_primary_10_1039_C8CS00067K
crossref_primary_10_1021_acsami_1c02913
crossref_primary_10_1038_s41467_023_40815_8
crossref_primary_10_1088_1674_1056_abd77f
crossref_primary_10_1002_smll_202307345
crossref_primary_10_1007_s11664_022_09672_x
crossref_primary_10_1021_acsnano_1c01723
crossref_primary_10_1039_C9NH00045C
crossref_primary_10_1039_D0MH00340A
crossref_primary_10_1021_acsphotonics_8b01306
crossref_primary_10_1364_PRJ_5_000406
crossref_primary_10_1002_adma_201907105
crossref_primary_10_1016_j_pmatsci_2018_03_007
crossref_primary_10_1063_5_0060256
crossref_primary_10_1038_ncomms13906
crossref_primary_10_1021_acs_nanolett_4c06238
crossref_primary_10_1021_acsnano_2c12577
crossref_primary_10_1039_C7RA07772F
crossref_primary_10_1002_lpor_201800128
crossref_primary_10_1063_5_0020637
crossref_primary_10_1038_ncomms10768
crossref_primary_10_1002_ijch_202100120
crossref_primary_10_1021_acsnano_5b03295
crossref_primary_10_1039_C9QM00517J
crossref_primary_10_1039_C7NR04763K
crossref_primary_10_1021_acsami_8b16790
crossref_primary_10_1515_nanoph_2021_0582
crossref_primary_10_1038_s42254_020_00272_4
crossref_primary_10_1088_1674_1056_ab99ba
crossref_primary_10_1039_C6NR08555E
crossref_primary_10_1103_PhysRevX_8_011007
crossref_primary_10_1021_acs_nanolett_1c01083
crossref_primary_10_1088_2053_1583_3_2_025020
crossref_primary_10_1021_acs_jpclett_1c00322
crossref_primary_10_1002_adma_201503367
crossref_primary_10_1002_adfm_201703448
crossref_primary_10_1088_2053_1583_ad341c
crossref_primary_10_1063_5_0099383
crossref_primary_10_1002_adfm_201503131
crossref_primary_10_1103_PhysRevLett_132_196902
crossref_primary_10_1021_acsnano_6b03518
crossref_primary_10_1007_s10946_023_10177_z
crossref_primary_10_1016_j_apsusc_2018_02_244
crossref_primary_10_1016_j_mattod_2019_01_015
crossref_primary_10_26599_NR_2025_94907247
crossref_primary_10_1002_adma_202106955
crossref_primary_10_1021_acs_jpclett_4c03138
crossref_primary_10_1038_s41699_022_00299_4
crossref_primary_10_1002_adma_201704412
crossref_primary_10_1103_PhysRevB_96_205401
crossref_primary_10_1016_j_bios_2016_03_042
crossref_primary_10_1016_j_progsurf_2021_100637
crossref_primary_10_1002_adma_202416581
crossref_primary_10_1063_5_0105206
crossref_primary_10_1002_adfm_201505412
crossref_primary_10_1002_adfm_201902642
crossref_primary_10_1021_acsnano_3c06473
crossref_primary_10_1088_1674_1056_acb761
crossref_primary_10_1103_PhysRevB_100_125404
crossref_primary_10_1021_acs_jpcc_3c02608
crossref_primary_10_1109_TED_2024_3438748
crossref_primary_10_1126_sciadv_1700324
crossref_primary_10_3390_ma15082731
crossref_primary_10_1021_acsnano_1c01787
crossref_primary_10_1038_s41565_019_0602_z
crossref_primary_10_1103_PhysRevB_104_115426
crossref_primary_10_3367_UFNr_2017_02_038065
crossref_primary_10_1021_nn505736z
crossref_primary_10_1088_1361_6528_aa8f8d
crossref_primary_10_1088_1361_6463_ac5191
crossref_primary_10_1039_C9NR09309E
crossref_primary_10_1063_1_5088512
crossref_primary_10_1088_1361_648X_ad31bf
crossref_primary_10_1002_adfm_201803807
crossref_primary_10_1002_inf2_12290
crossref_primary_10_1103_PhysRevB_103_165416
crossref_primary_10_1038_ncomms13278
crossref_primary_10_1039_D0CS01070G
crossref_primary_10_1021_acsphotonics_3c01447
crossref_primary_10_1149_1945_7111_acabed
crossref_primary_10_1088_2399_1984_aace6c
crossref_primary_10_1039_C8NR03427C
crossref_primary_10_1021_acs_jpcc_6b00647
crossref_primary_10_1103_PhysRevB_106_075432
crossref_primary_10_1126_sciadv_abg2999
crossref_primary_10_1038_ncomms12512
crossref_primary_10_1088_1361_6463_ac16a4
crossref_primary_10_1002_advs_202306096
crossref_primary_10_1088_1674_1056_28_8_087201
crossref_primary_10_1103_PhysRevLett_125_036802
crossref_primary_10_1021_acsnano_9b04701
crossref_primary_10_1088_1674_1056_26_3_036802
crossref_primary_10_1088_2632_959X_ac2e9e
crossref_primary_10_1016_j_carbon_2018_02_044
crossref_primary_10_1021_acs_jpclett_1c02169
crossref_primary_10_1039_C7NR08703A
crossref_primary_10_1039_C5CS00106D
crossref_primary_10_1007_s12596_023_01605_z
crossref_primary_10_1021_acs_jpcc_5b08272
crossref_primary_10_1002_smll_201403385
crossref_primary_10_1021_acs_nanolett_0c04152
crossref_primary_10_1088_2053_1583_4_1_015026
crossref_primary_10_1103_PhysRevB_93_155433
crossref_primary_10_1021_acsami_9b13996
crossref_primary_10_3390_ma15186369
crossref_primary_10_1038_ncomms11796
crossref_primary_10_1088_0256_307X_35_12_127801
crossref_primary_10_3367_UFNe_2017_02_038065
crossref_primary_10_1021_acs_jpclett_8b02622
crossref_primary_10_1103_PhysRevB_99_035420
crossref_primary_10_1021_acsami_2c04403
crossref_primary_10_1039_C7NR05495E
crossref_primary_10_1021_jacs_8b09353
crossref_primary_10_1103_PhysRevB_97_155421
crossref_primary_10_1088_2515_7639_aafddb
crossref_primary_10_1063_5_0107665
crossref_primary_10_1126_sciadv_aax9958
crossref_primary_10_1088_2053_1583_acc342
crossref_primary_10_1109_MNANO_2017_2679240
crossref_primary_10_1007_s40544_022_0639_0
crossref_primary_10_1038_s42005_022_00961_9
crossref_primary_10_1007_s11432_021_3432_6
crossref_primary_10_1002_adfm_201601779
crossref_primary_10_1002_adpr_202100183
crossref_primary_10_1002_aelm_201700335
crossref_primary_10_1039_C9NH00462A
crossref_primary_10_1021_acsami_4c05511
crossref_primary_10_1007_s12274_022_4487_z
crossref_primary_10_1016_j_carbon_2020_04_092
crossref_primary_10_1039_C7NR05542K
crossref_primary_10_1021_acsnano_4c18849
crossref_primary_10_1039_C9NR02862E
crossref_primary_10_1007_s12274_020_3215_9
crossref_primary_10_1021_acs_nanolett_6b03704
crossref_primary_10_1364_OE_25_001949
crossref_primary_10_1016_j_ensm_2019_03_010
crossref_primary_10_1126_sciadv_aay0761
crossref_primary_10_1002_admi_201901307
crossref_primary_10_1038_nphoton_2015_104
crossref_primary_10_1016_j_trechm_2019_07_007
crossref_primary_10_3390_nano12193418
crossref_primary_10_1021_acs_jpclett_9b00217
crossref_primary_10_3390_nano10122543
crossref_primary_10_1002_admi_201601054
crossref_primary_10_1088_1367_2630_18_7_073043
crossref_primary_10_1016_j_cplett_2019_136649
crossref_primary_10_1002_adma_201902039
crossref_primary_10_1002_adma_202006908
crossref_primary_10_1016_j_nanoen_2024_110371
crossref_primary_10_1021_acsnano_3c08816
crossref_primary_10_1021_acs_nanolett_4c02979
crossref_primary_10_1103_PhysRevLett_127_276401
crossref_primary_10_1021_acs_nanolett_7b02608
crossref_primary_10_1039_D2NR01504H
crossref_primary_10_1021_acsami_3c19128
crossref_primary_10_1146_annurev_physchem_042018_052605
crossref_primary_10_1016_j_fmre_2021_09_018
crossref_primary_10_1021_acs_chemmater_7b00281
crossref_primary_10_1021_acs_nanolett_4c00683
crossref_primary_10_1021_acsnano_0c06311
crossref_primary_10_1021_acs_nanolett_6b04815
crossref_primary_10_1016_j_cplett_2016_03_053
crossref_primary_10_1021_acsnano_8b02354
crossref_primary_10_1021_acsanm_1c02599
crossref_primary_10_1002_adfm_202311730
crossref_primary_10_1016_j_physleta_2025_130315
crossref_primary_10_1063_1_5135375
Cites_doi 10.1021/nl401544y
10.1038/nmat3518
10.1103/PhysRevB.83.161401
10.1126/science.1102896
10.1021/nl403742j
10.1038/nnano.2010.172
10.1038/nature04233
10.1021/nl1022139
10.1103/PhysRevB.88.075434
10.1039/C3NR03677D
10.1063/1.4852615
10.1021/nn303973r
10.1021/nn3059136
10.1126/science.1235547
10.1103/PhysRevLett.48.1559
10.1103/PhysRevB.46.7252
10.1126/science.1148047
10.1038/nnano.2013.219
10.1038/ncomms2652
10.1021/nn305275h
10.1038/nphys2114
10.1021/nl500212s
10.1126/science.1218461
10.1038/nature12385
10.1103/RevModPhys.73.767
10.1103/PhysRevLett.96.106802
10.1103/PhysRevB.88.085318
10.1103/RevModPhys.58.519
10.1038/nnano.2012.193
10.1021/nn405419h
10.1038/nature05131
10.1038/nnano.2012.224
10.1038/nphys2441
ContentType Journal Article
Copyright Springer Nature Limited 2014
Copyright Nature Publishing Group Nov 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: Copyright Nature Publishing Group Nov 2014
DBID AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOI 10.1038/ncomms6622
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
ExternalDocumentID 3506584751
25421098
10_1038_ncomms6622
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABAWZ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
ID FETCH-LOGICAL-c453t-9334de15530049f41bc46c5bc53e83ac8c31760ae5dfd6ebaf41d0d35f1f64b23
IEDL.DBID M48
ISSN 2041-1723
IngestDate Fri Jul 11 15:57:50 EDT 2025
Wed Aug 13 04:05:05 EDT 2025
Thu Apr 03 06:51:32 EDT 2025
Tue Jul 01 02:30:47 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-9334de15530049f41bc46c5bc53e83ac8c31760ae5dfd6ebaf41d0d35f1f64b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/1627715841?pq-origsite=%requestingapplication%
PMID 25421098
PQID 1627715841
PQPubID 546298
ParticipantIDs proquest_miscellaneous_1628241622
proquest_journals_1627715841
pubmed_primary_25421098
crossref_primary_10_1038_ncomms6622
crossref_citationtrail_10_1038_ncomms6622
springer_journals_10_1038_ncomms6622
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20141125
PublicationDateYYYYMMDD 2014-11-25
PublicationDate_xml – month: 11
  year: 2014
  text: 20141125
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Bernardi, Palummo, Grossman (CR27) 2013; 13
Dean (CR33) 2010; 5
Gorbachev (CR24) 2012; 8
Georgiou (CR14) 2013; 8
von Klitzing (CR1) 1986; 58
Wang (CR31) 2013; 7
Geim, Grigorieva (CR12) 2013; 499
Alferov (CR7) 2001; 73
Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR11) 2012; 7
Britnell (CR13) 2012; 335
Feldmann (CR6) 1992; 46
Kim (CR25) 2011; 83
Larentis (CR21) 2014; 14
Tsui, Stormer, Gossard (CR2) 1982; 48
Kasprzak (CR5) 2006; 443
Bertolazzi, Krasnozhon, Kis (CR22) 2013; 7
Yu (CR16) 2013; 12
Bernevig, Zhang (CR3) 2006; 96
Zhao (CR28) 2013; 7
Ponomarenko (CR26) 2011; 7
Mai (CR32) 2013; 14
Choi (CR23) 2013; 4
Komsa, Krasheninnikov (CR19) 2013; 88
König (CR4) 2007; 318
Sachs (CR20) 2013; 103
Sim (CR30) 2013; 88
Shi (CR29) 2012; 7
Britnell (CR17) 2013; 340
Novoselov (CR8) 2004; 306
Song (CR10) 2010; 10
Lin (CR15) 2014; 6
Novoselov (CR9) 2005; 438
Yu (CR18) 2013; 8
KS Novoselov (BFncomms6622_CR9) 2005; 438
S Larentis (BFncomms6622_CR21) 2014; 14
S Kim (BFncomms6622_CR25) 2011; 83
ZI Alferov (BFncomms6622_CR7) 2001; 73
C Mai (BFncomms6622_CR32) 2013; 14
DC Tsui (BFncomms6622_CR2) 1982; 48
J Kasprzak (BFncomms6622_CR5) 2006; 443
KS Novoselov (BFncomms6622_CR8) 2004; 306
HP Komsa (BFncomms6622_CR19) 2013; 88
J Feldmann (BFncomms6622_CR6) 1992; 46
WJ Yu (BFncomms6622_CR16) 2013; 12
S Sim (BFncomms6622_CR30) 2013; 88
B Sachs (BFncomms6622_CR20) 2013; 103
QH Wang (BFncomms6622_CR11) 2012; 7
BA Bernevig (BFncomms6622_CR3) 2006; 96
MS Choi (BFncomms6622_CR23) 2013; 4
WJ Zhao (BFncomms6622_CR28) 2013; 7
Q Wang (BFncomms6622_CR31) 2013; 7
M König (BFncomms6622_CR4) 2007; 318
S Bertolazzi (BFncomms6622_CR22) 2013; 7
K von Klitzing (BFncomms6622_CR1) 1986; 58
L Britnell (BFncomms6622_CR17) 2013; 340
H Shi (BFncomms6622_CR29) 2012; 7
WJ Yu (BFncomms6622_CR18) 2013; 8
CR Dean (BFncomms6622_CR33) 2010; 5
L Song (BFncomms6622_CR10) 2010; 10
AK Geim (BFncomms6622_CR12) 2013; 499
T Georgiou (BFncomms6622_CR14) 2013; 8
YF Lin (BFncomms6622_CR15) 2014; 6
M Bernardi (BFncomms6622_CR27) 2013; 13
L Britnell (BFncomms6622_CR13) 2012; 335
LA Ponomarenko (BFncomms6622_CR26) 2011; 7
RV Gorbachev (BFncomms6622_CR24) 2012; 8
References_xml – volume: 13
  start-page: 3664
  year: 2013
  end-page: 3670
  ident: CR27
  article-title: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials
  publication-title: Nano Lett.
  doi: 10.1021/nl401544y
– volume: 12
  start-page: 246
  year: 2013
  end-page: 252
  ident: CR16
  article-title: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3518
– volume: 83
  start-page: 161401
  year: 2011
  ident: CR25
  article-title: Coulomb drag of massless fermions in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.161401
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: CR8
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 14
  start-page: 202
  year: 2013
  end-page: 206
  ident: CR32
  article-title: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl403742j
– volume: 5
  start-page: 722
  year: 2010
  end-page: 726
  ident: CR33
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  ident: CR9
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 10
  start-page: 3209
  year: 2010
  end-page: 3215
  ident: CR10
  article-title: Large scale growth and characterization of atomic hexagonal boron nitride layers
  publication-title: Nano Lett.
  doi: 10.1021/nl1022139
– volume: 88
  start-page: 075434
  year: 2013
  ident: CR30
  article-title: Exciton dynamics in atomically thin MoS : Interexcitonic interaction and broadening kinetics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.075434
– volume: 6
  start-page: 795
  year: 2014
  end-page: 799
  ident: CR15
  article-title: Barrier inhomogeneities at vertically stacked graphene-based heterostructures
  publication-title: Nanoscale
  doi: 10.1039/C3NR03677D
– volume: 103
  start-page: 251607
  year: 2013
  ident: CR20
  article-title: Doping mechanisms in graphene-MoS hybrids
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4852615
– volume: 7
  start-page: 1072
  year: 2012
  end-page: 1080
  ident: CR29
  article-title: Exciton dynamics in suspended monolayer and few-layer MoS 2D crystals
  publication-title: ACS Nano
  doi: 10.1021/nn303973r
– volume: 7
  start-page: 3246
  year: 2013
  end-page: 3252
  ident: CR22
  article-title: Nonvolatile memory cells based on MoS /graphene heterostructures
  publication-title: ACS Nano
  doi: 10.1021/nn3059136
– volume: 340
  start-page: 1311
  year: 2013
  end-page: 1314
  ident: CR17
  article-title: Strong light-matter interactions in heterostructures of atomically thin films
  publication-title: Science
  doi: 10.1126/science.1235547
– volume: 48
  start-page: 1559
  year: 1982
  end-page: 1562
  ident: CR2
  article-title: Two-dimensional magnetotransport in the extreme quantum limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 46
  start-page: 7252
  year: 1992
  end-page: 7255
  ident: CR6
  article-title: Optical investigation of Bloch oscillations in a semiconductor superlattice
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.7252
– volume: 318
  start-page: 766
  year: 2007
  end-page: 770
  ident: CR4
  article-title: Quantum spin Hall insulator state in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 8
  start-page: 952
  year: 2013
  end-page: 958
  ident: CR18
  article-title: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.219
– volume: 4
  start-page: 1624
  year: 2013
  ident: CR23
  article-title: Controlled charge trapping by molybdenum disulfide and graphene in ultrathin heterostructured memory devices
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2652
– volume: 7
  start-page: 791
  year: 2013
  end-page: 797
  ident: CR28
  article-title: Evolution of electronic structure in atomically thin sheets of WS and WSe
  publication-title: ACS Nano
  doi: 10.1021/nn305275h
– volume: 7
  start-page: 958
  year: 2011
  end-page: 961
  ident: CR26
  article-title: Tunable metal-insulator transition in double-layer graphene heterostructures
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2114
– volume: 14
  start-page: 2039
  year: 2014
  end-page: 2045
  ident: CR21
  article-title: Band offset and negative compressibility in graphene-MoS heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/nl500212s
– volume: 335
  start-page: 947
  year: 2012
  end-page: 950
  ident: CR13
  article-title: Field-effect tunneling transistor based on vertical graphene heterostructures
  publication-title: Science
  doi: 10.1126/science.1218461
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR12
  article-title: Van der waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 73
  start-page: 767
  year: 2001
  end-page: 782
  ident: CR7
  article-title: Nobel lecture: The double heterostructure concept and its applications in physics, electronics, and technology
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.767
– volume: 96
  start-page: 106802
  year: 2006
  ident: CR3
  article-title: Quantum spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.106802
– volume: 88
  start-page: 085318
  year: 2013
  ident: CR19
  article-title: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085318
– volume: 58
  start-page: 519
  year: 1986
  end-page: 531
  ident: CR1
  article-title: The quantized Hall effect
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.58.519
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: CR11
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 7
  start-page: 11087
  year: 2013
  end-page: 11093
  ident: CR31
  article-title: Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy
  publication-title: ACS Nano
  doi: 10.1021/nn405419h
– volume: 443
  start-page: 409
  year: 2006
  end-page: 414
  ident: CR5
  article-title: Bose-Einstein condensation of exciton polaritons
  publication-title: Nature
  doi: 10.1038/nature05131
– volume: 8
  start-page: 100
  year: 2013
  end-page: 103
  ident: CR14
  article-title: Vertical field-effect transistor based on graphene-WS heterostructures for flexible and transparent electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 8
  start-page: 896
  year: 2012
  end-page: 901
  ident: CR24
  article-title: Strong Coulomb drag and broken symmetry in double-layer graphene
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2441
– volume: 14
  start-page: 202
  year: 2013
  ident: BFncomms6622_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl403742j
– volume: 7
  start-page: 699
  year: 2012
  ident: BFncomms6622_CR11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 103
  start-page: 251607
  year: 2013
  ident: BFncomms6622_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4852615
– volume: 10
  start-page: 3209
  year: 2010
  ident: BFncomms6622_CR10
  publication-title: Nano Lett.
  doi: 10.1021/nl1022139
– volume: 7
  start-page: 791
  year: 2013
  ident: BFncomms6622_CR28
  publication-title: ACS Nano
  doi: 10.1021/nn305275h
– volume: 443
  start-page: 409
  year: 2006
  ident: BFncomms6622_CR5
  publication-title: Nature
  doi: 10.1038/nature05131
– volume: 335
  start-page: 947
  year: 2012
  ident: BFncomms6622_CR13
  publication-title: Science
  doi: 10.1126/science.1218461
– volume: 46
  start-page: 7252
  year: 1992
  ident: BFncomms6622_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.7252
– volume: 8
  start-page: 896
  year: 2012
  ident: BFncomms6622_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2441
– volume: 88
  start-page: 085318
  year: 2013
  ident: BFncomms6622_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085318
– volume: 438
  start-page: 197
  year: 2005
  ident: BFncomms6622_CR9
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 8
  start-page: 952
  year: 2013
  ident: BFncomms6622_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.219
– volume: 340
  start-page: 1311
  year: 2013
  ident: BFncomms6622_CR17
  publication-title: Science
  doi: 10.1126/science.1235547
– volume: 499
  start-page: 419
  year: 2013
  ident: BFncomms6622_CR12
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 7
  start-page: 1072
  year: 2012
  ident: BFncomms6622_CR29
  publication-title: ACS Nano
  doi: 10.1021/nn303973r
– volume: 4
  start-page: 1624
  year: 2013
  ident: BFncomms6622_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2652
– volume: 5
  start-page: 722
  year: 2010
  ident: BFncomms6622_CR33
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 7
  start-page: 958
  year: 2011
  ident: BFncomms6622_CR26
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2114
– volume: 73
  start-page: 767
  year: 2001
  ident: BFncomms6622_CR7
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.767
– volume: 7
  start-page: 11087
  year: 2013
  ident: BFncomms6622_CR31
  publication-title: ACS Nano
  doi: 10.1021/nn405419h
– volume: 13
  start-page: 3664
  year: 2013
  ident: BFncomms6622_CR27
  publication-title: Nano Lett.
  doi: 10.1021/nl401544y
– volume: 14
  start-page: 2039
  year: 2014
  ident: BFncomms6622_CR21
  publication-title: Nano Lett.
  doi: 10.1021/nl500212s
– volume: 306
  start-page: 666
  year: 2004
  ident: BFncomms6622_CR8
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 7
  start-page: 3246
  year: 2013
  ident: BFncomms6622_CR22
  publication-title: ACS Nano
  doi: 10.1021/nn3059136
– volume: 58
  start-page: 519
  year: 1986
  ident: BFncomms6622_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.58.519
– volume: 88
  start-page: 075434
  year: 2013
  ident: BFncomms6622_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.075434
– volume: 6
  start-page: 795
  year: 2014
  ident: BFncomms6622_CR15
  publication-title: Nanoscale
  doi: 10.1039/C3NR03677D
– volume: 83
  start-page: 161401
  year: 2011
  ident: BFncomms6622_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.161401
– volume: 318
  start-page: 766
  year: 2007
  ident: BFncomms6622_CR4
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 8
  start-page: 100
  year: 2013
  ident: BFncomms6622_CR14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 48
  start-page: 1559
  year: 1982
  ident: BFncomms6622_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 96
  start-page: 106802
  year: 2006
  ident: BFncomms6622_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.106802
– volume: 12
  start-page: 246
  year: 2013
  ident: BFncomms6622_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3518
SSID ssj0000391844
Score 2.5591912
Snippet The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5622
SubjectTerms 140/125
639/301/119
Humanities and Social Sciences
multidisciplinary
Optical properties
Science
Science (multidisciplinary)
Tungsten
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46EbyIv51OibiLh7C1-dHsJCIbw4MnhzsIJU1SHcx22u3gf-9L2m7KxGubpiHfS96XvOR7CLVDoahRkSXgOkLCtE1Ir2sZMaEGd6lsxFKv9vkohiP2MObjasOtqI5V1nOin6hNrt0eeScQYRQF4C6D29kHcVmjXHS1SqGxibacdJmz6mgcLfdYnPq5ZKxWJaWyk0GV74UQYfjbD62Ry7XAqPc3gz20WxFFfFciu482bHaAtsvUkV-H6KVf5a_Bc0897SdWmcE6X7grtq94kmGvRQ1TGZnDgAYwM2wmxWKaTozFwJ-xgW-eFZgffnNnYvJSSnYB6-8jNBr0n-6HpMqUQDTjdE56lDJjfQogYPwpCxLNhOaJ5tRKqrTUQBNEV1luUiNsoqCI6RrK0yAVLAnpMWpkeWZPERbKgcokoMRYZISKODMp8Ap4kkieNtFN3W-xrmTEXTaLaezD2VTGqz5uoutl2VkpnvFnqVbd_XE1gIp4BXcTXS1fg-m7eIbKbL7wZSQQEF_FSQnb8jew7oXFbE82UbvG8Ufla204-78N52gHiBJzdxBD3kINwMNeABmZJ5fe4r4BqMnioA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV29TsMwELZQKyQWxD-BgozowhDRxI7jjhVqVXVggYpORI7tQKXiIJIObLwDb8iTcHF-KCoDY5Kz4_jOvs85-zuEuj4TRIlQu-A6fJdKHbv9nqau8iW4S6FDmli2z1s2ntLJLJhVNDlZta2ypLS003S9O-zawNVLxpgP0227oGgHm24PBpO7SfNHpeA655TWHKSErxT67XXWoORaGNR6l9EO2q5gIR6UDdlFG9rsoc0yUeT7PnocVtlqcG6Bpn7Dwigs02VxoPYJzw22zNMwcX19fOYwgEF5Bqt5tlwkc6Ux4GWsoNSDAHPDz8UemLSkjoU-yA7QdDS8vxm7VWYEV8KX526fEKq0TfkDCD-hXiwpk0EsA6I5EZJLgAWsJ3SgEsV0LEBE9RQJEi9hNPbJIWqZ1OhjhJkolEg5aIXSUDERBlQlgCPgTsyDxEFXdc9FsqINL7JXLCIbviY8-ullB102sq8lWcafUp1aAVE1YLLIY34YeoCGPAddNI_B1Iv4hTA6XVoZDoDDVnFUKq55DaxzYfHa5w7q1ppcqXytDSf_EztFWwCQaHH20A86qAV60WcAQvL4vLK-b7J14gU
  priority: 102
  providerName: Springer Nature
Title Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures
URI https://link.springer.com/article/10.1038/ncomms6622
https://www.ncbi.nlm.nih.gov/pubmed/25421098
https://www.proquest.com/docview/1627715841
https://www.proquest.com/docview/1628241622
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL0Cqkm8oI0N6FYqo_Gyh4wm_uwDmrqqBVUamrZV6xORYztQqaSsH9J423_gH-6XcOMk3VB54CWRnGsn8rF9z5XjewCOI6Gp1dIF6DqigBmXBO2WY4GNDLpL7SRLfbbPC3E-ZIMRH21Apd9ZduD8ydAu15MaziYff_-6-4QT_rQ4Mq5OMsTmZi5EhEtxDT2SzJUMvpQ036_ItI2BDKuykz6q8tgfrZHMtQ1S73f6L2GnJIykUyD8CjZctgsvCgnJu9dw2St1bMjCU1A3IzqzxEyX-VHbKzLOiM9JjUva3z_3C5zaCGtG7Hi-nKRj6wgyaWKx1k-NHUKu879jpkVS2SVG4m9g2O_96J4HpWZCYBini6BNKbPOiwEh909ZmBgmDE8Mp05RbZRBwiBa2nGbWuESjSa2ZSlPw1SwJKJ7sJVNM3cAROgcXqYQL8akFVpyZlNkGFiSKJ7W4UPVc7EpE4rnuhaT2G9sUxX_6-U6vF_Z3hZpNJ60alQAxNVIiEMRSRkiTwrrcLR6jJMg39nQmZsuvY1C4H0T-wVwq9dgBIxhbVvV4bhC8r_G177h7fPM3sE2UieWn0qMeAO2EBd3iPRkkTRhU44kXlX_rAm1TmfwfYD3z72Lr9-wtCu6TT86HwDBfPAY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hKtReqpZ-sIWCq9JDDxYbZ-yYQ1VVwHYplBOoHCqlju20K9GEsrtC_Cl-Y8dOsoC26o1rMnES-3nmjceeAdgUyqTOZJ6T6RAcrS_4dt8jd8KSuTQ-wzJm-zxSwxP8cipPF-C6OwsTtlV2OjEqalfbsEa-lSiRZQmZy-Tj-R8eqkaF6GpXQqOBxYG_uiSXbfxhf5fG950Qg73jnSFvqwpwizKdcPLg0flYLofYcYlJYVFZWViZep0aqy2ZVNU3XrrSKV8YEnF9l8oyKRUWIdEBqfwHmJIlDyfTB59nazoh27pG7LKgpnqrol_4PVZKiLt2b47MzgVio30bPIHHLTFlnxokPYUFXy3DUlOq8uoZfN9r6-WwSaS6_oKZyjFbT8OR3p9sVLGY-5pUJ5-QAiHwVMyNxtOzcuQ8I77OHD3zzRDc2a-wB6duUtdOyd9_Dif30ocvYLGqK78CTJkAItSECsTMKZNJdCXxGLpSaFn24H3Xb7lt05aH6hlneQyfpzq_6eMevJ3JnjfJOv4ptdZ1f95O2HF-A68evJndpqkW4iem8vU0ymgiPLGJl82wzV5DfjY5z9u6B5vdON5qfO4bXv3_Gzbg4fD462F-uH90sAqPiKRhOP8o5Bos0tj410SEJsV6RB-DH_cN97-iXB_z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IKBAlxZqRDlwsHbj2I57qBC0u-oDrSpERQ9IqeNHWakkLburqn-NX8fYSbZUW3HrNZk4iefzzDd-zABsMqlTqzNH0XUwyo0r6FbfcWqZQXepXcZ9zPY5knvH_OBEnCzBn_YsTNhW2drEaKhtZcIceS-RLMsSdJdJzzfbIo52hx8vLmmoIBVWWttyGjVEDt31FYZvk-39XdT1e8aGg287e7SpMEANF-mUYjTPrYulc5Ape54UhksjCiNSp1JtlEH3KvvaCeutdIVGEdu3qfCJl7wISQ_Q_C9nISrqwPLnwejo63yGJ-ReV5y3OVFT1Svxh35NpGTsthdcoLYLy7LR2w2fwOOGppJPNa6ewpIrn8GDunDl9Qr8GDTVc8g0El_3m-jSElPNwgHfMzIuScyEjYaUTtGcIJRKYseT2bkfW0eQvROLz3zXCH7yM-zIqepEtjOM_p_D8b304gvolFXpVoFIHSDFFWKE88xKnQluPbIavFIo4bvwoe233DRJzEMtjfM8LqanKr_p4y68m8te1Kk77pRab7s_b4bvJL8BWxfezm_jwAurKbp01SzKKKQ_sYmXtdrmr8GoG0PpLdWFzVaP_zS-8A2v_v8NG_AQoZ5_2R8drsEjZGw8HIZkYh06qBr3GlnRtHjTwI_A6X0j_i9v0SWF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron+transfer+and+coupling+in+graphene%E2%80%93tungsten+disulfide+van+der+Waals+heterostructures&rft.jtitle=Nature+communications&rft.au=He%2C+Jiaqi&rft.au=Kumar%2C+Nardeep&rft.au=Bellus%2C+Matthew+Z.&rft.au=Chiu%2C+Hsin-Ying&rft.date=2014-11-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms6622&rft.externalDocID=10_1038_ncomms6622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon