Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures
The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling,...
Saved in:
Published in | Nature communications Vol. 5; no. 1; p. 5622 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.11.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene–tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.
Two-dimensional materials get their unusual properties because the motion of their electrons is confined to a single plane, but combining two such materials adds an extra degree of freedom: interlayer coupling. Here, the authors use ultrafast spectroscopy to show that this electron motion is highly efficient. |
---|---|
AbstractList | The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics. The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics. The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene–tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics. Two-dimensional materials get their unusual properties because the motion of their electrons is confined to a single plane, but combining two such materials adds an extra degree of freedom: interlayer coupling. Here, the authors use ultrafast spectroscopy to show that this electron motion is highly efficient. |
ArticleNumber | 5622 |
Author | Bellus, Matthew Z. He, Dawei Wang, Yongsheng Kumar, Nardeep Zhao, Hui He, Jiaqi Chiu, Hsin-Ying |
Author_xml | – sequence: 1 givenname: Jiaqi surname: He fullname: He, Jiaqi organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Department of Physics and Astronomy, The University of Kansas – sequence: 2 givenname: Nardeep surname: Kumar fullname: Kumar, Nardeep organization: Department of Physics and Astronomy, The University of Kansas – sequence: 3 givenname: Matthew Z. surname: Bellus fullname: Bellus, Matthew Z. organization: Department of Physics and Astronomy, The University of Kansas – sequence: 4 givenname: Hsin-Ying surname: Chiu fullname: Chiu, Hsin-Ying organization: Department of Physics and Astronomy, The University of Kansas – sequence: 5 givenname: Dawei surname: He fullname: He, Dawei organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University – sequence: 6 givenname: Yongsheng surname: Wang fullname: Wang, Yongsheng email: yshwang@bjtu.edu.cn organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University – sequence: 7 givenname: Hui surname: Zhao fullname: Zhao, Hui email: huizhao@ku.edu organization: Department of Physics and Astronomy, The University of Kansas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25421098$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0clKBDEQANAgiutc_ABp8CLKaNaenqOIGwx4UbzZpJPqMdKdjFkEb_6Df-iXmGHcUHPIxquiUtlAy9ZZQGib4EOCWXVklev7UJaULqF1ijkZkhFlyz_2a2gQwgPOg41JxfkqWqOCU4LH1Tq6O-1ARe9sEb20oQVfSKsL5dKsM3ZaGFtMvZzdg4W3l9eY7DREsIU2IXWt0VA8yXzKUbdSdqG4hwjeheiTislD2EIrbb6Hwce6iW7OTq9PLoaTq_PLk-PJUHHB4nDMGNdAhGAY83HLSaN4qUSjBIOKSVUpRkYlliB0q0toZCYaayZa0pa8oWwT7S3yzrx7TBBi3ZugoOukBZdCTUpaUZ7nOd39RR9c8jZXN1ejEREVJ1ntfKjU9KDrmTe99M_1Z-cy2F8Ald8bPLRfhOB6_jP1989kjH9hZaKMxtncddP9H3KwCAk5r52C_1HmX_0OreGiUw |
CitedBy_id | crossref_primary_10_1088_1361_6528_ab13fd crossref_primary_10_1088_1674_1056_ac1b8b crossref_primary_10_1039_C8TA11442K crossref_primary_10_1021_acs_chemmater_9b02157 crossref_primary_10_1088_2053_1583_3_4_042001 crossref_primary_10_1364_OE_26_015867 crossref_primary_10_1016_j_matlet_2023_134839 crossref_primary_10_1016_j_carbon_2016_05_075 crossref_primary_10_1063_1_4953152 crossref_primary_10_1021_acsami_9b06017 crossref_primary_10_1016_j_omx_2021_100097 crossref_primary_10_1021_acs_jpcc_8b05684 crossref_primary_10_1016_j_optmat_2019_109426 crossref_primary_10_1021_acs_jpclett_0c00706 crossref_primary_10_1016_j_nantod_2018_02_007 crossref_primary_10_1021_acs_nanolett_0c01722 crossref_primary_10_1002_cnma_201700031 crossref_primary_10_1088_2053_1583_ab2822 crossref_primary_10_1021_acs_jpclett_8b00260 crossref_primary_10_1088_2053_1583_acdaab crossref_primary_10_1063_5_0020396 crossref_primary_10_1088_1361_6463_ab77dc crossref_primary_10_1039_C5CC00262A crossref_primary_10_1038_nnano_2015_227 crossref_primary_10_1016_j_ijleo_2018_08_059 crossref_primary_10_1002_adfm_201604509 crossref_primary_10_1002_adfm_201704797 crossref_primary_10_1002_smll_201804661 crossref_primary_10_1039_D1NR07698A crossref_primary_10_1103_PhysRevB_100_165426 crossref_primary_10_1021_acs_nanolett_6b00801 crossref_primary_10_1002_smll_201906775 crossref_primary_10_1021_acs_jpcc_4c02680 crossref_primary_10_1063_1_5122262 crossref_primary_10_1063_5_0002396 crossref_primary_10_1021_acsnano_8b02843 crossref_primary_10_1515_nanoph_2018_0185 crossref_primary_10_1016_j_apmt_2020_100600 crossref_primary_10_1016_j_mseb_2022_115936 crossref_primary_10_1021_acsphotonics_6b00846 crossref_primary_10_1021_acs_jpclett_2c01197 crossref_primary_10_1021_acsnano_5b02345 crossref_primary_10_1016_j_physrep_2022_09_005 crossref_primary_10_1073_pnas_2119726119 crossref_primary_10_1103_PhysRevB_97_115445 crossref_primary_10_1002_adfm_202400218 crossref_primary_10_1039_C8CS00067K crossref_primary_10_1021_acsami_1c02913 crossref_primary_10_1038_s41467_023_40815_8 crossref_primary_10_1088_1674_1056_abd77f crossref_primary_10_1002_smll_202307345 crossref_primary_10_1007_s11664_022_09672_x crossref_primary_10_1021_acsnano_1c01723 crossref_primary_10_1039_C9NH00045C crossref_primary_10_1039_D0MH00340A crossref_primary_10_1021_acsphotonics_8b01306 crossref_primary_10_1364_PRJ_5_000406 crossref_primary_10_1002_adma_201907105 crossref_primary_10_1016_j_pmatsci_2018_03_007 crossref_primary_10_1063_5_0060256 crossref_primary_10_1038_ncomms13906 crossref_primary_10_1021_acs_nanolett_4c06238 crossref_primary_10_1021_acsnano_2c12577 crossref_primary_10_1039_C7RA07772F crossref_primary_10_1002_lpor_201800128 crossref_primary_10_1063_5_0020637 crossref_primary_10_1038_ncomms10768 crossref_primary_10_1002_ijch_202100120 crossref_primary_10_1021_acsnano_5b03295 crossref_primary_10_1039_C9QM00517J crossref_primary_10_1039_C7NR04763K crossref_primary_10_1021_acsami_8b16790 crossref_primary_10_1515_nanoph_2021_0582 crossref_primary_10_1038_s42254_020_00272_4 crossref_primary_10_1088_1674_1056_ab99ba crossref_primary_10_1039_C6NR08555E crossref_primary_10_1103_PhysRevX_8_011007 crossref_primary_10_1021_acs_nanolett_1c01083 crossref_primary_10_1088_2053_1583_3_2_025020 crossref_primary_10_1021_acs_jpclett_1c00322 crossref_primary_10_1002_adma_201503367 crossref_primary_10_1002_adfm_201703448 crossref_primary_10_1088_2053_1583_ad341c crossref_primary_10_1063_5_0099383 crossref_primary_10_1002_adfm_201503131 crossref_primary_10_1103_PhysRevLett_132_196902 crossref_primary_10_1021_acsnano_6b03518 crossref_primary_10_1007_s10946_023_10177_z crossref_primary_10_1016_j_apsusc_2018_02_244 crossref_primary_10_1016_j_mattod_2019_01_015 crossref_primary_10_26599_NR_2025_94907247 crossref_primary_10_1002_adma_202106955 crossref_primary_10_1021_acs_jpclett_4c03138 crossref_primary_10_1038_s41699_022_00299_4 crossref_primary_10_1002_adma_201704412 crossref_primary_10_1103_PhysRevB_96_205401 crossref_primary_10_1016_j_bios_2016_03_042 crossref_primary_10_1016_j_progsurf_2021_100637 crossref_primary_10_1002_adma_202416581 crossref_primary_10_1063_5_0105206 crossref_primary_10_1002_adfm_201505412 crossref_primary_10_1002_adfm_201902642 crossref_primary_10_1021_acsnano_3c06473 crossref_primary_10_1088_1674_1056_acb761 crossref_primary_10_1103_PhysRevB_100_125404 crossref_primary_10_1021_acs_jpcc_3c02608 crossref_primary_10_1109_TED_2024_3438748 crossref_primary_10_1126_sciadv_1700324 crossref_primary_10_3390_ma15082731 crossref_primary_10_1021_acsnano_1c01787 crossref_primary_10_1038_s41565_019_0602_z crossref_primary_10_1103_PhysRevB_104_115426 crossref_primary_10_3367_UFNr_2017_02_038065 crossref_primary_10_1021_nn505736z crossref_primary_10_1088_1361_6528_aa8f8d crossref_primary_10_1088_1361_6463_ac5191 crossref_primary_10_1039_C9NR09309E crossref_primary_10_1063_1_5088512 crossref_primary_10_1088_1361_648X_ad31bf crossref_primary_10_1002_adfm_201803807 crossref_primary_10_1002_inf2_12290 crossref_primary_10_1103_PhysRevB_103_165416 crossref_primary_10_1038_ncomms13278 crossref_primary_10_1039_D0CS01070G crossref_primary_10_1021_acsphotonics_3c01447 crossref_primary_10_1149_1945_7111_acabed crossref_primary_10_1088_2399_1984_aace6c crossref_primary_10_1039_C8NR03427C crossref_primary_10_1021_acs_jpcc_6b00647 crossref_primary_10_1103_PhysRevB_106_075432 crossref_primary_10_1126_sciadv_abg2999 crossref_primary_10_1038_ncomms12512 crossref_primary_10_1088_1361_6463_ac16a4 crossref_primary_10_1002_advs_202306096 crossref_primary_10_1088_1674_1056_28_8_087201 crossref_primary_10_1103_PhysRevLett_125_036802 crossref_primary_10_1021_acsnano_9b04701 crossref_primary_10_1088_1674_1056_26_3_036802 crossref_primary_10_1088_2632_959X_ac2e9e crossref_primary_10_1016_j_carbon_2018_02_044 crossref_primary_10_1021_acs_jpclett_1c02169 crossref_primary_10_1039_C7NR08703A crossref_primary_10_1039_C5CS00106D crossref_primary_10_1007_s12596_023_01605_z crossref_primary_10_1021_acs_jpcc_5b08272 crossref_primary_10_1002_smll_201403385 crossref_primary_10_1021_acs_nanolett_0c04152 crossref_primary_10_1088_2053_1583_4_1_015026 crossref_primary_10_1103_PhysRevB_93_155433 crossref_primary_10_1021_acsami_9b13996 crossref_primary_10_3390_ma15186369 crossref_primary_10_1038_ncomms11796 crossref_primary_10_1088_0256_307X_35_12_127801 crossref_primary_10_3367_UFNe_2017_02_038065 crossref_primary_10_1021_acs_jpclett_8b02622 crossref_primary_10_1103_PhysRevB_99_035420 crossref_primary_10_1021_acsami_2c04403 crossref_primary_10_1039_C7NR05495E crossref_primary_10_1021_jacs_8b09353 crossref_primary_10_1103_PhysRevB_97_155421 crossref_primary_10_1088_2515_7639_aafddb crossref_primary_10_1063_5_0107665 crossref_primary_10_1126_sciadv_aax9958 crossref_primary_10_1088_2053_1583_acc342 crossref_primary_10_1109_MNANO_2017_2679240 crossref_primary_10_1007_s40544_022_0639_0 crossref_primary_10_1038_s42005_022_00961_9 crossref_primary_10_1007_s11432_021_3432_6 crossref_primary_10_1002_adfm_201601779 crossref_primary_10_1002_adpr_202100183 crossref_primary_10_1002_aelm_201700335 crossref_primary_10_1039_C9NH00462A crossref_primary_10_1021_acsami_4c05511 crossref_primary_10_1007_s12274_022_4487_z crossref_primary_10_1016_j_carbon_2020_04_092 crossref_primary_10_1039_C7NR05542K crossref_primary_10_1021_acsnano_4c18849 crossref_primary_10_1039_C9NR02862E crossref_primary_10_1007_s12274_020_3215_9 crossref_primary_10_1021_acs_nanolett_6b03704 crossref_primary_10_1364_OE_25_001949 crossref_primary_10_1016_j_ensm_2019_03_010 crossref_primary_10_1126_sciadv_aay0761 crossref_primary_10_1002_admi_201901307 crossref_primary_10_1038_nphoton_2015_104 crossref_primary_10_1016_j_trechm_2019_07_007 crossref_primary_10_3390_nano12193418 crossref_primary_10_1021_acs_jpclett_9b00217 crossref_primary_10_3390_nano10122543 crossref_primary_10_1002_admi_201601054 crossref_primary_10_1088_1367_2630_18_7_073043 crossref_primary_10_1016_j_cplett_2019_136649 crossref_primary_10_1002_adma_201902039 crossref_primary_10_1002_adma_202006908 crossref_primary_10_1016_j_nanoen_2024_110371 crossref_primary_10_1021_acsnano_3c08816 crossref_primary_10_1021_acs_nanolett_4c02979 crossref_primary_10_1103_PhysRevLett_127_276401 crossref_primary_10_1021_acs_nanolett_7b02608 crossref_primary_10_1039_D2NR01504H crossref_primary_10_1021_acsami_3c19128 crossref_primary_10_1146_annurev_physchem_042018_052605 crossref_primary_10_1016_j_fmre_2021_09_018 crossref_primary_10_1021_acs_chemmater_7b00281 crossref_primary_10_1021_acs_nanolett_4c00683 crossref_primary_10_1021_acsnano_0c06311 crossref_primary_10_1021_acs_nanolett_6b04815 crossref_primary_10_1016_j_cplett_2016_03_053 crossref_primary_10_1021_acsnano_8b02354 crossref_primary_10_1021_acsanm_1c02599 crossref_primary_10_1002_adfm_202311730 crossref_primary_10_1016_j_physleta_2025_130315 crossref_primary_10_1063_1_5135375 |
Cites_doi | 10.1021/nl401544y 10.1038/nmat3518 10.1103/PhysRevB.83.161401 10.1126/science.1102896 10.1021/nl403742j 10.1038/nnano.2010.172 10.1038/nature04233 10.1021/nl1022139 10.1103/PhysRevB.88.075434 10.1039/C3NR03677D 10.1063/1.4852615 10.1021/nn303973r 10.1021/nn3059136 10.1126/science.1235547 10.1103/PhysRevLett.48.1559 10.1103/PhysRevB.46.7252 10.1126/science.1148047 10.1038/nnano.2013.219 10.1038/ncomms2652 10.1021/nn305275h 10.1038/nphys2114 10.1021/nl500212s 10.1126/science.1218461 10.1038/nature12385 10.1103/RevModPhys.73.767 10.1103/PhysRevLett.96.106802 10.1103/PhysRevB.88.085318 10.1103/RevModPhys.58.519 10.1038/nnano.2012.193 10.1021/nn405419h 10.1038/nature05131 10.1038/nnano.2012.224 10.1038/nphys2441 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 Copyright Nature Publishing Group Nov 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: Copyright Nature Publishing Group Nov 2014 |
DBID | AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 |
DOI | 10.1038/ncomms6622 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | 3506584751 25421098 10_1038_ncomms6622 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c453t-9334de15530049f41bc46c5bc53e83ac8c31760ae5dfd6ebaf41d0d35f1f64b23 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Fri Jul 11 15:57:50 EDT 2025 Wed Aug 13 04:05:05 EDT 2025 Thu Apr 03 06:51:32 EDT 2025 Tue Jul 01 02:30:47 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-9334de15530049f41bc46c5bc53e83ac8c31760ae5dfd6ebaf41d0d35f1f64b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1627715841?pq-origsite=%requestingapplication% |
PMID | 25421098 |
PQID | 1627715841 |
PQPubID | 546298 |
ParticipantIDs | proquest_miscellaneous_1628241622 proquest_journals_1627715841 pubmed_primary_25421098 crossref_primary_10_1038_ncomms6622 crossref_citationtrail_10_1038_ncomms6622 springer_journals_10_1038_ncomms6622 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20141125 |
PublicationDateYYYYMMDD | 2014-11-25 |
PublicationDate_xml | – month: 11 year: 2014 text: 20141125 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Bernardi, Palummo, Grossman (CR27) 2013; 13 Dean (CR33) 2010; 5 Gorbachev (CR24) 2012; 8 Georgiou (CR14) 2013; 8 von Klitzing (CR1) 1986; 58 Wang (CR31) 2013; 7 Geim, Grigorieva (CR12) 2013; 499 Alferov (CR7) 2001; 73 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR11) 2012; 7 Britnell (CR13) 2012; 335 Feldmann (CR6) 1992; 46 Kim (CR25) 2011; 83 Larentis (CR21) 2014; 14 Tsui, Stormer, Gossard (CR2) 1982; 48 Kasprzak (CR5) 2006; 443 Bertolazzi, Krasnozhon, Kis (CR22) 2013; 7 Yu (CR16) 2013; 12 Bernevig, Zhang (CR3) 2006; 96 Zhao (CR28) 2013; 7 Ponomarenko (CR26) 2011; 7 Mai (CR32) 2013; 14 Choi (CR23) 2013; 4 Komsa, Krasheninnikov (CR19) 2013; 88 König (CR4) 2007; 318 Sachs (CR20) 2013; 103 Sim (CR30) 2013; 88 Shi (CR29) 2012; 7 Britnell (CR17) 2013; 340 Novoselov (CR8) 2004; 306 Song (CR10) 2010; 10 Lin (CR15) 2014; 6 Novoselov (CR9) 2005; 438 Yu (CR18) 2013; 8 KS Novoselov (BFncomms6622_CR9) 2005; 438 S Larentis (BFncomms6622_CR21) 2014; 14 S Kim (BFncomms6622_CR25) 2011; 83 ZI Alferov (BFncomms6622_CR7) 2001; 73 C Mai (BFncomms6622_CR32) 2013; 14 DC Tsui (BFncomms6622_CR2) 1982; 48 J Kasprzak (BFncomms6622_CR5) 2006; 443 KS Novoselov (BFncomms6622_CR8) 2004; 306 HP Komsa (BFncomms6622_CR19) 2013; 88 J Feldmann (BFncomms6622_CR6) 1992; 46 WJ Yu (BFncomms6622_CR16) 2013; 12 S Sim (BFncomms6622_CR30) 2013; 88 B Sachs (BFncomms6622_CR20) 2013; 103 QH Wang (BFncomms6622_CR11) 2012; 7 BA Bernevig (BFncomms6622_CR3) 2006; 96 MS Choi (BFncomms6622_CR23) 2013; 4 WJ Zhao (BFncomms6622_CR28) 2013; 7 Q Wang (BFncomms6622_CR31) 2013; 7 M König (BFncomms6622_CR4) 2007; 318 S Bertolazzi (BFncomms6622_CR22) 2013; 7 K von Klitzing (BFncomms6622_CR1) 1986; 58 L Britnell (BFncomms6622_CR17) 2013; 340 H Shi (BFncomms6622_CR29) 2012; 7 WJ Yu (BFncomms6622_CR18) 2013; 8 CR Dean (BFncomms6622_CR33) 2010; 5 L Song (BFncomms6622_CR10) 2010; 10 AK Geim (BFncomms6622_CR12) 2013; 499 T Georgiou (BFncomms6622_CR14) 2013; 8 YF Lin (BFncomms6622_CR15) 2014; 6 M Bernardi (BFncomms6622_CR27) 2013; 13 L Britnell (BFncomms6622_CR13) 2012; 335 LA Ponomarenko (BFncomms6622_CR26) 2011; 7 RV Gorbachev (BFncomms6622_CR24) 2012; 8 |
References_xml | – volume: 13 start-page: 3664 year: 2013 end-page: 3670 ident: CR27 article-title: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials publication-title: Nano Lett. doi: 10.1021/nl401544y – volume: 12 start-page: 246 year: 2013 end-page: 252 ident: CR16 article-title: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters publication-title: Nat. Mater. doi: 10.1038/nmat3518 – volume: 83 start-page: 161401 year: 2011 ident: CR25 article-title: Coulomb drag of massless fermions in graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.161401 – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: CR8 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 14 start-page: 202 year: 2013 end-page: 206 ident: CR32 article-title: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS publication-title: Nano Lett. doi: 10.1021/nl403742j – volume: 5 start-page: 722 year: 2010 end-page: 726 ident: CR33 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: CR9 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature doi: 10.1038/nature04233 – volume: 10 start-page: 3209 year: 2010 end-page: 3215 ident: CR10 article-title: Large scale growth and characterization of atomic hexagonal boron nitride layers publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 88 start-page: 075434 year: 2013 ident: CR30 article-title: Exciton dynamics in atomically thin MoS : Interexcitonic interaction and broadening kinetics publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075434 – volume: 6 start-page: 795 year: 2014 end-page: 799 ident: CR15 article-title: Barrier inhomogeneities at vertically stacked graphene-based heterostructures publication-title: Nanoscale doi: 10.1039/C3NR03677D – volume: 103 start-page: 251607 year: 2013 ident: CR20 article-title: Doping mechanisms in graphene-MoS hybrids publication-title: Appl. Phys. Lett. doi: 10.1063/1.4852615 – volume: 7 start-page: 1072 year: 2012 end-page: 1080 ident: CR29 article-title: Exciton dynamics in suspended monolayer and few-layer MoS 2D crystals publication-title: ACS Nano doi: 10.1021/nn303973r – volume: 7 start-page: 3246 year: 2013 end-page: 3252 ident: CR22 article-title: Nonvolatile memory cells based on MoS /graphene heterostructures publication-title: ACS Nano doi: 10.1021/nn3059136 – volume: 340 start-page: 1311 year: 2013 end-page: 1314 ident: CR17 article-title: Strong light-matter interactions in heterostructures of atomically thin films publication-title: Science doi: 10.1126/science.1235547 – volume: 48 start-page: 1559 year: 1982 end-page: 1562 ident: CR2 article-title: Two-dimensional magnetotransport in the extreme quantum limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – volume: 46 start-page: 7252 year: 1992 end-page: 7255 ident: CR6 article-title: Optical investigation of Bloch oscillations in a semiconductor superlattice publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.7252 – volume: 318 start-page: 766 year: 2007 end-page: 770 ident: CR4 article-title: Quantum spin Hall insulator state in HgTe quantum wells publication-title: Science doi: 10.1126/science.1148047 – volume: 8 start-page: 952 year: 2013 end-page: 958 ident: CR18 article-title: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.219 – volume: 4 start-page: 1624 year: 2013 ident: CR23 article-title: Controlled charge trapping by molybdenum disulfide and graphene in ultrathin heterostructured memory devices publication-title: Nat. Commun. doi: 10.1038/ncomms2652 – volume: 7 start-page: 791 year: 2013 end-page: 797 ident: CR28 article-title: Evolution of electronic structure in atomically thin sheets of WS and WSe publication-title: ACS Nano doi: 10.1021/nn305275h – volume: 7 start-page: 958 year: 2011 end-page: 961 ident: CR26 article-title: Tunable metal-insulator transition in double-layer graphene heterostructures publication-title: Nat. Phys. doi: 10.1038/nphys2114 – volume: 14 start-page: 2039 year: 2014 end-page: 2045 ident: CR21 article-title: Band offset and negative compressibility in graphene-MoS heterostructures publication-title: Nano Lett. doi: 10.1021/nl500212s – volume: 335 start-page: 947 year: 2012 end-page: 950 ident: CR13 article-title: Field-effect tunneling transistor based on vertical graphene heterostructures publication-title: Science doi: 10.1126/science.1218461 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR12 article-title: Van der waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 73 start-page: 767 year: 2001 end-page: 782 ident: CR7 article-title: Nobel lecture: The double heterostructure concept and its applications in physics, electronics, and technology publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.767 – volume: 96 start-page: 106802 year: 2006 ident: CR3 article-title: Quantum spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.106802 – volume: 88 start-page: 085318 year: 2013 ident: CR19 article-title: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085318 – volume: 58 start-page: 519 year: 1986 end-page: 531 ident: CR1 article-title: The quantized Hall effect publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.58.519 – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR11 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 7 start-page: 11087 year: 2013 end-page: 11093 ident: CR31 article-title: Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy publication-title: ACS Nano doi: 10.1021/nn405419h – volume: 443 start-page: 409 year: 2006 end-page: 414 ident: CR5 article-title: Bose-Einstein condensation of exciton polaritons publication-title: Nature doi: 10.1038/nature05131 – volume: 8 start-page: 100 year: 2013 end-page: 103 ident: CR14 article-title: Vertical field-effect transistor based on graphene-WS heterostructures for flexible and transparent electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 8 start-page: 896 year: 2012 end-page: 901 ident: CR24 article-title: Strong Coulomb drag and broken symmetry in double-layer graphene publication-title: Nat. Phys. doi: 10.1038/nphys2441 – volume: 14 start-page: 202 year: 2013 ident: BFncomms6622_CR32 publication-title: Nano Lett. doi: 10.1021/nl403742j – volume: 7 start-page: 699 year: 2012 ident: BFncomms6622_CR11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 103 start-page: 251607 year: 2013 ident: BFncomms6622_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4852615 – volume: 10 start-page: 3209 year: 2010 ident: BFncomms6622_CR10 publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 7 start-page: 791 year: 2013 ident: BFncomms6622_CR28 publication-title: ACS Nano doi: 10.1021/nn305275h – volume: 443 start-page: 409 year: 2006 ident: BFncomms6622_CR5 publication-title: Nature doi: 10.1038/nature05131 – volume: 335 start-page: 947 year: 2012 ident: BFncomms6622_CR13 publication-title: Science doi: 10.1126/science.1218461 – volume: 46 start-page: 7252 year: 1992 ident: BFncomms6622_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.7252 – volume: 8 start-page: 896 year: 2012 ident: BFncomms6622_CR24 publication-title: Nat. Phys. doi: 10.1038/nphys2441 – volume: 88 start-page: 085318 year: 2013 ident: BFncomms6622_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085318 – volume: 438 start-page: 197 year: 2005 ident: BFncomms6622_CR9 publication-title: Nature doi: 10.1038/nature04233 – volume: 8 start-page: 952 year: 2013 ident: BFncomms6622_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.219 – volume: 340 start-page: 1311 year: 2013 ident: BFncomms6622_CR17 publication-title: Science doi: 10.1126/science.1235547 – volume: 499 start-page: 419 year: 2013 ident: BFncomms6622_CR12 publication-title: Nature doi: 10.1038/nature12385 – volume: 7 start-page: 1072 year: 2012 ident: BFncomms6622_CR29 publication-title: ACS Nano doi: 10.1021/nn303973r – volume: 4 start-page: 1624 year: 2013 ident: BFncomms6622_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms2652 – volume: 5 start-page: 722 year: 2010 ident: BFncomms6622_CR33 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 7 start-page: 958 year: 2011 ident: BFncomms6622_CR26 publication-title: Nat. Phys. doi: 10.1038/nphys2114 – volume: 73 start-page: 767 year: 2001 ident: BFncomms6622_CR7 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.767 – volume: 7 start-page: 11087 year: 2013 ident: BFncomms6622_CR31 publication-title: ACS Nano doi: 10.1021/nn405419h – volume: 13 start-page: 3664 year: 2013 ident: BFncomms6622_CR27 publication-title: Nano Lett. doi: 10.1021/nl401544y – volume: 14 start-page: 2039 year: 2014 ident: BFncomms6622_CR21 publication-title: Nano Lett. doi: 10.1021/nl500212s – volume: 306 start-page: 666 year: 2004 ident: BFncomms6622_CR8 publication-title: Science doi: 10.1126/science.1102896 – volume: 7 start-page: 3246 year: 2013 ident: BFncomms6622_CR22 publication-title: ACS Nano doi: 10.1021/nn3059136 – volume: 58 start-page: 519 year: 1986 ident: BFncomms6622_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.58.519 – volume: 88 start-page: 075434 year: 2013 ident: BFncomms6622_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075434 – volume: 6 start-page: 795 year: 2014 ident: BFncomms6622_CR15 publication-title: Nanoscale doi: 10.1039/C3NR03677D – volume: 83 start-page: 161401 year: 2011 ident: BFncomms6622_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.161401 – volume: 318 start-page: 766 year: 2007 ident: BFncomms6622_CR4 publication-title: Science doi: 10.1126/science.1148047 – volume: 8 start-page: 100 year: 2013 ident: BFncomms6622_CR14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 48 start-page: 1559 year: 1982 ident: BFncomms6622_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – volume: 96 start-page: 106802 year: 2006 ident: BFncomms6622_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.106802 – volume: 12 start-page: 246 year: 2013 ident: BFncomms6622_CR16 publication-title: Nat. Mater. doi: 10.1038/nmat3518 |
SSID | ssj0000391844 |
Score | 2.5591912 |
Snippet | The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5622 |
SubjectTerms | 140/125 639/301/119 Humanities and Social Sciences multidisciplinary Optical properties Science Science (multidisciplinary) Tungsten |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46EbyIv51OibiLh7C1-dHsJCIbw4MnhzsIJU1SHcx22u3gf-9L2m7KxGubpiHfS96XvOR7CLVDoahRkSXgOkLCtE1Ir2sZMaEGd6lsxFKv9vkohiP2MObjasOtqI5V1nOin6hNrt0eeScQYRQF4C6D29kHcVmjXHS1SqGxibacdJmz6mgcLfdYnPq5ZKxWJaWyk0GV74UQYfjbD62Ry7XAqPc3gz20WxFFfFciu482bHaAtsvUkV-H6KVf5a_Bc0897SdWmcE6X7grtq94kmGvRQ1TGZnDgAYwM2wmxWKaTozFwJ-xgW-eFZgffnNnYvJSSnYB6-8jNBr0n-6HpMqUQDTjdE56lDJjfQogYPwpCxLNhOaJ5tRKqrTUQBNEV1luUiNsoqCI6RrK0yAVLAnpMWpkeWZPERbKgcokoMRYZISKODMp8Ap4kkieNtFN3W-xrmTEXTaLaezD2VTGqz5uoutl2VkpnvFnqVbd_XE1gIp4BXcTXS1fg-m7eIbKbL7wZSQQEF_FSQnb8jew7oXFbE82UbvG8Ufla204-78N52gHiBJzdxBD3kINwMNeABmZJ5fe4r4BqMnioA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV29TsMwELZQKyQWxD-BgozowhDRxI7jjhVqVXVggYpORI7tQKXiIJIObLwDb8iTcHF-KCoDY5Kz4_jOvs85-zuEuj4TRIlQu-A6fJdKHbv9nqau8iW4S6FDmli2z1s2ntLJLJhVNDlZta2ypLS003S9O-zawNVLxpgP0227oGgHm24PBpO7SfNHpeA655TWHKSErxT67XXWoORaGNR6l9EO2q5gIR6UDdlFG9rsoc0yUeT7PnocVtlqcG6Bpn7Dwigs02VxoPYJzw22zNMwcX19fOYwgEF5Bqt5tlwkc6Ux4GWsoNSDAHPDz8UemLSkjoU-yA7QdDS8vxm7VWYEV8KX526fEKq0TfkDCD-hXiwpk0EsA6I5EZJLgAWsJ3SgEsV0LEBE9RQJEi9hNPbJIWqZ1OhjhJkolEg5aIXSUDERBlQlgCPgTsyDxEFXdc9FsqINL7JXLCIbviY8-ullB102sq8lWcafUp1aAVE1YLLIY34YeoCGPAddNI_B1Iv4hTA6XVoZDoDDVnFUKq55DaxzYfHa5w7q1ppcqXytDSf_EztFWwCQaHH20A86qAV60WcAQvL4vLK-b7J14gU priority: 102 providerName: Springer Nature |
Title | Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures |
URI | https://link.springer.com/article/10.1038/ncomms6622 https://www.ncbi.nlm.nih.gov/pubmed/25421098 https://www.proquest.com/docview/1627715841 https://www.proquest.com/docview/1628241622 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL0Cqkm8oI0N6FYqo_Gyh4wm_uwDmrqqBVUamrZV6xORYztQqaSsH9J423_gH-6XcOMk3VB54CWRnGsn8rF9z5XjewCOI6Gp1dIF6DqigBmXBO2WY4GNDLpL7SRLfbbPC3E-ZIMRH21Apd9ZduD8ydAu15MaziYff_-6-4QT_rQ4Mq5OMsTmZi5EhEtxDT2SzJUMvpQ036_ItI2BDKuykz6q8tgfrZHMtQ1S73f6L2GnJIykUyD8CjZctgsvCgnJu9dw2St1bMjCU1A3IzqzxEyX-VHbKzLOiM9JjUva3z_3C5zaCGtG7Hi-nKRj6wgyaWKx1k-NHUKu879jpkVS2SVG4m9g2O_96J4HpWZCYBini6BNKbPOiwEh909ZmBgmDE8Mp05RbZRBwiBa2nGbWuESjSa2ZSlPw1SwJKJ7sJVNM3cAROgcXqYQL8akFVpyZlNkGFiSKJ7W4UPVc7EpE4rnuhaT2G9sUxX_6-U6vF_Z3hZpNJ60alQAxNVIiEMRSRkiTwrrcLR6jJMg39nQmZsuvY1C4H0T-wVwq9dgBIxhbVvV4bhC8r_G177h7fPM3sE2UieWn0qMeAO2EBd3iPRkkTRhU44kXlX_rAm1TmfwfYD3z72Lr9-wtCu6TT86HwDBfPAY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hKtReqpZ-sIWCq9JDDxYbZ-yYQ1VVwHYplBOoHCqlju20K9GEsrtC_Cl-Y8dOsoC26o1rMnES-3nmjceeAdgUyqTOZJ6T6RAcrS_4dt8jd8KSuTQ-wzJm-zxSwxP8cipPF-C6OwsTtlV2OjEqalfbsEa-lSiRZQmZy-Tj-R8eqkaF6GpXQqOBxYG_uiSXbfxhf5fG950Qg73jnSFvqwpwizKdcPLg0flYLofYcYlJYVFZWViZep0aqy2ZVNU3XrrSKV8YEnF9l8oyKRUWIdEBqfwHmJIlDyfTB59nazoh27pG7LKgpnqrol_4PVZKiLt2b47MzgVio30bPIHHLTFlnxokPYUFXy3DUlOq8uoZfN9r6-WwSaS6_oKZyjFbT8OR3p9sVLGY-5pUJ5-QAiHwVMyNxtOzcuQ8I77OHD3zzRDc2a-wB6duUtdOyd9_Dif30ocvYLGqK78CTJkAItSECsTMKZNJdCXxGLpSaFn24H3Xb7lt05aH6hlneQyfpzq_6eMevJ3JnjfJOv4ptdZ1f95O2HF-A68evJndpqkW4iem8vU0ymgiPLGJl82wzV5DfjY5z9u6B5vdON5qfO4bXv3_Gzbg4fD462F-uH90sAqPiKRhOP8o5Bos0tj410SEJsV6RB-DH_cN97-iXB_z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IKBAlxZqRDlwsHbj2I57qBC0u-oDrSpERQ9IqeNHWakkLburqn-NX8fYSbZUW3HrNZk4iefzzDd-zABsMqlTqzNH0XUwyo0r6FbfcWqZQXepXcZ9zPY5knvH_OBEnCzBn_YsTNhW2drEaKhtZcIceS-RLMsSdJdJzzfbIo52hx8vLmmoIBVWWttyGjVEDt31FYZvk-39XdT1e8aGg287e7SpMEANF-mUYjTPrYulc5Ape54UhksjCiNSp1JtlEH3KvvaCeutdIVGEdu3qfCJl7wISQ_Q_C9nISrqwPLnwejo63yGJ-ReV5y3OVFT1Svxh35NpGTsthdcoLYLy7LR2w2fwOOGppJPNa6ewpIrn8GDunDl9Qr8GDTVc8g0El_3m-jSElPNwgHfMzIuScyEjYaUTtGcIJRKYseT2bkfW0eQvROLz3zXCH7yM-zIqepEtjOM_p_D8b304gvolFXpVoFIHSDFFWKE88xKnQluPbIavFIo4bvwoe233DRJzEMtjfM8LqanKr_p4y68m8te1Kk77pRab7s_b4bvJL8BWxfezm_jwAurKbp01SzKKKQ_sYmXtdrmr8GoG0PpLdWFzVaP_zS-8A2v_v8NG_AQoZ5_2R8drsEjZGw8HIZkYh06qBr3GlnRtHjTwI_A6X0j_i9v0SWF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron+transfer+and+coupling+in+graphene%E2%80%93tungsten+disulfide+van+der+Waals+heterostructures&rft.jtitle=Nature+communications&rft.au=He%2C+Jiaqi&rft.au=Kumar%2C+Nardeep&rft.au=Bellus%2C+Matthew+Z.&rft.au=Chiu%2C+Hsin-Ying&rft.date=2014-11-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms6622&rft.externalDocID=10_1038_ncomms6622 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |