Sparse semi-supervised multi-label feature selection based on latent representation

With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data m...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 10; no. 4; pp. 5139 - 5151
Main Authors Zhao, Xue, Li, Qiaoyan, Xing, Zhiwei, Yang, Xiaofei, Dai, Xuezhen
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several datasets prove the effectiveness of the approach.
AbstractList With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several datasets prove the effectiveness of the approach.
Abstract With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several datasets prove the effectiveness of the approach.
Author Xing, Zhiwei
Li, Qiaoyan
Zhao, Xue
Dai, Xuezhen
Yang, Xiaofei
Author_xml – sequence: 1
  givenname: Xue
  surname: Zhao
  fullname: Zhao, Xue
  organization: School of Science, Xi’an Polytechnic University
– sequence: 2
  givenname: Qiaoyan
  orcidid: 0000-0003-1920-1112
  surname: Li
  fullname: Li, Qiaoyan
  email: liqiaoyan@xpu.edu.cn
  organization: School of Science, Xi’an Polytechnic University
– sequence: 3
  givenname: Zhiwei
  surname: Xing
  fullname: Xing, Zhiwei
  organization: School of Science, Xi’an Polytechnic University
– sequence: 4
  givenname: Xiaofei
  surname: Yang
  fullname: Yang, Xiaofei
  organization: School of Science, Xi’an Polytechnic University
– sequence: 5
  givenname: Xuezhen
  surname: Dai
  fullname: Dai, Xuezhen
  organization: The Public Sector, Xi’an Traffic Engineering Institute
BookMark eNp9kU9r3DAUxEXYQrbJfoGeDD2rebL--lhC2wQWctjkLJ7s58WL13Ylu9BvX-26pLeeNEi_GQ3MR7YZxoEY-yTgiwCwD0mBVZZDqTgIJStub9i2FJXjBrTcXHXFlZbmlu1SOgGAsNZJKLfscJgwJioSnTueloniry5RU5yXfu54j4H6oiWcl3hheqrnbhyKgBcmix5nGuYi0hQpZYWX53v2ocU-0e7vecfevn97fXzi-5cfz49f97zOXWZeCVJK1FVJwchgnDaO0GodqFK5W0Apc0_VlGBqcgGxbjQEWxmsnEOq5R17XnObEU9-it0Z428_YuevF2M8eoxzV_fkG4WitQBEOiihWwQLZFDLEpyQbZOzPq9ZUxx_LpRmfxqXOOT6XoIrQRkNJlPlStVxTClS-_6rAH_Zwq9b-LyFv27hbTbJ1ZQyPBwp_ov-j-sPPW6N_w
Cites_doi 10.1016/j.knosys.2021.107924
10.1016/j.patcog.2023.109378
10.1016/j.ins.2022.07.102
10.1007/s10115-015-0841-8
10.1016/j.knosys.2018.11.034
10.1016/j.neunet.2019.04.015
10.1016/j.neucom.2021.10.022
10.1016/j.knosys.2021.106757
10.1016/j.engappai.2016.02.002
10.1109/TKDE.2012.47
10.1016/j.patcog.2022.109120
10.1088/1361-6501/acb075
10.1049/el.2012.1600
10.1007/s10115-014-0746-y
10.1016/j.knosys.2022.109243
10.1016/j.patcog.2016.11.003
10.1007/s10115-021-01616-x
10.1016/j.patcog.2017.01.014
10.1109/TNNLS.2021.3105142
10.1016/j.jfranklin.2022.11.004
10.3390/info14030191
10.1109/TNSRE.2022.3175464
10.1186/1471-2105-11-2
10.1109/IJCNN48605.2020.9207258
10.1016/j.knosys.2020.106621
10.1137/1.9781611972788.37
10.1007/s13042-022-01679-4
10.1016/j.neucom.2021.01.064
10.1109/ISKE54062.2021.9755324
10.1587/transinf.2017EDP7184
10.1007/s43674-021-00008-6
10.1007/s10115-019-01409-3
10.1145/2063576.2063734
10.1016/j.ins.2015.06.021
10.1145/3269206.3271760
10.1016/j.eswa.2019.113024
10.1145/2623330.2623726
10.1201/9781584889977
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s40747-024-01439-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 5151
ExternalDocumentID oai_doaj_org_article_d4a1f700ee5b415fa070e6a5320813fd
10_1007_s40747_024_01439_7
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  funderid: http://dx.doi.org/10.13039/501100007128
– fundername: Key Research and Development Projects of Shaanxi Province
  funderid: http://dx.doi.org/10.13039/501100015401
– fundername: the Natural Science Foundation of China
  grantid: 61976130
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c453t-91e441c92eb63b68568ea755be94302ba330174d206ce8baacd50b796a988aec3
IEDL.DBID BENPR
ISSN 2199-4536
IngestDate Wed Aug 27 00:53:33 EDT 2025
Sat Jul 26 03:16:21 EDT 2025
Tue Jul 01 03:42:41 EDT 2025
Fri Feb 21 02:38:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Latent representation
Multi-label learning
Feature selection
Similarity matrix
Manifold regularization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-91e441c92eb63b68568ea755be94302ba330174d206ce8baacd50b796a988aec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1920-1112
OpenAccessLink https://www.proquest.com/docview/3082046506?pq-origsite=%requestingapplication%
PQID 3082046506
PQPubID 2044308
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d4a1f700ee5b415fa070e6a5320813fd
proquest_journals_3082046506
crossref_primary_10_1007_s40747_024_01439_7
springer_journals_10_1007_s40747_024_01439_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Wang, Jiang, Li (CR1) 2015; 44
Lv, Shi, Wang, Li (CR29) 2021; 214
Tang (CR32) 2019; 117
Lai, Chen, Li, Yang (CR17) 2022; 609
Zhang, Liu, Song (CR13) 2023; 138
CR18
Shen, Tao, Ni, Wang, Stojanovic (CR21) 2023; 34
Lee, Lim, Kim (CR38) 2012; 48
CR35
CR34
CR11
CR10
CR31
Li, Hu, Gao (CR41) 2022; 134
Zhang, Ma (CR15) 2022; 238
CR30
Alalga, Benabdeslem, Taleb (CR36) 2016; 47
Tao, Qiu, Chen, Stojanovic, Cheng (CR20) 2023; 360
Lee, Kim (CR39) 2017; 66
Gao, Li, Hu (CR40) 2021; 34
Hu, Li, Xu, Gao (CR7) 2021; 467
Schietgat (CR3) 2010; 11
CR4
CR6
CR5
Alalga, Benabdeslem, Mansouri (CR37) 2021; 63
CR8
Zhang, Chow, Zhao (CR25) 2013; 25
CR28
CR9
CR27
Jiang, Li, Wang, Zhang (CR2) 2016; 52
CR26
CR24
CR23
Peng (CR33) 2022; 30
CR22
Lai, Chen, Li, Li, Wan (CR16) 2022; 251
Liu (CR19) 2019; 165
Sheikhpour, Sarram, Gharaghani, Chahooki (CR12) 2017; 64
Lyu, Feng, Sakurai (CR14) 2023; 14
1439_CR9
J Lee (1439_CR38) 2012; 48
J-S Lee (1439_CR39) 2017; 66
1439_CR5
Y Zhang (1439_CR15) 2022; 238
L Shen (1439_CR21) 2023; 34
C Tang (1439_CR32) 2019; 117
1439_CR6
K Liu (1439_CR19) 2019; 165
1439_CR8
J Lai (1439_CR16) 2022; 251
J Hu (1439_CR7) 2021; 467
P Zhang (1439_CR13) 2023; 138
1439_CR30
H Tao (1439_CR20) 2023; 360
1439_CR31
Y Li (1439_CR41) 2022; 134
Y Lyu (1439_CR14) 2023; 14
1439_CR34
Z Zhang (1439_CR25) 2013; 25
1439_CR35
1439_CR10
1439_CR11
1439_CR4
1439_CR18
S Lv (1439_CR29) 2021; 214
A Alalga (1439_CR37) 2021; 63
R Sheikhpour (1439_CR12) 2017; 64
A Alalga (1439_CR36) 2016; 47
S Wang (1439_CR1) 2015; 44
J Lai (1439_CR17) 2022; 609
Y Peng (1439_CR33) 2022; 30
L Schietgat (1439_CR3) 2010; 11
1439_CR23
1439_CR24
W Gao (1439_CR40) 2021; 34
1439_CR22
1439_CR27
1439_CR28
1439_CR26
L Jiang (1439_CR2) 2016; 52
References_xml – volume: 238
  year: 2022
  ident: CR15
  article-title: Non-negative multi-label feature selection with dynamic graph constraints
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107924
– ident: CR22
– ident: CR18
– volume: 138
  year: 2023
  ident: CR13
  article-title: Mfsjmi: multi-label feature selection considering join mutual information and interaction weight
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109378
– volume: 609
  start-page: 465
  year: 2022
  end-page: 488
  ident: CR17
  article-title: Adaptive graph learning for semi-supervised feature selection with redundancy minimization
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.07.102
– ident: CR4
– ident: CR30
– volume: 47
  start-page: 75
  year: 2016
  end-page: 98
  ident: CR36
  article-title: Soft-constrained laplacian score for semi-supervised multi-label feature selection
  publication-title: Knowl Inform Syst
  doi: 10.1007/s10115-015-0841-8
– ident: CR10
– volume: 165
  start-page: 282
  year: 2019
  end-page: 296
  ident: CR19
  article-title: Rough set based semi-supervised feature selection via ensemble selector
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.11.034
– volume: 117
  start-page: 163
  year: 2019
  end-page: 178
  ident: CR32
  article-title: Unsupervised feature selection via latent representation learning and manifold regularization
  publication-title: Neural Netw Off J Int Neural Netw Soc
  doi: 10.1016/j.neunet.2019.04.015
– volume: 467
  start-page: 184
  year: 2021
  end-page: 196
  ident: CR7
  article-title: Dynamic subspace dual-graph regularized multi-label feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.022
– volume: 214
  year: 2021
  ident: CR29
  article-title: Semi-supervised multi-label feature selection with adaptive structure learning and manifold learning
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.106757
– ident: CR35
– volume: 52
  start-page: 26
  year: 2016
  end-page: 39
  ident: CR2
  article-title: Deep feature weighting for naive bayes and its application to text classification
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.02.002
– ident: CR6
– volume: 25
  start-page: 1148
  year: 2013
  end-page: 1161
  ident: CR25
  article-title: Trace ratio optimization-based semi-supervised nonlinear dimensionality reduction for marginal manifold visualization
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.47
– volume: 134
  year: 2022
  ident: CR41
  article-title: Robust sparse and low-redundancy multi-label feature selection with dynamic local and global structure preservation
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.109120
– ident: CR8
– volume: 34
  year: 2023
  ident: CR21
  article-title: Improved yolov3 model with feature map cropping for multi-scale road object detection
  publication-title: Measur Sci Technol
  doi: 10.1088/1361-6501/acb075
– ident: CR27
– ident: CR23
– volume: 48
  start-page: 929
  year: 2012
  end-page: 930
  ident: CR38
  article-title: Approximating mutual information for multi-label feature selection
  publication-title: Electron Lett
  doi: 10.1049/el.2012.1600
– volume: 44
  start-page: 77
  year: 2015
  end-page: 89
  ident: CR1
  article-title: Adapting naive bayes tree for text classification
  publication-title: Knowl Inform Syst
  doi: 10.1007/s10115-014-0746-y
– volume: 251
  year: 2022
  ident: CR16
  article-title: Semi-supervised feature selection via adaptive structure learning and constrained graph learning
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.109243
– volume: 64
  start-page: 141
  year: 2017
  end-page: 158
  ident: CR12
  article-title: A survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.11.003
– ident: CR31
– ident: CR11
– volume: 63
  start-page: 2969
  year: 2021
  end-page: 2999
  ident: CR37
  article-title: 3–3fs: ensemble method for semi-supervised multi-label feature selection
  publication-title: Knowl Inform Syst
  doi: 10.1007/s10115-021-01616-x
– ident: CR9
– volume: 66
  start-page: 342
  year: 2017
  end-page: 352
  ident: CR39
  article-title: Scls: multi-label feature selection based on scalable criterion for large label set
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.01.014
– volume: 34
  start-page: 1253
  year: 2021
  end-page: 1262
  ident: CR40
  article-title: Multilabel feature selection with constrained latent structure shared term
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3105142
– ident: CR34
– volume: 360
  start-page: 1454
  year: 2023
  end-page: 1477
  ident: CR20
  article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.11.004
– volume: 14
  start-page: 191
  year: 2023
  ident: CR14
  article-title: A survey on feature selection techniques based on filtering methods for cyber attack detection
  publication-title: Information
  doi: 10.3390/info14030191
– ident: CR5
– volume: 30
  start-page: 1288
  year: 2022
  end-page: 1297
  ident: CR33
  article-title: Ogssl: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition
  publication-title: IEEE Trans Neural Syst Rehab Eng
  doi: 10.1109/TNSRE.2022.3175464
– ident: CR28
– ident: CR26
– volume: 11
  start-page: 2
  year: 2010
  end-page: 2
  ident: CR3
  article-title: Predicting gene function using hierarchical multi-label decision tree ensembles
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-2
– ident: CR24
– volume: 251
  year: 2022
  ident: 1439_CR16
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.109243
– volume: 48
  start-page: 929
  year: 2012
  ident: 1439_CR38
  publication-title: Electron Lett
  doi: 10.1049/el.2012.1600
– ident: 1439_CR31
  doi: 10.1109/IJCNN48605.2020.9207258
– volume: 64
  start-page: 141
  year: 2017
  ident: 1439_CR12
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.11.003
– volume: 138
  year: 2023
  ident: 1439_CR13
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109378
– volume: 63
  start-page: 2969
  year: 2021
  ident: 1439_CR37
  publication-title: Knowl Inform Syst
  doi: 10.1007/s10115-021-01616-x
– ident: 1439_CR9
  doi: 10.1016/j.knosys.2020.106621
– volume: 30
  start-page: 1288
  year: 2022
  ident: 1439_CR33
  publication-title: IEEE Trans Neural Syst Rehab Eng
  doi: 10.1109/TNSRE.2022.3175464
– volume: 238
  year: 2022
  ident: 1439_CR15
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107924
– volume: 52
  start-page: 26
  year: 2016
  ident: 1439_CR2
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.02.002
– volume: 34
  year: 2023
  ident: 1439_CR21
  publication-title: Measur Sci Technol
  doi: 10.1088/1361-6501/acb075
– volume: 117
  start-page: 163
  year: 2019
  ident: 1439_CR32
  publication-title: Neural Netw Off J Int Neural Netw Soc
  doi: 10.1016/j.neunet.2019.04.015
– ident: 1439_CR30
  doi: 10.1137/1.9781611972788.37
– volume: 609
  start-page: 465
  year: 2022
  ident: 1439_CR17
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.07.102
– ident: 1439_CR5
  doi: 10.1007/s13042-022-01679-4
– ident: 1439_CR18
  doi: 10.1016/j.neucom.2021.01.064
– ident: 1439_CR35
  doi: 10.1109/ISKE54062.2021.9755324
– volume: 34
  start-page: 1253
  year: 2021
  ident: 1439_CR40
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3105142
– volume: 467
  start-page: 184
  year: 2021
  ident: 1439_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.022
– ident: 1439_CR22
– ident: 1439_CR10
  doi: 10.1587/transinf.2017EDP7184
– volume: 44
  start-page: 77
  year: 2015
  ident: 1439_CR1
  publication-title: Knowl Inform Syst
  doi: 10.1007/s10115-014-0746-y
– ident: 1439_CR28
  doi: 10.1007/s43674-021-00008-6
– ident: 1439_CR26
  doi: 10.1007/s10115-019-01409-3
– volume: 11
  start-page: 2
  year: 2010
  ident: 1439_CR3
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-2
– ident: 1439_CR6
  doi: 10.1145/2063576.2063734
– volume: 47
  start-page: 75
  year: 2016
  ident: 1439_CR36
  publication-title: Knowl Inform Syst
  doi: 10.1007/s10115-015-0841-8
– volume: 134
  year: 2022
  ident: 1439_CR41
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.109120
– ident: 1439_CR23
  doi: 10.1016/j.ins.2015.06.021
– volume: 214
  year: 2021
  ident: 1439_CR29
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.106757
– ident: 1439_CR27
  doi: 10.1145/3269206.3271760
– ident: 1439_CR11
– volume: 14
  start-page: 191
  year: 2023
  ident: 1439_CR14
  publication-title: Information
  doi: 10.3390/info14030191
– ident: 1439_CR8
  doi: 10.1016/j.eswa.2019.113024
– volume: 66
  start-page: 342
  year: 2017
  ident: 1439_CR39
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.01.014
– ident: 1439_CR34
  doi: 10.1145/2623330.2623726
– ident: 1439_CR24
  doi: 10.1201/9781584889977
– volume: 360
  start-page: 1454
  year: 2023
  ident: 1439_CR20
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.11.004
– volume: 165
  start-page: 282
  year: 2019
  ident: 1439_CR19
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.11.034
– ident: 1439_CR4
– volume: 25
  start-page: 1148
  year: 2013
  ident: 1439_CR25
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.47
SSID ssj0001778302
ssib044733412
Score 2.2779748
Snippet With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and...
Abstract With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 5139
SubjectTerms Algorithms
Complexity
Computational Intelligence
Data mining
Data Structures and Information Theory
Effectiveness
Engineering
Feature selection
Labels
Latent representation
Machine learning
Manifold regularization
Manifolds (mathematics)
Multi-label learning
Original Article
Regularization
Representations
Similarity
Similarity matrix
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT9z1QQ7eNJg2aR5HFUWE9bIK3kLSTEHQutj1_zvJdtcHiBdvpe0hnW-Sb6aZfEPIcW0x7eCpqrExnMkQBQuxkKxuTDQCIvDcY2l8p24e5O1j9fil1VeqCZvLA88NdxalLxrNOUAVkGwajz4Kyqd-BqYQTUyrL3Lel2QKPUlKLYTsiTv_bdE6CV2lTnOFtUzmPcvR8hydTDLyDOmKJbk7y_Q3lspi_t8i0B-bppmLrjfIeh9E0vP54DfJCrRbZG28VGDttslkMsWUFWgHL0-se5-mJaGDSHMBIUPo4Zk2kFU9aZd74SBANHFapHjxjCFoO6NZ8nJxPKndIQ_XV_eXN6xvoMBq_MIZLmSA0U5tSwhKBGUqZcDrqgqQRNfL4AVOby1jyVUNJnhfx4oHbZW3xnioxS4ZtK8t7BEqSquCrJMeGGCMJ4JvrJKhwHyjsA03Q3KyMJibznUy3FIROZvXoXldNq_TQ3KRbLp8M2lc5xuIvOuRd38hPyQHC0RcP_E6l9R3MOWvuBqS0wVKn49_H9LoP4a0T1bL7EWpQPCADGZv73CIQcssHGX__ADIs-KY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i6Sg7eNJA2aR5HFRcR9KKCt5A0UxG0Lnb9_05iuz7Ag7c-QmlnJjPfNJNvCDmqLaYdPFU1NoYzGaJgIRaS1Y2JRkAEnnssXd-oy3t59VA99JvCuqHafViSzJ56vtlNJq53hjGFJU46y_QiWa4wd092ff7FOS6lFkL2QTv_adE6kVylLnOFtUzm9cq9vx_7I0JlIv8f6PPXgmmOQ5N1stYDSHr6qfENsgDtJln9RiuIZ9dzLtZui9zeTjF5BdrByxPr3qfJOXQQaS4lZGgE8EwbyPyetMtdcVBVNEW3SPHgGcFoO6OZ_HLYqNRuk_vJxd35JetbKbAav3eGLg0Q99S2hKBEUKZSBryuqgCJfr0MXuBE1zKWXNVggvd1rHjQVnlrjIda7JCl9rWFXUJFaVWQdWIGA0R7IvjGKhkKzDwK23AzIseD-Nz0kzHDzbmRs7AdCttlYTs9ImdJwvORie06X3h9e3T95HFR-qLRnANUAQFH49FPgfKpp4UpRBNHZDzox_VTsHOJhweT_4qrETkZdPZ1--9X2vvf8H2yUmbrSUWBY7I0e3uHAwQqs3CY7fIDik7bbg
  priority: 102
  providerName: Springer Nature
Title Sparse semi-supervised multi-label feature selection based on latent representation
URI https://link.springer.com/article/10.1007/s40747-024-01439-7
https://www.proquest.com/docview/3082046506
https://doaj.org/article/d4a1f700ee5b415fa070e6a5320813fd
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZN9tIeSp9003TRobdWVLZkPU5ls2QbFhJKt4HchGSNSyH1buPN_-9IkTek0F6MsY2xZ0Yz30ijbwh531pMO3iqauwMZzJEwUKsJGs7E42ACDz3WDq_UGeXcnXVXJUJt6GUVY4-MTvquGnTHPmnRKuCuVzD1eftb5a6RqXV1dJC44BM0AUbTL4mJ6cXX7-NFiWlFkKWAJ5nXbROhFep41xlLZN57fJov59OJjp5hmGLJdo7y_SDaJVJ_R8g0b8WT3NMWj4jTwuYpPM77T8nj6B_QZ6c75lYh5dkvd5i6gp0gF8_2XC7Ta5hgEhzISFDE4Br2kFm96RD7omDiqIptkWKJ9cIRfsdzdSX4zal_hW5XJ5-X5yx0kiBtfiHO3RogKintTUEJYIyjTLgddMESOTrdfACh7mWseaqBRO8b2PDg7bKW2M8tOI1Oew3PbwhVNRWBdkmXjBArCeC76ySocK8o7IdN1PyYRSY297xZbg9M3IWr0Pxuixep6fkJMl0_2Tius4XNjc_XBk6LkpfdZpzgCYg3Og8eilQPnW0MJXo4pQcjxpxZQAO7t5cpuTjqKX72__-pKP_v-0teVxn-0glgMfkcHdzC-8QluzCjByY5ZcZmcznq_VqViwRry5qmY5qMcsJ_x8kK-CP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiE91SwEf4AQWSew49qFCfC1b2u2lrdSbseMJQirZpdkK9U_1N3bsTbYqEtx6i5LIisZvZt7E9huAV7WhsiOLuxobnXHpg-A-5JLXjQ5aYMAs9Via7qvJkfx2XB6vwcVwFiZuqxxiYgrUYVbHf-TvoqwK1XJlpt7Pf_PYNSqurg4tNJaw2MXzP1Sydds7n2l-XxfF-MvhpwnvuwrwWpZiQd6NRAFqU6BXwitdKo2uKkuPUYm88I4qfKLpochUjdo7V4cy85VRzmjtsBY07i24LYUw0aP0-OuAXykrIWRPF9I_nqqK8lqxv11uDJdppXRzdXpPRvF6TkmSR5E9w6truTG1ELjGe_9aqk0ZcPwA7vfUlX1YYu0hrGH7CO5NV7qv3WM4OJhToYysw18_eXc2j4Gow8DStkVOgMMT1mDSEmVd6sBDsGAxkwZGFydEfNsFS0Kbw6Go9gkc3YiBn8J6O2txA5gojPKyjipkSMxSeNcYJX1OVU5umkyP4M1gMDtfqnPYlQ5zMq8l89pkXluN4GO06erNqKydbsxOf9jeUW2QLm-qLEMsPZGbxlFMROVi_wydiyaMYGuYEdu7e2evwDmCt8MsXT3-9ydt_n-0l3Bncjjds3s7-7vP4G6RsBI3H27B-uL0DJ8TIVr4FwmFDL7fNOwvAfDUFtY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSFV7qKAPdSm0PvRGLZzY8eMIS1eUFoREkbhZdjyuKtGwIsv_79ibLFCJQ295WFEyD89MZuYbQj63FsMOnqsak-FMhihYiJVkbTLRCIjAy4yl0zN1fClPrpqrB138pdp9TEkuexoySlO32J_HtL9qfJMZ952hfWEZn84y_YxsYKRSErVTNR0lSkothBwMePnronUGvMoT5yprmSy5y-2nH_vIWhVQ_0ee6D_J02KTZpvk1eBM0oMl97fIGnSvycsHEIN4drrCZe3fkIuLOQayQHv485v1d_O8UfQQaSkrZCgQcE0TFKxP2pcJOcg2mi1dpHhw7TONaAHCHJuWurfkcvb15_SYDWMVWIvfu8DtDdAHam0NQYmgTKMMeN00ATIUex28QKXXMtZctWCC921seNBWeWuMh1a8I-vdTQfvCRW1VUG2GSUM0PMTwSerZKgwCqls4mZC9kbyufkSPcOtcJILsR0S2xViOz0hh5nCq5UZ-bpcuLn95QZFclH6KmnOAZqAzkfyuGeB8nm-halEihOyM_LHDerYu4zJwyU6o2pCvow8u7_99Ctt_9_yT-T5-dHM_fh29v0DeVEXQcq1gjtkfXF7B7vovyzCxyKifwFpWeLG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+semi-supervised+multi-label+feature+selection+based+on+latent+representation&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Zhao%2C+Xue&rft.au=Li%2C+Qiaoyan&rft.au=Xing%2C+Zhiwei&rft.au=Yang%2C+Xiaofei&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=4&rft.spage=5139&rft.epage=5151&rft_id=info:doi/10.1007%2Fs40747-024-01439-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon