Sparse semi-supervised multi-label feature selection based on latent representation
With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data m...
Saved in:
Published in | Complex & intelligent systems Vol. 10; no. 4; pp. 5139 - 5151 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several datasets prove the effectiveness of the approach. |
---|---|
AbstractList | With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several datasets prove the effectiveness of the approach. Abstract With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several datasets prove the effectiveness of the approach. |
Author | Xing, Zhiwei Li, Qiaoyan Zhao, Xue Dai, Xuezhen Yang, Xiaofei |
Author_xml | – sequence: 1 givenname: Xue surname: Zhao fullname: Zhao, Xue organization: School of Science, Xi’an Polytechnic University – sequence: 2 givenname: Qiaoyan orcidid: 0000-0003-1920-1112 surname: Li fullname: Li, Qiaoyan email: liqiaoyan@xpu.edu.cn organization: School of Science, Xi’an Polytechnic University – sequence: 3 givenname: Zhiwei surname: Xing fullname: Xing, Zhiwei organization: School of Science, Xi’an Polytechnic University – sequence: 4 givenname: Xiaofei surname: Yang fullname: Yang, Xiaofei organization: School of Science, Xi’an Polytechnic University – sequence: 5 givenname: Xuezhen surname: Dai fullname: Dai, Xuezhen organization: The Public Sector, Xi’an Traffic Engineering Institute |
BookMark | eNp9kU9r3DAUxEXYQrbJfoGeDD2rebL--lhC2wQWctjkLJ7s58WL13Ylu9BvX-26pLeeNEi_GQ3MR7YZxoEY-yTgiwCwD0mBVZZDqTgIJStub9i2FJXjBrTcXHXFlZbmlu1SOgGAsNZJKLfscJgwJioSnTueloniry5RU5yXfu54j4H6oiWcl3hheqrnbhyKgBcmix5nGuYi0hQpZYWX53v2ocU-0e7vecfevn97fXzi-5cfz49f97zOXWZeCVJK1FVJwchgnDaO0GodqFK5W0Apc0_VlGBqcgGxbjQEWxmsnEOq5R17XnObEU9-it0Z428_YuevF2M8eoxzV_fkG4WitQBEOiihWwQLZFDLEpyQbZOzPq9ZUxx_LpRmfxqXOOT6XoIrQRkNJlPlStVxTClS-_6rAH_Zwq9b-LyFv27hbTbJ1ZQyPBwp_ov-j-sPPW6N_w |
Cites_doi | 10.1016/j.knosys.2021.107924 10.1016/j.patcog.2023.109378 10.1016/j.ins.2022.07.102 10.1007/s10115-015-0841-8 10.1016/j.knosys.2018.11.034 10.1016/j.neunet.2019.04.015 10.1016/j.neucom.2021.10.022 10.1016/j.knosys.2021.106757 10.1016/j.engappai.2016.02.002 10.1109/TKDE.2012.47 10.1016/j.patcog.2022.109120 10.1088/1361-6501/acb075 10.1049/el.2012.1600 10.1007/s10115-014-0746-y 10.1016/j.knosys.2022.109243 10.1016/j.patcog.2016.11.003 10.1007/s10115-021-01616-x 10.1016/j.patcog.2017.01.014 10.1109/TNNLS.2021.3105142 10.1016/j.jfranklin.2022.11.004 10.3390/info14030191 10.1109/TNSRE.2022.3175464 10.1186/1471-2105-11-2 10.1109/IJCNN48605.2020.9207258 10.1016/j.knosys.2020.106621 10.1137/1.9781611972788.37 10.1007/s13042-022-01679-4 10.1016/j.neucom.2021.01.064 10.1109/ISKE54062.2021.9755324 10.1587/transinf.2017EDP7184 10.1007/s43674-021-00008-6 10.1007/s10115-019-01409-3 10.1145/2063576.2063734 10.1016/j.ins.2015.06.021 10.1145/3269206.3271760 10.1016/j.eswa.2019.113024 10.1145/2623330.2623726 10.1201/9781584889977 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s40747-024-01439-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 2198-6053 |
EndPage | 5151 |
ExternalDocumentID | oai_doaj_org_article_d4a1f700ee5b415fa070e6a5320813fd 10_1007_s40747_024_01439_7 |
GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province funderid: http://dx.doi.org/10.13039/501100007128 – fundername: Key Research and Development Projects of Shaanxi Province funderid: http://dx.doi.org/10.13039/501100015401 – fundername: the Natural Science Foundation of China grantid: 61976130 |
GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c453t-91e441c92eb63b68568ea755be94302ba330174d206ce8baacd50b796a988aec3 |
IEDL.DBID | BENPR |
ISSN | 2199-4536 |
IngestDate | Wed Aug 27 00:53:33 EDT 2025 Sat Jul 26 03:16:21 EDT 2025 Tue Jul 01 03:42:41 EDT 2025 Fri Feb 21 02:38:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Latent representation Multi-label learning Feature selection Similarity matrix Manifold regularization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-91e441c92eb63b68568ea755be94302ba330174d206ce8baacd50b796a988aec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1920-1112 |
OpenAccessLink | https://www.proquest.com/docview/3082046506?pq-origsite=%requestingapplication% |
PQID | 3082046506 |
PQPubID | 2044308 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4a1f700ee5b415fa070e6a5320813fd proquest_journals_3082046506 crossref_primary_10_1007_s40747_024_01439_7 springer_journals_10_1007_s40747_024_01439_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Complex & intelligent systems |
PublicationTitleAbbrev | Complex Intell. Syst |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | Wang, Jiang, Li (CR1) 2015; 44 Lv, Shi, Wang, Li (CR29) 2021; 214 Tang (CR32) 2019; 117 Lai, Chen, Li, Yang (CR17) 2022; 609 Zhang, Liu, Song (CR13) 2023; 138 CR18 Shen, Tao, Ni, Wang, Stojanovic (CR21) 2023; 34 Lee, Lim, Kim (CR38) 2012; 48 CR35 CR34 CR11 CR10 CR31 Li, Hu, Gao (CR41) 2022; 134 Zhang, Ma (CR15) 2022; 238 CR30 Alalga, Benabdeslem, Taleb (CR36) 2016; 47 Tao, Qiu, Chen, Stojanovic, Cheng (CR20) 2023; 360 Lee, Kim (CR39) 2017; 66 Gao, Li, Hu (CR40) 2021; 34 Hu, Li, Xu, Gao (CR7) 2021; 467 Schietgat (CR3) 2010; 11 CR4 CR6 CR5 Alalga, Benabdeslem, Mansouri (CR37) 2021; 63 CR8 Zhang, Chow, Zhao (CR25) 2013; 25 CR28 CR9 CR27 Jiang, Li, Wang, Zhang (CR2) 2016; 52 CR26 CR24 CR23 Peng (CR33) 2022; 30 CR22 Lai, Chen, Li, Li, Wan (CR16) 2022; 251 Liu (CR19) 2019; 165 Sheikhpour, Sarram, Gharaghani, Chahooki (CR12) 2017; 64 Lyu, Feng, Sakurai (CR14) 2023; 14 1439_CR9 J Lee (1439_CR38) 2012; 48 J-S Lee (1439_CR39) 2017; 66 1439_CR5 Y Zhang (1439_CR15) 2022; 238 L Shen (1439_CR21) 2023; 34 C Tang (1439_CR32) 2019; 117 1439_CR6 K Liu (1439_CR19) 2019; 165 1439_CR8 J Lai (1439_CR16) 2022; 251 J Hu (1439_CR7) 2021; 467 P Zhang (1439_CR13) 2023; 138 1439_CR30 H Tao (1439_CR20) 2023; 360 1439_CR31 Y Li (1439_CR41) 2022; 134 Y Lyu (1439_CR14) 2023; 14 1439_CR34 Z Zhang (1439_CR25) 2013; 25 1439_CR35 1439_CR10 1439_CR11 1439_CR4 1439_CR18 S Lv (1439_CR29) 2021; 214 A Alalga (1439_CR37) 2021; 63 R Sheikhpour (1439_CR12) 2017; 64 A Alalga (1439_CR36) 2016; 47 S Wang (1439_CR1) 2015; 44 J Lai (1439_CR17) 2022; 609 Y Peng (1439_CR33) 2022; 30 L Schietgat (1439_CR3) 2010; 11 1439_CR23 1439_CR24 W Gao (1439_CR40) 2021; 34 1439_CR22 1439_CR27 1439_CR28 1439_CR26 L Jiang (1439_CR2) 2016; 52 |
References_xml | – volume: 238 year: 2022 ident: CR15 article-title: Non-negative multi-label feature selection with dynamic graph constraints publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107924 – ident: CR22 – ident: CR18 – volume: 138 year: 2023 ident: CR13 article-title: Mfsjmi: multi-label feature selection considering join mutual information and interaction weight publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109378 – volume: 609 start-page: 465 year: 2022 end-page: 488 ident: CR17 article-title: Adaptive graph learning for semi-supervised feature selection with redundancy minimization publication-title: Inf Sci doi: 10.1016/j.ins.2022.07.102 – ident: CR4 – ident: CR30 – volume: 47 start-page: 75 year: 2016 end-page: 98 ident: CR36 article-title: Soft-constrained laplacian score for semi-supervised multi-label feature selection publication-title: Knowl Inform Syst doi: 10.1007/s10115-015-0841-8 – ident: CR10 – volume: 165 start-page: 282 year: 2019 end-page: 296 ident: CR19 article-title: Rough set based semi-supervised feature selection via ensemble selector publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.11.034 – volume: 117 start-page: 163 year: 2019 end-page: 178 ident: CR32 article-title: Unsupervised feature selection via latent representation learning and manifold regularization publication-title: Neural Netw Off J Int Neural Netw Soc doi: 10.1016/j.neunet.2019.04.015 – volume: 467 start-page: 184 year: 2021 end-page: 196 ident: CR7 article-title: Dynamic subspace dual-graph regularized multi-label feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.022 – volume: 214 year: 2021 ident: CR29 article-title: Semi-supervised multi-label feature selection with adaptive structure learning and manifold learning publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.106757 – ident: CR35 – volume: 52 start-page: 26 year: 2016 end-page: 39 ident: CR2 article-title: Deep feature weighting for naive bayes and its application to text classification publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.02.002 – ident: CR6 – volume: 25 start-page: 1148 year: 2013 end-page: 1161 ident: CR25 article-title: Trace ratio optimization-based semi-supervised nonlinear dimensionality reduction for marginal manifold visualization publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.47 – volume: 134 year: 2022 ident: CR41 article-title: Robust sparse and low-redundancy multi-label feature selection with dynamic local and global structure preservation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.109120 – ident: CR8 – volume: 34 year: 2023 ident: CR21 article-title: Improved yolov3 model with feature map cropping for multi-scale road object detection publication-title: Measur Sci Technol doi: 10.1088/1361-6501/acb075 – ident: CR27 – ident: CR23 – volume: 48 start-page: 929 year: 2012 end-page: 930 ident: CR38 article-title: Approximating mutual information for multi-label feature selection publication-title: Electron Lett doi: 10.1049/el.2012.1600 – volume: 44 start-page: 77 year: 2015 end-page: 89 ident: CR1 article-title: Adapting naive bayes tree for text classification publication-title: Knowl Inform Syst doi: 10.1007/s10115-014-0746-y – volume: 251 year: 2022 ident: CR16 article-title: Semi-supervised feature selection via adaptive structure learning and constrained graph learning publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.109243 – volume: 64 start-page: 141 year: 2017 end-page: 158 ident: CR12 article-title: A survey on semi-supervised feature selection methods publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.11.003 – ident: CR31 – ident: CR11 – volume: 63 start-page: 2969 year: 2021 end-page: 2999 ident: CR37 article-title: 3–3fs: ensemble method for semi-supervised multi-label feature selection publication-title: Knowl Inform Syst doi: 10.1007/s10115-021-01616-x – ident: CR9 – volume: 66 start-page: 342 year: 2017 end-page: 352 ident: CR39 article-title: Scls: multi-label feature selection based on scalable criterion for large label set publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.01.014 – volume: 34 start-page: 1253 year: 2021 end-page: 1262 ident: CR40 article-title: Multilabel feature selection with constrained latent structure shared term publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3105142 – ident: CR34 – volume: 360 start-page: 1454 year: 2023 end-page: 1477 ident: CR20 article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2022.11.004 – volume: 14 start-page: 191 year: 2023 ident: CR14 article-title: A survey on feature selection techniques based on filtering methods for cyber attack detection publication-title: Information doi: 10.3390/info14030191 – ident: CR5 – volume: 30 start-page: 1288 year: 2022 end-page: 1297 ident: CR33 article-title: Ogssl: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition publication-title: IEEE Trans Neural Syst Rehab Eng doi: 10.1109/TNSRE.2022.3175464 – ident: CR28 – ident: CR26 – volume: 11 start-page: 2 year: 2010 end-page: 2 ident: CR3 article-title: Predicting gene function using hierarchical multi-label decision tree ensembles publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-2 – ident: CR24 – volume: 251 year: 2022 ident: 1439_CR16 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.109243 – volume: 48 start-page: 929 year: 2012 ident: 1439_CR38 publication-title: Electron Lett doi: 10.1049/el.2012.1600 – ident: 1439_CR31 doi: 10.1109/IJCNN48605.2020.9207258 – volume: 64 start-page: 141 year: 2017 ident: 1439_CR12 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.11.003 – volume: 138 year: 2023 ident: 1439_CR13 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109378 – volume: 63 start-page: 2969 year: 2021 ident: 1439_CR37 publication-title: Knowl Inform Syst doi: 10.1007/s10115-021-01616-x – ident: 1439_CR9 doi: 10.1016/j.knosys.2020.106621 – volume: 30 start-page: 1288 year: 2022 ident: 1439_CR33 publication-title: IEEE Trans Neural Syst Rehab Eng doi: 10.1109/TNSRE.2022.3175464 – volume: 238 year: 2022 ident: 1439_CR15 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107924 – volume: 52 start-page: 26 year: 2016 ident: 1439_CR2 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.02.002 – volume: 34 year: 2023 ident: 1439_CR21 publication-title: Measur Sci Technol doi: 10.1088/1361-6501/acb075 – volume: 117 start-page: 163 year: 2019 ident: 1439_CR32 publication-title: Neural Netw Off J Int Neural Netw Soc doi: 10.1016/j.neunet.2019.04.015 – ident: 1439_CR30 doi: 10.1137/1.9781611972788.37 – volume: 609 start-page: 465 year: 2022 ident: 1439_CR17 publication-title: Inf Sci doi: 10.1016/j.ins.2022.07.102 – ident: 1439_CR5 doi: 10.1007/s13042-022-01679-4 – ident: 1439_CR18 doi: 10.1016/j.neucom.2021.01.064 – ident: 1439_CR35 doi: 10.1109/ISKE54062.2021.9755324 – volume: 34 start-page: 1253 year: 2021 ident: 1439_CR40 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3105142 – volume: 467 start-page: 184 year: 2021 ident: 1439_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.022 – ident: 1439_CR22 – ident: 1439_CR10 doi: 10.1587/transinf.2017EDP7184 – volume: 44 start-page: 77 year: 2015 ident: 1439_CR1 publication-title: Knowl Inform Syst doi: 10.1007/s10115-014-0746-y – ident: 1439_CR28 doi: 10.1007/s43674-021-00008-6 – ident: 1439_CR26 doi: 10.1007/s10115-019-01409-3 – volume: 11 start-page: 2 year: 2010 ident: 1439_CR3 publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-2 – ident: 1439_CR6 doi: 10.1145/2063576.2063734 – volume: 47 start-page: 75 year: 2016 ident: 1439_CR36 publication-title: Knowl Inform Syst doi: 10.1007/s10115-015-0841-8 – volume: 134 year: 2022 ident: 1439_CR41 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.109120 – ident: 1439_CR23 doi: 10.1016/j.ins.2015.06.021 – volume: 214 year: 2021 ident: 1439_CR29 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.106757 – ident: 1439_CR27 doi: 10.1145/3269206.3271760 – ident: 1439_CR11 – volume: 14 start-page: 191 year: 2023 ident: 1439_CR14 publication-title: Information doi: 10.3390/info14030191 – ident: 1439_CR8 doi: 10.1016/j.eswa.2019.113024 – volume: 66 start-page: 342 year: 2017 ident: 1439_CR39 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.01.014 – ident: 1439_CR34 doi: 10.1145/2623330.2623726 – ident: 1439_CR24 doi: 10.1201/9781584889977 – volume: 360 start-page: 1454 year: 2023 ident: 1439_CR20 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2022.11.004 – volume: 165 start-page: 282 year: 2019 ident: 1439_CR19 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.11.034 – ident: 1439_CR4 – volume: 25 start-page: 1148 year: 2013 ident: 1439_CR25 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.47 |
SSID | ssj0001778302 ssib044733412 |
Score | 2.2779748 |
Snippet | With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and... Abstract With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 5139 |
SubjectTerms | Algorithms Complexity Computational Intelligence Data mining Data Structures and Information Theory Effectiveness Engineering Feature selection Labels Latent representation Machine learning Manifold regularization Manifolds (mathematics) Multi-label learning Original Article Regularization Representations Similarity Similarity matrix |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT9z1QQ7eNJg2aR5HFUWE9bIK3kLSTEHQutj1_zvJdtcHiBdvpe0hnW-Sb6aZfEPIcW0x7eCpqrExnMkQBQuxkKxuTDQCIvDcY2l8p24e5O1j9fil1VeqCZvLA88NdxalLxrNOUAVkGwajz4Kyqd-BqYQTUyrL3Lel2QKPUlKLYTsiTv_bdE6CV2lTnOFtUzmPcvR8hydTDLyDOmKJbk7y_Q3lspi_t8i0B-bppmLrjfIeh9E0vP54DfJCrRbZG28VGDttslkMsWUFWgHL0-se5-mJaGDSHMBIUPo4Zk2kFU9aZd74SBANHFapHjxjCFoO6NZ8nJxPKndIQ_XV_eXN6xvoMBq_MIZLmSA0U5tSwhKBGUqZcDrqgqQRNfL4AVOby1jyVUNJnhfx4oHbZW3xnioxS4ZtK8t7BEqSquCrJMeGGCMJ4JvrJKhwHyjsA03Q3KyMJibznUy3FIROZvXoXldNq_TQ3KRbLp8M2lc5xuIvOuRd38hPyQHC0RcP_E6l9R3MOWvuBqS0wVKn49_H9LoP4a0T1bL7EWpQPCADGZv73CIQcssHGX__ADIs-KY priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i6Sg7eNJA2aR5HFRcR9KKCt5A0UxG0Lnb9_05iuz7Ag7c-QmlnJjPfNJNvCDmqLaYdPFU1NoYzGaJgIRaS1Y2JRkAEnnssXd-oy3t59VA99JvCuqHafViSzJ56vtlNJq53hjGFJU46y_QiWa4wd092ff7FOS6lFkL2QTv_adE6kVylLnOFtUzm9cq9vx_7I0JlIv8f6PPXgmmOQ5N1stYDSHr6qfENsgDtJln9RiuIZ9dzLtZui9zeTjF5BdrByxPr3qfJOXQQaS4lZGgE8EwbyPyetMtdcVBVNEW3SPHgGcFoO6OZ_HLYqNRuk_vJxd35JetbKbAav3eGLg0Q99S2hKBEUKZSBryuqgCJfr0MXuBE1zKWXNVggvd1rHjQVnlrjIda7JCl9rWFXUJFaVWQdWIGA0R7IvjGKhkKzDwK23AzIseD-Nz0kzHDzbmRs7AdCttlYTs9ImdJwvORie06X3h9e3T95HFR-qLRnANUAQFH49FPgfKpp4UpRBNHZDzox_VTsHOJhweT_4qrETkZdPZ1--9X2vvf8H2yUmbrSUWBY7I0e3uHAwQqs3CY7fIDik7bbg priority: 102 providerName: Springer Nature |
Title | Sparse semi-supervised multi-label feature selection based on latent representation |
URI | https://link.springer.com/article/10.1007/s40747-024-01439-7 https://www.proquest.com/docview/3082046506 https://doaj.org/article/d4a1f700ee5b415fa070e6a5320813fd |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZN9tIeSp9003TRobdWVLZkPU5ls2QbFhJKt4HchGSNSyH1buPN_-9IkTek0F6MsY2xZ0Yz30ijbwh531pMO3iqauwMZzJEwUKsJGs7E42ACDz3WDq_UGeXcnXVXJUJt6GUVY4-MTvquGnTHPmnRKuCuVzD1eftb5a6RqXV1dJC44BM0AUbTL4mJ6cXX7-NFiWlFkKWAJ5nXbROhFep41xlLZN57fJov59OJjp5hmGLJdo7y_SDaJVJ_R8g0b8WT3NMWj4jTwuYpPM77T8nj6B_QZ6c75lYh5dkvd5i6gp0gF8_2XC7Ta5hgEhzISFDE4Br2kFm96RD7omDiqIptkWKJ9cIRfsdzdSX4zal_hW5XJ5-X5yx0kiBtfiHO3RogKintTUEJYIyjTLgddMESOTrdfACh7mWseaqBRO8b2PDg7bKW2M8tOI1Oew3PbwhVNRWBdkmXjBArCeC76ySocK8o7IdN1PyYRSY297xZbg9M3IWr0Pxuixep6fkJMl0_2Tius4XNjc_XBk6LkpfdZpzgCYg3Og8eilQPnW0MJXo4pQcjxpxZQAO7t5cpuTjqKX72__-pKP_v-0teVxn-0glgMfkcHdzC-8QluzCjByY5ZcZmcznq_VqViwRry5qmY5qMcsJ_x8kK-CP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiE91SwEf4AQWSew49qFCfC1b2u2lrdSbseMJQirZpdkK9U_1N3bsTbYqEtx6i5LIisZvZt7E9huAV7WhsiOLuxobnXHpg-A-5JLXjQ5aYMAs9Via7qvJkfx2XB6vwcVwFiZuqxxiYgrUYVbHf-TvoqwK1XJlpt7Pf_PYNSqurg4tNJaw2MXzP1Sydds7n2l-XxfF-MvhpwnvuwrwWpZiQd6NRAFqU6BXwitdKo2uKkuPUYm88I4qfKLpochUjdo7V4cy85VRzmjtsBY07i24LYUw0aP0-OuAXykrIWRPF9I_nqqK8lqxv11uDJdppXRzdXpPRvF6TkmSR5E9w6truTG1ELjGe_9aqk0ZcPwA7vfUlX1YYu0hrGH7CO5NV7qv3WM4OJhToYysw18_eXc2j4Gow8DStkVOgMMT1mDSEmVd6sBDsGAxkwZGFydEfNsFS0Kbw6Go9gkc3YiBn8J6O2txA5gojPKyjipkSMxSeNcYJX1OVU5umkyP4M1gMDtfqnPYlQ5zMq8l89pkXluN4GO06erNqKydbsxOf9jeUW2QLm-qLEMsPZGbxlFMROVi_wydiyaMYGuYEdu7e2evwDmCt8MsXT3-9ydt_n-0l3Bncjjds3s7-7vP4G6RsBI3H27B-uL0DJ8TIVr4FwmFDL7fNOwvAfDUFtY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSFV7qKAPdSm0PvRGLZzY8eMIS1eUFoREkbhZdjyuKtGwIsv_79ibLFCJQ295WFEyD89MZuYbQj63FsMOnqsak-FMhihYiJVkbTLRCIjAy4yl0zN1fClPrpqrB138pdp9TEkuexoySlO32J_HtL9qfJMZ952hfWEZn84y_YxsYKRSErVTNR0lSkothBwMePnronUGvMoT5yprmSy5y-2nH_vIWhVQ_0ee6D_J02KTZpvk1eBM0oMl97fIGnSvycsHEIN4drrCZe3fkIuLOQayQHv485v1d_O8UfQQaSkrZCgQcE0TFKxP2pcJOcg2mi1dpHhw7TONaAHCHJuWurfkcvb15_SYDWMVWIvfu8DtDdAHam0NQYmgTKMMeN00ATIUex28QKXXMtZctWCC921seNBWeWuMh1a8I-vdTQfvCRW1VUG2GSUM0PMTwSerZKgwCqls4mZC9kbyufkSPcOtcJILsR0S2xViOz0hh5nCq5UZ-bpcuLn95QZFclH6KmnOAZqAzkfyuGeB8nm-halEihOyM_LHDerYu4zJwyU6o2pCvow8u7_99Ctt_9_yT-T5-dHM_fh29v0DeVEXQcq1gjtkfXF7B7vovyzCxyKifwFpWeLG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+semi-supervised+multi-label+feature+selection+based+on+latent+representation&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Zhao%2C+Xue&rft.au=Li%2C+Qiaoyan&rft.au=Xing%2C+Zhiwei&rft.au=Yang%2C+Xiaofei&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=4&rft.spage=5139&rft.epage=5151&rft_id=info:doi/10.1007%2Fs40747-024-01439-7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |