Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change

[Display omitted] •An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic stressors are considered.•Parts of the lake that should be prioritized for restoration can also be identified.•Alternative cropping patterns and land...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 703; p. 134718
Main Authors Hassani, Amirhossein, Azapagic, Adisa, D'Odorico, Paolo, Keshmiri, Amir, Shokri, Nima
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.02.2020
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2019.134718

Cover

Loading…
Abstract [Display omitted] •An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic stressors are considered.•Parts of the lake that should be prioritized for restoration can also be identified.•Alternative cropping patterns and land-use change are determined for restoration.•The framework applicability is demonstrated through the case of Lake Urmia in Iran. River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake’s area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake’s basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers’ income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.
AbstractList River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake's area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake's basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers' income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake's area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake's basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers' income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.
[Display omitted] •An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic stressors are considered.•Parts of the lake that should be prioritized for restoration can also be identified.•Alternative cropping patterns and land-use change are determined for restoration.•The framework applicability is demonstrated through the case of Lake Urmia in Iran. River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake’s area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake’s basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers’ income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.
River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake's area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake's basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers' income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm (∼70% increase in RCP 4.5) and 3,692 Mm (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.
River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake’s area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake’s basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers’ income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm³ (∼70% increase in RCP 4.5) and 3,692 Mm³ (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.
ArticleNumber 134718
Author Azapagic, Adisa
Keshmiri, Amir
Hassani, Amirhossein
D'Odorico, Paolo
Shokri, Nima
Author_xml – sequence: 1
  givenname: Amirhossein
  surname: Hassani
  fullname: Hassani, Amirhossein
  organization: Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
– sequence: 2
  givenname: Adisa
  orcidid: 0000-0003-2380-918X
  surname: Azapagic
  fullname: Azapagic, Adisa
  email: adisa.azapagic@machester.ac.uk
  organization: Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
– sequence: 3
  givenname: Paolo
  surname: D'Odorico
  fullname: D'Odorico, Paolo
  organization: Department of Environmental Science, Policy & Management, UC Berkeley, CA, USA
– sequence: 4
  givenname: Amir
  surname: Keshmiri
  fullname: Keshmiri, Amir
  organization: Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester, Manchester, UK
– sequence: 5
  givenname: Nima
  orcidid: 0000-0001-6799-4888
  surname: Shokri
  fullname: Shokri, Nima
  email: nima.shokri@manchester.ac.uk
  organization: Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31734504$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFvFCEYxYmpsdvqv6AcvczKBzMDY-JhU1s1aeKlPROG-aaynYUVmDb-92W6rQcvlQMk8HsPeO-EHPngkZAPwNbAoP20XSfrcsjo79acQbcGUUtQr8gKlOwqYLw9IivGalV1bSePyUlKW1aGVPCGHAuQom5YvSL-KyZnrckueGqjSy7RMNJkJueRTuYW02e6oR7v6YC2HAdfpXm_DzHTMZod3od4S8cQaT-7aXD-hsbiODn0FmkO1E5uZzJS-8v4G3xLXo9mSvjuaT0l1xfnV2ffq8uf336cbS4rWzciV0qNQoHtRtUy1chRloe3ncC-bgfRg-n5ss0shwZ6XmYuoVYWup6NTDatOCUfD777GH7PmLLeuWRxmozHMCfNRcNrLor9f6DQNAK46gr6_gmd-x0Oeh_L3-If_RxnAb4cABtDShFHXVp6zDZH4yYNTC_16a3-W59e6tOH-ope_qN_vuJl5eagxJLqncO4cEsHg4tosx6Ce9HjAfkKuTA
CitedBy_id crossref_primary_10_1007_s11273_022_09875_3
crossref_primary_10_1016_j_scitotenv_2023_168412
crossref_primary_10_1371_journal_pwat_0000100
crossref_primary_10_1007_s00343_022_2161_7
crossref_primary_10_1016_j_scitotenv_2022_155055
crossref_primary_10_3390_plants12061380
crossref_primary_10_5195_jwsr_2022_1081
crossref_primary_10_1016_j_jhydrol_2024_131711
crossref_primary_10_1029_2024GL111080
crossref_primary_10_1038_s41598_024_79578_7
crossref_primary_10_1016_j_scitotenv_2020_138760
crossref_primary_10_5194_bg_21_5117_2024
crossref_primary_10_1073_pnas_2013771117
crossref_primary_10_1007_s10750_024_05481_x
crossref_primary_10_3390_rs14010226
crossref_primary_10_1016_j_worlddev_2024_106713
crossref_primary_10_1029_2021JD035896
crossref_primary_10_1016_j_scitotenv_2022_154419
crossref_primary_10_1021_acsearthspacechem_1c00320
crossref_primary_10_1021_acs_est_0c06067
crossref_primary_10_1007_s40333_023_0054_z
crossref_primary_10_3390_rs14184647
crossref_primary_10_3390_su132011495
crossref_primary_10_1111_lre_12421
crossref_primary_10_3390_land12091781
crossref_primary_10_1016_j_ejrh_2021_100812
crossref_primary_10_1016_j_gloenvcha_2024_102803
crossref_primary_10_1016_j_jhazmat_2024_136377
crossref_primary_10_1289_EHP12835
crossref_primary_10_1080_01919512_2020_1824673
crossref_primary_10_3390_w14193005
crossref_primary_10_1007_s41742_024_00695_2
crossref_primary_10_1038_s41467_021_26907_3
crossref_primary_10_1029_2019EF001274
crossref_primary_10_3390_geosciences12100381
crossref_primary_10_1029_2021JF006585
crossref_primary_10_1080_02786826_2021_1888866
crossref_primary_10_1029_2023RG000804
crossref_primary_10_1007_s00704_024_05178_0
crossref_primary_10_1021_acsearthspacechem_4c00028
crossref_primary_10_1016_j_scitotenv_2023_169250
Cites_doi 10.1007/s10113-018-1344-4
10.1002/joc.3711
10.1016/j.jhydrol.2018.03.034
10.1029/1999JD900169
10.1029/2001JD900171
10.1016/j.geomorph.2003.09.005
10.2134/agronj2008.0139s
10.4319/lo.2003.48.3.0995
10.1080/00139157.1996.9930999
10.1071/SR99042
10.1002/2017WR021995
10.3724/SP.J.1227.2010.00144
10.1007/s13412-014-0182-z
10.1016/0269-7491(91)90069-9
10.1007/s00704-014-1120-4
10.1146/annurev.earth.35.031306.140120
10.1038/ncomms13603
10.1029/2005WR004084
10.1061/(ASCE)0733-9437(2005)131:1(2)
10.1016/j.jglr.2014.12.007
10.1029/JB084iB09p04643
10.1016/j.jglr.2016.07.033
10.1038/ngeo3052
10.1029/97JD00961
10.1007/s10705-007-9138-y
10.1029/92JD01922
10.1007/s11269-017-1812-5
10.1007/s00585-999-0149-7
10.1016/j.gca.2017.08.040
10.1088/1748-9326/aad246
10.1088/0034-4885/75/10/106901
10.1002/2017GL073337
10.2307/1242280
10.1016/j.aeolia.2011.07.006
10.1029/2012WR011908
10.1016/j.advwatres.2017.05.004
10.1111/j.1365-2389.2010.01277.x
10.1016/j.agrformet.2012.04.007
10.1016/j.envsoft.2017.06.025
10.1017/S0376892902000103
10.2134/agronj2008.0140s
10.1016/j.atmosenv.2006.08.015
10.1371/journal.pone.0169748
10.1029/2000JD900304
10.1017/S0022112064001173
10.1073/pnas.1707811114
10.1080/00207230701238416
10.1127/0941-2948/2006/0130
10.1038/nature20584
10.1007/s11269-011-9909-8
10.1016/0031-0182(86)90120-3
10.1080/07900620310001635584
10.1016/j.eja.2011.08.003
10.1111/j.1526-100X.1996.tb00112.x
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.134718
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 31734504
10_1016_j_scitotenv_2019_134718
S0048969719347096
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c453t-88f381c9f860857f7007693eb46d3b1ab208570c2151b221527148c19b0f07563
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 18:11:42 EDT 2025
Thu Jul 10 19:28:35 EDT 2025
Wed Feb 19 02:32:09 EST 2025
Tue Jul 01 03:35:14 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 23 02:48:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Saline lakes
Ecosystem services
Lake Urmia
Land use management
Lake restoration
Optimal cropping patterns
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-88f381c9f860857f7007693eb46d3b1ab208570c2151b221527148c19b0f07563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6799-4888
0000-0003-2380-918X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0048969719347096
PMID 31734504
PQID 2315531289
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2352423860
proquest_miscellaneous_2315531289
pubmed_primary_31734504
crossref_citationtrail_10_1016_j_scitotenv_2019_134718
crossref_primary_10_1016_j_scitotenv_2019_134718
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_134718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-10
PublicationDateYYYYMMDD 2020-02-10
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Durán, Claudin, Andreotti (b0070) 2011; 3
Garousi, V., Najafi, A., Samadi, A., Rasouli, K., Khanaliloo, B., 2013. Environmental crisis in Lake Urmia, Iran: a systematic review of causes, negative consequences and possible solutions. Proceedings of the 6th International Perspective on Water Resources & the Environment (IPWE) Izmir, Turkey.
Messager, Lehner, Grill, Nedeva, Schmitt (b0235) 2016; 7
Alborzi, Mirchi, Moftakhari, Mallakpour, Alian, Nazemi (b0020) 2018; 13
Levy, R., Hsu, C., 2015. Modis atmosphere l2 aerosol product, NASA modis adaptive processing system, Goddard Space Flight Center, USA.
Hasemi (b9005) 2011
Miller (b0250) 1987; 69
Thiessen (b0365) 1911; 39
Lensky, Dvorkin, Lyakhovsky, Gertman, Gavrieli (b0200) 2005; 41
McCune (b0230) 1991; 74
Draxler (b9000) 1999
Pekel, Cottam, Gorelick, Belward (b9010) 2016; 540
Dalal, Chan (b0050) 2001; 39
Kang, Yoon, Shao, Kim (b0175) 2011
Mohammed, Tarboton (b0255) 2012; 48
Zilberman, Gavrieli, Yechieli, Gertman, Katz (b0400) 2017; 217
Kok, Parteli, Michaels, Karam (b0190) 2012; 75
Mathworks T. Matlab Optimization Toolbox User's Guide.
García-Vila, Fereres (b0095) 2012; 36
Williams (b0375) 1996; 38
Raes, Steduto, Hsiao, Fereres (b0275) 2009; 101
Shao (b0325) 2004
Fathian, Morid, Kahya (b0085) 2015; 119
Sørensen (b0355) 2004; 59
Darvishi J., 2014. Lymphology and Paleolymology Report of Lake Urmia: the balance of water and salt and the sedimentation rate of salts, Final report (in Farsi). Geological Survey of Iran, Iran.
Hamidi-Razi, Mazaheri, Carvajalino-Fernández, Vali-Samani (b0125) 2018
Shokri-Kuehni, Vetter, Webb, Shokri (b0345) 2017; 44
Deatrick (b0060) 2016; 22
Gillette (b0110) 1974; 8
Raupach, Gillette, Leys (b0285) 1993; 98
Razia, H.H., Mazaherib, M., Samanic, J.M.V., Fernandezd, M.C., 2016 Investigating Urmia Lake Partial Restoration and Ecological Water Level Using MOHID-2D Water Hydrodynamic Model. Geographic and Environmental Impacts of Urmia Lake Conditions Conference, Tabriz, Iran.
Winter, Buso, Rosenberry, Likens, Sturrock, Mau (b0385) 2003; 48
Gudmundsson, L., 2016. QMAP: Statistical transformations for post-processing climate model output. R package version 1.0-4, 1.0–3.
Shao, Lu (b0335) 2000; 105
Cameron, Marvin, Remucal, Passero (b0040) 2017; 114
Emori, S., Taylor, K., Hewitson, B., Zermoglio, F., Juckes, M., Lautenschlager. M., et al., 2016. CMIP5 data provided at the IPCC Data Distribution Centre. Geneva.
Lettau, K., Lettau, H., 1978. Experimental and micrometeorological field studies of dune migration. In: Lettau, H.H., Lettau, K., (Eds.) Exploring the world's driest climate. Madison.
Ryan (b0300) 2015; 45
Steduto, Hsiao, Raes, Fereres (b0360) 2009; 101
Allen, Pereira, Smith, Raes, Wright (b0030) 2005; 131
Diaz, Rashford, De Gryze, Zakreski, Dell (b0065) 2012
Hobbs, Norton (b0155) 1996; 4
Micklin (b0240) 2007; 35
Ghale, Altunkaynak, Unal (b0105) 2018; 32
Rolph, Stein, Stunder (b9025) 2017; 95
Gillette, Fryrear, Xiao, Stockton, Ono, Helm (b0115) 1997; 102
Houghton (b0160) 2003; 55
Chaudhari, Felfelani, Shin, Pokhrel (b0045) 2018; 560
Mor, Assouline, Tanny, Lensky, Lensky (b0260) 2018; 54
Lu, Shao (b0215) 1999; 104
Kelts, Shahrabi (b0185) 1986; 54
Fécan, F., Marticorena, B., Bergametti, G., 1998. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Annales Geophysicae. 17. Springer, pp. 149–157.
Shokri-Kuehni, Rad, Webb, Shokri (b0340) 2017; 105
Hawkins, Osborne, Ho, Challinor (b0145) 2013; 170
Schaufler, Kitzler, Schindlbacher, Skiba, Sutton, Zechmeister-Boltenstern (b0305) 2010; 61
Abuduwaili, DongWei, GuangYang (b0010) 2010; 2
Smith (b0350) 2008; 81
AghaKouchak, Norouzi, Madani, Mirchi, Azarderakhsh, Nazemi (b0015) 2015; 41
Wurtsbaugh, Miller, Null, DeRose, Wilcock, Hahnenberger (b0395) 2017; 10
Alipour, Mosavi-ovenlegi, Hosseini, Aslanpour, Haseli (b0025) 2018; 27
Rahi, Halihan (b0280) 2018; 18
Service USDoASC, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys: US Department of Agriculture.
Roney, White (b0295) 2006; 40
Madani (b0220) 2014; 4
Jalili, Hamidi, Namdar (b0165) 2016; 61
Kottek, Grieser, Beck, Rudolf, Rubel (b0195) 2006; 15
Shao (b0320) 2001; 106
Kawamura, R., 1951. Study of sand movement by wind Translated, (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkely.
Mike, 2017. Hydro Basin User Guide.
Shao, Jung, Leslie (b0330) 2002
FAO United Nations, 2016. Statistics database.
White (b0370) 1979; 84
JICA, 2016. Data collection survey on hydrological cycle of lake Urmia basin in the Islamic Republic of Iran.
Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić (b0150) 2017; 12
Abbaspour, Nazaridoust (b0005) 2007; 64
WRMC, 2007. Master Plan Report on Agricultural Water in the Lake Urmia Basin (In Farsi). Water and Wastewater Planning Office, Iran.
Harris, Jones, Osborn, Lister (b0135) 2014; 34
Altinbilek (b0035) 2004; 20
Hammer (b0130) 1986; Vol 59
Shadkam, Ludwig, van Oel, Kirmit, Kabat (b0315) 2016; 42
Owen (b0270) 1964; 20
Hassanzadeh, Zarghami, Hassanzadeh (b0140) 2012; 26
Williams (b0380) 2002; 29
Nickling, W.G., Brown, L.J., 2001. PM10 Dust Emissions At Owen Lake, CA 2001, Final Report.
Messager (10.1016/j.scitotenv.2019.134718_b0235) 2016; 7
Lensky (10.1016/j.scitotenv.2019.134718_b0200) 2005; 41
Shao (10.1016/j.scitotenv.2019.134718_b0325) 2004
Dalal (10.1016/j.scitotenv.2019.134718_b0050) 2001; 39
10.1016/j.scitotenv.2019.134718_b0090
Alipour (10.1016/j.scitotenv.2019.134718_b0025) 2018; 27
10.1016/j.scitotenv.2019.134718_b0290
White (10.1016/j.scitotenv.2019.134718_b0370) 1979; 84
Hassanzadeh (10.1016/j.scitotenv.2019.134718_b0140) 2012; 26
Allen (10.1016/j.scitotenv.2019.134718_b0030) 2005; 131
Shokri-Kuehni (10.1016/j.scitotenv.2019.134718_b0340) 2017; 105
Deatrick (10.1016/j.scitotenv.2019.134718_b0060) 2016; 22
Sørensen (10.1016/j.scitotenv.2019.134718_b0355) 2004; 59
Chaudhari (10.1016/j.scitotenv.2019.134718_b0045) 2018; 560
10.1016/j.scitotenv.2019.134718_b0170
Williams (10.1016/j.scitotenv.2019.134718_b0380) 2002; 29
Ryan (10.1016/j.scitotenv.2019.134718_b0300) 2015; 45
Abuduwaili (10.1016/j.scitotenv.2019.134718_b0010) 2010; 2
Cameron (10.1016/j.scitotenv.2019.134718_b0040) 2017; 114
Hawkins (10.1016/j.scitotenv.2019.134718_b0145) 2013; 170
10.1016/j.scitotenv.2019.134718_b0210
10.1016/j.scitotenv.2019.134718_b0055
Shao (10.1016/j.scitotenv.2019.134718_b0335) 2000; 105
McCune (10.1016/j.scitotenv.2019.134718_b0230) 1991; 74
Madani (10.1016/j.scitotenv.2019.134718_b0220) 2014; 4
Jalili (10.1016/j.scitotenv.2019.134718_b0165) 2016; 61
10.1016/j.scitotenv.2019.134718_b0180
Miller (10.1016/j.scitotenv.2019.134718_b0250) 1987; 69
Shokri-Kuehni (10.1016/j.scitotenv.2019.134718_b0345) 2017; 44
Steduto (10.1016/j.scitotenv.2019.134718_b0360) 2009; 101
Zilberman (10.1016/j.scitotenv.2019.134718_b0400) 2017; 217
AghaKouchak (10.1016/j.scitotenv.2019.134718_b0015) 2015; 41
García-Vila (10.1016/j.scitotenv.2019.134718_b0095) 2012; 36
10.1016/j.scitotenv.2019.134718_b0225
Williams (10.1016/j.scitotenv.2019.134718_b0375) 1996; 38
Micklin (10.1016/j.scitotenv.2019.134718_b0240) 2007; 35
Kelts (10.1016/j.scitotenv.2019.134718_b0185) 1986; 54
Kang (10.1016/j.scitotenv.2019.134718_b0175) 2011
Shao (10.1016/j.scitotenv.2019.134718_b0320) 2001; 106
Ghale (10.1016/j.scitotenv.2019.134718_b0105) 2018; 32
Harris (10.1016/j.scitotenv.2019.134718_b0135) 2014; 34
10.1016/j.scitotenv.2019.134718_b0100
10.1016/j.scitotenv.2019.134718_b0265
Draxler (10.1016/j.scitotenv.2019.134718_b9000) 1999
Altinbilek (10.1016/j.scitotenv.2019.134718_b0035) 2004; 20
Thiessen (10.1016/j.scitotenv.2019.134718_b0365) 1911; 39
Lu (10.1016/j.scitotenv.2019.134718_b0215) 1999; 104
Shao (10.1016/j.scitotenv.2019.134718_b0330) 2002
Mor (10.1016/j.scitotenv.2019.134718_b0260) 2018; 54
Raes (10.1016/j.scitotenv.2019.134718_b0275) 2009; 101
Wurtsbaugh (10.1016/j.scitotenv.2019.134718_b0395) 2017; 10
Hammer (10.1016/j.scitotenv.2019.134718_b0130) 1986; Vol 59
Hamidi-Razi (10.1016/j.scitotenv.2019.134718_b0125) 2018
10.1016/j.scitotenv.2019.134718_b0310
Houghton (10.1016/j.scitotenv.2019.134718_b0160) 2003; 55
Roney (10.1016/j.scitotenv.2019.134718_b0295) 2006; 40
Kottek (10.1016/j.scitotenv.2019.134718_b0195) 2006; 15
Shadkam (10.1016/j.scitotenv.2019.134718_b0315) 2016; 42
Alborzi (10.1016/j.scitotenv.2019.134718_b0020) 2018; 13
Diaz (10.1016/j.scitotenv.2019.134718_b0065) 2012
Hengl (10.1016/j.scitotenv.2019.134718_b0150) 2017; 12
10.1016/j.scitotenv.2019.134718_b0390
10.1016/j.scitotenv.2019.134718_b0075
Pekel (10.1016/j.scitotenv.2019.134718_b9010) 2016; 540
Kok (10.1016/j.scitotenv.2019.134718_b0190) 2012; 75
Owen (10.1016/j.scitotenv.2019.134718_b0270) 1964; 20
Winter (10.1016/j.scitotenv.2019.134718_b0385) 2003; 48
Abbaspour (10.1016/j.scitotenv.2019.134718_b0005) 2007; 64
10.1016/j.scitotenv.2019.134718_b0080
Gillette (10.1016/j.scitotenv.2019.134718_b0115) 1997; 102
Rahi (10.1016/j.scitotenv.2019.134718_b0280) 2018; 18
Raupach (10.1016/j.scitotenv.2019.134718_b0285) 1993; 98
Hasemi (10.1016/j.scitotenv.2019.134718_b9005) 2011
Gillette (10.1016/j.scitotenv.2019.134718_b0110) 1974; 8
10.1016/j.scitotenv.2019.134718_b0245
10.1016/j.scitotenv.2019.134718_b0205
Mohammed (10.1016/j.scitotenv.2019.134718_b0255) 2012; 48
Hobbs (10.1016/j.scitotenv.2019.134718_b0155) 1996; 4
Smith (10.1016/j.scitotenv.2019.134718_b0350) 2008; 81
10.1016/j.scitotenv.2019.134718_b0120
Durán (10.1016/j.scitotenv.2019.134718_b0070) 2011; 3
Fathian (10.1016/j.scitotenv.2019.134718_b0085) 2015; 119
Schaufler (10.1016/j.scitotenv.2019.134718_b0305) 2010; 61
Rolph (10.1016/j.scitotenv.2019.134718_b9025) 2017; 95
References_xml – reference: Fécan, F., Marticorena, B., Bergametti, G., 1998. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Annales Geophysicae. 17. Springer, pp. 149–157.
– volume: 106
  start-page: 20239
  year: 2001
  end-page: 20254
  ident: b0320
  article-title: A model for mineral dust emission
  publication-title: J. Geophys. Res. Atmos.
– reference: Nickling, W.G., Brown, L.J., 2001. PM10 Dust Emissions At Owen Lake, CA 2001, Final Report.
– start-page: 107
  year: 2002
  ident: b0330
  article-title: Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system
  publication-title: J. Geophys. Res. Atmos.
– volume: 54
  start-page: 1460
  year: 2018
  end-page: 1475
  ident: b0260
  article-title: Effect of water surface salinity on evaporation: The case of a diluted buoyant plume over the Dead Sea
  publication-title: Water Resour. Res.
– volume: 44
  start-page: 5504
  year: 2017
  end-page: 5510
  ident: b0345
  article-title: New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature
  publication-title: Geophys. Res. Lett.
– volume: 22
  year: 2016
  ident: b0060
  article-title: Can a controversial canal stop thousands of sinkholes from forming around the Dead Sea
  publication-title: Science
– volume: 18
  start-page: 2117
  year: 2018
  end-page: 2127
  ident: b0280
  article-title: Salinity evolution of the Tigris River
  publication-title: Reg. Environ. Change
– reference: Razia, H.H., Mazaherib, M., Samanic, J.M.V., Fernandezd, M.C., 2016 Investigating Urmia Lake Partial Restoration and Ecological Water Level Using MOHID-2D Water Hydrodynamic Model. Geographic and Environmental Impacts of Urmia Lake Conditions Conference, Tabriz, Iran.
– volume: 20
  start-page: 15
  year: 2004
  end-page: 33
  ident: b0035
  article-title: Development and management of the Euphrates-Tigris basin
  publication-title: Int. J. Water Resour. Dev.
– volume: 29
  start-page: 154
  year: 2002
  end-page: 167
  ident: b0380
  article-title: Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025
  publication-title: Environ. Conserv.
– volume: 41
  start-page: 307
  year: 2015
  end-page: 311
  ident: b0015
  article-title: Aral Sea syndrome desiccates Lake Urmia: call for action
  publication-title: J. Great Lakes Res.
– volume: 101
  start-page: 438
  year: 2009
  end-page: 447
  ident: b0275
  article-title: AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description
  publication-title: Agron. J.
– volume: 34
  start-page: 623
  year: 2014
  end-page: 642
  ident: b0135
  article-title: Updated high-resolution grids of monthly climatic observations–the CRU TS3 10 Dataset
  publication-title: Int. J. Climatol.
– volume: 2
  start-page: 144
  year: 2010
  end-page: 150
  ident: b0010
  article-title: Saline dust storms and their ecological impacts in arid regions
  publication-title: J. Arid Land
– volume: 170
  start-page: 19
  year: 2013
  end-page: 31
  ident: b0145
  article-title: Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe
  publication-title: Agric. For. Meteorol.
– volume: 102
  start-page: 25977
  year: 1997
  end-page: 25987
  ident: b0115
  article-title: Large-scale variability of wind erosion mass flux rates at Owens Lake: 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm
  publication-title: J. Geophys. Res. Atmos.
– volume: 4
  start-page: 93
  year: 1996
  end-page: 110
  ident: b0155
  article-title: Towards a conceptual framework for restoration ecology
  publication-title: Restor. Ecol.
– volume: 59
  start-page: 53
  year: 2004
  end-page: 62
  ident: b0355
  article-title: On the rate of aeolian sand transport
  publication-title: Geomorphology
– reference: Darvishi J., 2014. Lymphology and Paleolymology Report of Lake Urmia: the balance of water and salt and the sedimentation rate of salts, Final report (in Farsi). Geological Survey of Iran, Iran.
– volume: 55
  start-page: 378
  year: 2003
  end-page: 390
  ident: b0160
  article-title: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000
  publication-title: Tellus B
– volume: 105
  start-page: 154
  year: 2017
  end-page: 161
  ident: b0340
  article-title: Impact of type of salt and ambient conditions on saline water evaporation from porous media
  publication-title: Adv. Water Resour.
– volume: 61
  start-page: 1759
  year: 2016
  end-page: 1769
  ident: b0165
  article-title: Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran
  publication-title: Hydrol. Sci. J.
– volume: 114
  start-page: 12833
  year: 2017
  end-page: 12838
  ident: b0040
  article-title: Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals
  publication-title: Proc. Natl. Acad. Sci.
– volume: 48
  year: 2012
  ident: b0255
  article-title: An examination of the sensitivity of the Great Salt Lake to changes in inputs
  publication-title: Water Resour. Res.
– reference: Emori, S., Taylor, K., Hewitson, B., Zermoglio, F., Juckes, M., Lautenschlager. M., et al., 2016. CMIP5 data provided at the IPCC Data Distribution Centre. Geneva.
– volume: 69
  start-page: 303
  year: 1987
  end-page: 310
  ident: b0250
  article-title: The Political Economy of Western Water Finance: Cost Allocation and the Bonneville Unit of the Central Utah Project
  publication-title: Am. J. Agric. Econ.
– volume: 119
  start-page: 443
  year: 2015
  end-page: 464
  ident: b0085
  article-title: Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran
  publication-title: Theoret. Appl. Climatol.
– year: 2018
  ident: b0125
  article-title: Investigating the restoration of Lake Urmia using a numerical modelling approach
  publication-title: J. Great Lakes Res.
– reference: Lettau, K., Lettau, H., 1978. Experimental and micrometeorological field studies of dune migration. In: Lettau, H.H., Lettau, K., (Eds.) Exploring the world's driest climate. Madison.
– volume: 42
  start-page: 942
  year: 2016
  end-page: 952
  ident: b0315
  article-title: Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake
  publication-title: J. Great Lakes Res.
– reference: Gudmundsson, L., 2016. QMAP: Statistical transformations for post-processing climate model output. R package version 1.0-4, 1.0–3.
– reference: Service USDoASC, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys: US Department of Agriculture.
– volume: 36
  start-page: 21
  year: 2012
  end-page: 31
  ident: b0095
  article-title: Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level
  publication-title: Eur. J. Agron.
– reference: WRMC, 2007. Master Plan Report on Agricultural Water in the Lake Urmia Basin (In Farsi). Water and Wastewater Planning Office, Iran.
– volume: 75
  year: 2012
  ident: b0190
  article-title: The physics of wind-blown sand and dust
  publication-title: Rep. Prog. Phys.
– volume: 54
  start-page: 105
  year: 1986
  end-page: 130
  ident: b0185
  article-title: Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 7
  start-page: 13603
  year: 2016
  ident: b0235
  article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach
  publication-title: Nat. Commun.
– volume: 41
  year: 2005
  ident: b0200
  article-title: Water, salt, and energy balances of the Dead Sea
  publication-title: Water Resour. Res.
– reference: Levy, R., Hsu, C., 2015. Modis atmosphere l2 aerosol product, NASA modis adaptive processing system, Goddard Space Flight Center, USA.
– start-page: 116
  year: 2011
  ident: b0175
  article-title: Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem
  publication-title: J. Geophys. Res. Atmos.
– volume: 74
  start-page: 176
  year: 1991
  end-page: 203
  ident: b0230
  article-title: Effects of airborne saline particles on vegetation in relation to variables of exposure and other factors
  publication-title: Environ. Pollut.
– volume: 35
  start-page: 47
  year: 2007
  end-page: 72
  ident: b0240
  article-title: The Aral sea disaster
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 84
  start-page: 4643
  year: 1979
  end-page: 4651
  ident: b0370
  article-title: Soil transport by winds on Mars
  publication-title: J. Geophys. Res. Solid Earth
– year: 1999
  ident: b9000
  article-title: HYSPLIT, radiological transport and dispersion model implementation on NCEP Cray: Silver Spring, Maryland : U.S. Department of Commerce, National Oceanic and Atmospheric Administration
  publication-title: National Weather Service, Office of Meteorology, Science Division
– volume: 61
  start-page: 683
  year: 2010
  end-page: 696
  ident: b0305
  article-title: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature
  publication-title: Eur. J. Soil Sci.
– reference: Mathworks T. Matlab Optimization Toolbox User's Guide.
– volume: 10
  start-page: 816
  year: 2017
  ident: b0395
  article-title: Decline of the world's saline lakes
  publication-title: Nat. Geosci.
– volume: 45
  start-page: 561
  year: 2015
  ident: b0300
  article-title: The public trust doctrine, private water allocation, and mono lake: the historic saga of national audubon society v. Superior Court
  publication-title: Environ. Law
– volume: 38
  start-page: 12
  year: 1996
  end-page: 39
  ident: b0375
  article-title: What future for saline lakes?
  publication-title: Environ. Sci. Policy Sustain. Dev.
– volume: 15
  start-page: 259
  year: 2006
  end-page: 263
  ident: b0195
  article-title: World map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
– reference: FAO United Nations, 2016. Statistics database.
– volume: 26
  start-page: 129
  year: 2012
  end-page: 145
  ident: b0140
  article-title: Determining the main factors in declining the Urmia Lake level by using system dynamics modeling
  publication-title: Water Resour. Manage.
– year: 2011
  ident: b9005
  article-title: A socio-technical assessment framework for integrated water resources management (IWRM) in Lake Urmia Basin
  publication-title: Iran
– volume: 27
  start-page: 51
  year: 2018
  end-page: 62
  ident: b0025
  article-title: Geochemistry of major, trace and rare earth elements in bed-sediments of Urmia lake
  publication-title: J. Geosci.
– volume: 3
  start-page: 243
  year: 2011
  end-page: 270
  ident: b0070
  article-title: On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws
  publication-title: Aeolian Res.
– reference: Kawamura, R., 1951. Study of sand movement by wind Translated, (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkely.
– volume: 101
  start-page: 426
  year: 2009
  end-page: 437
  ident: b0360
  article-title: AquaCrop—The FAO crop model to simulate yield response to water: I Concepts and underlying principles
  publication-title: Agronomy J.
– volume: 8
  start-page: 735
  year: 1974
  end-page: 744
  ident: b0110
  article-title: On the production of soil wind erosion aerosols having the potential for long range transport
  publication-title: J. Rech. Atmos
– volume: 20
  start-page: 225
  year: 1964
  end-page: 242
  ident: b0270
  article-title: Saltation of uniform grains in air
  publication-title: J. Fluid Mech.
– volume: 81
  start-page: 169
  year: 2008
  end-page: 178
  ident: b0350
  article-title: Land use change and soil organic carbon dynamics
  publication-title: Nutr. Cycl. Agroecosyst.
– year: 2012
  ident: b0065
  article-title: Evaluation of avoided grassland conversion and cropland conversion to grassland as potential carbon offset project types
– volume: 217
  start-page: 384
  year: 2017
  end-page: 398
  ident: b0400
  article-title: Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea Israel
  publication-title: Geochim. Cosmochim. Acta
– volume: 95
  start-page: 210
  year: 2017
  end-page: 228
  ident: b9025
  article-title: Real-time environmental applications and display system Ready
  publication-title: Environmental Modelling Software
– volume: 4
  start-page: 315
  year: 2014
  end-page: 328
  ident: b0220
  article-title: Water management in Iran: what is causing the looming crisis?
  publication-title: J. Environ. Stud. Sci.
– volume: 560
  start-page: 342
  year: 2018
  end-page: 353
  ident: b0045
  article-title: Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century
  publication-title: J. Hydrol.
– volume: Vol 59
  year: 1986
  ident: b0130
  publication-title: Saline Lake Ecosystems of the World
– volume: 32
  start-page: 325
  year: 2018
  end-page: 337
  ident: b0105
  article-title: Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis
  publication-title: Water Resour. Manage.
– reference: JICA, 2016. Data collection survey on hydrological cycle of lake Urmia basin in the Islamic Republic of Iran.
– reference: Mike, 2017. Hydro Basin User Guide.
– volume: 131
  start-page: 2
  year: 2005
  end-page: 13
  ident: b0030
  article-title: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions
  publication-title: J. Irrig. Drain. Eng.
– volume: 64
  start-page: 161
  year: 2007
  end-page: 169
  ident: b0005
  article-title: Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach
  publication-title: Int. J. Environ. Stud.
– volume: 98
  start-page: 3023
  year: 1993
  end-page: 3029
  ident: b0285
  article-title: The effect of roughness elements on wind erosion threshold
  publication-title: J. Geophys. Res. Atmos.
– volume: 104
  start-page: 16827
  year: 1999
  end-page: 16842
  ident: b0215
  article-title: A new model for dust emission by saltation bombardment
  publication-title: J. Geophys. Res. Atmos.
– volume: 39
  start-page: 435
  year: 2001
  end-page: 464
  ident: b0050
  article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt
  publication-title: Soil Res.
– reference: Garousi, V., Najafi, A., Samadi, A., Rasouli, K., Khanaliloo, B., 2013. Environmental crisis in Lake Urmia, Iran: a systematic review of causes, negative consequences and possible solutions. Proceedings of the 6th International Perspective on Water Resources & the Environment (IPWE) Izmir, Turkey.
– start-page: 109
  year: 2004
  ident: b0325
  article-title: Simplification of a dust emission scheme and comparison with data
  publication-title: J. Geophys. Res. Atmos.
– volume: 13
  year: 2018
  ident: b0020
  article-title: Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts
  publication-title: Environ. Res. Lett.
– volume: 105
  start-page: 22437
  year: 2000
  end-page: 22443
  ident: b0335
  article-title: A simple expression for wind erosion threshold friction velocity
  publication-title: J. Geophys. Res. Atmos.
– volume: 39
  start-page: 1082
  year: 1911
  end-page: 1084
  ident: b0365
  article-title: Precipitation for large areas
  publication-title: Mon. Weather Rev.
– volume: 40
  start-page: 7668
  year: 2006
  end-page: 7685
  ident: b0295
  article-title: Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel
  publication-title: Atmos. Environ.
– volume: 12
  year: 2017
  ident: b0150
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS ONE
– volume: 48
  start-page: 995
  year: 2003
  end-page: 1009
  ident: b0385
  article-title: Evaporation determined by the energy-budget method for Mirror Lake New Hampshire
  publication-title: Limnol. Oceanogr.
– volume: 540
  start-page: 418
  year: 2016
  ident: b9010
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
– volume: 18
  start-page: 2117
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134718_b0280
  article-title: Salinity evolution of the Tigris River
  publication-title: Reg. Environ. Change
  doi: 10.1007/s10113-018-1344-4
– volume: 39
  start-page: 1082
  year: 1911
  ident: 10.1016/j.scitotenv.2019.134718_b0365
  article-title: Precipitation for large areas
  publication-title: Mon. Weather Rev.
– start-page: 109
  year: 2004
  ident: 10.1016/j.scitotenv.2019.134718_b0325
  article-title: Simplification of a dust emission scheme and comparison with data
  publication-title: J. Geophys. Res. Atmos.
– volume: 34
  start-page: 623
  year: 2014
  ident: 10.1016/j.scitotenv.2019.134718_b0135
  article-title: Updated high-resolution grids of monthly climatic observations–the CRU TS3 10 Dataset
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3711
– volume: 560
  start-page: 342
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134718_b0045
  article-title: Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.03.034
– volume: 104
  start-page: 16827
  year: 1999
  ident: 10.1016/j.scitotenv.2019.134718_b0215
  article-title: A new model for dust emission by saltation bombardment
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/1999JD900169
– year: 2012
  ident: 10.1016/j.scitotenv.2019.134718_b0065
– volume: 61
  start-page: 1759
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134718_b0165
  article-title: Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran
  publication-title: Hydrol. Sci. J.
– year: 2018
  ident: 10.1016/j.scitotenv.2019.134718_b0125
  article-title: Investigating the restoration of Lake Urmia using a numerical modelling approach
  publication-title: J. Great Lakes Res.
– volume: 106
  start-page: 20239
  year: 2001
  ident: 10.1016/j.scitotenv.2019.134718_b0320
  article-title: A model for mineral dust emission
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2001JD900171
– volume: 59
  start-page: 53
  year: 2004
  ident: 10.1016/j.scitotenv.2019.134718_b0355
  article-title: On the rate of aeolian sand transport
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2003.09.005
– ident: 10.1016/j.scitotenv.2019.134718_b0210
– volume: 101
  start-page: 426
  year: 2009
  ident: 10.1016/j.scitotenv.2019.134718_b0360
  article-title: AquaCrop—The FAO crop model to simulate yield response to water: I Concepts and underlying principles
  publication-title: Agronomy J.
  doi: 10.2134/agronj2008.0139s
– volume: 48
  start-page: 995
  year: 2003
  ident: 10.1016/j.scitotenv.2019.134718_b0385
  article-title: Evaporation determined by the energy-budget method for Mirror Lake New Hampshire
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2003.48.3.0995
– volume: 27
  start-page: 51
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134718_b0025
  article-title: Geochemistry of major, trace and rare earth elements in bed-sediments of Urmia lake
  publication-title: J. Geosci.
– volume: 38
  start-page: 12
  year: 1996
  ident: 10.1016/j.scitotenv.2019.134718_b0375
  article-title: What future for saline lakes?
  publication-title: Environ. Sci. Policy Sustain. Dev.
  doi: 10.1080/00139157.1996.9930999
– volume: 39
  start-page: 435
  year: 2001
  ident: 10.1016/j.scitotenv.2019.134718_b0050
  article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt
  publication-title: Soil Res.
  doi: 10.1071/SR99042
– volume: 22
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134718_b0060
  article-title: Can a controversial canal stop thousands of sinkholes from forming around the Dead Sea
  publication-title: Science
– volume: 54
  start-page: 1460
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134718_b0260
  article-title: Effect of water surface salinity on evaporation: The case of a diluted buoyant plume over the Dead Sea
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021995
– volume: 2
  start-page: 144
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134718_b0010
  article-title: Saline dust storms and their ecological impacts in arid regions
  publication-title: J. Arid Land
  doi: 10.3724/SP.J.1227.2010.00144
– ident: 10.1016/j.scitotenv.2019.134718_b0055
– ident: 10.1016/j.scitotenv.2019.134718_b0080
– volume: 8
  start-page: 735
  year: 1974
  ident: 10.1016/j.scitotenv.2019.134718_b0110
  article-title: On the production of soil wind erosion aerosols having the potential for long range transport
  publication-title: J. Rech. Atmos
– volume: 4
  start-page: 315
  year: 2014
  ident: 10.1016/j.scitotenv.2019.134718_b0220
  article-title: Water management in Iran: what is causing the looming crisis?
  publication-title: J. Environ. Stud. Sci.
  doi: 10.1007/s13412-014-0182-z
– volume: 74
  start-page: 176
  year: 1991
  ident: 10.1016/j.scitotenv.2019.134718_b0230
  article-title: Effects of airborne saline particles on vegetation in relation to variables of exposure and other factors
  publication-title: Environ. Pollut.
  doi: 10.1016/0269-7491(91)90069-9
– ident: 10.1016/j.scitotenv.2019.134718_b0120
– volume: 119
  start-page: 443
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134718_b0085
  article-title: Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran
  publication-title: Theoret. Appl. Climatol.
  doi: 10.1007/s00704-014-1120-4
– ident: 10.1016/j.scitotenv.2019.134718_b0225
– start-page: 116
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134718_b0175
  article-title: Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem
  publication-title: J. Geophys. Res. Atmos.
– volume: 35
  start-page: 47
  year: 2007
  ident: 10.1016/j.scitotenv.2019.134718_b0240
  article-title: The Aral sea disaster
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.35.031306.140120
– volume: 7
  start-page: 13603
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134718_b0235
  article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13603
– volume: 41
  year: 2005
  ident: 10.1016/j.scitotenv.2019.134718_b0200
  article-title: Water, salt, and energy balances of the Dead Sea
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004084
– volume: 131
  start-page: 2
  year: 2005
  ident: 10.1016/j.scitotenv.2019.134718_b0030
  article-title: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2005)131:1(2)
– volume: 41
  start-page: 307
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134718_b0015
  article-title: Aral Sea syndrome desiccates Lake Urmia: call for action
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2014.12.007
– year: 1999
  ident: 10.1016/j.scitotenv.2019.134718_b9000
  article-title: HYSPLIT, radiological transport and dispersion model implementation on NCEP Cray: Silver Spring, Maryland : U.S. Department of Commerce, National Oceanic and Atmospheric Administration
  publication-title: National Weather Service, Office of Meteorology, Science Division
– volume: 45
  start-page: 561
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134718_b0300
  article-title: The public trust doctrine, private water allocation, and mono lake: the historic saga of national audubon society v. Superior Court
  publication-title: Environ. Law
– volume: 84
  start-page: 4643
  year: 1979
  ident: 10.1016/j.scitotenv.2019.134718_b0370
  article-title: Soil transport by winds on Mars
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB084iB09p04643
– volume: 42
  start-page: 942
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134718_b0315
  article-title: Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2016.07.033
– ident: 10.1016/j.scitotenv.2019.134718_b0390
– ident: 10.1016/j.scitotenv.2019.134718_b0205
– volume: 10
  start-page: 816
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134718_b0395
  article-title: Decline of the world's saline lakes
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo3052
– volume: 102
  start-page: 25977
  year: 1997
  ident: 10.1016/j.scitotenv.2019.134718_b0115
  article-title: Large-scale variability of wind erosion mass flux rates at Owens Lake: 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/97JD00961
– ident: 10.1016/j.scitotenv.2019.134718_b0310
– start-page: 107
  year: 2002
  ident: 10.1016/j.scitotenv.2019.134718_b0330
  article-title: Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system
  publication-title: J. Geophys. Res. Atmos.
– volume: 81
  start-page: 169
  year: 2008
  ident: 10.1016/j.scitotenv.2019.134718_b0350
  article-title: Land use change and soil organic carbon dynamics
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-007-9138-y
– volume: 98
  start-page: 3023
  year: 1993
  ident: 10.1016/j.scitotenv.2019.134718_b0285
  article-title: The effect of roughness elements on wind erosion threshold
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/92JD01922
– volume: 32
  start-page: 325
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134718_b0105
  article-title: Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-017-1812-5
– ident: 10.1016/j.scitotenv.2019.134718_b0090
  doi: 10.1007/s00585-999-0149-7
– ident: 10.1016/j.scitotenv.2019.134718_b0245
– volume: 55
  start-page: 378
  year: 2003
  ident: 10.1016/j.scitotenv.2019.134718_b0160
  article-title: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000
  publication-title: Tellus B
– volume: 217
  start-page: 384
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134718_b0400
  article-title: Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea Israel
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.08.040
– volume: 13
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134718_b0020
  article-title: Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aad246
– volume: 75
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134718_b0190
  article-title: The physics of wind-blown sand and dust
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/10/106901
– volume: 44
  start-page: 5504
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134718_b0345
  article-title: New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073337
– ident: 10.1016/j.scitotenv.2019.134718_b0290
– volume: 69
  start-page: 303
  year: 1987
  ident: 10.1016/j.scitotenv.2019.134718_b0250
  article-title: The Political Economy of Western Water Finance: Cost Allocation and the Bonneville Unit of the Central Utah Project
  publication-title: Am. J. Agric. Econ.
  doi: 10.2307/1242280
– volume: 3
  start-page: 243
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134718_b0070
  article-title: On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2011.07.006
– volume: 48
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134718_b0255
  article-title: An examination of the sensitivity of the Great Salt Lake to changes in inputs
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR011908
– volume: 105
  start-page: 154
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134718_b0340
  article-title: Impact of type of salt and ambient conditions on saline water evaporation from porous media
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.05.004
– volume: 61
  start-page: 683
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134718_b0305
  article-title: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2010.01277.x
– volume: Vol 59
  year: 1986
  ident: 10.1016/j.scitotenv.2019.134718_b0130
  publication-title: Saline Lake Ecosystems of the World
– volume: 170
  start-page: 19
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134718_b0145
  article-title: Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.04.007
– volume: 95
  start-page: 210
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134718_b9025
  article-title: Real-time environmental applications and display system Ready
  publication-title: Environmental Modelling Software
  doi: 10.1016/j.envsoft.2017.06.025
– volume: 29
  start-page: 154
  year: 2002
  ident: 10.1016/j.scitotenv.2019.134718_b0380
  article-title: Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025
  publication-title: Environ. Conserv.
  doi: 10.1017/S0376892902000103
– volume: 101
  start-page: 438
  year: 2009
  ident: 10.1016/j.scitotenv.2019.134718_b0275
  article-title: AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0140s
– volume: 40
  start-page: 7668
  year: 2006
  ident: 10.1016/j.scitotenv.2019.134718_b0295
  article-title: Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.08.015
– volume: 12
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134718_b0150
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169748
– volume: 105
  start-page: 22437
  year: 2000
  ident: 10.1016/j.scitotenv.2019.134718_b0335
  article-title: A simple expression for wind erosion threshold friction velocity
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2000JD900304
– ident: 10.1016/j.scitotenv.2019.134718_b0170
– ident: 10.1016/j.scitotenv.2019.134718_b0265
– volume: 20
  start-page: 225
  year: 1964
  ident: 10.1016/j.scitotenv.2019.134718_b0270
  article-title: Saltation of uniform grains in air
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112064001173
– year: 2011
  ident: 10.1016/j.scitotenv.2019.134718_b9005
  article-title: A socio-technical assessment framework for integrated water resources management (IWRM) in Lake Urmia Basin
  publication-title: Iran
– volume: 114
  start-page: 12833
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134718_b0040
  article-title: Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1707811114
– volume: 64
  start-page: 161
  year: 2007
  ident: 10.1016/j.scitotenv.2019.134718_b0005
  article-title: Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach
  publication-title: Int. J. Environ. Stud.
  doi: 10.1080/00207230701238416
– ident: 10.1016/j.scitotenv.2019.134718_b0100
– volume: 15
  start-page: 259
  year: 2006
  ident: 10.1016/j.scitotenv.2019.134718_b0195
  article-title: World map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2006/0130
– volume: 540
  start-page: 418
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134718_b9010
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 26
  start-page: 129
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134718_b0140
  article-title: Determining the main factors in declining the Urmia Lake level by using system dynamics modeling
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-011-9909-8
– volume: 54
  start-page: 105
  year: 1986
  ident: 10.1016/j.scitotenv.2019.134718_b0185
  article-title: Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/0031-0182(86)90120-3
– volume: 20
  start-page: 15
  year: 2004
  ident: 10.1016/j.scitotenv.2019.134718_b0035
  article-title: Development and management of the Euphrates-Tigris basin
  publication-title: Int. J. Water Resour. Dev.
  doi: 10.1080/07900620310001635584
– volume: 36
  start-page: 21
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134718_b0095
  article-title: Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2011.08.003
– ident: 10.1016/j.scitotenv.2019.134718_b0075
– volume: 4
  start-page: 93
  year: 1996
  ident: 10.1016/j.scitotenv.2019.134718_b0155
  article-title: Towards a conceptual framework for restoration ecology
  publication-title: Restor. Ecol.
  doi: 10.1111/j.1526-100X.1996.tb00112.x
– ident: 10.1016/j.scitotenv.2019.134718_b0180
SSID ssj0000781
Score 2.5073276
Snippet [Display omitted] •An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic...
River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134718
SubjectTerms basins
climate change
cropland
cropping systems
Ecosystem services
farm income
grasslands
hydrologic cycle
irrigated farming
Lake restoration
Lake Urmia
land use
Land use management
Optimal cropping patterns
river flow
Saline lakes
salinity
salt lakes
social welfare
sustainable land management
water allocation
Title Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change
URI https://dx.doi.org/10.1016/j.scitotenv.2019.134718
https://www.ncbi.nlm.nih.gov/pubmed/31734504
https://www.proquest.com/docview/2315531289
https://www.proquest.com/docview/2352423860
Volume 703
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CSqFQSrtt2m3SoEKvTuy1LNu5LSFh26U5lIbmJiRZAreLvdTeQC797Zmx5A2Bpjn0ZDD6QtLMPEkz8wA-VdoojoYxyhEfR9zxWaQzl0Voi23sVGIsp0Dhrxdiccm_XGVXO3A6xsKQW2XQ_V6nD9o6_DkOs3m8rmuK8eVFKcocIQinniiCnefk1nf0587Ng5LZ-FdmFGwsfc_HC9vtW8Sm1-TjVR5RWCWxf_zdQj2EQAdLdP4SXgQIyeZ-lK9gxzYTeOpJJW8msHd2F7uGxYLwdhN47q_omI88eg0Nnjlr46_sGCqPru5Y61inCHmylfpluxM2Z4i7WRWYeKJusybAztzo08UQ9DIduLUZnt3r1dAf61tmVjXiYct8cPEbuDw_-366iAL9QmR4lvZRUTg056Z0haA0-C6nV7sytZqLKtWJ0gO9Z2wINOjZwI-LZyuTlDp2CEREuge7TdvYd8CKKlU6Fy5VSvMiFjrHuklSYXMiS7maghinXJqQm5woMlZydEL7KbdrJWmtpF-rKcTbimufnuPxKifjmsp7O02iEXm88sdxF0iUQ3pcUY1tN51EnJyhPsPz67_KZARfcT6n8NZvoe2oEcelPIv5-_8Z3j48m9F9ABHWxAew2__e2A8Imnp9OEjFITyZf14uLui7_PZjeQtq8hhu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTggkhKAwKD-NxGtY0jhOsrdq2tSxrU-btDfLdmwpUCUVSZH477mLnU6TgD3wGuVsy2fffbbv7gP4XGmjODrGKEd8HHHH55HOXBahL7axU4mxnBKFL1diec2_3mQ3e3A85sJQWGWw_d6mD9Y6fDkMs3m4qWvK8eVFKcocIQinnh7APlWn4hPYX5ydL1e3BjkvPHEex72NAnfCvLDpvkV4-pPCvMovlFlJBCB_dlJ_A6GDMzp9Bk8DimQLP9DnsGebKTz0vJK_pnBwcpu-hr-F_dtN4Ym_pWM--egFNHjsrI2_tWNoP7q6Y61jnSLwydbqu-2O2IIh9GZVIOOJuu2GMDtzY1gXQ9zLdKDXZnh8r9dDf6xvmVnXCIkt8_nFL-H69OTqeBkFBobI8Czto6Jw6NFN6QpBlfBdTg93ZWo1F1WqE6UHhs_YEG7Q84EiF49XJil17BCLiPQAJk3b2NfAiipVOhcuVUrzIhY6R9kkqbA5kaVczUCMUy5NKE9OLBlrOcahfZM7XUnSlfS6mkG8E9z4Ch33ixyNOpV3FptEP3K_8KdxFUjcivS-ohrbbjuJUDlDk4ZH2H_9kxGCxfmcwSu_hHajRiiX8izmb_5neB_h0fLq8kJenK3O38LjOV0PEH9N_A4m_Y-tfY8Yqtcfwh75DS1SGXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desiccation+crisis+of+saline+lakes%3A+A+new+decision-support+framework+for+building+resilience+to+climate+change&rft.jtitle=The+Science+of+the+total+environment&rft.au=Hassani%2C+Amirhossein&rft.au=Azapagic%2C+Adisa&rft.au=D%27Odorico%2C+Paolo&rft.au=Keshmiri%2C+Amir&rft.date=2020-02-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=703&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.134718&rft.externalDocID=S0048969719347096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon