Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change
[Display omitted] •An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic stressors are considered.•Parts of the lake that should be prioritized for restoration can also be identified.•Alternative cropping patterns and land...
Saved in:
Published in | The Science of the total environment Vol. 703; p. 134718 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2019.134718 |
Cover
Loading…
Abstract | [Display omitted]
•An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic stressors are considered.•Parts of the lake that should be prioritized for restoration can also be identified.•Alternative cropping patterns and land-use change are determined for restoration.•The framework applicability is demonstrated through the case of Lake Urmia in Iran.
River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake’s area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake’s basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers’ income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes. |
---|---|
AbstractList | River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake's area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake's basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers' income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake's area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake's basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers' income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes. [Display omitted] •An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic stressors are considered.•Parts of the lake that should be prioritized for restoration can also be identified.•Alternative cropping patterns and land-use change are determined for restoration.•The framework applicability is demonstrated through the case of Lake Urmia in Iran. River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake’s area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake’s basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers’ income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes. River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake's area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake's basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers' income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm (∼70% increase in RCP 4.5) and 3,692 Mm (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes. River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake’s area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake’s basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers’ income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm³ (∼70% increase in RCP 4.5) and 3,692 Mm³ (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes. |
ArticleNumber | 134718 |
Author | Azapagic, Adisa Keshmiri, Amir Hassani, Amirhossein D'Odorico, Paolo Shokri, Nima |
Author_xml | – sequence: 1 givenname: Amirhossein surname: Hassani fullname: Hassani, Amirhossein organization: Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK – sequence: 2 givenname: Adisa orcidid: 0000-0003-2380-918X surname: Azapagic fullname: Azapagic, Adisa email: adisa.azapagic@machester.ac.uk organization: Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK – sequence: 3 givenname: Paolo surname: D'Odorico fullname: D'Odorico, Paolo organization: Department of Environmental Science, Policy & Management, UC Berkeley, CA, USA – sequence: 4 givenname: Amir surname: Keshmiri fullname: Keshmiri, Amir organization: Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester, Manchester, UK – sequence: 5 givenname: Nima orcidid: 0000-0001-6799-4888 surname: Shokri fullname: Shokri, Nima email: nima.shokri@manchester.ac.uk organization: Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31734504$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFvFCEYxYmpsdvqv6AcvczKBzMDY-JhU1s1aeKlPROG-aaynYUVmDb-92W6rQcvlQMk8HsPeO-EHPngkZAPwNbAoP20XSfrcsjo79acQbcGUUtQr8gKlOwqYLw9IivGalV1bSePyUlKW1aGVPCGHAuQom5YvSL-KyZnrckueGqjSy7RMNJkJueRTuYW02e6oR7v6YC2HAdfpXm_DzHTMZod3od4S8cQaT-7aXD-hsbiODn0FmkO1E5uZzJS-8v4G3xLXo9mSvjuaT0l1xfnV2ffq8uf336cbS4rWzciV0qNQoHtRtUy1chRloe3ncC-bgfRg-n5ss0shwZ6XmYuoVYWup6NTDatOCUfD777GH7PmLLeuWRxmozHMCfNRcNrLor9f6DQNAK46gr6_gmd-x0Oeh_L3-If_RxnAb4cABtDShFHXVp6zDZH4yYNTC_16a3-W59e6tOH-ope_qN_vuJl5eagxJLqncO4cEsHg4tosx6Ce9HjAfkKuTA |
CitedBy_id | crossref_primary_10_1007_s11273_022_09875_3 crossref_primary_10_1016_j_scitotenv_2023_168412 crossref_primary_10_1371_journal_pwat_0000100 crossref_primary_10_1007_s00343_022_2161_7 crossref_primary_10_1016_j_scitotenv_2022_155055 crossref_primary_10_3390_plants12061380 crossref_primary_10_5195_jwsr_2022_1081 crossref_primary_10_1016_j_jhydrol_2024_131711 crossref_primary_10_1029_2024GL111080 crossref_primary_10_1038_s41598_024_79578_7 crossref_primary_10_1016_j_scitotenv_2020_138760 crossref_primary_10_5194_bg_21_5117_2024 crossref_primary_10_1073_pnas_2013771117 crossref_primary_10_1007_s10750_024_05481_x crossref_primary_10_3390_rs14010226 crossref_primary_10_1016_j_worlddev_2024_106713 crossref_primary_10_1029_2021JD035896 crossref_primary_10_1016_j_scitotenv_2022_154419 crossref_primary_10_1021_acsearthspacechem_1c00320 crossref_primary_10_1021_acs_est_0c06067 crossref_primary_10_1007_s40333_023_0054_z crossref_primary_10_3390_rs14184647 crossref_primary_10_3390_su132011495 crossref_primary_10_1111_lre_12421 crossref_primary_10_3390_land12091781 crossref_primary_10_1016_j_ejrh_2021_100812 crossref_primary_10_1016_j_gloenvcha_2024_102803 crossref_primary_10_1016_j_jhazmat_2024_136377 crossref_primary_10_1289_EHP12835 crossref_primary_10_1080_01919512_2020_1824673 crossref_primary_10_3390_w14193005 crossref_primary_10_1007_s41742_024_00695_2 crossref_primary_10_1038_s41467_021_26907_3 crossref_primary_10_1029_2019EF001274 crossref_primary_10_3390_geosciences12100381 crossref_primary_10_1029_2021JF006585 crossref_primary_10_1080_02786826_2021_1888866 crossref_primary_10_1029_2023RG000804 crossref_primary_10_1007_s00704_024_05178_0 crossref_primary_10_1021_acsearthspacechem_4c00028 crossref_primary_10_1016_j_scitotenv_2023_169250 |
Cites_doi | 10.1007/s10113-018-1344-4 10.1002/joc.3711 10.1016/j.jhydrol.2018.03.034 10.1029/1999JD900169 10.1029/2001JD900171 10.1016/j.geomorph.2003.09.005 10.2134/agronj2008.0139s 10.4319/lo.2003.48.3.0995 10.1080/00139157.1996.9930999 10.1071/SR99042 10.1002/2017WR021995 10.3724/SP.J.1227.2010.00144 10.1007/s13412-014-0182-z 10.1016/0269-7491(91)90069-9 10.1007/s00704-014-1120-4 10.1146/annurev.earth.35.031306.140120 10.1038/ncomms13603 10.1029/2005WR004084 10.1061/(ASCE)0733-9437(2005)131:1(2) 10.1016/j.jglr.2014.12.007 10.1029/JB084iB09p04643 10.1016/j.jglr.2016.07.033 10.1038/ngeo3052 10.1029/97JD00961 10.1007/s10705-007-9138-y 10.1029/92JD01922 10.1007/s11269-017-1812-5 10.1007/s00585-999-0149-7 10.1016/j.gca.2017.08.040 10.1088/1748-9326/aad246 10.1088/0034-4885/75/10/106901 10.1002/2017GL073337 10.2307/1242280 10.1016/j.aeolia.2011.07.006 10.1029/2012WR011908 10.1016/j.advwatres.2017.05.004 10.1111/j.1365-2389.2010.01277.x 10.1016/j.agrformet.2012.04.007 10.1016/j.envsoft.2017.06.025 10.1017/S0376892902000103 10.2134/agronj2008.0140s 10.1016/j.atmosenv.2006.08.015 10.1371/journal.pone.0169748 10.1029/2000JD900304 10.1017/S0022112064001173 10.1073/pnas.1707811114 10.1080/00207230701238416 10.1127/0941-2948/2006/0130 10.1038/nature20584 10.1007/s11269-011-9909-8 10.1016/0031-0182(86)90120-3 10.1080/07900620310001635584 10.1016/j.eja.2011.08.003 10.1111/j.1526-100X.1996.tb00112.x |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2019.134718 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 31734504 10_1016_j_scitotenv_2019_134718 S0048969719347096 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c453t-88f381c9f860857f7007693eb46d3b1ab208570c2151b221527148c19b0f07563 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 18:11:42 EDT 2025 Thu Jul 10 19:28:35 EDT 2025 Wed Feb 19 02:32:09 EST 2025 Tue Jul 01 03:35:14 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 23 02:48:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Saline lakes Ecosystem services Lake Urmia Land use management Lake restoration Optimal cropping patterns |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-88f381c9f860857f7007693eb46d3b1ab208570c2151b221527148c19b0f07563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6799-4888 0000-0003-2380-918X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0048969719347096 |
PMID | 31734504 |
PQID | 2315531289 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2352423860 proquest_miscellaneous_2315531289 pubmed_primary_31734504 crossref_citationtrail_10_1016_j_scitotenv_2019_134718 crossref_primary_10_1016_j_scitotenv_2019_134718 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_134718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-10 |
PublicationDateYYYYMMDD | 2020-02-10 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Durán, Claudin, Andreotti (b0070) 2011; 3 Garousi, V., Najafi, A., Samadi, A., Rasouli, K., Khanaliloo, B., 2013. Environmental crisis in Lake Urmia, Iran: a systematic review of causes, negative consequences and possible solutions. Proceedings of the 6th International Perspective on Water Resources & the Environment (IPWE) Izmir, Turkey. Messager, Lehner, Grill, Nedeva, Schmitt (b0235) 2016; 7 Alborzi, Mirchi, Moftakhari, Mallakpour, Alian, Nazemi (b0020) 2018; 13 Levy, R., Hsu, C., 2015. Modis atmosphere l2 aerosol product, NASA modis adaptive processing system, Goddard Space Flight Center, USA. Hasemi (b9005) 2011 Miller (b0250) 1987; 69 Thiessen (b0365) 1911; 39 Lensky, Dvorkin, Lyakhovsky, Gertman, Gavrieli (b0200) 2005; 41 McCune (b0230) 1991; 74 Draxler (b9000) 1999 Pekel, Cottam, Gorelick, Belward (b9010) 2016; 540 Dalal, Chan (b0050) 2001; 39 Kang, Yoon, Shao, Kim (b0175) 2011 Mohammed, Tarboton (b0255) 2012; 48 Zilberman, Gavrieli, Yechieli, Gertman, Katz (b0400) 2017; 217 Kok, Parteli, Michaels, Karam (b0190) 2012; 75 Mathworks T. Matlab Optimization Toolbox User's Guide. García-Vila, Fereres (b0095) 2012; 36 Williams (b0375) 1996; 38 Raes, Steduto, Hsiao, Fereres (b0275) 2009; 101 Shao (b0325) 2004 Fathian, Morid, Kahya (b0085) 2015; 119 Sørensen (b0355) 2004; 59 Darvishi J., 2014. Lymphology and Paleolymology Report of Lake Urmia: the balance of water and salt and the sedimentation rate of salts, Final report (in Farsi). Geological Survey of Iran, Iran. Hamidi-Razi, Mazaheri, Carvajalino-Fernández, Vali-Samani (b0125) 2018 Shokri-Kuehni, Vetter, Webb, Shokri (b0345) 2017; 44 Deatrick (b0060) 2016; 22 Gillette (b0110) 1974; 8 Raupach, Gillette, Leys (b0285) 1993; 98 Razia, H.H., Mazaherib, M., Samanic, J.M.V., Fernandezd, M.C., 2016 Investigating Urmia Lake Partial Restoration and Ecological Water Level Using MOHID-2D Water Hydrodynamic Model. Geographic and Environmental Impacts of Urmia Lake Conditions Conference, Tabriz, Iran. Winter, Buso, Rosenberry, Likens, Sturrock, Mau (b0385) 2003; 48 Gudmundsson, L., 2016. QMAP: Statistical transformations for post-processing climate model output. R package version 1.0-4, 1.0–3. Shao, Lu (b0335) 2000; 105 Cameron, Marvin, Remucal, Passero (b0040) 2017; 114 Emori, S., Taylor, K., Hewitson, B., Zermoglio, F., Juckes, M., Lautenschlager. M., et al., 2016. CMIP5 data provided at the IPCC Data Distribution Centre. Geneva. Lettau, K., Lettau, H., 1978. Experimental and micrometeorological field studies of dune migration. In: Lettau, H.H., Lettau, K., (Eds.) Exploring the world's driest climate. Madison. Ryan (b0300) 2015; 45 Steduto, Hsiao, Raes, Fereres (b0360) 2009; 101 Allen, Pereira, Smith, Raes, Wright (b0030) 2005; 131 Diaz, Rashford, De Gryze, Zakreski, Dell (b0065) 2012 Hobbs, Norton (b0155) 1996; 4 Micklin (b0240) 2007; 35 Ghale, Altunkaynak, Unal (b0105) 2018; 32 Rolph, Stein, Stunder (b9025) 2017; 95 Gillette, Fryrear, Xiao, Stockton, Ono, Helm (b0115) 1997; 102 Houghton (b0160) 2003; 55 Chaudhari, Felfelani, Shin, Pokhrel (b0045) 2018; 560 Mor, Assouline, Tanny, Lensky, Lensky (b0260) 2018; 54 Lu, Shao (b0215) 1999; 104 Kelts, Shahrabi (b0185) 1986; 54 Fécan, F., Marticorena, B., Bergametti, G., 1998. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Annales Geophysicae. 17. Springer, pp. 149–157. Shokri-Kuehni, Rad, Webb, Shokri (b0340) 2017; 105 Hawkins, Osborne, Ho, Challinor (b0145) 2013; 170 Schaufler, Kitzler, Schindlbacher, Skiba, Sutton, Zechmeister-Boltenstern (b0305) 2010; 61 Abuduwaili, DongWei, GuangYang (b0010) 2010; 2 Smith (b0350) 2008; 81 AghaKouchak, Norouzi, Madani, Mirchi, Azarderakhsh, Nazemi (b0015) 2015; 41 Wurtsbaugh, Miller, Null, DeRose, Wilcock, Hahnenberger (b0395) 2017; 10 Alipour, Mosavi-ovenlegi, Hosseini, Aslanpour, Haseli (b0025) 2018; 27 Rahi, Halihan (b0280) 2018; 18 Service USDoASC, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys: US Department of Agriculture. Roney, White (b0295) 2006; 40 Madani (b0220) 2014; 4 Jalili, Hamidi, Namdar (b0165) 2016; 61 Kottek, Grieser, Beck, Rudolf, Rubel (b0195) 2006; 15 Shao (b0320) 2001; 106 Kawamura, R., 1951. Study of sand movement by wind Translated, (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkely. Mike, 2017. Hydro Basin User Guide. Shao, Jung, Leslie (b0330) 2002 FAO United Nations, 2016. Statistics database. White (b0370) 1979; 84 JICA, 2016. Data collection survey on hydrological cycle of lake Urmia basin in the Islamic Republic of Iran. Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić (b0150) 2017; 12 Abbaspour, Nazaridoust (b0005) 2007; 64 WRMC, 2007. Master Plan Report on Agricultural Water in the Lake Urmia Basin (In Farsi). Water and Wastewater Planning Office, Iran. Harris, Jones, Osborn, Lister (b0135) 2014; 34 Altinbilek (b0035) 2004; 20 Hammer (b0130) 1986; Vol 59 Shadkam, Ludwig, van Oel, Kirmit, Kabat (b0315) 2016; 42 Owen (b0270) 1964; 20 Hassanzadeh, Zarghami, Hassanzadeh (b0140) 2012; 26 Williams (b0380) 2002; 29 Nickling, W.G., Brown, L.J., 2001. PM10 Dust Emissions At Owen Lake, CA 2001, Final Report. Messager (10.1016/j.scitotenv.2019.134718_b0235) 2016; 7 Lensky (10.1016/j.scitotenv.2019.134718_b0200) 2005; 41 Shao (10.1016/j.scitotenv.2019.134718_b0325) 2004 Dalal (10.1016/j.scitotenv.2019.134718_b0050) 2001; 39 10.1016/j.scitotenv.2019.134718_b0090 Alipour (10.1016/j.scitotenv.2019.134718_b0025) 2018; 27 10.1016/j.scitotenv.2019.134718_b0290 White (10.1016/j.scitotenv.2019.134718_b0370) 1979; 84 Hassanzadeh (10.1016/j.scitotenv.2019.134718_b0140) 2012; 26 Allen (10.1016/j.scitotenv.2019.134718_b0030) 2005; 131 Shokri-Kuehni (10.1016/j.scitotenv.2019.134718_b0340) 2017; 105 Deatrick (10.1016/j.scitotenv.2019.134718_b0060) 2016; 22 Sørensen (10.1016/j.scitotenv.2019.134718_b0355) 2004; 59 Chaudhari (10.1016/j.scitotenv.2019.134718_b0045) 2018; 560 10.1016/j.scitotenv.2019.134718_b0170 Williams (10.1016/j.scitotenv.2019.134718_b0380) 2002; 29 Ryan (10.1016/j.scitotenv.2019.134718_b0300) 2015; 45 Abuduwaili (10.1016/j.scitotenv.2019.134718_b0010) 2010; 2 Cameron (10.1016/j.scitotenv.2019.134718_b0040) 2017; 114 Hawkins (10.1016/j.scitotenv.2019.134718_b0145) 2013; 170 10.1016/j.scitotenv.2019.134718_b0210 10.1016/j.scitotenv.2019.134718_b0055 Shao (10.1016/j.scitotenv.2019.134718_b0335) 2000; 105 McCune (10.1016/j.scitotenv.2019.134718_b0230) 1991; 74 Madani (10.1016/j.scitotenv.2019.134718_b0220) 2014; 4 Jalili (10.1016/j.scitotenv.2019.134718_b0165) 2016; 61 10.1016/j.scitotenv.2019.134718_b0180 Miller (10.1016/j.scitotenv.2019.134718_b0250) 1987; 69 Shokri-Kuehni (10.1016/j.scitotenv.2019.134718_b0345) 2017; 44 Steduto (10.1016/j.scitotenv.2019.134718_b0360) 2009; 101 Zilberman (10.1016/j.scitotenv.2019.134718_b0400) 2017; 217 AghaKouchak (10.1016/j.scitotenv.2019.134718_b0015) 2015; 41 García-Vila (10.1016/j.scitotenv.2019.134718_b0095) 2012; 36 10.1016/j.scitotenv.2019.134718_b0225 Williams (10.1016/j.scitotenv.2019.134718_b0375) 1996; 38 Micklin (10.1016/j.scitotenv.2019.134718_b0240) 2007; 35 Kelts (10.1016/j.scitotenv.2019.134718_b0185) 1986; 54 Kang (10.1016/j.scitotenv.2019.134718_b0175) 2011 Shao (10.1016/j.scitotenv.2019.134718_b0320) 2001; 106 Ghale (10.1016/j.scitotenv.2019.134718_b0105) 2018; 32 Harris (10.1016/j.scitotenv.2019.134718_b0135) 2014; 34 10.1016/j.scitotenv.2019.134718_b0100 10.1016/j.scitotenv.2019.134718_b0265 Draxler (10.1016/j.scitotenv.2019.134718_b9000) 1999 Altinbilek (10.1016/j.scitotenv.2019.134718_b0035) 2004; 20 Thiessen (10.1016/j.scitotenv.2019.134718_b0365) 1911; 39 Lu (10.1016/j.scitotenv.2019.134718_b0215) 1999; 104 Shao (10.1016/j.scitotenv.2019.134718_b0330) 2002 Mor (10.1016/j.scitotenv.2019.134718_b0260) 2018; 54 Raes (10.1016/j.scitotenv.2019.134718_b0275) 2009; 101 Wurtsbaugh (10.1016/j.scitotenv.2019.134718_b0395) 2017; 10 Hammer (10.1016/j.scitotenv.2019.134718_b0130) 1986; Vol 59 Hamidi-Razi (10.1016/j.scitotenv.2019.134718_b0125) 2018 10.1016/j.scitotenv.2019.134718_b0310 Houghton (10.1016/j.scitotenv.2019.134718_b0160) 2003; 55 Roney (10.1016/j.scitotenv.2019.134718_b0295) 2006; 40 Kottek (10.1016/j.scitotenv.2019.134718_b0195) 2006; 15 Shadkam (10.1016/j.scitotenv.2019.134718_b0315) 2016; 42 Alborzi (10.1016/j.scitotenv.2019.134718_b0020) 2018; 13 Diaz (10.1016/j.scitotenv.2019.134718_b0065) 2012 Hengl (10.1016/j.scitotenv.2019.134718_b0150) 2017; 12 10.1016/j.scitotenv.2019.134718_b0390 10.1016/j.scitotenv.2019.134718_b0075 Pekel (10.1016/j.scitotenv.2019.134718_b9010) 2016; 540 Kok (10.1016/j.scitotenv.2019.134718_b0190) 2012; 75 Owen (10.1016/j.scitotenv.2019.134718_b0270) 1964; 20 Winter (10.1016/j.scitotenv.2019.134718_b0385) 2003; 48 Abbaspour (10.1016/j.scitotenv.2019.134718_b0005) 2007; 64 10.1016/j.scitotenv.2019.134718_b0080 Gillette (10.1016/j.scitotenv.2019.134718_b0115) 1997; 102 Rahi (10.1016/j.scitotenv.2019.134718_b0280) 2018; 18 Raupach (10.1016/j.scitotenv.2019.134718_b0285) 1993; 98 Hasemi (10.1016/j.scitotenv.2019.134718_b9005) 2011 Gillette (10.1016/j.scitotenv.2019.134718_b0110) 1974; 8 10.1016/j.scitotenv.2019.134718_b0245 10.1016/j.scitotenv.2019.134718_b0205 Mohammed (10.1016/j.scitotenv.2019.134718_b0255) 2012; 48 Hobbs (10.1016/j.scitotenv.2019.134718_b0155) 1996; 4 Smith (10.1016/j.scitotenv.2019.134718_b0350) 2008; 81 10.1016/j.scitotenv.2019.134718_b0120 Durán (10.1016/j.scitotenv.2019.134718_b0070) 2011; 3 Fathian (10.1016/j.scitotenv.2019.134718_b0085) 2015; 119 Schaufler (10.1016/j.scitotenv.2019.134718_b0305) 2010; 61 Rolph (10.1016/j.scitotenv.2019.134718_b9025) 2017; 95 |
References_xml | – reference: Fécan, F., Marticorena, B., Bergametti, G., 1998. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Annales Geophysicae. 17. Springer, pp. 149–157. – volume: 106 start-page: 20239 year: 2001 end-page: 20254 ident: b0320 article-title: A model for mineral dust emission publication-title: J. Geophys. Res. Atmos. – reference: Nickling, W.G., Brown, L.J., 2001. PM10 Dust Emissions At Owen Lake, CA 2001, Final Report. – start-page: 107 year: 2002 ident: b0330 article-title: Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system publication-title: J. Geophys. Res. Atmos. – volume: 54 start-page: 1460 year: 2018 end-page: 1475 ident: b0260 article-title: Effect of water surface salinity on evaporation: The case of a diluted buoyant plume over the Dead Sea publication-title: Water Resour. Res. – volume: 44 start-page: 5504 year: 2017 end-page: 5510 ident: b0345 article-title: New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature publication-title: Geophys. Res. Lett. – volume: 22 year: 2016 ident: b0060 article-title: Can a controversial canal stop thousands of sinkholes from forming around the Dead Sea publication-title: Science – volume: 18 start-page: 2117 year: 2018 end-page: 2127 ident: b0280 article-title: Salinity evolution of the Tigris River publication-title: Reg. Environ. Change – reference: Razia, H.H., Mazaherib, M., Samanic, J.M.V., Fernandezd, M.C., 2016 Investigating Urmia Lake Partial Restoration and Ecological Water Level Using MOHID-2D Water Hydrodynamic Model. Geographic and Environmental Impacts of Urmia Lake Conditions Conference, Tabriz, Iran. – volume: 20 start-page: 15 year: 2004 end-page: 33 ident: b0035 article-title: Development and management of the Euphrates-Tigris basin publication-title: Int. J. Water Resour. Dev. – volume: 29 start-page: 154 year: 2002 end-page: 167 ident: b0380 article-title: Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025 publication-title: Environ. Conserv. – volume: 41 start-page: 307 year: 2015 end-page: 311 ident: b0015 article-title: Aral Sea syndrome desiccates Lake Urmia: call for action publication-title: J. Great Lakes Res. – volume: 101 start-page: 438 year: 2009 end-page: 447 ident: b0275 article-title: AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description publication-title: Agron. J. – volume: 34 start-page: 623 year: 2014 end-page: 642 ident: b0135 article-title: Updated high-resolution grids of monthly climatic observations–the CRU TS3 10 Dataset publication-title: Int. J. Climatol. – volume: 2 start-page: 144 year: 2010 end-page: 150 ident: b0010 article-title: Saline dust storms and their ecological impacts in arid regions publication-title: J. Arid Land – volume: 170 start-page: 19 year: 2013 end-page: 31 ident: b0145 article-title: Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe publication-title: Agric. For. Meteorol. – volume: 102 start-page: 25977 year: 1997 end-page: 25987 ident: b0115 article-title: Large-scale variability of wind erosion mass flux rates at Owens Lake: 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm publication-title: J. Geophys. Res. Atmos. – volume: 4 start-page: 93 year: 1996 end-page: 110 ident: b0155 article-title: Towards a conceptual framework for restoration ecology publication-title: Restor. Ecol. – volume: 59 start-page: 53 year: 2004 end-page: 62 ident: b0355 article-title: On the rate of aeolian sand transport publication-title: Geomorphology – reference: Darvishi J., 2014. Lymphology and Paleolymology Report of Lake Urmia: the balance of water and salt and the sedimentation rate of salts, Final report (in Farsi). Geological Survey of Iran, Iran. – volume: 55 start-page: 378 year: 2003 end-page: 390 ident: b0160 article-title: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000 publication-title: Tellus B – volume: 105 start-page: 154 year: 2017 end-page: 161 ident: b0340 article-title: Impact of type of salt and ambient conditions on saline water evaporation from porous media publication-title: Adv. Water Resour. – volume: 61 start-page: 1759 year: 2016 end-page: 1769 ident: b0165 article-title: Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran publication-title: Hydrol. Sci. J. – volume: 114 start-page: 12833 year: 2017 end-page: 12838 ident: b0040 article-title: Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals publication-title: Proc. Natl. Acad. Sci. – volume: 48 year: 2012 ident: b0255 article-title: An examination of the sensitivity of the Great Salt Lake to changes in inputs publication-title: Water Resour. Res. – reference: Emori, S., Taylor, K., Hewitson, B., Zermoglio, F., Juckes, M., Lautenschlager. M., et al., 2016. CMIP5 data provided at the IPCC Data Distribution Centre. Geneva. – volume: 69 start-page: 303 year: 1987 end-page: 310 ident: b0250 article-title: The Political Economy of Western Water Finance: Cost Allocation and the Bonneville Unit of the Central Utah Project publication-title: Am. J. Agric. Econ. – volume: 119 start-page: 443 year: 2015 end-page: 464 ident: b0085 article-title: Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran publication-title: Theoret. Appl. Climatol. – year: 2018 ident: b0125 article-title: Investigating the restoration of Lake Urmia using a numerical modelling approach publication-title: J. Great Lakes Res. – reference: Lettau, K., Lettau, H., 1978. Experimental and micrometeorological field studies of dune migration. In: Lettau, H.H., Lettau, K., (Eds.) Exploring the world's driest climate. Madison. – volume: 42 start-page: 942 year: 2016 end-page: 952 ident: b0315 article-title: Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake publication-title: J. Great Lakes Res. – reference: Gudmundsson, L., 2016. QMAP: Statistical transformations for post-processing climate model output. R package version 1.0-4, 1.0–3. – reference: Service USDoASC, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys: US Department of Agriculture. – volume: 36 start-page: 21 year: 2012 end-page: 31 ident: b0095 article-title: Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level publication-title: Eur. J. Agron. – reference: WRMC, 2007. Master Plan Report on Agricultural Water in the Lake Urmia Basin (In Farsi). Water and Wastewater Planning Office, Iran. – volume: 75 year: 2012 ident: b0190 article-title: The physics of wind-blown sand and dust publication-title: Rep. Prog. Phys. – volume: 54 start-page: 105 year: 1986 end-page: 130 ident: b0185 article-title: Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 7 start-page: 13603 year: 2016 ident: b0235 article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach publication-title: Nat. Commun. – volume: 41 year: 2005 ident: b0200 article-title: Water, salt, and energy balances of the Dead Sea publication-title: Water Resour. Res. – reference: Levy, R., Hsu, C., 2015. Modis atmosphere l2 aerosol product, NASA modis adaptive processing system, Goddard Space Flight Center, USA. – start-page: 116 year: 2011 ident: b0175 article-title: Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem publication-title: J. Geophys. Res. Atmos. – volume: 74 start-page: 176 year: 1991 end-page: 203 ident: b0230 article-title: Effects of airborne saline particles on vegetation in relation to variables of exposure and other factors publication-title: Environ. Pollut. – volume: 35 start-page: 47 year: 2007 end-page: 72 ident: b0240 article-title: The Aral sea disaster publication-title: Annu. Rev. Earth Planet. Sci. – volume: 84 start-page: 4643 year: 1979 end-page: 4651 ident: b0370 article-title: Soil transport by winds on Mars publication-title: J. Geophys. Res. Solid Earth – year: 1999 ident: b9000 article-title: HYSPLIT, radiological transport and dispersion model implementation on NCEP Cray: Silver Spring, Maryland : U.S. Department of Commerce, National Oceanic and Atmospheric Administration publication-title: National Weather Service, Office of Meteorology, Science Division – volume: 61 start-page: 683 year: 2010 end-page: 696 ident: b0305 article-title: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature publication-title: Eur. J. Soil Sci. – reference: Mathworks T. Matlab Optimization Toolbox User's Guide. – volume: 10 start-page: 816 year: 2017 ident: b0395 article-title: Decline of the world's saline lakes publication-title: Nat. Geosci. – volume: 45 start-page: 561 year: 2015 ident: b0300 article-title: The public trust doctrine, private water allocation, and mono lake: the historic saga of national audubon society v. Superior Court publication-title: Environ. Law – volume: 38 start-page: 12 year: 1996 end-page: 39 ident: b0375 article-title: What future for saline lakes? publication-title: Environ. Sci. Policy Sustain. Dev. – volume: 15 start-page: 259 year: 2006 end-page: 263 ident: b0195 article-title: World map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. – reference: FAO United Nations, 2016. Statistics database. – volume: 26 start-page: 129 year: 2012 end-page: 145 ident: b0140 article-title: Determining the main factors in declining the Urmia Lake level by using system dynamics modeling publication-title: Water Resour. Manage. – year: 2011 ident: b9005 article-title: A socio-technical assessment framework for integrated water resources management (IWRM) in Lake Urmia Basin publication-title: Iran – volume: 27 start-page: 51 year: 2018 end-page: 62 ident: b0025 article-title: Geochemistry of major, trace and rare earth elements in bed-sediments of Urmia lake publication-title: J. Geosci. – volume: 3 start-page: 243 year: 2011 end-page: 270 ident: b0070 article-title: On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws publication-title: Aeolian Res. – reference: Kawamura, R., 1951. Study of sand movement by wind Translated, (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkely. – volume: 101 start-page: 426 year: 2009 end-page: 437 ident: b0360 article-title: AquaCrop—The FAO crop model to simulate yield response to water: I Concepts and underlying principles publication-title: Agronomy J. – volume: 8 start-page: 735 year: 1974 end-page: 744 ident: b0110 article-title: On the production of soil wind erosion aerosols having the potential for long range transport publication-title: J. Rech. Atmos – volume: 20 start-page: 225 year: 1964 end-page: 242 ident: b0270 article-title: Saltation of uniform grains in air publication-title: J. Fluid Mech. – volume: 81 start-page: 169 year: 2008 end-page: 178 ident: b0350 article-title: Land use change and soil organic carbon dynamics publication-title: Nutr. Cycl. Agroecosyst. – year: 2012 ident: b0065 article-title: Evaluation of avoided grassland conversion and cropland conversion to grassland as potential carbon offset project types – volume: 217 start-page: 384 year: 2017 end-page: 398 ident: b0400 article-title: Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea Israel publication-title: Geochim. Cosmochim. Acta – volume: 95 start-page: 210 year: 2017 end-page: 228 ident: b9025 article-title: Real-time environmental applications and display system Ready publication-title: Environmental Modelling Software – volume: 4 start-page: 315 year: 2014 end-page: 328 ident: b0220 article-title: Water management in Iran: what is causing the looming crisis? publication-title: J. Environ. Stud. Sci. – volume: 560 start-page: 342 year: 2018 end-page: 353 ident: b0045 article-title: Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century publication-title: J. Hydrol. – volume: Vol 59 year: 1986 ident: b0130 publication-title: Saline Lake Ecosystems of the World – volume: 32 start-page: 325 year: 2018 end-page: 337 ident: b0105 article-title: Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis publication-title: Water Resour. Manage. – reference: JICA, 2016. Data collection survey on hydrological cycle of lake Urmia basin in the Islamic Republic of Iran. – reference: Mike, 2017. Hydro Basin User Guide. – volume: 131 start-page: 2 year: 2005 end-page: 13 ident: b0030 article-title: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions publication-title: J. Irrig. Drain. Eng. – volume: 64 start-page: 161 year: 2007 end-page: 169 ident: b0005 article-title: Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach publication-title: Int. J. Environ. Stud. – volume: 98 start-page: 3023 year: 1993 end-page: 3029 ident: b0285 article-title: The effect of roughness elements on wind erosion threshold publication-title: J. Geophys. Res. Atmos. – volume: 104 start-page: 16827 year: 1999 end-page: 16842 ident: b0215 article-title: A new model for dust emission by saltation bombardment publication-title: J. Geophys. Res. Atmos. – volume: 39 start-page: 435 year: 2001 end-page: 464 ident: b0050 article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt publication-title: Soil Res. – reference: Garousi, V., Najafi, A., Samadi, A., Rasouli, K., Khanaliloo, B., 2013. Environmental crisis in Lake Urmia, Iran: a systematic review of causes, negative consequences and possible solutions. Proceedings of the 6th International Perspective on Water Resources & the Environment (IPWE) Izmir, Turkey. – start-page: 109 year: 2004 ident: b0325 article-title: Simplification of a dust emission scheme and comparison with data publication-title: J. Geophys. Res. Atmos. – volume: 13 year: 2018 ident: b0020 article-title: Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts publication-title: Environ. Res. Lett. – volume: 105 start-page: 22437 year: 2000 end-page: 22443 ident: b0335 article-title: A simple expression for wind erosion threshold friction velocity publication-title: J. Geophys. Res. Atmos. – volume: 39 start-page: 1082 year: 1911 end-page: 1084 ident: b0365 article-title: Precipitation for large areas publication-title: Mon. Weather Rev. – volume: 40 start-page: 7668 year: 2006 end-page: 7685 ident: b0295 article-title: Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel publication-title: Atmos. Environ. – volume: 12 year: 2017 ident: b0150 article-title: SoilGrids250m: Global gridded soil information based on machine learning publication-title: PLoS ONE – volume: 48 start-page: 995 year: 2003 end-page: 1009 ident: b0385 article-title: Evaporation determined by the energy-budget method for Mirror Lake New Hampshire publication-title: Limnol. Oceanogr. – volume: 540 start-page: 418 year: 2016 ident: b9010 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature – volume: 18 start-page: 2117 year: 2018 ident: 10.1016/j.scitotenv.2019.134718_b0280 article-title: Salinity evolution of the Tigris River publication-title: Reg. Environ. Change doi: 10.1007/s10113-018-1344-4 – volume: 39 start-page: 1082 year: 1911 ident: 10.1016/j.scitotenv.2019.134718_b0365 article-title: Precipitation for large areas publication-title: Mon. Weather Rev. – start-page: 109 year: 2004 ident: 10.1016/j.scitotenv.2019.134718_b0325 article-title: Simplification of a dust emission scheme and comparison with data publication-title: J. Geophys. Res. Atmos. – volume: 34 start-page: 623 year: 2014 ident: 10.1016/j.scitotenv.2019.134718_b0135 article-title: Updated high-resolution grids of monthly climatic observations–the CRU TS3 10 Dataset publication-title: Int. J. Climatol. doi: 10.1002/joc.3711 – volume: 560 start-page: 342 year: 2018 ident: 10.1016/j.scitotenv.2019.134718_b0045 article-title: Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.03.034 – volume: 104 start-page: 16827 year: 1999 ident: 10.1016/j.scitotenv.2019.134718_b0215 article-title: A new model for dust emission by saltation bombardment publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900169 – year: 2012 ident: 10.1016/j.scitotenv.2019.134718_b0065 – volume: 61 start-page: 1759 year: 2016 ident: 10.1016/j.scitotenv.2019.134718_b0165 article-title: Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran publication-title: Hydrol. Sci. J. – year: 2018 ident: 10.1016/j.scitotenv.2019.134718_b0125 article-title: Investigating the restoration of Lake Urmia using a numerical modelling approach publication-title: J. Great Lakes Res. – volume: 106 start-page: 20239 year: 2001 ident: 10.1016/j.scitotenv.2019.134718_b0320 article-title: A model for mineral dust emission publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2001JD900171 – volume: 59 start-page: 53 year: 2004 ident: 10.1016/j.scitotenv.2019.134718_b0355 article-title: On the rate of aeolian sand transport publication-title: Geomorphology doi: 10.1016/j.geomorph.2003.09.005 – ident: 10.1016/j.scitotenv.2019.134718_b0210 – volume: 101 start-page: 426 year: 2009 ident: 10.1016/j.scitotenv.2019.134718_b0360 article-title: AquaCrop—The FAO crop model to simulate yield response to water: I Concepts and underlying principles publication-title: Agronomy J. doi: 10.2134/agronj2008.0139s – volume: 48 start-page: 995 year: 2003 ident: 10.1016/j.scitotenv.2019.134718_b0385 article-title: Evaporation determined by the energy-budget method for Mirror Lake New Hampshire publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2003.48.3.0995 – volume: 27 start-page: 51 year: 2018 ident: 10.1016/j.scitotenv.2019.134718_b0025 article-title: Geochemistry of major, trace and rare earth elements in bed-sediments of Urmia lake publication-title: J. Geosci. – volume: 38 start-page: 12 year: 1996 ident: 10.1016/j.scitotenv.2019.134718_b0375 article-title: What future for saline lakes? publication-title: Environ. Sci. Policy Sustain. Dev. doi: 10.1080/00139157.1996.9930999 – volume: 39 start-page: 435 year: 2001 ident: 10.1016/j.scitotenv.2019.134718_b0050 article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt publication-title: Soil Res. doi: 10.1071/SR99042 – volume: 22 year: 2016 ident: 10.1016/j.scitotenv.2019.134718_b0060 article-title: Can a controversial canal stop thousands of sinkholes from forming around the Dead Sea publication-title: Science – volume: 54 start-page: 1460 year: 2018 ident: 10.1016/j.scitotenv.2019.134718_b0260 article-title: Effect of water surface salinity on evaporation: The case of a diluted buoyant plume over the Dead Sea publication-title: Water Resour. Res. doi: 10.1002/2017WR021995 – volume: 2 start-page: 144 year: 2010 ident: 10.1016/j.scitotenv.2019.134718_b0010 article-title: Saline dust storms and their ecological impacts in arid regions publication-title: J. Arid Land doi: 10.3724/SP.J.1227.2010.00144 – ident: 10.1016/j.scitotenv.2019.134718_b0055 – ident: 10.1016/j.scitotenv.2019.134718_b0080 – volume: 8 start-page: 735 year: 1974 ident: 10.1016/j.scitotenv.2019.134718_b0110 article-title: On the production of soil wind erosion aerosols having the potential for long range transport publication-title: J. Rech. Atmos – volume: 4 start-page: 315 year: 2014 ident: 10.1016/j.scitotenv.2019.134718_b0220 article-title: Water management in Iran: what is causing the looming crisis? publication-title: J. Environ. Stud. Sci. doi: 10.1007/s13412-014-0182-z – volume: 74 start-page: 176 year: 1991 ident: 10.1016/j.scitotenv.2019.134718_b0230 article-title: Effects of airborne saline particles on vegetation in relation to variables of exposure and other factors publication-title: Environ. Pollut. doi: 10.1016/0269-7491(91)90069-9 – ident: 10.1016/j.scitotenv.2019.134718_b0120 – volume: 119 start-page: 443 year: 2015 ident: 10.1016/j.scitotenv.2019.134718_b0085 article-title: Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran publication-title: Theoret. Appl. Climatol. doi: 10.1007/s00704-014-1120-4 – ident: 10.1016/j.scitotenv.2019.134718_b0225 – start-page: 116 year: 2011 ident: 10.1016/j.scitotenv.2019.134718_b0175 article-title: Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem publication-title: J. Geophys. Res. Atmos. – volume: 35 start-page: 47 year: 2007 ident: 10.1016/j.scitotenv.2019.134718_b0240 article-title: The Aral sea disaster publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.35.031306.140120 – volume: 7 start-page: 13603 year: 2016 ident: 10.1016/j.scitotenv.2019.134718_b0235 article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach publication-title: Nat. Commun. doi: 10.1038/ncomms13603 – volume: 41 year: 2005 ident: 10.1016/j.scitotenv.2019.134718_b0200 article-title: Water, salt, and energy balances of the Dead Sea publication-title: Water Resour. Res. doi: 10.1029/2005WR004084 – volume: 131 start-page: 2 year: 2005 ident: 10.1016/j.scitotenv.2019.134718_b0030 article-title: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2005)131:1(2) – volume: 41 start-page: 307 year: 2015 ident: 10.1016/j.scitotenv.2019.134718_b0015 article-title: Aral Sea syndrome desiccates Lake Urmia: call for action publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2014.12.007 – year: 1999 ident: 10.1016/j.scitotenv.2019.134718_b9000 article-title: HYSPLIT, radiological transport and dispersion model implementation on NCEP Cray: Silver Spring, Maryland : U.S. Department of Commerce, National Oceanic and Atmospheric Administration publication-title: National Weather Service, Office of Meteorology, Science Division – volume: 45 start-page: 561 year: 2015 ident: 10.1016/j.scitotenv.2019.134718_b0300 article-title: The public trust doctrine, private water allocation, and mono lake: the historic saga of national audubon society v. Superior Court publication-title: Environ. Law – volume: 84 start-page: 4643 year: 1979 ident: 10.1016/j.scitotenv.2019.134718_b0370 article-title: Soil transport by winds on Mars publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB084iB09p04643 – volume: 42 start-page: 942 year: 2016 ident: 10.1016/j.scitotenv.2019.134718_b0315 article-title: Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2016.07.033 – ident: 10.1016/j.scitotenv.2019.134718_b0390 – ident: 10.1016/j.scitotenv.2019.134718_b0205 – volume: 10 start-page: 816 year: 2017 ident: 10.1016/j.scitotenv.2019.134718_b0395 article-title: Decline of the world's saline lakes publication-title: Nat. Geosci. doi: 10.1038/ngeo3052 – volume: 102 start-page: 25977 year: 1997 ident: 10.1016/j.scitotenv.2019.134718_b0115 article-title: Large-scale variability of wind erosion mass flux rates at Owens Lake: 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm publication-title: J. Geophys. Res. Atmos. doi: 10.1029/97JD00961 – ident: 10.1016/j.scitotenv.2019.134718_b0310 – start-page: 107 year: 2002 ident: 10.1016/j.scitotenv.2019.134718_b0330 article-title: Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system publication-title: J. Geophys. Res. Atmos. – volume: 81 start-page: 169 year: 2008 ident: 10.1016/j.scitotenv.2019.134718_b0350 article-title: Land use change and soil organic carbon dynamics publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-007-9138-y – volume: 98 start-page: 3023 year: 1993 ident: 10.1016/j.scitotenv.2019.134718_b0285 article-title: The effect of roughness elements on wind erosion threshold publication-title: J. Geophys. Res. Atmos. doi: 10.1029/92JD01922 – volume: 32 start-page: 325 year: 2018 ident: 10.1016/j.scitotenv.2019.134718_b0105 article-title: Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis publication-title: Water Resour. Manage. doi: 10.1007/s11269-017-1812-5 – ident: 10.1016/j.scitotenv.2019.134718_b0090 doi: 10.1007/s00585-999-0149-7 – ident: 10.1016/j.scitotenv.2019.134718_b0245 – volume: 55 start-page: 378 year: 2003 ident: 10.1016/j.scitotenv.2019.134718_b0160 article-title: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000 publication-title: Tellus B – volume: 217 start-page: 384 year: 2017 ident: 10.1016/j.scitotenv.2019.134718_b0400 article-title: Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea Israel publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.08.040 – volume: 13 year: 2018 ident: 10.1016/j.scitotenv.2019.134718_b0020 article-title: Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aad246 – volume: 75 year: 2012 ident: 10.1016/j.scitotenv.2019.134718_b0190 article-title: The physics of wind-blown sand and dust publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/10/106901 – volume: 44 start-page: 5504 year: 2017 ident: 10.1016/j.scitotenv.2019.134718_b0345 article-title: New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073337 – ident: 10.1016/j.scitotenv.2019.134718_b0290 – volume: 69 start-page: 303 year: 1987 ident: 10.1016/j.scitotenv.2019.134718_b0250 article-title: The Political Economy of Western Water Finance: Cost Allocation and the Bonneville Unit of the Central Utah Project publication-title: Am. J. Agric. Econ. doi: 10.2307/1242280 – volume: 3 start-page: 243 year: 2011 ident: 10.1016/j.scitotenv.2019.134718_b0070 article-title: On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2011.07.006 – volume: 48 year: 2012 ident: 10.1016/j.scitotenv.2019.134718_b0255 article-title: An examination of the sensitivity of the Great Salt Lake to changes in inputs publication-title: Water Resour. Res. doi: 10.1029/2012WR011908 – volume: 105 start-page: 154 year: 2017 ident: 10.1016/j.scitotenv.2019.134718_b0340 article-title: Impact of type of salt and ambient conditions on saline water evaporation from porous media publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.05.004 – volume: 61 start-page: 683 year: 2010 ident: 10.1016/j.scitotenv.2019.134718_b0305 article-title: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2010.01277.x – volume: Vol 59 year: 1986 ident: 10.1016/j.scitotenv.2019.134718_b0130 publication-title: Saline Lake Ecosystems of the World – volume: 170 start-page: 19 year: 2013 ident: 10.1016/j.scitotenv.2019.134718_b0145 article-title: Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.04.007 – volume: 95 start-page: 210 year: 2017 ident: 10.1016/j.scitotenv.2019.134718_b9025 article-title: Real-time environmental applications and display system Ready publication-title: Environmental Modelling Software doi: 10.1016/j.envsoft.2017.06.025 – volume: 29 start-page: 154 year: 2002 ident: 10.1016/j.scitotenv.2019.134718_b0380 article-title: Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025 publication-title: Environ. Conserv. doi: 10.1017/S0376892902000103 – volume: 101 start-page: 438 year: 2009 ident: 10.1016/j.scitotenv.2019.134718_b0275 article-title: AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description publication-title: Agron. J. doi: 10.2134/agronj2008.0140s – volume: 40 start-page: 7668 year: 2006 ident: 10.1016/j.scitotenv.2019.134718_b0295 article-title: Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.08.015 – volume: 12 year: 2017 ident: 10.1016/j.scitotenv.2019.134718_b0150 article-title: SoilGrids250m: Global gridded soil information based on machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0169748 – volume: 105 start-page: 22437 year: 2000 ident: 10.1016/j.scitotenv.2019.134718_b0335 article-title: A simple expression for wind erosion threshold friction velocity publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900304 – ident: 10.1016/j.scitotenv.2019.134718_b0170 – ident: 10.1016/j.scitotenv.2019.134718_b0265 – volume: 20 start-page: 225 year: 1964 ident: 10.1016/j.scitotenv.2019.134718_b0270 article-title: Saltation of uniform grains in air publication-title: J. Fluid Mech. doi: 10.1017/S0022112064001173 – year: 2011 ident: 10.1016/j.scitotenv.2019.134718_b9005 article-title: A socio-technical assessment framework for integrated water resources management (IWRM) in Lake Urmia Basin publication-title: Iran – volume: 114 start-page: 12833 year: 2017 ident: 10.1016/j.scitotenv.2019.134718_b0040 article-title: Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1707811114 – volume: 64 start-page: 161 year: 2007 ident: 10.1016/j.scitotenv.2019.134718_b0005 article-title: Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach publication-title: Int. J. Environ. Stud. doi: 10.1080/00207230701238416 – ident: 10.1016/j.scitotenv.2019.134718_b0100 – volume: 15 start-page: 259 year: 2006 ident: 10.1016/j.scitotenv.2019.134718_b0195 article-title: World map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2006/0130 – volume: 540 start-page: 418 year: 2016 ident: 10.1016/j.scitotenv.2019.134718_b9010 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 26 start-page: 129 year: 2012 ident: 10.1016/j.scitotenv.2019.134718_b0140 article-title: Determining the main factors in declining the Urmia Lake level by using system dynamics modeling publication-title: Water Resour. Manage. doi: 10.1007/s11269-011-9909-8 – volume: 54 start-page: 105 year: 1986 ident: 10.1016/j.scitotenv.2019.134718_b0185 article-title: Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/0031-0182(86)90120-3 – volume: 20 start-page: 15 year: 2004 ident: 10.1016/j.scitotenv.2019.134718_b0035 article-title: Development and management of the Euphrates-Tigris basin publication-title: Int. J. Water Resour. Dev. doi: 10.1080/07900620310001635584 – volume: 36 start-page: 21 year: 2012 ident: 10.1016/j.scitotenv.2019.134718_b0095 article-title: Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2011.08.003 – ident: 10.1016/j.scitotenv.2019.134718_b0075 – volume: 4 start-page: 93 year: 1996 ident: 10.1016/j.scitotenv.2019.134718_b0155 article-title: Towards a conceptual framework for restoration ecology publication-title: Restor. Ecol. doi: 10.1111/j.1526-100X.1996.tb00112.x – ident: 10.1016/j.scitotenv.2019.134718_b0180 |
SSID | ssj0000781 |
Score | 2.5073276 |
Snippet | [Display omitted]
•An eco-hydrological framework is developed to restore desiccating saline lakes.•A wide range of climatic, hydrologic, and agronomic... River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134718 |
SubjectTerms | basins climate change cropland cropping systems Ecosystem services farm income grasslands hydrologic cycle irrigated farming Lake restoration Lake Urmia land use Land use management Optimal cropping patterns river flow Saline lakes salinity salt lakes social welfare sustainable land management water allocation |
Title | Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.134718 https://www.ncbi.nlm.nih.gov/pubmed/31734504 https://www.proquest.com/docview/2315531289 https://www.proquest.com/docview/2352423860 |
Volume | 703 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CSqFQSrtt2m3SoEKvTuy1LNu5LSFh26U5lIbmJiRZAreLvdTeQC797Zmx5A2Bpjn0ZDD6QtLMPEkz8wA-VdoojoYxyhEfR9zxWaQzl0Voi23sVGIsp0Dhrxdiccm_XGVXO3A6xsKQW2XQ_V6nD9o6_DkOs3m8rmuK8eVFKcocIQinniiCnefk1nf0587Ng5LZ-FdmFGwsfc_HC9vtW8Sm1-TjVR5RWCWxf_zdQj2EQAdLdP4SXgQIyeZ-lK9gxzYTeOpJJW8msHd2F7uGxYLwdhN47q_omI88eg0Nnjlr46_sGCqPru5Y61inCHmylfpluxM2Z4i7WRWYeKJusybAztzo08UQ9DIduLUZnt3r1dAf61tmVjXiYct8cPEbuDw_-366iAL9QmR4lvZRUTg056Z0haA0-C6nV7sytZqLKtWJ0gO9Z2wINOjZwI-LZyuTlDp2CEREuge7TdvYd8CKKlU6Fy5VSvMiFjrHuklSYXMiS7maghinXJqQm5woMlZydEL7KbdrJWmtpF-rKcTbimufnuPxKifjmsp7O02iEXm88sdxF0iUQ3pcUY1tN51EnJyhPsPz67_KZARfcT6n8NZvoe2oEcelPIv5-_8Z3j48m9F9ABHWxAew2__e2A8Imnp9OEjFITyZf14uLui7_PZjeQtq8hhu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTggkhKAwKD-NxGtY0jhOsrdq2tSxrU-btDfLdmwpUCUVSZH477mLnU6TgD3wGuVsy2fffbbv7gP4XGmjODrGKEd8HHHH55HOXBahL7axU4mxnBKFL1diec2_3mQ3e3A85sJQWGWw_d6mD9Y6fDkMs3m4qWvK8eVFKcocIQinnh7APlWn4hPYX5ydL1e3BjkvPHEex72NAnfCvLDpvkV4-pPCvMovlFlJBCB_dlJ_A6GDMzp9Bk8DimQLP9DnsGebKTz0vJK_pnBwcpu-hr-F_dtN4Ym_pWM--egFNHjsrI2_tWNoP7q6Y61jnSLwydbqu-2O2IIh9GZVIOOJuu2GMDtzY1gXQ9zLdKDXZnh8r9dDf6xvmVnXCIkt8_nFL-H69OTqeBkFBobI8Czto6Jw6NFN6QpBlfBdTg93ZWo1F1WqE6UHhs_YEG7Q84EiF49XJil17BCLiPQAJk3b2NfAiipVOhcuVUrzIhY6R9kkqbA5kaVczUCMUy5NKE9OLBlrOcahfZM7XUnSlfS6mkG8E9z4Ch33ixyNOpV3FptEP3K_8KdxFUjcivS-ohrbbjuJUDlDk4ZH2H_9kxGCxfmcwSu_hHajRiiX8izmb_5neB_h0fLq8kJenK3O38LjOV0PEH9N_A4m_Y-tfY8Yqtcfwh75DS1SGXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desiccation+crisis+of+saline+lakes%3A+A+new+decision-support+framework+for+building+resilience+to+climate+change&rft.jtitle=The+Science+of+the+total+environment&rft.au=Hassani%2C+Amirhossein&rft.au=Azapagic%2C+Adisa&rft.au=D%27Odorico%2C+Paolo&rft.au=Keshmiri%2C+Amir&rft.date=2020-02-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=703&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.134718&rft.externalDocID=S0048969719347096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |