Changes in corticomotor excitability of hand muscles in relation to static shoulder positions
We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different...
Saved in:
Published in | Experimental brain research Vol. 161; no. 3; pp. 374 - 382 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Springer
01.03.2005
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0014-4819 1432-1106 |
DOI | 10.1007/s00221-004-2084-x |
Cover
Loading…
Abstract | We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects. |
---|---|
AbstractList | We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degree adduction to 30 degree abduction with respect to the neutral position at 0 degree , while elbow and wrist joints were constrained statically at 90 degree and 180 degree respectively. We found that 30 degree abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degree shoulder adduction. The neutral shoulder angle position (at 0 degree ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degree shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degree abduction than at 30 degree adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inihibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degree adduction to 30 degree abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degree shoulder abduction in comparison with 30 degree adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects. We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects.We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects. We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects. We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30° adduction to 30° abduction with respect to the neutral position at 0°, while elbow and wrist joints were constrained statically at 90° and 180° respectively. We found that 30° abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30° shoulder adduction. The neutral shoulder angle position (at 0°) significantly reduced MEP size but had no effect on MEP latency in comparison with 30° shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30° abduction than at 30° adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inihibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30° adduction to 30° abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30° shoulder abduction in comparison with 30° adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects. |
Author | Mazzocchio, R. Rossi, A. Ginanneschi, F. Del Santo, F. Gelli, F. Dominici, F. |
Author_xml | – sequence: 1 givenname: F. surname: Ginanneschi fullname: Ginanneschi, F. – sequence: 2 givenname: F. surname: Del Santo fullname: Del Santo, F. – sequence: 3 givenname: F. surname: Dominici fullname: Dominici, F. – sequence: 4 givenname: F. surname: Gelli fullname: Gelli, F. – sequence: 5 givenname: R. surname: Mazzocchio fullname: Mazzocchio, R. – sequence: 6 givenname: A. surname: Rossi fullname: Rossi, A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16575597$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15517216$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U2LFDEQBuAgK-7s6g_wIkHQW2sqnY_uowx-wYIXPUpIp6vdLOnOmKRh9t-bZkaFBfGUhDxVUPVekYslLkjIc2BvgDH9NjPGOTSMiYazTjTHR2QHouUNAFMXZMcYiEZ00F-Sq5zvtmer2RNyCVKC5qB25Pv-1i4_MFO_UBdT8S7OscRE8eh8sYMPvtzTONHKRjqv2YUTThhs8XGhJdJc6tXRfBvXMGKih5j99pefkseTDRmfnc9r8u3D-6_7T83Nl4-f9-9uGidkW5oOuOZynEYtrB3GVknsnZQKpx4GxZTt-klotNj2g5wc8qEfO90PQiFgL7G9Jq9PfQ8p_lwxFzP77DAEu2Bcs1FaSK4E_y8E3SrBZFfhywfwLq5pqUMYDhK4Yq2q6MUZrcOMozkkP9t0b36vt4JXZ2Czs2FKdnE-_3VKail7XZ0-OZdizgknsy1_W2FJ1gcDzGyBm1PgpgZutsDNsVbCg8o_zf9Z8wvJYa2k |
CODEN | EXBRAP |
CitedBy_id | crossref_primary_10_1016_j_brs_2007_08_007 crossref_primary_10_1016_j_clinph_2009_05_007 crossref_primary_10_1152_jn_00678_2010 crossref_primary_10_1113_JP281430 crossref_primary_10_1016_j_neulet_2009_06_047 crossref_primary_10_1016_j_clinph_2010_05_022 crossref_primary_10_1016_j_neulet_2017_12_019 crossref_primary_10_1016_j_brainres_2005_12_021 crossref_primary_10_1152_jn_00620_2018 crossref_primary_10_1016_j_clinph_2008_01_023 crossref_primary_10_1093_cercor_bhm052 crossref_primary_10_1016_j_neulet_2018_11_003 crossref_primary_10_1111_j_1460_9568_2005_04287_x crossref_primary_10_1152_jn_00885_2015 crossref_primary_10_1152_jn_00477_2012 crossref_primary_10_3390_bioengineering11070645 crossref_primary_10_1139_apnm_2018_0080 crossref_primary_10_1016_j_neulet_2007_01_072 crossref_primary_10_1523_JNEUROSCI_4831_08_2009 crossref_primary_10_1152_jn_00349_2019 crossref_primary_10_1080_00222895_2020_1770179 crossref_primary_10_1016_j_brainres_2007_06_012 crossref_primary_10_1016_j_clinph_2014_02_007 crossref_primary_10_3390_bioengineering10111278 crossref_primary_10_1016_j_jelekin_2012_04_012 crossref_primary_10_1371_journal_pone_0196129 crossref_primary_10_1111_j_1748_1716_2012_02451_x crossref_primary_10_1113_jphysiol_2013_257063 crossref_primary_10_3390_brainsci14070694 crossref_primary_10_1016_j_brainres_2007_06_014 crossref_primary_10_1007_s00221_019_05687_9 crossref_primary_10_1113_jphysiol_2009_186858 crossref_primary_10_1620_tjem_212_221 crossref_primary_10_1111_ejn_12623 crossref_primary_10_14814_phy2_12183 crossref_primary_10_1016_j_brainres_2012_07_043 crossref_primary_10_1002_brb3_280 crossref_primary_10_1007_s00221_006_0637_x crossref_primary_10_1152_jn_00522_2010 crossref_primary_10_1007_s00221_005_2270_5 crossref_primary_10_1007_s00429_012_0475_5 crossref_primary_10_1016_j_neuroscience_2019_07_011 crossref_primary_10_1016_j_exger_2015_11_015 crossref_primary_10_1152_jn_00527_2017 crossref_primary_10_1007_s00221_015_4255_3 crossref_primary_10_1007_s00221_021_06077_w crossref_primary_10_1016_j_clinph_2009_11_010 crossref_primary_10_1111_sms_14477 crossref_primary_10_3390_jfmk1020183 crossref_primary_10_1016_j_clinbiomech_2018_06_001 crossref_primary_10_1016_j_jelekin_2016_02_005 crossref_primary_10_1523_JNEUROSCI_1832_07_2007 crossref_primary_10_1016_j_brainres_2009_12_023 crossref_primary_10_3389_fnhum_2016_00543 crossref_primary_10_1007_s00221_016_4775_5 crossref_primary_10_1016_j_brainres_2007_12_021 crossref_primary_10_1016_j_brainres_2008_05_024 crossref_primary_10_1080_01616412_2020_1870358 crossref_primary_10_1007_s00221_014_4146_z crossref_primary_10_1007_s10072_014_1707_7 crossref_primary_10_1016_j_brainres_2014_02_017 crossref_primary_10_3390_bioengineering11080744 crossref_primary_10_1113_EP087472 crossref_primary_10_1152_japplphysiol_00536_2023 crossref_primary_10_3389_fnagi_2014_00126 |
Cites_doi | 10.1016/S0165-0270(00)00284-3 10.1152/jn.2002.87.6.3006 10.1016/S1385-299X(97)00028-7 10.1152/jn.1999.81.1.129 10.1113/jphysiol.1994.sp020018 10.1007/BF00228633 10.1016/0013-4694(96)96501-3 10.1523/JNEUROSCI.21-08-02784.2001 10.1016/S1388-2457(02)00285-7 10.1016/S0959-4388(97)80146-8 10.1113/jphysiol.1992.sp019048 10.1136/jnnp.45.8.699 10.1113/jphysiol.1996.sp021734 10.1113/jphysiol.1995.sp021048 10.1016/S0165-0270(97)02242-5 10.1016/0168-5597(91)90029-W 10.1007/BF01294721 10.1016/S0165-0270(97)02250-4 10.1007/PL00005632 10.1111/j.1469-7793.1998.181bi.x 10.1139/y00-064 10.1007/s00221-001-0978-4 10.1016/0013-4694(94)90029-9 10.1016/S1388-2457(03)00243-8 10.1113/jphysiol.1989.sp017626 10.1113/jphysiol.1994.sp020170 10.1007/PL00005641 10.1113/jphysiol.2001.012801 10.1111/j.1469-7793.2000.t01-1-00503.x 10.1152/jn.1998.80.6.2870 10.1016/S0924-980X(97)00054-4 10.1113/jphysiol.1995.sp020898 10.1016/S0165-0270(01)00468-X 10.1249/00003677-199301000-00013 10.1113/expphysiol.1991.sp003485 10.1113/jphysiol.1993.sp019912 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Springer-Verlag 2005 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Springer-Verlag 2005 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 0-V 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 88J 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M M2R NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U RC3 7X8 |
DOI | 10.1007/s00221-004-2084-x |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) Medical Database Psychology Database Social Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts Sociology & Social Sciences Collection ProQuest Central China Health Research Premium Collection Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Social Sciences ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1432-1106 |
EndPage | 382 |
ExternalDocumentID | 802813151 15517216 16575597 10_1007_s00221_004_2084_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -XW -Y2 -~C -~X .55 .86 .GJ .VR 0-V 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ INH INR IPY ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M2M M2R M4Y MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P19 P2P PF- PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW X7M YLTOR Z45 ZGI ZMTXR ZOVNA ZXP ~EX ~KM ABRTQ IQODW PJZUB PPXIY PRQQA -4W -56 -5G -BR -EM 3V. AAAVM ADINQ CGR CUY CVF ECM EIF GQ6 NPM PKN Z7R Z7U Z7W Z7X Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8V Z8W Z91 Z92 7QP 7QR 7TK 7TM 7XB 8FD 8FK FR3 K9. P64 PKEHL POGQB PQEST PQUKI PRINS PUEGO Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c453t-812725dfd74aabd365e9c556ef91b606a89f47eae39b5fce2b9d879b46e1e95e3 |
IEDL.DBID | BENPR |
ISSN | 0014-4819 |
IngestDate | Fri Sep 05 05:06:05 EDT 2025 Thu Sep 04 19:09:47 EDT 2025 Sat Aug 23 13:31:26 EDT 2025 Wed Feb 19 01:50:12 EST 2025 Mon Jul 21 09:14:46 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Tue Jul 01 03:27:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Human Transcranial magnetic stimulation Central nervous system Electrophysiology Excitability Corticospinal bundle Stimulus intensity Proximal- distal arm influences Joint Hand Abductor digiti minimi muscle Input-output properties Recruitment Osteoarticular system Wrist Evoked potential Pyramidal motor pathway Shoulder Corticospinal pathway Magnetic stimulus Motor evoked potential |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-812725dfd74aabd365e9c556ef91b606a89f47eae39b5fce2b9d879b46e1e95e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 15517216 |
PQID | 215126036 |
PQPubID | 47176 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_67452642 proquest_miscellaneous_17364058 proquest_journals_215126036 pubmed_primary_15517216 pascalfrancis_primary_16575597 crossref_citationtrail_10_1007_s00221_004_2084_x crossref_primary_10_1007_s00221_004_2084_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-03-01 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Germany – name: Heidelberg |
PublicationTitle | Experimental brain research |
PublicationTitleAlternate | Exp Brain Res |
PublicationYear | 2005 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
References | Tokimura (CR36) 2000; 523 Liepert (CR18) 1997; 104 Chen (CR5) 1998; 80 Kaelin-Lang (CR12) 2002; 540 Mazzocchio (CR21) 1994; 474 Devanne (CR8) 2002; 87 Kaelin-Lang (CR11) 2000; 102 Nielsen (CR23) 1994; 434 Schafer (CR32) 1997; 105 CR10 Capaday (CR1) 1997; 74 Chapman (CR4) 1991; 31 Mazzocchio (CR20) 1997; 2 Kalaska (CR13) 1993; 21 Kalaska (CR14) 1997; 7 Robinson (CR28) 1982; 45 Mamassian (CR19) 1997; 114 Ziemann (CR39) 1998; 511 Mazzocchio (CR22) 1995; 489 Ziemann (CR38) 1996; 496 Park (CR26) 2001; 21 Thompson (CR35) 1991; 81 Day (CR6) 1989; 412 Knikou (CR16) 2002; 143 Ridding (CR27) 1995; 487 Schulze-Bonhage (CR33) 1996; 99 Knikou (CR15) 2002; 113 Orth (CR24) 2003; 114 Rossini (CR29) 1994; 91 Jeannerod (CR9) 1995; 18 Kujirai (CR17) 1993; 471 Scott (CR34) 2000; 78 Palmer (CR25) 1992; 448 Capaday (CR2) 1999; 81 Rothwell (CR30) 1997; 74 Ziemann (CR37) 1996; 109 Rothwell (CR31) 1991; 76 Devanne (CR7) 1997; 114 Carroll (CR3) 2001; 112 8862116 - Electroencephalogr Clin Neurophysiol. 1996 Sep;99(3):267-73 7571012 - Trends Neurosci. 1995 Jul;18(7):314-20 8930851 - J Physiol. 1996 Nov 1;496 ( Pt 3):873-81 9464979 - Curr Opin Neurobiol. 1997 Dec;7(6):849-59 8504849 - Exerc Sport Sci Rev. 1993;21:397-436 8071888 - J Physiol. 1994 May 15;477(Pt 1):47-58 9914274 - J Neurophysiol. 1999 Jan;81(1):129-39 9448648 - Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):462-9 9679173 - J Physiol. 1998 Aug 15;511 ( Pt 1):181-90 8558482 - J Physiol. 1995 Sep 1;487 ( Pt 2):541-8 2049989 - Electromyogr Clin Neurophysiol. 1991 Apr;31(3):131-43 9503266 - J Neural Transm (Vienna). 1997;104(11-12):1207-14 8740215 - Exp Brain Res. 1996 Apr;109(1):127-35 11880891 - Exp Brain Res. 2002 Mar;143(2):149-59 11000414 - J Neurosci Methods. 2000 Oct 15;102(1):81-9 8006812 - J Physiol. 1994 Jan 15;474(2):261-7 10699092 - J Physiol. 2000 Mar 1;523 Pt 2:503-13 9862891 - J Neurophysiol. 1998 Dec;80(6):2870-81 7519144 - Electroencephalogr Clin Neurophysiol. 1994 Aug;91(2):79-92 9166913 - Exp Brain Res. 1997 Apr;114(2):235-45 2059424 - Exp Physiol. 1991 Mar;76(2):159-200 11956348 - J Physiol. 2002 Apr 15;540(Pt 2):623-33 12417222 - Clin Neurophysiol. 2002 Nov;113(11):1698-708 11100941 - Can J Physiol Pharmacol. 2000 Nov;78(11):923-33 8120818 - J Physiol. 1993 Nov;471:501-19 6215465 - J Neurol Neurosurg Psychiatry. 1982 Aug;45(8):699-704 8583410 - J Physiol. 1995 Nov 15;489 ( Pt 1):263-73 14652096 - Clin Neurophysiol. 2003 Dec;114(12):2362-9 9166922 - Exp Brain Res. 1997 Apr;114(2):329-38 9438072 - Brain Res Brain Res Protoc. 1997 Dec 1;2(1):53-8 2489409 - J Physiol. 1989 May;412:449-73 1718726 - Electroencephalogr Clin Neurophysiol. 1991 Oct;81(5):397-402 12037204 - J Neurophysiol. 2002 Jun;87(6):3006-17 9219881 - J Neurosci Methods. 1997 Jun 27;74(2):113-22 9219889 - J Neurosci Methods. 1997 Jun 27;74(2):201-18 1593472 - J Physiol. 1992 Mar;448:397-412 11306630 - J Neurosci. 2001 Apr 15;21(8):2784-92 11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202 |
References_xml | – volume: 102 start-page: 81 year: 2000 ident: CR11 publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(00)00284-3 – volume: 87 start-page: 3006 year: 2002 ident: CR8 publication-title: J Neurophysiol doi: 10.1152/jn.2002.87.6.3006 – volume: 2 start-page: 53 year: 1997 ident: CR20 publication-title: Brain Res Protoc doi: 10.1016/S1385-299X(97)00028-7 – volume: 81 start-page: 129 year: 1999 ident: CR2 publication-title: J Neurophysiol doi: 10.1152/jn.1999.81.1.129 – volume: 474 start-page: 261 year: 1994 ident: CR21 publication-title: J Physiol doi: 10.1113/jphysiol.1994.sp020018 – volume: 109 start-page: 127 year: 1996 ident: CR37 publication-title: Exp Brain Res doi: 10.1007/BF00228633 – volume: 99 start-page: 267 year: 1996 ident: CR33 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(96)96501-3 – ident: CR10 – volume: 21 start-page: 2784 year: 2001 ident: CR26 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-08-02784.2001 – volume: 113 start-page: 1698 year: 2002 ident: CR15 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00285-7 – volume: 31 start-page: 131 year: 1991 ident: CR4 publication-title: Electromyogr Clin Neurophysiol – volume: 7 start-page: 849 year: 1997 ident: CR14 publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(97)80146-8 – volume: 448 start-page: 397 year: 1992 ident: CR25 publication-title: J Physiol doi: 10.1113/jphysiol.1992.sp019048 – volume: 45 start-page: 699 year: 1982 ident: CR28 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.45.8.699 – volume: 496 start-page: 873 year: 1996 ident: CR38 publication-title: J Physiol doi: 10.1113/jphysiol.1996.sp021734 – volume: 489 start-page: 263 year: 1995 ident: CR22 publication-title: J Physiol doi: 10.1113/jphysiol.1995.sp021048 – volume: 74 start-page: 113 year: 1997 ident: CR30 publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(97)02242-5 – volume: 81 start-page: 397 year: 1991 ident: CR35 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90029-W – volume: 104 start-page: 1207 year: 1997 ident: CR18 publication-title: J Neural Transm doi: 10.1007/BF01294721 – volume: 74 start-page: 201 year: 1997 ident: CR1 publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(97)02250-4 – volume: 114 start-page: 235 year: 1997 ident: CR19 publication-title: Exp Brain Res doi: 10.1007/PL00005632 – volume: 511 start-page: 181 year: 1998 ident: CR39 publication-title: J Physiol doi: 10.1111/j.1469-7793.1998.181bi.x – volume: 78 start-page: 923 year: 2000 ident: CR34 publication-title: Can J Physiol Pharmacol doi: 10.1139/y00-064 – volume: 143 start-page: 149 year: 2002 ident: CR16 publication-title: Exp Brain Res doi: 10.1007/s00221-001-0978-4 – volume: 91 start-page: 79 year: 1994 ident: CR29 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(94)90029-9 – volume: 114 start-page: 2362 year: 2003 ident: CR24 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00243-8 – volume: 412 start-page: 449 year: 1989 ident: CR6 publication-title: J Physiol doi: 10.1113/jphysiol.1989.sp017626 – volume: 434 start-page: 47 year: 1994 ident: CR23 publication-title: J Physiol doi: 10.1113/jphysiol.1994.sp020170 – volume: 114 start-page: 329 year: 1997 ident: CR7 publication-title: Exp Brain Res doi: 10.1007/PL00005641 – volume: 540 start-page: 623 year: 2002 ident: CR12 publication-title: J Physiol doi: 10.1113/jphysiol.2001.012801 – volume: 523 start-page: 503 year: 2000 ident: CR36 publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.t01-1-00503.x – volume: 80 start-page: 2870 year: 1998 ident: CR5 publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.6.2870 – volume: 105 start-page: 462 year: 1997 ident: CR32 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0924-980X(97)00054-4 – volume: 18 start-page: 314 year: 1995 ident: CR9 publication-title: TINS – volume: 487 start-page: 541 year: 1995 ident: CR27 publication-title: J Physiol doi: 10.1113/jphysiol.1995.sp020898 – volume: 112 start-page: 193 year: 2001 ident: CR3 publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(01)00468-X – volume: 21 start-page: 397 year: 1993 ident: CR13 publication-title: Exerc Sport Sci Rev doi: 10.1249/00003677-199301000-00013 – volume: 76 start-page: 159 year: 1991 ident: CR31 publication-title: Exp Physiol doi: 10.1113/expphysiol.1991.sp003485 – volume: 471 start-page: 501 year: 1993 ident: CR17 publication-title: J Physiol doi: 10.1113/jphysiol.1993.sp019912 – reference: 11100941 - Can J Physiol Pharmacol. 2000 Nov;78(11):923-33 – reference: 7571012 - Trends Neurosci. 1995 Jul;18(7):314-20 – reference: 9166922 - Exp Brain Res. 1997 Apr;114(2):329-38 – reference: 11880891 - Exp Brain Res. 2002 Mar;143(2):149-59 – reference: 1718726 - Electroencephalogr Clin Neurophysiol. 1991 Oct;81(5):397-402 – reference: 1593472 - J Physiol. 1992 Mar;448:397-412 – reference: 8071888 - J Physiol. 1994 May 15;477(Pt 1):47-58 – reference: 8558482 - J Physiol. 1995 Sep 1;487 ( Pt 2):541-8 – reference: 8862116 - Electroencephalogr Clin Neurophysiol. 1996 Sep;99(3):267-73 – reference: 8930851 - J Physiol. 1996 Nov 1;496 ( Pt 3):873-81 – reference: 11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202 – reference: 8740215 - Exp Brain Res. 1996 Apr;109(1):127-35 – reference: 9503266 - J Neural Transm (Vienna). 1997;104(11-12):1207-14 – reference: 6215465 - J Neurol Neurosurg Psychiatry. 1982 Aug;45(8):699-704 – reference: 2059424 - Exp Physiol. 1991 Mar;76(2):159-200 – reference: 7519144 - Electroencephalogr Clin Neurophysiol. 1994 Aug;91(2):79-92 – reference: 11306630 - J Neurosci. 2001 Apr 15;21(8):2784-92 – reference: 11956348 - J Physiol. 2002 Apr 15;540(Pt 2):623-33 – reference: 9166913 - Exp Brain Res. 1997 Apr;114(2):235-45 – reference: 9219889 - J Neurosci Methods. 1997 Jun 27;74(2):201-18 – reference: 9219881 - J Neurosci Methods. 1997 Jun 27;74(2):113-22 – reference: 9448648 - Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):462-9 – reference: 9438072 - Brain Res Brain Res Protoc. 1997 Dec 1;2(1):53-8 – reference: 12417222 - Clin Neurophysiol. 2002 Nov;113(11):1698-708 – reference: 9862891 - J Neurophysiol. 1998 Dec;80(6):2870-81 – reference: 12037204 - J Neurophysiol. 2002 Jun;87(6):3006-17 – reference: 2049989 - Electromyogr Clin Neurophysiol. 1991 Apr;31(3):131-43 – reference: 2489409 - J Physiol. 1989 May;412:449-73 – reference: 11000414 - J Neurosci Methods. 2000 Oct 15;102(1):81-9 – reference: 8504849 - Exerc Sport Sci Rev. 1993;21:397-436 – reference: 14652096 - Clin Neurophysiol. 2003 Dec;114(12):2362-9 – reference: 8006812 - J Physiol. 1994 Jan 15;474(2):261-7 – reference: 9914274 - J Neurophysiol. 1999 Jan;81(1):129-39 – reference: 9464979 - Curr Opin Neurobiol. 1997 Dec;7(6):849-59 – reference: 8120818 - J Physiol. 1993 Nov;471:501-19 – reference: 10699092 - J Physiol. 2000 Mar 1;523 Pt 2:503-13 – reference: 8583410 - J Physiol. 1995 Nov 15;489 ( Pt 1):263-73 – reference: 9679173 - J Physiol. 1998 Aug 15;511 ( Pt 1):181-90 |
SSID | ssj0014370 |
Score | 2.053226 |
Snippet | We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle.... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 374 |
SubjectTerms | Action Potentials - physiology Adult Biological and medical sciences Electroencephalography Electromyography Evoked Potentials, Motor - physiology Eye and associated structures. Visual pathways and centers. Vision Feedback - physiology Female Fundamental and applied biological sciences. Psychology Hand - innervation Hand - physiology Humans Male Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Motor Cortex - physiology Motor Neurons - physiology Muscle Contraction - physiology Muscle, Skeletal - innervation Muscle, Skeletal - physiology Posture - physiology Proprioception - physiology Pyramidal Tracts - physiology Range of Motion, Articular - physiology Shoulder Joint - innervation Shoulder Joint - physiology Vertebrates: nervous system and sense organs |
Title | Changes in corticomotor excitability of hand muscles in relation to static shoulder positions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15517216 https://www.proquest.com/docview/215126036 https://www.proquest.com/docview/17364058 https://www.proquest.com/docview/67452642 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_s9aUgoq0fZ_XcB_FBWMwlu9nsk1RpKYJFxMK9SMhuJnhgk_OSg7v_3plNLqUP7VMessOSzOx87Hz8AN47m5bWupLh21GSloyly0onLToX-yRCl3Gj8Per9PJafVvoxVCb0w5llXudGBR12Xi-I_8UTFNK-vbz6p9k0ChOrg4IGgdwSBo40xM4_HJ-9ePnmEZQiel7UOZKKrJ9-7RmFKaIxjFF0pEiQcmU3N4xTI9XRUv_qOrBLe73PoMVungKTwb3UZz1_H4Gj7A-hpOzmkLnm534IEJBZ7gpP4ajUbntTuB330bQimUtKOAkci7Da9YCt37Z9cO6d6KpBN-ki5tNy9VyvHg9VMuJrhHcfbT0ov3DuNi4FmPF13O4vjj_9fVSDtAK0iuddJLMuol1WZVGFYUrk1Sj9VqnWNm5o5imyGylDBaYWKcrj7GzZWasI4bO0WpMXsCkbmp8BSKp0JETVtEzUl5lRK7Iy4jQmJQppxDt_2vuh7njDH_xNx8nJgdW5MSKnFmRb6fwcSRZ9UM3Hlo8u8OsWwrOKVG8NIXTPffy4YC2-ShOU3g3vqWTxemSosZm0-Zzk6Tkzmb3r0gNA7Qr-sSXvVDc7k2OKI9Fev3g3qdwFCbBhpK2NzDp1ht8Sz5O52ZwYBZmNsjzfwkI_Ks |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPEhiiIIfJwr7oD6YbOy12273gRhUyCFwMQYSXkztttN4ibTntRfu_ij-R2f6RXiAN5760J027czO_GbnC-CdNUFqjE15fDtK0pKutGFqpUFr3cRz0IZcKHw6Dkbn6vuFf7EC110tDKdVdjqxVtRpkfAZ-afaNAWkbz9P_0keGsXB1W6CRiMVx7i8Io-t3Dv6Rux977qHB2dfR7IdKiAT5XuVJIOmXT_NUq3i2KZe4KNJfD_AzAwtofk4NJnSGKNnrJ8l6FqThtpY-pQhGh89eu4jWCOUYWgTrX05GP_42YctlKebmpehkopsbRdGdequpa5LnrujSDBDJRe3DOGTaVwST7JmmMbdaLe2eodPYaOFq2K_ka9nsIL5Jmzt5-SqXy7FB1EnkNYn85uw3ivT5Rb8asoWSjHJBTm4RM5pf8VM4CKZVE1z8KUoMsEn9-JyXnJ2Hi-etdl5oioEVztNElH-4TncOBN9htlzOH-Qv_4CVvMix1cgvAwtgb6Mro5KVEjkilCNg1oHTDkAp_uvUdL2OedxG3-jvkNzzYqIWBExK6LFAD72JNOmycd9i3duMeuGgmNY5J8NYLvjXtQqhDLqxXcAu_1d2skcnolzLOZlNNReQPA5vHtFoHkgvKJPfNkIxc27CfhyG6bX9757Fx6Pzk5PopOj8fE2rNddaOt0ujewWs3m-JbwVWV3WqkW8PuhN9J_Kgk5-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVkKVKgQtj6XQzgE4IEXNJpNM5oBQoV21FFYVolIvKGQmjlipTZZNVuz-NP4ddl5VD-2tpxwyTpTY48f4sw3wxugw1dqkPL4dHdKSnmOi1DgajfGs76KJuFD42yQ8PpdfLoKLNfjX1cIwrLLTibWiTgvLZ-T7tWkKSd_uZy0q4uxw_HH2x-EBUpxo7aZpNBJyiqu_FL2VH04OidVvPW989OPzsdMOGHCsDPzKIeOmvCDNUiWTxKR-GKC2QRBipkeGPPsk0plUmKCvTZBZ9IxOI6UNfdYIdYA-PfcBrCsyitEA1j8dTc6-9ykM6aum_mUkHUl2t0upunUHU8-jKN6VJKSRdJY3jOLmLCmJP1kzWON2z7e2gOPH8Kh1XcVBI2tPYA3zLdg-yClsv1qJd6IGk9an9Fuw0SvW1Tb8bEoYSjHNBQW7RM4QwGIucGmnVdMofCWKTPApvrhalIzU48XzFqknqkJw5dPUivI3z-TGuejRZk_h_F7--jMY5EWOL0D4GRpyADO6utLKiMgleTguKhUy5RDc7r_Gtu15zqM3LuO-W3PNiphYETMr4uUQ3vcks6bhx12Ld28w65qC81kUqw1hp-Ne3CqHMu5FeQh7_V3a1ZyqSXIsFmU8Un5IrnR0-4pQ8XB4SZ_4vBGK63eTE8wtmV7e-e49eEgbKP56MjndgY26IW2NrHsFg2q-wNfkalVmtxVqAb_uex_9B4c6PiY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+corticomotor+excitability+of+hand+muscles+in+relation+to+static+shoulder+positions&rft.jtitle=Experimental+brain+research&rft.au=Ginanneschi%2C+F.&rft.au=Del+Santo%2C+F.&rft.au=Dominici%2C+F.&rft.au=Gelli%2C+F.&rft.date=2005-03-01&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=161&rft.issue=3&rft.spage=374&rft.epage=382&rft_id=info:doi/10.1007%2Fs00221-004-2084-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00221_004_2084_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |