Changes in corticomotor excitability of hand muscles in relation to static shoulder positions

We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 161; no. 3; pp. 374 - 382
Main Authors Ginanneschi, F., Del Santo, F., Dominici, F., Gelli, F., Mazzocchio, R., Rossi, A.
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.03.2005
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0014-4819
1432-1106
DOI10.1007/s00221-004-2084-x

Cover

Loading…
Abstract We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects.
AbstractList We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degree adduction to 30 degree abduction with respect to the neutral position at 0 degree , while elbow and wrist joints were constrained statically at 90 degree and 180 degree respectively. We found that 30 degree abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degree shoulder adduction. The neutral shoulder angle position (at 0 degree ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degree shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degree abduction than at 30 degree adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inihibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degree adduction to 30 degree abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degree shoulder abduction in comparison with 30 degree adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects.
We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects.We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects.
We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30 degrees adduction to 30 degrees abduction with respect to the neutral position at 0 degrees, while elbow and wrist joints were constrained statically at 90 degrees and 180 degrees respectively. We found that 30 degrees abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30 degrees shoulder adduction. The neutral shoulder angle position (at 0 degrees ) significantly reduced MEP size but had no effect on MEP latency in comparison with 30 degrees shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30 degrees abduction than at 30 degrees adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30 degrees adduction to 30 degrees abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30 degrees shoulder abduction in comparison with 30 degrees adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects.
We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle. Abductor digiti minimi (ADM) motor evoked potentials (MEPs) in response to transcranial magnetic stimulation were examined during different static positions of the shoulder joint in the horizontal plane from 30° adduction to 30° abduction with respect to the neutral position at 0°, while elbow and wrist joints were constrained statically at 90° and 180° respectively. We found that 30° abduction of the shoulder significantly depressed MEP size and prolonged MEP latency in comparison with 30° shoulder adduction. The neutral shoulder angle position (at 0°) significantly reduced MEP size but had no effect on MEP latency in comparison with 30° shoulder abduction. The input-output relationship between MEP size and stimulus intensity was sigmoidal. The plateau value and maximum slope were significantly lower at 30° abduction than at 30° adduction of the shoulder. However, the threshold value did not differ significantly between the two positions. To differentiate excitability changes at cortical versus subcortical sites, intracortical inihibition (ICI) and intracortical facilitation (ICF) were assessed using a paired-magnetic pulse paradigm. A significant decrease in ICF was observed after changing shoulder position from 30° adduction to 30° abduction. In contrast, no variation in the amount of ICI occurred in relation to the same changes in shoulder position. ADM F-waves elicited by electrical stimulation of the ulnar nerve at the wrist were significantly decreased at 30° shoulder abduction in comparison with 30° adduction. A similar pattern was observed in one subject in whom the H-reflex could be exceptionally elicited in ADM. We conclude that shoulder position influences the recruitment efficiency (gain) of the corticospinal volleys to motoneurons of intrinsic hand muscles. It is proposed that activity of peripheral receptors signalling static shoulder position influences corticomotor excitability of hand muscles both at the cortical and at the spinal level. This modulation may be functionally relevant when reaching to grasp objects.
Author Mazzocchio, R.
Rossi, A.
Ginanneschi, F.
Del Santo, F.
Gelli, F.
Dominici, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Ginanneschi
  fullname: Ginanneschi, F.
– sequence: 2
  givenname: F.
  surname: Del Santo
  fullname: Del Santo, F.
– sequence: 3
  givenname: F.
  surname: Dominici
  fullname: Dominici, F.
– sequence: 4
  givenname: F.
  surname: Gelli
  fullname: Gelli, F.
– sequence: 5
  givenname: R.
  surname: Mazzocchio
  fullname: Mazzocchio, R.
– sequence: 6
  givenname: A.
  surname: Rossi
  fullname: Rossi, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16575597$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15517216$$D View this record in MEDLINE/PubMed
BookMark eNqF0U2LFDEQBuAgK-7s6g_wIkHQW2sqnY_uowx-wYIXPUpIp6vdLOnOmKRh9t-bZkaFBfGUhDxVUPVekYslLkjIc2BvgDH9NjPGOTSMiYazTjTHR2QHouUNAFMXZMcYiEZ00F-Sq5zvtmer2RNyCVKC5qB25Pv-1i4_MFO_UBdT8S7OscRE8eh8sYMPvtzTONHKRjqv2YUTThhs8XGhJdJc6tXRfBvXMGKih5j99pefkseTDRmfnc9r8u3D-6_7T83Nl4-f9-9uGidkW5oOuOZynEYtrB3GVknsnZQKpx4GxZTt-klotNj2g5wc8qEfO90PQiFgL7G9Jq9PfQ8p_lwxFzP77DAEu2Bcs1FaSK4E_y8E3SrBZFfhywfwLq5pqUMYDhK4Yq2q6MUZrcOMozkkP9t0b36vt4JXZ2Czs2FKdnE-_3VKail7XZ0-OZdizgknsy1_W2FJ1gcDzGyBm1PgpgZutsDNsVbCg8o_zf9Z8wvJYa2k
CODEN EXBRAP
CitedBy_id crossref_primary_10_1016_j_brs_2007_08_007
crossref_primary_10_1016_j_clinph_2009_05_007
crossref_primary_10_1152_jn_00678_2010
crossref_primary_10_1113_JP281430
crossref_primary_10_1016_j_neulet_2009_06_047
crossref_primary_10_1016_j_clinph_2010_05_022
crossref_primary_10_1016_j_neulet_2017_12_019
crossref_primary_10_1016_j_brainres_2005_12_021
crossref_primary_10_1152_jn_00620_2018
crossref_primary_10_1016_j_clinph_2008_01_023
crossref_primary_10_1093_cercor_bhm052
crossref_primary_10_1016_j_neulet_2018_11_003
crossref_primary_10_1111_j_1460_9568_2005_04287_x
crossref_primary_10_1152_jn_00885_2015
crossref_primary_10_1152_jn_00477_2012
crossref_primary_10_3390_bioengineering11070645
crossref_primary_10_1139_apnm_2018_0080
crossref_primary_10_1016_j_neulet_2007_01_072
crossref_primary_10_1523_JNEUROSCI_4831_08_2009
crossref_primary_10_1152_jn_00349_2019
crossref_primary_10_1080_00222895_2020_1770179
crossref_primary_10_1016_j_brainres_2007_06_012
crossref_primary_10_1016_j_clinph_2014_02_007
crossref_primary_10_3390_bioengineering10111278
crossref_primary_10_1016_j_jelekin_2012_04_012
crossref_primary_10_1371_journal_pone_0196129
crossref_primary_10_1111_j_1748_1716_2012_02451_x
crossref_primary_10_1113_jphysiol_2013_257063
crossref_primary_10_3390_brainsci14070694
crossref_primary_10_1016_j_brainres_2007_06_014
crossref_primary_10_1007_s00221_019_05687_9
crossref_primary_10_1113_jphysiol_2009_186858
crossref_primary_10_1620_tjem_212_221
crossref_primary_10_1111_ejn_12623
crossref_primary_10_14814_phy2_12183
crossref_primary_10_1016_j_brainres_2012_07_043
crossref_primary_10_1002_brb3_280
crossref_primary_10_1007_s00221_006_0637_x
crossref_primary_10_1152_jn_00522_2010
crossref_primary_10_1007_s00221_005_2270_5
crossref_primary_10_1007_s00429_012_0475_5
crossref_primary_10_1016_j_neuroscience_2019_07_011
crossref_primary_10_1016_j_exger_2015_11_015
crossref_primary_10_1152_jn_00527_2017
crossref_primary_10_1007_s00221_015_4255_3
crossref_primary_10_1007_s00221_021_06077_w
crossref_primary_10_1016_j_clinph_2009_11_010
crossref_primary_10_1111_sms_14477
crossref_primary_10_3390_jfmk1020183
crossref_primary_10_1016_j_clinbiomech_2018_06_001
crossref_primary_10_1016_j_jelekin_2016_02_005
crossref_primary_10_1523_JNEUROSCI_1832_07_2007
crossref_primary_10_1016_j_brainres_2009_12_023
crossref_primary_10_3389_fnhum_2016_00543
crossref_primary_10_1007_s00221_016_4775_5
crossref_primary_10_1016_j_brainres_2007_12_021
crossref_primary_10_1016_j_brainres_2008_05_024
crossref_primary_10_1080_01616412_2020_1870358
crossref_primary_10_1007_s00221_014_4146_z
crossref_primary_10_1007_s10072_014_1707_7
crossref_primary_10_1016_j_brainres_2014_02_017
crossref_primary_10_3390_bioengineering11080744
crossref_primary_10_1113_EP087472
crossref_primary_10_1152_japplphysiol_00536_2023
crossref_primary_10_3389_fnagi_2014_00126
Cites_doi 10.1016/S0165-0270(00)00284-3
10.1152/jn.2002.87.6.3006
10.1016/S1385-299X(97)00028-7
10.1152/jn.1999.81.1.129
10.1113/jphysiol.1994.sp020018
10.1007/BF00228633
10.1016/0013-4694(96)96501-3
10.1523/JNEUROSCI.21-08-02784.2001
10.1016/S1388-2457(02)00285-7
10.1016/S0959-4388(97)80146-8
10.1113/jphysiol.1992.sp019048
10.1136/jnnp.45.8.699
10.1113/jphysiol.1996.sp021734
10.1113/jphysiol.1995.sp021048
10.1016/S0165-0270(97)02242-5
10.1016/0168-5597(91)90029-W
10.1007/BF01294721
10.1016/S0165-0270(97)02250-4
10.1007/PL00005632
10.1111/j.1469-7793.1998.181bi.x
10.1139/y00-064
10.1007/s00221-001-0978-4
10.1016/0013-4694(94)90029-9
10.1016/S1388-2457(03)00243-8
10.1113/jphysiol.1989.sp017626
10.1113/jphysiol.1994.sp020170
10.1007/PL00005641
10.1113/jphysiol.2001.012801
10.1111/j.1469-7793.2000.t01-1-00503.x
10.1152/jn.1998.80.6.2870
10.1016/S0924-980X(97)00054-4
10.1113/jphysiol.1995.sp020898
10.1016/S0165-0270(01)00468-X
10.1249/00003677-199301000-00013
10.1113/expphysiol.1991.sp003485
10.1113/jphysiol.1993.sp019912
ContentType Journal Article
Copyright 2006 INIST-CNRS
Springer-Verlag 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Springer-Verlag 2005
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
88J
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
M2R
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
RC3
7X8
DOI 10.1007/s00221-004-2084-x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Social Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
Sociology & Social Sciences Collection
ProQuest Central China
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1432-1106
EndPage 382
ExternalDocumentID 802813151
15517216
16575597
10_1007_s00221_004_2084_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-XW
-Y2
-~C
-~X
.55
.86
.GJ
.VR
0-V
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
FA8
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IHW
IJ-
IKXTQ
INH
INR
IPY
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P19
P2P
PF-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
X7M
YLTOR
Z45
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
ABRTQ
IQODW
PJZUB
PPXIY
PRQQA
-4W
-56
-5G
-BR
-EM
3V.
AAAVM
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
NPM
PKN
Z7R
Z7U
Z7W
Z7X
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
7QP
7QR
7TK
7TM
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
POGQB
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
7X8
ID FETCH-LOGICAL-c453t-812725dfd74aabd365e9c556ef91b606a89f47eae39b5fce2b9d879b46e1e95e3
IEDL.DBID BENPR
ISSN 0014-4819
IngestDate Fri Sep 05 05:06:05 EDT 2025
Thu Sep 04 19:09:47 EDT 2025
Sat Aug 23 13:31:26 EDT 2025
Wed Feb 19 01:50:12 EST 2025
Mon Jul 21 09:14:46 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Tue Jul 01 03:27:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Human
Transcranial magnetic stimulation
Central nervous system
Electrophysiology
Excitability
Corticospinal bundle
Stimulus intensity
Proximal- distal arm influences
Joint
Hand
Abductor digiti minimi muscle
Input-output properties
Recruitment
Osteoarticular system
Wrist
Evoked potential
Pyramidal motor pathway
Shoulder
Corticospinal pathway
Magnetic stimulus
Motor evoked potential
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-812725dfd74aabd365e9c556ef91b606a89f47eae39b5fce2b9d879b46e1e95e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 15517216
PQID 215126036
PQPubID 47176
PageCount 9
ParticipantIDs proquest_miscellaneous_67452642
proquest_miscellaneous_17364058
proquest_journals_215126036
pubmed_primary_15517216
pascalfrancis_primary_16575597
crossref_citationtrail_10_1007_s00221_004_2084_x
crossref_primary_10_1007_s00221_004_2084_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-03-01
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Germany
– name: Heidelberg
PublicationTitle Experimental brain research
PublicationTitleAlternate Exp Brain Res
PublicationYear 2005
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References Tokimura (CR36) 2000; 523
Liepert (CR18) 1997; 104
Chen (CR5) 1998; 80
Kaelin-Lang (CR12) 2002; 540
Mazzocchio (CR21) 1994; 474
Devanne (CR8) 2002; 87
Kaelin-Lang (CR11) 2000; 102
Nielsen (CR23) 1994; 434
Schafer (CR32) 1997; 105
CR10
Capaday (CR1) 1997; 74
Chapman (CR4) 1991; 31
Mazzocchio (CR20) 1997; 2
Kalaska (CR13) 1993; 21
Kalaska (CR14) 1997; 7
Robinson (CR28) 1982; 45
Mamassian (CR19) 1997; 114
Ziemann (CR39) 1998; 511
Mazzocchio (CR22) 1995; 489
Ziemann (CR38) 1996; 496
Park (CR26) 2001; 21
Thompson (CR35) 1991; 81
Day (CR6) 1989; 412
Knikou (CR16) 2002; 143
Ridding (CR27) 1995; 487
Schulze-Bonhage (CR33) 1996; 99
Knikou (CR15) 2002; 113
Orth (CR24) 2003; 114
Rossini (CR29) 1994; 91
Jeannerod (CR9) 1995; 18
Kujirai (CR17) 1993; 471
Scott (CR34) 2000; 78
Palmer (CR25) 1992; 448
Capaday (CR2) 1999; 81
Rothwell (CR30) 1997; 74
Ziemann (CR37) 1996; 109
Rothwell (CR31) 1991; 76
Devanne (CR7) 1997; 114
Carroll (CR3) 2001; 112
8862116 - Electroencephalogr Clin Neurophysiol. 1996 Sep;99(3):267-73
7571012 - Trends Neurosci. 1995 Jul;18(7):314-20
8930851 - J Physiol. 1996 Nov 1;496 ( Pt 3):873-81
9464979 - Curr Opin Neurobiol. 1997 Dec;7(6):849-59
8504849 - Exerc Sport Sci Rev. 1993;21:397-436
8071888 - J Physiol. 1994 May 15;477(Pt 1):47-58
9914274 - J Neurophysiol. 1999 Jan;81(1):129-39
9448648 - Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):462-9
9679173 - J Physiol. 1998 Aug 15;511 ( Pt 1):181-90
8558482 - J Physiol. 1995 Sep 1;487 ( Pt 2):541-8
2049989 - Electromyogr Clin Neurophysiol. 1991 Apr;31(3):131-43
9503266 - J Neural Transm (Vienna). 1997;104(11-12):1207-14
8740215 - Exp Brain Res. 1996 Apr;109(1):127-35
11880891 - Exp Brain Res. 2002 Mar;143(2):149-59
11000414 - J Neurosci Methods. 2000 Oct 15;102(1):81-9
8006812 - J Physiol. 1994 Jan 15;474(2):261-7
10699092 - J Physiol. 2000 Mar 1;523 Pt 2:503-13
9862891 - J Neurophysiol. 1998 Dec;80(6):2870-81
7519144 - Electroencephalogr Clin Neurophysiol. 1994 Aug;91(2):79-92
9166913 - Exp Brain Res. 1997 Apr;114(2):235-45
2059424 - Exp Physiol. 1991 Mar;76(2):159-200
11956348 - J Physiol. 2002 Apr 15;540(Pt 2):623-33
12417222 - Clin Neurophysiol. 2002 Nov;113(11):1698-708
11100941 - Can J Physiol Pharmacol. 2000 Nov;78(11):923-33
8120818 - J Physiol. 1993 Nov;471:501-19
6215465 - J Neurol Neurosurg Psychiatry. 1982 Aug;45(8):699-704
8583410 - J Physiol. 1995 Nov 15;489 ( Pt 1):263-73
14652096 - Clin Neurophysiol. 2003 Dec;114(12):2362-9
9166922 - Exp Brain Res. 1997 Apr;114(2):329-38
9438072 - Brain Res Brain Res Protoc. 1997 Dec 1;2(1):53-8
2489409 - J Physiol. 1989 May;412:449-73
1718726 - Electroencephalogr Clin Neurophysiol. 1991 Oct;81(5):397-402
12037204 - J Neurophysiol. 2002 Jun;87(6):3006-17
9219881 - J Neurosci Methods. 1997 Jun 27;74(2):113-22
9219889 - J Neurosci Methods. 1997 Jun 27;74(2):201-18
1593472 - J Physiol. 1992 Mar;448:397-412
11306630 - J Neurosci. 2001 Apr 15;21(8):2784-92
11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202
References_xml – volume: 102
  start-page: 81
  year: 2000
  ident: CR11
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(00)00284-3
– volume: 87
  start-page: 3006
  year: 2002
  ident: CR8
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2002.87.6.3006
– volume: 2
  start-page: 53
  year: 1997
  ident: CR20
  publication-title: Brain Res Protoc
  doi: 10.1016/S1385-299X(97)00028-7
– volume: 81
  start-page: 129
  year: 1999
  ident: CR2
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.81.1.129
– volume: 474
  start-page: 261
  year: 1994
  ident: CR21
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1994.sp020018
– volume: 109
  start-page: 127
  year: 1996
  ident: CR37
  publication-title: Exp Brain Res
  doi: 10.1007/BF00228633
– volume: 99
  start-page: 267
  year: 1996
  ident: CR33
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(96)96501-3
– ident: CR10
– volume: 21
  start-page: 2784
  year: 2001
  ident: CR26
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-08-02784.2001
– volume: 113
  start-page: 1698
  year: 2002
  ident: CR15
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00285-7
– volume: 31
  start-page: 131
  year: 1991
  ident: CR4
  publication-title: Electromyogr Clin Neurophysiol
– volume: 7
  start-page: 849
  year: 1997
  ident: CR14
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(97)80146-8
– volume: 448
  start-page: 397
  year: 1992
  ident: CR25
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1992.sp019048
– volume: 45
  start-page: 699
  year: 1982
  ident: CR28
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.45.8.699
– volume: 496
  start-page: 873
  year: 1996
  ident: CR38
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1996.sp021734
– volume: 489
  start-page: 263
  year: 1995
  ident: CR22
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1995.sp021048
– volume: 74
  start-page: 113
  year: 1997
  ident: CR30
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(97)02242-5
– volume: 81
  start-page: 397
  year: 1991
  ident: CR35
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90029-W
– volume: 104
  start-page: 1207
  year: 1997
  ident: CR18
  publication-title: J Neural Transm
  doi: 10.1007/BF01294721
– volume: 74
  start-page: 201
  year: 1997
  ident: CR1
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(97)02250-4
– volume: 114
  start-page: 235
  year: 1997
  ident: CR19
  publication-title: Exp Brain Res
  doi: 10.1007/PL00005632
– volume: 511
  start-page: 181
  year: 1998
  ident: CR39
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1998.181bi.x
– volume: 78
  start-page: 923
  year: 2000
  ident: CR34
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/y00-064
– volume: 143
  start-page: 149
  year: 2002
  ident: CR16
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-001-0978-4
– volume: 91
  start-page: 79
  year: 1994
  ident: CR29
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(94)90029-9
– volume: 114
  start-page: 2362
  year: 2003
  ident: CR24
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00243-8
– volume: 412
  start-page: 449
  year: 1989
  ident: CR6
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1989.sp017626
– volume: 434
  start-page: 47
  year: 1994
  ident: CR23
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1994.sp020170
– volume: 114
  start-page: 329
  year: 1997
  ident: CR7
  publication-title: Exp Brain Res
  doi: 10.1007/PL00005641
– volume: 540
  start-page: 623
  year: 2002
  ident: CR12
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2001.012801
– volume: 523
  start-page: 503
  year: 2000
  ident: CR36
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.t01-1-00503.x
– volume: 80
  start-page: 2870
  year: 1998
  ident: CR5
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1998.80.6.2870
– volume: 105
  start-page: 462
  year: 1997
  ident: CR32
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0924-980X(97)00054-4
– volume: 18
  start-page: 314
  year: 1995
  ident: CR9
  publication-title: TINS
– volume: 487
  start-page: 541
  year: 1995
  ident: CR27
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1995.sp020898
– volume: 112
  start-page: 193
  year: 2001
  ident: CR3
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(01)00468-X
– volume: 21
  start-page: 397
  year: 1993
  ident: CR13
  publication-title: Exerc Sport Sci Rev
  doi: 10.1249/00003677-199301000-00013
– volume: 76
  start-page: 159
  year: 1991
  ident: CR31
  publication-title: Exp Physiol
  doi: 10.1113/expphysiol.1991.sp003485
– volume: 471
  start-page: 501
  year: 1993
  ident: CR17
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1993.sp019912
– reference: 11100941 - Can J Physiol Pharmacol. 2000 Nov;78(11):923-33
– reference: 7571012 - Trends Neurosci. 1995 Jul;18(7):314-20
– reference: 9166922 - Exp Brain Res. 1997 Apr;114(2):329-38
– reference: 11880891 - Exp Brain Res. 2002 Mar;143(2):149-59
– reference: 1718726 - Electroencephalogr Clin Neurophysiol. 1991 Oct;81(5):397-402
– reference: 1593472 - J Physiol. 1992 Mar;448:397-412
– reference: 8071888 - J Physiol. 1994 May 15;477(Pt 1):47-58
– reference: 8558482 - J Physiol. 1995 Sep 1;487 ( Pt 2):541-8
– reference: 8862116 - Electroencephalogr Clin Neurophysiol. 1996 Sep;99(3):267-73
– reference: 8930851 - J Physiol. 1996 Nov 1;496 ( Pt 3):873-81
– reference: 11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202
– reference: 8740215 - Exp Brain Res. 1996 Apr;109(1):127-35
– reference: 9503266 - J Neural Transm (Vienna). 1997;104(11-12):1207-14
– reference: 6215465 - J Neurol Neurosurg Psychiatry. 1982 Aug;45(8):699-704
– reference: 2059424 - Exp Physiol. 1991 Mar;76(2):159-200
– reference: 7519144 - Electroencephalogr Clin Neurophysiol. 1994 Aug;91(2):79-92
– reference: 11306630 - J Neurosci. 2001 Apr 15;21(8):2784-92
– reference: 11956348 - J Physiol. 2002 Apr 15;540(Pt 2):623-33
– reference: 9166913 - Exp Brain Res. 1997 Apr;114(2):235-45
– reference: 9219889 - J Neurosci Methods. 1997 Jun 27;74(2):201-18
– reference: 9219881 - J Neurosci Methods. 1997 Jun 27;74(2):113-22
– reference: 9448648 - Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):462-9
– reference: 9438072 - Brain Res Brain Res Protoc. 1997 Dec 1;2(1):53-8
– reference: 12417222 - Clin Neurophysiol. 2002 Nov;113(11):1698-708
– reference: 9862891 - J Neurophysiol. 1998 Dec;80(6):2870-81
– reference: 12037204 - J Neurophysiol. 2002 Jun;87(6):3006-17
– reference: 2049989 - Electromyogr Clin Neurophysiol. 1991 Apr;31(3):131-43
– reference: 2489409 - J Physiol. 1989 May;412:449-73
– reference: 11000414 - J Neurosci Methods. 2000 Oct 15;102(1):81-9
– reference: 8504849 - Exerc Sport Sci Rev. 1993;21:397-436
– reference: 14652096 - Clin Neurophysiol. 2003 Dec;114(12):2362-9
– reference: 8006812 - J Physiol. 1994 Jan 15;474(2):261-7
– reference: 9914274 - J Neurophysiol. 1999 Jan;81(1):129-39
– reference: 9464979 - Curr Opin Neurobiol. 1997 Dec;7(6):849-59
– reference: 8120818 - J Physiol. 1993 Nov;471:501-19
– reference: 10699092 - J Physiol. 2000 Mar 1;523 Pt 2:503-13
– reference: 8583410 - J Physiol. 1995 Nov 15;489 ( Pt 1):263-73
– reference: 9679173 - J Physiol. 1998 Aug 15;511 ( Pt 1):181-90
SSID ssj0014370
Score 2.053226
Snippet We examined whether the recruitment properties of the corticospinal pathway to intrinsic hand muscles are influenced by variations of the shoulder joint angle....
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 374
SubjectTerms Action Potentials - physiology
Adult
Biological and medical sciences
Electroencephalography
Electromyography
Evoked Potentials, Motor - physiology
Eye and associated structures. Visual pathways and centers. Vision
Feedback - physiology
Female
Fundamental and applied biological sciences. Psychology
Hand - innervation
Hand - physiology
Humans
Male
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Motor Cortex - physiology
Motor Neurons - physiology
Muscle Contraction - physiology
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Posture - physiology
Proprioception - physiology
Pyramidal Tracts - physiology
Range of Motion, Articular - physiology
Shoulder Joint - innervation
Shoulder Joint - physiology
Vertebrates: nervous system and sense organs
Title Changes in corticomotor excitability of hand muscles in relation to static shoulder positions
URI https://www.ncbi.nlm.nih.gov/pubmed/15517216
https://www.proquest.com/docview/215126036
https://www.proquest.com/docview/17364058
https://www.proquest.com/docview/67452642
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_s9aUgoq0fZ_XcB_FBWMwlu9nsk1RpKYJFxMK9SMhuJnhgk_OSg7v_3plNLqUP7VMessOSzOx87Hz8AN47m5bWupLh21GSloyly0onLToX-yRCl3Gj8Per9PJafVvoxVCb0w5llXudGBR12Xi-I_8UTFNK-vbz6p9k0ChOrg4IGgdwSBo40xM4_HJ-9ePnmEZQiel7UOZKKrJ9-7RmFKaIxjFF0pEiQcmU3N4xTI9XRUv_qOrBLe73PoMVungKTwb3UZz1_H4Gj7A-hpOzmkLnm534IEJBZ7gpP4ajUbntTuB330bQimUtKOAkci7Da9YCt37Z9cO6d6KpBN-ki5tNy9VyvHg9VMuJrhHcfbT0ov3DuNi4FmPF13O4vjj_9fVSDtAK0iuddJLMuol1WZVGFYUrk1Sj9VqnWNm5o5imyGylDBaYWKcrj7GzZWasI4bO0WpMXsCkbmp8BSKp0JETVtEzUl5lRK7Iy4jQmJQppxDt_2vuh7njDH_xNx8nJgdW5MSKnFmRb6fwcSRZ9UM3Hlo8u8OsWwrOKVG8NIXTPffy4YC2-ShOU3g3vqWTxemSosZm0-Zzk6Tkzmb3r0gNA7Qr-sSXvVDc7k2OKI9Fev3g3qdwFCbBhpK2NzDp1ht8Sz5O52ZwYBZmNsjzfwkI_Ks
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPEhiiIIfJwr7oD6YbOy12273gRhUyCFwMQYSXkztttN4ibTntRfu_ij-R2f6RXiAN5760J027czO_GbnC-CdNUFqjE15fDtK0pKutGFqpUFr3cRz0IZcKHw6Dkbn6vuFf7EC110tDKdVdjqxVtRpkfAZ-afaNAWkbz9P_0keGsXB1W6CRiMVx7i8Io-t3Dv6Rux977qHB2dfR7IdKiAT5XuVJIOmXT_NUq3i2KZe4KNJfD_AzAwtofk4NJnSGKNnrJ8l6FqThtpY-pQhGh89eu4jWCOUYWgTrX05GP_42YctlKebmpehkopsbRdGdequpa5LnrujSDBDJRe3DOGTaVwST7JmmMbdaLe2eodPYaOFq2K_ka9nsIL5Jmzt5-SqXy7FB1EnkNYn85uw3ivT5Rb8asoWSjHJBTm4RM5pf8VM4CKZVE1z8KUoMsEn9-JyXnJ2Hi-etdl5oioEVztNElH-4TncOBN9htlzOH-Qv_4CVvMix1cgvAwtgb6Mro5KVEjkilCNg1oHTDkAp_uvUdL2OedxG3-jvkNzzYqIWBExK6LFAD72JNOmycd9i3duMeuGgmNY5J8NYLvjXtQqhDLqxXcAu_1d2skcnolzLOZlNNReQPA5vHtFoHkgvKJPfNkIxc27CfhyG6bX9757Fx6Pzk5PopOj8fE2rNddaOt0ujewWs3m-JbwVWV3WqkW8PuhN9J_Kgk5-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVkKVKgQtj6XQzgE4IEXNJpNM5oBQoV21FFYVolIvKGQmjlipTZZNVuz-NP4ddl5VD-2tpxwyTpTY48f4sw3wxugw1dqkPL4dHdKSnmOi1DgajfGs76KJuFD42yQ8PpdfLoKLNfjX1cIwrLLTibWiTgvLZ-T7tWkKSd_uZy0q4uxw_HH2x-EBUpxo7aZpNBJyiqu_FL2VH04OidVvPW989OPzsdMOGHCsDPzKIeOmvCDNUiWTxKR-GKC2QRBipkeGPPsk0plUmKCvTZBZ9IxOI6UNfdYIdYA-PfcBrCsyitEA1j8dTc6-9ykM6aum_mUkHUl2t0upunUHU8-jKN6VJKSRdJY3jOLmLCmJP1kzWON2z7e2gOPH8Kh1XcVBI2tPYA3zLdg-yClsv1qJd6IGk9an9Fuw0SvW1Tb8bEoYSjHNBQW7RM4QwGIucGmnVdMofCWKTPApvrhalIzU48XzFqknqkJw5dPUivI3z-TGuejRZk_h_F7--jMY5EWOL0D4GRpyADO6utLKiMgleTguKhUy5RDc7r_Gtu15zqM3LuO-W3PNiphYETMr4uUQ3vcks6bhx12Ld28w65qC81kUqw1hp-Ne3CqHMu5FeQh7_V3a1ZyqSXIsFmU8Un5IrnR0-4pQ8XB4SZ_4vBGK63eTE8wtmV7e-e49eEgbKP56MjndgY26IW2NrHsFg2q-wNfkalVmtxVqAb_uex_9B4c6PiY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+corticomotor+excitability+of+hand+muscles+in+relation+to+static+shoulder+positions&rft.jtitle=Experimental+brain+research&rft.au=Ginanneschi%2C+F.&rft.au=Del+Santo%2C+F.&rft.au=Dominici%2C+F.&rft.au=Gelli%2C+F.&rft.date=2005-03-01&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=161&rft.issue=3&rft.spage=374&rft.epage=382&rft_id=info:doi/10.1007%2Fs00221-004-2084-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00221_004_2084_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon