Reporting checklist for verification and validation of finite element analysis in orthopedic and trauma biomechanics
•Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all recommended steps to be performed more quickly in advance.•Can increase credibility of finite-element-analyses in the clinical area. Finite el...
Saved in:
Published in | Medical engineering & physics Vol. 92; pp. 25 - 32 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all recommended steps to be performed more quickly in advance.•Can increase credibility of finite-element-analyses in the clinical area.
Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved. |
---|---|
AbstractList | Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved.Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved. •Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all recommended steps to be performed more quickly in advance.•Can increase credibility of finite-element-analyses in the clinical area. Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved. |
Author | Kluess, Daniel Herrmann, Sven Woiczinski, Matthias Oefner, Christoph Kebbach, Maeruan Lange, Hans-E. |
Author_xml | – sequence: 1 givenname: Christoph surname: Oefner fullname: Oefner, Christoph email: christoph.oefner@zesbo.de organization: Center for Research on Musculoskeletal Systems, Faculty of Medicine, Leipzig University, Semmelweisstrasse 14, 04103 Leipzig, Germany – sequence: 2 givenname: Sven orcidid: 0000-0001-5287-0751 surname: Herrmann fullname: Herrmann, Sven organization: Institute for Biomechanics, BG Unfallklinik, Prof.-Küntscher-Strasse 8, 82418 Murnau am Staffelsee, Germany – sequence: 3 givenname: Maeruan orcidid: 0000-0001-9564-7963 surname: Kebbach fullname: Kebbach, Maeruan organization: Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany – sequence: 4 givenname: Hans-E. orcidid: 0000-0003-4926-769X surname: Lange fullname: Lange, Hans-E. organization: Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany – sequence: 5 givenname: Daniel orcidid: 0000-0003-1244-6360 surname: Kluess fullname: Kluess, Daniel organization: Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany – sequence: 6 givenname: Matthias orcidid: 0000-0002-4123-8168 surname: Woiczinski fullname: Woiczinski, Matthias organization: Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany |
BookMark | eNqNkUtrGzEURoeSQPP6DZ1lNzPVY15elBJC0xYChdKshXx1FV9HI00l2eB_XyUuXWTllST0nQ_do8vqzAePVfWBs5YzPnzatjMa9E_L5tAKJnjLZMs4f1dd8GmUTcckOyt72bOm66V8X12mtGWMdd0gL6r8C5cQM_mnGjYIz45Srm2I9R4jWQKdKfhae1PvtSNzPAZbW_KUsUaHM_pcAtodEqWaym3Mm7CgIXjlctS7WddrCjPCRnuCdF2dW-0S3vxbr6rH-6-_7743Dz-__bi7fWigvDQ348Bhmoyxo7BmZdewkqvVyLu-MwProUcpYZDjmvdCms52IxOjFFZMgum1LoNfVR-PvUsMf3aYspopATqnPYZdUqLv-oGNQk4lOh6jEENKEa1aIs06HhRn6sWz2qr_ntWLZ8WkKp4L-fkNCZRfPZXJyZ3A3x55LCb2hFElIPRQBEaErEygEzq-vOkAVz4ItHvGw0kNfwGe6Lk6 |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109230 crossref_primary_10_1115_1_4063462 crossref_primary_10_1002_cnm_3897 crossref_primary_10_1016_j_cma_2024_117485 crossref_primary_10_1016_j_clinbiomech_2024_106266 crossref_primary_10_1080_10255842_2024_2353646 crossref_primary_10_1007_s00132_024_04515_5 crossref_primary_10_3389_fbioe_2023_1237919 crossref_primary_10_3390_life12040581 crossref_primary_10_1002_jor_25984 crossref_primary_10_1016_j_heliyon_2024_e40668 crossref_primary_10_1371_journal_pone_0316719 crossref_primary_10_1016_j_jor_2023_09_016 crossref_primary_10_3390_bioengineering9080337 crossref_primary_10_1016_j_simpat_2021_102464 crossref_primary_10_1016_j_jbiomech_2023_111766 crossref_primary_10_1016_j_injury_2023_05_041 crossref_primary_10_1016_j_jtv_2023_02_003 crossref_primary_10_1016_j_cmpb_2023_107938 crossref_primary_10_1080_10255842_2024_2329946 crossref_primary_10_1016_j_rcot_2023_06_022 crossref_primary_10_1007_s11831_022_09836_2 crossref_primary_10_3389_fbioe_2025_1441026 crossref_primary_10_1080_10255842_2022_2100988 crossref_primary_10_1016_j_jocn_2024_02_024 crossref_primary_10_3389_fbioe_2025_1541114 crossref_primary_10_3390_bioengineering9090464 crossref_primary_10_3390_bioengineering10101218 crossref_primary_10_1016_j_clinbiomech_2021_105479 crossref_primary_10_1111_edt_12933 crossref_primary_10_1016_j_otsr_2023_103765 crossref_primary_10_1016_j_jbiomech_2024_112229 |
Cites_doi | 10.1016/S0140-6736(86)90837-8 10.1080/10255842.2015.1089534 10.1016/S0021-9991(02)00024-4 10.1016/j.cmpb.2009.07.005 10.1016/j.advengsoft.2008.12.010 10.1186/s12938-018-0461-0 10.1016/j.medengphy.2012.08.022 10.1016/j.jbiomech.2011.11.038 10.1016/j.jcp.2006.03.037 10.1016/j.clinbiomech.2018.06.012 10.1186/s12967-020-02540-4 10.1016/j.medengphy.2006.10.014 10.1115/1.4029304 10.1504/IJMPT.2006.008280 10.1016/j.clinbiomech.2005.01.010 10.1109/JBHI.2019.2949888 10.1007/s00366-007-0070-1 10.1243/09544119JEIM649 10.1016/j.jbiomech.2013.03.022 10.3390/ma13102365 10.1080/10255840601160484 10.1016/j.medengphy.2020.07.026 10.1080/10255842.2019.1615481 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.medengphy.2021.03.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 32 |
ExternalDocumentID | 10_1016_j_medengphy_2021_03_011 S1350453321000345 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- 6I. AACTN AAFTH AAIAV ABLVK ABTAH ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAXKI AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c453t-761c88ddf72fd9fbc939971454d605c5e33c637b1523d4f4702732f2820aba403 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Fri Jul 11 06:09:15 EDT 2025 Tue Jul 01 04:24:57 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 Fri Feb 23 02:44:23 EST 2024 Tue Aug 26 16:31:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomechanics Finite element analysis Reporting Computational engineering Standardization |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-761c88ddf72fd9fbc939971454d605c5e33c637b1523d4f4702732f2820aba403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5287-0751 0000-0003-1244-6360 0000-0003-4926-769X 0000-0002-4123-8168 0000-0001-9564-7963 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1350453321000345 |
PQID | 2545607238 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2545607238 crossref_primary_10_1016_j_medengphy_2021_03_011 crossref_citationtrail_10_1016_j_medengphy_2021_03_011 elsevier_sciencedirect_doi_10_1016_j_medengphy_2021_03_011 elsevier_clinicalkey_doi_10_1016_j_medengphy_2021_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Medical engineering & physics |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Food & Drug Administration. Reporting of computational modeling studies in medical device submissions: Guidance for Industry and Food and Drug Administration Staff; 2016. Anderson, Ellis, Weiss (bib0008) 2007; 10 Baldwin, Langenderfer, Rullkoetter, Laz (bib0021) 2010; 97 Bland, Altman (bib0025) 1986; 327 (bib0003) 2007 Kebbach, Darowski, Krueger, Schilling, Grupp, Bader, Geier (bib0030) 2020; 13 Viceconti, Juárez, Curreli, Pennisi, Russo, Pappalardo (bib0009) 2019; 24 Hicks, Uchida, Seth, Rajagopal, Delp (bib0010) 2015; 137 Viceconti, Olsen, Nolte, Burton (bib0007) 2005; 20 Zdero, Bougherara (bib0014) 2010 Slamet, Hatano, Takano, Nagasao (bib0031) 2014; 2014 Henninger, Reese, Anderson, Weiss (bib0002) 2010; 224 Roache (bib0016) 1998 Erdemir, Mulugeta, Ku, Drach, Horner, Morrison, Peng, Vadigepalli, Lytton, Myers (bib0015) 2020; 18 Woiczinski, Steinbrück, Weber, Müller, Jansson, Schröder (bib0026) 2016; 19 Taddei, Schileo, Helgason, Cristofolini, Viceconti (bib0027) 2007; 29 Samsami, Herrmann, Pätzold, Winkler, Augat (bib0033) 2020; 84 Kong, Gu, Hu, Zhou, Liu, Liu (bib0032) 2009; 40 Rebba, Huang, Liu, Mahadevan (bib0005) 2006; 25 Sprague, Geers (bib0024) 2003; 184 Soodmand, Kluess, Varady, Cichon, Schwarze, Gehweiler, Niemeyer, Pahr, Woiczinski (bib0012) 2018; 17 Haldar, Mahadevan (bib0022) 2000 Oberkampf, Barone (bib0006) 2006; 217 Erdemir, Guess, Halloran, Tadepalli, Morrison (bib0001) 2012; 45 Burkhart, Andrews, Dunning (bib0020) 2013; 46 Katz, Lubovsky, Yosibash (bib0028) 2018; 58 Schwer (bib0023) 2007; 23 Kluess, Soodmand, Lorenz, Pahr, Schwarze, Cichon, Varady, Herrmann, Buchmeier, Schröder, Lehner, Kebbach (bib0013) 2019; 22 Redepenning, Ludewig, Looft (bib0011) 2019 Eberle, Göttlinger, Augat (bib0018) 2013; 35 Nasdala (bib0019) 2015 Hack E, Patterson E, Burguete R, Davighi A, Feligiotti M, Lampeas G, Mottershead J, Pipino A, Schubach HR, Siebert T, Wang W, Whelan M. A guideline for the validation of computational solid mechanics models using full-field optical data 2011. Viceconti, Pappalardo, Rodriguez, Horner, Bischoff, Tshinanu (bib0017) 2020 Kong (10.1016/j.medengphy.2021.03.011_bib0032) 2009; 40 Oberkampf (10.1016/j.medengphy.2021.03.011_bib0006) 2006; 217 Taddei (10.1016/j.medengphy.2021.03.011_bib0027) 2007; 29 Kebbach (10.1016/j.medengphy.2021.03.011_bib0030) 2020; 13 Henninger (10.1016/j.medengphy.2021.03.011_bib0002) 2010; 224 Zdero (10.1016/j.medengphy.2021.03.011_bib0014) 2010 Katz (10.1016/j.medengphy.2021.03.011_bib0028) 2018; 58 Roache (10.1016/j.medengphy.2021.03.011_bib0016) 1998 Samsami (10.1016/j.medengphy.2021.03.011_bib0033) 2020; 84 Baldwin (10.1016/j.medengphy.2021.03.011_bib0021) 2010; 97 10.1016/j.medengphy.2021.03.011_bib0004 Erdemir (10.1016/j.medengphy.2021.03.011_bib0015) 2020; 18 Erdemir (10.1016/j.medengphy.2021.03.011_bib0001) 2012; 45 Redepenning (10.1016/j.medengphy.2021.03.011_bib0011) 2019 Viceconti (10.1016/j.medengphy.2021.03.011_bib0007) 2005; 20 Viceconti (10.1016/j.medengphy.2021.03.011_bib0017) 2020 Woiczinski (10.1016/j.medengphy.2021.03.011_bib0026) 2016; 19 Soodmand (10.1016/j.medengphy.2021.03.011_bib0012) 2018; 17 10.1016/j.medengphy.2021.03.011_bib0029 Bland (10.1016/j.medengphy.2021.03.011_bib0025) 1986; 327 Rebba (10.1016/j.medengphy.2021.03.011_bib0005) 2006; 25 Slamet (10.1016/j.medengphy.2021.03.011_bib0031) 2014; 2014 Kluess (10.1016/j.medengphy.2021.03.011_bib0013) 2019; 22 Viceconti (10.1016/j.medengphy.2021.03.011_bib0009) 2019; 24 Burkhart (10.1016/j.medengphy.2021.03.011_bib0020) 2013; 46 Schwer (10.1016/j.medengphy.2021.03.011_bib0023) 2007; 23 (10.1016/j.medengphy.2021.03.011_bib0003) 2007 Haldar (10.1016/j.medengphy.2021.03.011_bib0022) 2000 Nasdala (10.1016/j.medengphy.2021.03.011_bib0019) 2015 Anderson (10.1016/j.medengphy.2021.03.011_bib0008) 2007; 10 Sprague (10.1016/j.medengphy.2021.03.011_bib0024) 2003; 184 Eberle (10.1016/j.medengphy.2021.03.011_bib0018) 2013; 35 Hicks (10.1016/j.medengphy.2021.03.011_bib0010) 2015; 137 |
References_xml | – volume: 18 start-page: 369 year: 2020 ident: bib0015 article-title: Credible practice of modeling and simulation in healthcare: Ten rules from a multidisciplinary perspective publication-title: J Transl Med – volume: 25 start-page: 164 year: 2006 end-page: 181 ident: bib0005 article-title: Statistical validation of simulation models publication-title: IJMPT – volume: 40 start-page: 935 year: 2009 end-page: 940 ident: bib0032 article-title: Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: a three-dimensional finite element analysis publication-title: Adv Eng Softw – volume: 13 year: 2020 ident: bib0030 article-title: Musculoskeletal multibody simulation analysis on the impact of patellar component design and positioning on joint dynamics after unconstrained total knee arthroplasty publication-title: Materials – volume: 217 start-page: 5 year: 2006 end-page: 36 ident: bib0006 article-title: Measures of agreement between computation and experiment: validation metrics publication-title: J Comput Phys – volume: 20 start-page: 451 year: 2005 end-page: 454 ident: bib0007 article-title: Extracting clinically relevant data from finite element simulations publication-title: Clin Biomech – year: 2020 ident: bib0017 article-title: In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products publication-title: Methods – year: 2007 ident: bib0003 article-title: Guide for verification and validation in computational solid mechanics – reference: Hack E, Patterson E, Burguete R, Davighi A, Feligiotti M, Lampeas G, Mottershead J, Pipino A, Schubach HR, Siebert T, Wang W, Whelan M. A guideline for the validation of computational solid mechanics models using full-field optical data 2011. – year: 2010 ident: bib0014 article-title: Finite element analysis: 7 – Orthopaedic biomechanics: a practical approach to combining mechanical testing and finite element analysis – start-page: 895 year: 1998 ident: bib0016 article-title: Verification and validation in computational science and engineering – year: 2000 ident: bib0022 article-title: Probability, reliability, and statistical methods in engineering design – volume: 97 start-page: 232 year: 2010 end-page: 240 ident: bib0021 article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach publication-title: Comput Methods Programs Biomed – volume: 46 start-page: 1477 year: 2013 end-page: 1488 ident: bib0020 article-title: Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue publication-title: J Biomech – year: 2019 ident: bib0011 article-title: Finite element analysis of the rotator cuff: a systematic review publication-title: Clin Biomech – volume: 84 start-page: 84 year: 2020 end-page: 95 ident: bib0033 article-title: Finite element analysis of Bi-condylar Tibial Plateau fractures to assess the effect of coronal splits publication-title: Med Eng Phys – volume: 17 start-page: 29 year: 2018 ident: bib0012 article-title: Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan publication-title: Biomed Eng Online – volume: 23 start-page: 295 year: 2007 end-page: 309 ident: bib0023 article-title: Validation metrics for response histories: Perspectives and case studies publication-title: Eng Comput – reference: Food & Drug Administration. Reporting of computational modeling studies in medical device submissions: Guidance for Industry and Food and Drug Administration Staff; 2016. – volume: 224 start-page: 801 year: 2010 end-page: 812 ident: bib0002 article-title: Validation of computational models in biomechanics publication-title: Proc Inst Mech Eng Part H, J Eng Med – volume: 137 start-page: 20905 year: 2015 ident: bib0010 article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: J Biomech Eng – volume: 29 start-page: 973 year: 2007 end-page: 979 ident: bib0027 article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements publication-title: Med Eng Phys – volume: 10 start-page: 171 year: 2007 end-page: 184 ident: bib0008 article-title: Verification, validation and sensitivity studies in computational biomechanics publication-title: Comput Methods Biomech Biomed Eng – volume: 2014 year: 2014 ident: bib0031 article-title: Practical Monte Carlo simulation method highlighting on tail probability with application to biomechanics analysis of pressure ulcer publication-title: Trans Jpn Soc Comput Eng Sci – volume: 35 start-page: 875 year: 2013 end-page: 883 ident: bib0018 article-title: An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones publication-title: Med Eng Phys – volume: 19 start-page: 1033 year: 2016 end-page: 1045 ident: bib0026 article-title: Development and validation of a weight-bearing finite element model for total knee replacement publication-title: Comput Methods Biomech Biomed Eng – volume: 58 start-page: 74 year: 2018 end-page: 89 ident: bib0028 article-title: Patient-specific finite element analysis of femurs with cemented hip implants publication-title: Clin Biomech – volume: 327 start-page: 307 year: 1986 end-page: 310 ident: bib0025 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: The lancet – volume: 45 start-page: 625 year: 2012 end-page: 633 ident: bib0001 article-title: Considerations for reporting finite element analysis studies in biomechanics publication-title: J Biomech – volume: 22 start-page: 1020 year: 2019 end-page: 1031 ident: bib0013 article-title: A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation publication-title: Comput Methods Biomech Biomed Eng – volume: 24 start-page: 4 year: 2019 end-page: 13 ident: bib0009 article-title: Credibility of in silico trial technologies—a theoretical framing publication-title: IEEE J Biomed Health Inform – volume: 184 start-page: 149 year: 2003 end-page: 162 ident: bib0024 article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation publication-title: J Comput Phys – year: 2015 ident: bib0019 article-title: FEM-Formelsammlung Statik und Dynamik: – volume: 327 start-page: 307 issue: 8476 year: 1986 ident: 10.1016/j.medengphy.2021.03.011_bib0025 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: The lancet doi: 10.1016/S0140-6736(86)90837-8 – volume: 19 start-page: 1033 issue: 10 year: 2016 ident: 10.1016/j.medengphy.2021.03.011_bib0026 article-title: Development and validation of a weight-bearing finite element model for total knee replacement publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2015.1089534 – year: 2010 ident: 10.1016/j.medengphy.2021.03.011_bib0014 – volume: 184 start-page: 149 issue: 1 year: 2003 ident: 10.1016/j.medengphy.2021.03.011_bib0024 article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation publication-title: J Comput Phys doi: 10.1016/S0021-9991(02)00024-4 – volume: 97 start-page: 232 issue: 3 year: 2010 ident: 10.1016/j.medengphy.2021.03.011_bib0021 article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2009.07.005 – start-page: 895 year: 1998 ident: 10.1016/j.medengphy.2021.03.011_bib0016 – volume: 40 start-page: 935 issue: 9 year: 2009 ident: 10.1016/j.medengphy.2021.03.011_bib0032 article-title: Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: a three-dimensional finite element analysis publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.12.010 – volume: 17 start-page: 29 issue: 1 year: 2018 ident: 10.1016/j.medengphy.2021.03.011_bib0012 article-title: Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan publication-title: Biomed Eng Online doi: 10.1186/s12938-018-0461-0 – year: 2019 ident: 10.1016/j.medengphy.2021.03.011_bib0011 article-title: Finite element analysis of the rotator cuff: a systematic review publication-title: Clin Biomech – year: 2020 ident: 10.1016/j.medengphy.2021.03.011_bib0017 article-title: In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products publication-title: Methods – volume: 35 start-page: 875 issue: 7 year: 2013 ident: 10.1016/j.medengphy.2021.03.011_bib0018 article-title: An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2012.08.022 – year: 2015 ident: 10.1016/j.medengphy.2021.03.011_bib0019 – year: 2007 ident: 10.1016/j.medengphy.2021.03.011_bib0003 – volume: 45 start-page: 625 issue: 4 year: 2012 ident: 10.1016/j.medengphy.2021.03.011_bib0001 article-title: Considerations for reporting finite element analysis studies in biomechanics publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.11.038 – volume: 217 start-page: 5 issue: 1 year: 2006 ident: 10.1016/j.medengphy.2021.03.011_bib0006 article-title: Measures of agreement between computation and experiment: validation metrics publication-title: J Comput Phys doi: 10.1016/j.jcp.2006.03.037 – year: 2000 ident: 10.1016/j.medengphy.2021.03.011_bib0022 – volume: 58 start-page: 74 year: 2018 ident: 10.1016/j.medengphy.2021.03.011_bib0028 article-title: Patient-specific finite element analysis of femurs with cemented hip implants publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2018.06.012 – volume: 18 start-page: 369 issue: 1 year: 2020 ident: 10.1016/j.medengphy.2021.03.011_bib0015 article-title: Credible practice of modeling and simulation in healthcare: Ten rules from a multidisciplinary perspective publication-title: J Transl Med doi: 10.1186/s12967-020-02540-4 – volume: 29 start-page: 973 issue: 9 year: 2007 ident: 10.1016/j.medengphy.2021.03.011_bib0027 article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2006.10.014 – ident: 10.1016/j.medengphy.2021.03.011_bib0004 – volume: 2014 year: 2014 ident: 10.1016/j.medengphy.2021.03.011_bib0031 article-title: Practical Monte Carlo simulation method highlighting on tail probability with application to biomechanics analysis of pressure ulcer publication-title: Trans Jpn Soc Comput Eng Sci – volume: 137 start-page: 20905 issue: 2 year: 2015 ident: 10.1016/j.medengphy.2021.03.011_bib0010 article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: J Biomech Eng doi: 10.1115/1.4029304 – ident: 10.1016/j.medengphy.2021.03.011_bib0029 – volume: 25 start-page: 164 issue: 1-3 year: 2006 ident: 10.1016/j.medengphy.2021.03.011_bib0005 article-title: Statistical validation of simulation models publication-title: IJMPT doi: 10.1504/IJMPT.2006.008280 – volume: 20 start-page: 451 issue: 5 year: 2005 ident: 10.1016/j.medengphy.2021.03.011_bib0007 article-title: Extracting clinically relevant data from finite element simulations publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2005.01.010 – volume: 24 start-page: 4 issue: 1 year: 2019 ident: 10.1016/j.medengphy.2021.03.011_bib0009 article-title: Credibility of in silico trial technologies—a theoretical framing publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2949888 – volume: 23 start-page: 295 issue: 4 year: 2007 ident: 10.1016/j.medengphy.2021.03.011_bib0023 article-title: Validation metrics for response histories: Perspectives and case studies publication-title: Eng Comput doi: 10.1007/s00366-007-0070-1 – volume: 224 start-page: 801 issue: 7 year: 2010 ident: 10.1016/j.medengphy.2021.03.011_bib0002 article-title: Validation of computational models in biomechanics publication-title: Proc Inst Mech Eng Part H, J Eng Med doi: 10.1243/09544119JEIM649 – volume: 46 start-page: 1477 issue: 9 year: 2013 ident: 10.1016/j.medengphy.2021.03.011_bib0020 article-title: Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.03.022 – volume: 13 issue: 10 year: 2020 ident: 10.1016/j.medengphy.2021.03.011_bib0030 article-title: Musculoskeletal multibody simulation analysis on the impact of patellar component design and positioning on joint dynamics after unconstrained total knee arthroplasty publication-title: Materials doi: 10.3390/ma13102365 – volume: 10 start-page: 171 issue: 3 year: 2007 ident: 10.1016/j.medengphy.2021.03.011_bib0008 article-title: Verification, validation and sensitivity studies in computational biomechanics publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255840601160484 – volume: 84 start-page: 84 year: 2020 ident: 10.1016/j.medengphy.2021.03.011_bib0033 article-title: Finite element analysis of Bi-condylar Tibial Plateau fractures to assess the effect of coronal splits publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2020.07.026 – volume: 22 start-page: 1020 issue: 12 year: 2019 ident: 10.1016/j.medengphy.2021.03.011_bib0013 article-title: A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2019.1615481 |
SSID | ssj0004463 |
Score | 2.4641411 |
Snippet | •Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all... Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25 |
SubjectTerms | Biomechanics Computational engineering Finite element analysis Reporting Standardization |
Title | Reporting checklist for verification and validation of finite element analysis in orthopedic and trauma biomechanics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453321000345 https://dx.doi.org/10.1016/j.medengphy.2021.03.011 https://www.proquest.com/docview/2545607238 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VrcTjgGABUSiVkbiGdeJHNtyqVasF1F6gUm-W4weklOxqm73y25lxkoVWQkXiGMejJJ7JzGf5mxmAtz73rpLKZ8EJnUmq91lVXmU6cs1rHqxN3RtOz_TiXH68UBc7MB9zYYhWOfj-3qcnbz2MTIfVnK6aZvo5FwrxiKAkFKqyQonmUpZk5e9-_qZ54HYnkexxckazb3C8MOCE9it-D24UizxVO83zv0WoW746BaCTx_BoQI7sqH-5J7AT2gncn48N2ybw8I_aghO4dzqcmj-FrkfZOMxQRe77FQowBKsMzZiYQkk5zLaeodk1fZMltowsNgRIWegZ5jihr1_CGry77r4tV_SEJNet7eaHZSmXn1KJG3f9DM5Pjr_MF9nQbSFzuC5dVurczWbex7KIvoq1qxC7lLlU0uOWx6kghNOirDHgCy-jLKkSThFxy8ZtbSUXz2G3XbbhBbCgtAyeBx0jAh5b1yJYpUurSm-FD8U-6HGFjRtKkVNHjCszcs4uzVY1hlRjuDComn3gW8FVX43jbpHZqEIzJpuiezQYMe4Wfb8VvWGT_yb8ZrQXg3ZAxzC2DcvNtSkItHJq9vbyfx7wCh7QVU9bO4Ddbr0JrxEgdfVh-gMOYe_ow6fF2S9TChNm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkEo5VHTbCgqlrtRruk78yIYbWhUtlOVSkLhZjh80LWRXS_ba396xkyxQqaJSj7E9cuKZzHwjzwPgk02tKbiwiTNMJjzU-ywKKxLpqaQldVrH7g3Tczm55KdX4moNxn0uTAir7HR_q9Ojtu5Ght1pDudVNfyWMoF4hIUklFBlRTyDDXwchTYGn3_dx3mgvxOj7HF1EpY_CvJCi-Pqa_wg9BSzNJY7TdO_mag_lHW0QMfb8LKDjuSofbtXsObqAWyO-45tA9h6UFxwAM-n3bX5a2hamI3DBHlkft4gAUG0SlCOQ6hQ5A7RtSUod1XbZYnMPPFVQKTEtSHmuKAtYEIqnF0032fzsEOkaxZ6eatJTOYPucSVuXsDl8dfLsaTpGu3kBg8lybJZWpGI2t9nnlb-NIUCF7ylAtu0ecxwjFmJMtLtPjMcs_zUAon8-izUV1qTtlbWK9ntdsB4oTkzlInvUfEo8uSOS1krkVuNbMu2wXZn7AyXS3y0BLjRvVBZz_UijUqsEZRppA1u0BXhPO2HMfTJKOeharPNkX9qNBkPE16uCJ9JJT_RvyxlxeFchDuYXTtZss7lQXUSkO3t3f_s8EH2JxcTM_U2cn51z14EWbaGLZ9WG8WS_ce0VJTHsS_4Td0TBT0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reporting+checklist+for+verification+and+validation+of+finite+element+analysis+in+orthopedic+and+trauma+biomechanics&rft.jtitle=Medical+engineering+%26+physics&rft.au=Oefner%2C+Christoph&rft.au=Herrmann%2C+Sven&rft.au=Kebbach%2C+Maeruan&rft.au=Lange%2C+Hans-E.&rft.date=2021-06-01&rft.issn=1350-4533&rft.volume=92&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1016%2Fj.medengphy.2021.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2021_03_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon |