Reporting checklist for verification and validation of finite element analysis in orthopedic and trauma biomechanics

•Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all recommended steps to be performed more quickly in advance.•Can increase credibility of finite-element-analyses in the clinical area. Finite el...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 92; pp. 25 - 32
Main Authors Oefner, Christoph, Herrmann, Sven, Kebbach, Maeruan, Lange, Hans-E., Kluess, Daniel, Woiczinski, Matthias
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all recommended steps to be performed more quickly in advance.•Can increase credibility of finite-element-analyses in the clinical area. Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved.
AbstractList Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved.Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved.
•Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all recommended steps to be performed more quickly in advance.•Can increase credibility of finite-element-analyses in the clinical area. Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and guidelines for reporting on research methods and results, there are still numerous issues that arise when using computational models in biomechanical investigations. According to our knowledge, these problems and controversies lie mainly in the verification and validation (V&V) process as well as in the set-up and evaluation of FEA. This work aims to introduce a checklist including a report form defining recommendations for FEA in the field of Orthopedic and Trauma (O&T) biomechanics. Therefore, a checklist was elaborated which summarizes and explains the crucial methodologies for the V&V process. In addition, a report form has been developed which contains the most important steps for reporting future FEA. An example of the report form is shown, and a template is provided, which can be used as a uniform basis for future documentation. The future application of the presented report form will show whether serious errors in biomechanical investigations using FEA can be minimized by this checklist. Finally, the credibility of the FEA in the clinical area and the scientific exchange in the community regarding reproducibility and exchangeability can be improved.
Author Kluess, Daniel
Herrmann, Sven
Woiczinski, Matthias
Oefner, Christoph
Kebbach, Maeruan
Lange, Hans-E.
Author_xml – sequence: 1
  givenname: Christoph
  surname: Oefner
  fullname: Oefner, Christoph
  email: christoph.oefner@zesbo.de
  organization: Center for Research on Musculoskeletal Systems, Faculty of Medicine, Leipzig University, Semmelweisstrasse 14, 04103 Leipzig, Germany
– sequence: 2
  givenname: Sven
  orcidid: 0000-0001-5287-0751
  surname: Herrmann
  fullname: Herrmann, Sven
  organization: Institute for Biomechanics, BG Unfallklinik, Prof.-Küntscher-Strasse 8, 82418 Murnau am Staffelsee, Germany
– sequence: 3
  givenname: Maeruan
  orcidid: 0000-0001-9564-7963
  surname: Kebbach
  fullname: Kebbach, Maeruan
  organization: Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany
– sequence: 4
  givenname: Hans-E.
  orcidid: 0000-0003-4926-769X
  surname: Lange
  fullname: Lange, Hans-E.
  organization: Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0003-1244-6360
  surname: Kluess
  fullname: Kluess, Daniel
  organization: Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany
– sequence: 6
  givenname: Matthias
  orcidid: 0000-0002-4123-8168
  surname: Woiczinski
  fullname: Woiczinski, Matthias
  organization: Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
BookMark eNqNkUtrGzEURoeSQPP6DZ1lNzPVY15elBJC0xYChdKshXx1FV9HI00l2eB_XyUuXWTllST0nQ_do8vqzAePVfWBs5YzPnzatjMa9E_L5tAKJnjLZMs4f1dd8GmUTcckOyt72bOm66V8X12mtGWMdd0gL6r8C5cQM_mnGjYIz45Srm2I9R4jWQKdKfhae1PvtSNzPAZbW_KUsUaHM_pcAtodEqWaym3Mm7CgIXjlctS7WddrCjPCRnuCdF2dW-0S3vxbr6rH-6-_7743Dz-__bi7fWigvDQ348Bhmoyxo7BmZdewkqvVyLu-MwProUcpYZDjmvdCms52IxOjFFZMgum1LoNfVR-PvUsMf3aYspopATqnPYZdUqLv-oGNQk4lOh6jEENKEa1aIs06HhRn6sWz2qr_ntWLZ8WkKp4L-fkNCZRfPZXJyZ3A3x55LCb2hFElIPRQBEaErEygEzq-vOkAVz4ItHvGw0kNfwGe6Lk6
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109230
crossref_primary_10_1115_1_4063462
crossref_primary_10_1002_cnm_3897
crossref_primary_10_1016_j_cma_2024_117485
crossref_primary_10_1016_j_clinbiomech_2024_106266
crossref_primary_10_1080_10255842_2024_2353646
crossref_primary_10_1007_s00132_024_04515_5
crossref_primary_10_3389_fbioe_2023_1237919
crossref_primary_10_3390_life12040581
crossref_primary_10_1002_jor_25984
crossref_primary_10_1016_j_heliyon_2024_e40668
crossref_primary_10_1371_journal_pone_0316719
crossref_primary_10_1016_j_jor_2023_09_016
crossref_primary_10_3390_bioengineering9080337
crossref_primary_10_1016_j_simpat_2021_102464
crossref_primary_10_1016_j_jbiomech_2023_111766
crossref_primary_10_1016_j_injury_2023_05_041
crossref_primary_10_1016_j_jtv_2023_02_003
crossref_primary_10_1016_j_cmpb_2023_107938
crossref_primary_10_1080_10255842_2024_2329946
crossref_primary_10_1016_j_rcot_2023_06_022
crossref_primary_10_1007_s11831_022_09836_2
crossref_primary_10_3389_fbioe_2025_1441026
crossref_primary_10_1080_10255842_2022_2100988
crossref_primary_10_1016_j_jocn_2024_02_024
crossref_primary_10_3389_fbioe_2025_1541114
crossref_primary_10_3390_bioengineering9090464
crossref_primary_10_3390_bioengineering10101218
crossref_primary_10_1016_j_clinbiomech_2021_105479
crossref_primary_10_1111_edt_12933
crossref_primary_10_1016_j_otsr_2023_103765
crossref_primary_10_1016_j_jbiomech_2024_112229
Cites_doi 10.1016/S0140-6736(86)90837-8
10.1080/10255842.2015.1089534
10.1016/S0021-9991(02)00024-4
10.1016/j.cmpb.2009.07.005
10.1016/j.advengsoft.2008.12.010
10.1186/s12938-018-0461-0
10.1016/j.medengphy.2012.08.022
10.1016/j.jbiomech.2011.11.038
10.1016/j.jcp.2006.03.037
10.1016/j.clinbiomech.2018.06.012
10.1186/s12967-020-02540-4
10.1016/j.medengphy.2006.10.014
10.1115/1.4029304
10.1504/IJMPT.2006.008280
10.1016/j.clinbiomech.2005.01.010
10.1109/JBHI.2019.2949888
10.1007/s00366-007-0070-1
10.1243/09544119JEIM649
10.1016/j.jbiomech.2013.03.022
10.3390/ma13102365
10.1080/10255840601160484
10.1016/j.medengphy.2020.07.026
10.1080/10255842.2019.1615481
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.medengphy.2021.03.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 32
ExternalDocumentID 10_1016_j_medengphy_2021_03_011
S1350453321000345
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABTAH
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAXKI
AAYXX
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c453t-761c88ddf72fd9fbc939971454d605c5e33c637b1523d4f4702732f2820aba403
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Fri Jul 11 06:09:15 EDT 2025
Tue Jul 01 04:24:57 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
Fri Feb 23 02:44:23 EST 2024
Tue Aug 26 16:31:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biomechanics
Finite element analysis
Reporting
Computational engineering
Standardization
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-761c88ddf72fd9fbc939971454d605c5e33c637b1523d4f4702732f2820aba403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5287-0751
0000-0003-1244-6360
0000-0003-4926-769X
0000-0002-4123-8168
0000-0001-9564-7963
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1350453321000345
PQID 2545607238
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2545607238
crossref_primary_10_1016_j_medengphy_2021_03_011
crossref_citationtrail_10_1016_j_medengphy_2021_03_011
elsevier_sciencedirect_doi_10_1016_j_medengphy_2021_03_011
elsevier_clinicalkey_doi_10_1016_j_medengphy_2021_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Medical engineering & physics
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Food & Drug Administration. Reporting of computational modeling studies in medical device submissions: Guidance for Industry and Food and Drug Administration Staff; 2016.
Anderson, Ellis, Weiss (bib0008) 2007; 10
Baldwin, Langenderfer, Rullkoetter, Laz (bib0021) 2010; 97
Bland, Altman (bib0025) 1986; 327
(bib0003) 2007
Kebbach, Darowski, Krueger, Schilling, Grupp, Bader, Geier (bib0030) 2020; 13
Viceconti, Juárez, Curreli, Pennisi, Russo, Pappalardo (bib0009) 2019; 24
Hicks, Uchida, Seth, Rajagopal, Delp (bib0010) 2015; 137
Viceconti, Olsen, Nolte, Burton (bib0007) 2005; 20
Zdero, Bougherara (bib0014) 2010
Slamet, Hatano, Takano, Nagasao (bib0031) 2014; 2014
Henninger, Reese, Anderson, Weiss (bib0002) 2010; 224
Roache (bib0016) 1998
Erdemir, Mulugeta, Ku, Drach, Horner, Morrison, Peng, Vadigepalli, Lytton, Myers (bib0015) 2020; 18
Woiczinski, Steinbrück, Weber, Müller, Jansson, Schröder (bib0026) 2016; 19
Taddei, Schileo, Helgason, Cristofolini, Viceconti (bib0027) 2007; 29
Samsami, Herrmann, Pätzold, Winkler, Augat (bib0033) 2020; 84
Kong, Gu, Hu, Zhou, Liu, Liu (bib0032) 2009; 40
Rebba, Huang, Liu, Mahadevan (bib0005) 2006; 25
Sprague, Geers (bib0024) 2003; 184
Soodmand, Kluess, Varady, Cichon, Schwarze, Gehweiler, Niemeyer, Pahr, Woiczinski (bib0012) 2018; 17
Haldar, Mahadevan (bib0022) 2000
Oberkampf, Barone (bib0006) 2006; 217
Erdemir, Guess, Halloran, Tadepalli, Morrison (bib0001) 2012; 45
Burkhart, Andrews, Dunning (bib0020) 2013; 46
Katz, Lubovsky, Yosibash (bib0028) 2018; 58
Schwer (bib0023) 2007; 23
Kluess, Soodmand, Lorenz, Pahr, Schwarze, Cichon, Varady, Herrmann, Buchmeier, Schröder, Lehner, Kebbach (bib0013) 2019; 22
Redepenning, Ludewig, Looft (bib0011) 2019
Eberle, Göttlinger, Augat (bib0018) 2013; 35
Nasdala (bib0019) 2015
Hack E, Patterson E, Burguete R, Davighi A, Feligiotti M, Lampeas G, Mottershead J, Pipino A, Schubach HR, Siebert T, Wang W, Whelan M. A guideline for the validation of computational solid mechanics models using full-field optical data 2011.
Viceconti, Pappalardo, Rodriguez, Horner, Bischoff, Tshinanu (bib0017) 2020
Kong (10.1016/j.medengphy.2021.03.011_bib0032) 2009; 40
Oberkampf (10.1016/j.medengphy.2021.03.011_bib0006) 2006; 217
Taddei (10.1016/j.medengphy.2021.03.011_bib0027) 2007; 29
Kebbach (10.1016/j.medengphy.2021.03.011_bib0030) 2020; 13
Henninger (10.1016/j.medengphy.2021.03.011_bib0002) 2010; 224
Zdero (10.1016/j.medengphy.2021.03.011_bib0014) 2010
Katz (10.1016/j.medengphy.2021.03.011_bib0028) 2018; 58
Roache (10.1016/j.medengphy.2021.03.011_bib0016) 1998
Samsami (10.1016/j.medengphy.2021.03.011_bib0033) 2020; 84
Baldwin (10.1016/j.medengphy.2021.03.011_bib0021) 2010; 97
10.1016/j.medengphy.2021.03.011_bib0004
Erdemir (10.1016/j.medengphy.2021.03.011_bib0015) 2020; 18
Erdemir (10.1016/j.medengphy.2021.03.011_bib0001) 2012; 45
Redepenning (10.1016/j.medengphy.2021.03.011_bib0011) 2019
Viceconti (10.1016/j.medengphy.2021.03.011_bib0007) 2005; 20
Viceconti (10.1016/j.medengphy.2021.03.011_bib0017) 2020
Woiczinski (10.1016/j.medengphy.2021.03.011_bib0026) 2016; 19
Soodmand (10.1016/j.medengphy.2021.03.011_bib0012) 2018; 17
10.1016/j.medengphy.2021.03.011_bib0029
Bland (10.1016/j.medengphy.2021.03.011_bib0025) 1986; 327
Rebba (10.1016/j.medengphy.2021.03.011_bib0005) 2006; 25
Slamet (10.1016/j.medengphy.2021.03.011_bib0031) 2014; 2014
Kluess (10.1016/j.medengphy.2021.03.011_bib0013) 2019; 22
Viceconti (10.1016/j.medengphy.2021.03.011_bib0009) 2019; 24
Burkhart (10.1016/j.medengphy.2021.03.011_bib0020) 2013; 46
Schwer (10.1016/j.medengphy.2021.03.011_bib0023) 2007; 23
(10.1016/j.medengphy.2021.03.011_bib0003) 2007
Haldar (10.1016/j.medengphy.2021.03.011_bib0022) 2000
Nasdala (10.1016/j.medengphy.2021.03.011_bib0019) 2015
Anderson (10.1016/j.medengphy.2021.03.011_bib0008) 2007; 10
Sprague (10.1016/j.medengphy.2021.03.011_bib0024) 2003; 184
Eberle (10.1016/j.medengphy.2021.03.011_bib0018) 2013; 35
Hicks (10.1016/j.medengphy.2021.03.011_bib0010) 2015; 137
References_xml – volume: 18
  start-page: 369
  year: 2020
  ident: bib0015
  article-title: Credible practice of modeling and simulation in healthcare: Ten rules from a multidisciplinary perspective
  publication-title: J Transl Med
– volume: 25
  start-page: 164
  year: 2006
  end-page: 181
  ident: bib0005
  article-title: Statistical validation of simulation models
  publication-title: IJMPT
– volume: 40
  start-page: 935
  year: 2009
  end-page: 940
  ident: bib0032
  article-title: Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: a three-dimensional finite element analysis
  publication-title: Adv Eng Softw
– volume: 13
  year: 2020
  ident: bib0030
  article-title: Musculoskeletal multibody simulation analysis on the impact of patellar component design and positioning on joint dynamics after unconstrained total knee arthroplasty
  publication-title: Materials
– volume: 217
  start-page: 5
  year: 2006
  end-page: 36
  ident: bib0006
  article-title: Measures of agreement between computation and experiment: validation metrics
  publication-title: J Comput Phys
– volume: 20
  start-page: 451
  year: 2005
  end-page: 454
  ident: bib0007
  article-title: Extracting clinically relevant data from finite element simulations
  publication-title: Clin Biomech
– year: 2020
  ident: bib0017
  article-title: In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products
  publication-title: Methods
– year: 2007
  ident: bib0003
  article-title: Guide for verification and validation in computational solid mechanics
– reference: Hack E, Patterson E, Burguete R, Davighi A, Feligiotti M, Lampeas G, Mottershead J, Pipino A, Schubach HR, Siebert T, Wang W, Whelan M. A guideline for the validation of computational solid mechanics models using full-field optical data 2011.
– year: 2010
  ident: bib0014
  article-title: Finite element analysis: 7 – Orthopaedic biomechanics: a practical approach to combining mechanical testing and finite element analysis
– start-page: 895
  year: 1998
  ident: bib0016
  article-title: Verification and validation in computational science and engineering
– year: 2000
  ident: bib0022
  article-title: Probability, reliability, and statistical methods in engineering design
– volume: 97
  start-page: 232
  year: 2010
  end-page: 240
  ident: bib0021
  article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach
  publication-title: Comput Methods Programs Biomed
– volume: 46
  start-page: 1477
  year: 2013
  end-page: 1488
  ident: bib0020
  article-title: Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue
  publication-title: J Biomech
– year: 2019
  ident: bib0011
  article-title: Finite element analysis of the rotator cuff: a systematic review
  publication-title: Clin Biomech
– volume: 84
  start-page: 84
  year: 2020
  end-page: 95
  ident: bib0033
  article-title: Finite element analysis of Bi-condylar Tibial Plateau fractures to assess the effect of coronal splits
  publication-title: Med Eng Phys
– volume: 17
  start-page: 29
  year: 2018
  ident: bib0012
  article-title: Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan
  publication-title: Biomed Eng Online
– volume: 23
  start-page: 295
  year: 2007
  end-page: 309
  ident: bib0023
  article-title: Validation metrics for response histories: Perspectives and case studies
  publication-title: Eng Comput
– reference: Food & Drug Administration. Reporting of computational modeling studies in medical device submissions: Guidance for Industry and Food and Drug Administration Staff; 2016.
– volume: 224
  start-page: 801
  year: 2010
  end-page: 812
  ident: bib0002
  article-title: Validation of computational models in biomechanics
  publication-title: Proc Inst Mech Eng Part H, J Eng Med
– volume: 137
  start-page: 20905
  year: 2015
  ident: bib0010
  article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement
  publication-title: J Biomech Eng
– volume: 29
  start-page: 973
  year: 2007
  end-page: 979
  ident: bib0027
  article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements
  publication-title: Med Eng Phys
– volume: 10
  start-page: 171
  year: 2007
  end-page: 184
  ident: bib0008
  article-title: Verification, validation and sensitivity studies in computational biomechanics
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 2014
  year: 2014
  ident: bib0031
  article-title: Practical Monte Carlo simulation method highlighting on tail probability with application to biomechanics analysis of pressure ulcer
  publication-title: Trans Jpn Soc Comput Eng Sci
– volume: 35
  start-page: 875
  year: 2013
  end-page: 883
  ident: bib0018
  article-title: An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones
  publication-title: Med Eng Phys
– volume: 19
  start-page: 1033
  year: 2016
  end-page: 1045
  ident: bib0026
  article-title: Development and validation of a weight-bearing finite element model for total knee replacement
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 58
  start-page: 74
  year: 2018
  end-page: 89
  ident: bib0028
  article-title: Patient-specific finite element analysis of femurs with cemented hip implants
  publication-title: Clin Biomech
– volume: 327
  start-page: 307
  year: 1986
  end-page: 310
  ident: bib0025
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: The lancet
– volume: 45
  start-page: 625
  year: 2012
  end-page: 633
  ident: bib0001
  article-title: Considerations for reporting finite element analysis studies in biomechanics
  publication-title: J Biomech
– volume: 22
  start-page: 1020
  year: 2019
  end-page: 1031
  ident: bib0013
  article-title: A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 24
  start-page: 4
  year: 2019
  end-page: 13
  ident: bib0009
  article-title: Credibility of in silico trial technologies—a theoretical framing
  publication-title: IEEE J Biomed Health Inform
– volume: 184
  start-page: 149
  year: 2003
  end-page: 162
  ident: bib0024
  article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation
  publication-title: J Comput Phys
– year: 2015
  ident: bib0019
  article-title: FEM-Formelsammlung Statik und Dynamik:
– volume: 327
  start-page: 307
  issue: 8476
  year: 1986
  ident: 10.1016/j.medengphy.2021.03.011_bib0025
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: The lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 19
  start-page: 1033
  issue: 10
  year: 2016
  ident: 10.1016/j.medengphy.2021.03.011_bib0026
  article-title: Development and validation of a weight-bearing finite element model for total knee replacement
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2015.1089534
– year: 2010
  ident: 10.1016/j.medengphy.2021.03.011_bib0014
– volume: 184
  start-page: 149
  issue: 1
  year: 2003
  ident: 10.1016/j.medengphy.2021.03.011_bib0024
  article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(02)00024-4
– volume: 97
  start-page: 232
  issue: 3
  year: 2010
  ident: 10.1016/j.medengphy.2021.03.011_bib0021
  article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2009.07.005
– start-page: 895
  year: 1998
  ident: 10.1016/j.medengphy.2021.03.011_bib0016
– volume: 40
  start-page: 935
  issue: 9
  year: 2009
  ident: 10.1016/j.medengphy.2021.03.011_bib0032
  article-title: Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: a three-dimensional finite element analysis
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.12.010
– volume: 17
  start-page: 29
  issue: 1
  year: 2018
  ident: 10.1016/j.medengphy.2021.03.011_bib0012
  article-title: Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-018-0461-0
– year: 2019
  ident: 10.1016/j.medengphy.2021.03.011_bib0011
  article-title: Finite element analysis of the rotator cuff: a systematic review
  publication-title: Clin Biomech
– year: 2020
  ident: 10.1016/j.medengphy.2021.03.011_bib0017
  article-title: In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products
  publication-title: Methods
– volume: 35
  start-page: 875
  issue: 7
  year: 2013
  ident: 10.1016/j.medengphy.2021.03.011_bib0018
  article-title: An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2012.08.022
– year: 2015
  ident: 10.1016/j.medengphy.2021.03.011_bib0019
– year: 2007
  ident: 10.1016/j.medengphy.2021.03.011_bib0003
– volume: 45
  start-page: 625
  issue: 4
  year: 2012
  ident: 10.1016/j.medengphy.2021.03.011_bib0001
  article-title: Considerations for reporting finite element analysis studies in biomechanics
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.11.038
– volume: 217
  start-page: 5
  issue: 1
  year: 2006
  ident: 10.1016/j.medengphy.2021.03.011_bib0006
  article-title: Measures of agreement between computation and experiment: validation metrics
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.03.037
– year: 2000
  ident: 10.1016/j.medengphy.2021.03.011_bib0022
– volume: 58
  start-page: 74
  year: 2018
  ident: 10.1016/j.medengphy.2021.03.011_bib0028
  article-title: Patient-specific finite element analysis of femurs with cemented hip implants
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2018.06.012
– volume: 18
  start-page: 369
  issue: 1
  year: 2020
  ident: 10.1016/j.medengphy.2021.03.011_bib0015
  article-title: Credible practice of modeling and simulation in healthcare: Ten rules from a multidisciplinary perspective
  publication-title: J Transl Med
  doi: 10.1186/s12967-020-02540-4
– volume: 29
  start-page: 973
  issue: 9
  year: 2007
  ident: 10.1016/j.medengphy.2021.03.011_bib0027
  article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.10.014
– ident: 10.1016/j.medengphy.2021.03.011_bib0004
– volume: 2014
  year: 2014
  ident: 10.1016/j.medengphy.2021.03.011_bib0031
  article-title: Practical Monte Carlo simulation method highlighting on tail probability with application to biomechanics analysis of pressure ulcer
  publication-title: Trans Jpn Soc Comput Eng Sci
– volume: 137
  start-page: 20905
  issue: 2
  year: 2015
  ident: 10.1016/j.medengphy.2021.03.011_bib0010
  article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement
  publication-title: J Biomech Eng
  doi: 10.1115/1.4029304
– ident: 10.1016/j.medengphy.2021.03.011_bib0029
– volume: 25
  start-page: 164
  issue: 1-3
  year: 2006
  ident: 10.1016/j.medengphy.2021.03.011_bib0005
  article-title: Statistical validation of simulation models
  publication-title: IJMPT
  doi: 10.1504/IJMPT.2006.008280
– volume: 20
  start-page: 451
  issue: 5
  year: 2005
  ident: 10.1016/j.medengphy.2021.03.011_bib0007
  article-title: Extracting clinically relevant data from finite element simulations
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2005.01.010
– volume: 24
  start-page: 4
  issue: 1
  year: 2019
  ident: 10.1016/j.medengphy.2021.03.011_bib0009
  article-title: Credibility of in silico trial technologies—a theoretical framing
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2949888
– volume: 23
  start-page: 295
  issue: 4
  year: 2007
  ident: 10.1016/j.medengphy.2021.03.011_bib0023
  article-title: Validation metrics for response histories: Perspectives and case studies
  publication-title: Eng Comput
  doi: 10.1007/s00366-007-0070-1
– volume: 224
  start-page: 801
  issue: 7
  year: 2010
  ident: 10.1016/j.medengphy.2021.03.011_bib0002
  article-title: Validation of computational models in biomechanics
  publication-title: Proc Inst Mech Eng Part H, J Eng Med
  doi: 10.1243/09544119JEIM649
– volume: 46
  start-page: 1477
  issue: 9
  year: 2013
  ident: 10.1016/j.medengphy.2021.03.011_bib0020
  article-title: Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.03.022
– volume: 13
  issue: 10
  year: 2020
  ident: 10.1016/j.medengphy.2021.03.011_bib0030
  article-title: Musculoskeletal multibody simulation analysis on the impact of patellar component design and positioning on joint dynamics after unconstrained total knee arthroplasty
  publication-title: Materials
  doi: 10.3390/ma13102365
– volume: 10
  start-page: 171
  issue: 3
  year: 2007
  ident: 10.1016/j.medengphy.2021.03.011_bib0008
  article-title: Verification, validation and sensitivity studies in computational biomechanics
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255840601160484
– volume: 84
  start-page: 84
  year: 2020
  ident: 10.1016/j.medengphy.2021.03.011_bib0033
  article-title: Finite element analysis of Bi-condylar Tibial Plateau fractures to assess the effect of coronal splits
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2020.07.026
– volume: 22
  start-page: 1020
  issue: 12
  year: 2019
  ident: 10.1016/j.medengphy.2021.03.011_bib0013
  article-title: A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2019.1615481
SSID ssj0004463
Score 2.4641411
Snippet •Reporting checklist defining recommendations for FEA in O&T biomechanics.•Report form as a uniform basis for documentation of FEA studies.•Specifies all...
Finite element analysis (FEA) has become a fundamental tool for biomechanical investigations in the last decades. Despite several existing initiatives and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Biomechanics
Computational engineering
Finite element analysis
Reporting
Standardization
Title Reporting checklist for verification and validation of finite element analysis in orthopedic and trauma biomechanics
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453321000345
https://dx.doi.org/10.1016/j.medengphy.2021.03.011
https://www.proquest.com/docview/2545607238
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VrcTjgGABUSiVkbiGdeJHNtyqVasF1F6gUm-W4weklOxqm73y25lxkoVWQkXiGMejJJ7JzGf5mxmAtz73rpLKZ8EJnUmq91lVXmU6cs1rHqxN3RtOz_TiXH68UBc7MB9zYYhWOfj-3qcnbz2MTIfVnK6aZvo5FwrxiKAkFKqyQonmUpZk5e9-_qZ54HYnkexxckazb3C8MOCE9it-D24UizxVO83zv0WoW746BaCTx_BoQI7sqH-5J7AT2gncn48N2ybw8I_aghO4dzqcmj-FrkfZOMxQRe77FQowBKsMzZiYQkk5zLaeodk1fZMltowsNgRIWegZ5jihr1_CGry77r4tV_SEJNet7eaHZSmXn1KJG3f9DM5Pjr_MF9nQbSFzuC5dVurczWbex7KIvoq1qxC7lLlU0uOWx6kghNOirDHgCy-jLKkSThFxy8ZtbSUXz2G3XbbhBbCgtAyeBx0jAh5b1yJYpUurSm-FD8U-6HGFjRtKkVNHjCszcs4uzVY1hlRjuDComn3gW8FVX43jbpHZqEIzJpuiezQYMe4Wfb8VvWGT_yb8ZrQXg3ZAxzC2DcvNtSkItHJq9vbyfx7wCh7QVU9bO4Ddbr0JrxEgdfVh-gMOYe_ow6fF2S9TChNm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkEo5VHTbCgqlrtRruk78yIYbWhUtlOVSkLhZjh80LWRXS_ba396xkyxQqaJSj7E9cuKZzHwjzwPgk02tKbiwiTNMJjzU-ywKKxLpqaQldVrH7g3Tczm55KdX4moNxn0uTAir7HR_q9Ojtu5Ght1pDudVNfyWMoF4hIUklFBlRTyDDXwchTYGn3_dx3mgvxOj7HF1EpY_CvJCi-Pqa_wg9BSzNJY7TdO_mag_lHW0QMfb8LKDjuSofbtXsObqAWyO-45tA9h6UFxwAM-n3bX5a2hamI3DBHlkft4gAUG0SlCOQ6hQ5A7RtSUod1XbZYnMPPFVQKTEtSHmuKAtYEIqnF0032fzsEOkaxZ6eatJTOYPucSVuXsDl8dfLsaTpGu3kBg8lybJZWpGI2t9nnlb-NIUCF7ylAtu0ecxwjFmJMtLtPjMcs_zUAon8-izUV1qTtlbWK9ntdsB4oTkzlInvUfEo8uSOS1krkVuNbMu2wXZn7AyXS3y0BLjRvVBZz_UijUqsEZRppA1u0BXhPO2HMfTJKOeharPNkX9qNBkPE16uCJ9JJT_RvyxlxeFchDuYXTtZss7lQXUSkO3t3f_s8EH2JxcTM_U2cn51z14EWbaGLZ9WG8WS_ce0VJTHsS_4Td0TBT0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reporting+checklist+for+verification+and+validation+of+finite+element+analysis+in+orthopedic+and+trauma+biomechanics&rft.jtitle=Medical+engineering+%26+physics&rft.au=Oefner%2C+Christoph&rft.au=Herrmann%2C+Sven&rft.au=Kebbach%2C+Maeruan&rft.au=Lange%2C+Hans-E.&rft.date=2021-06-01&rft.issn=1350-4533&rft.volume=92&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1016%2Fj.medengphy.2021.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2021_03_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon