Referent control and motor equivalence of reaching from standing

Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces....

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 117; no. 1; pp. 303 - 315
Main Authors Tomita, Yosuke, Feldman, Anatol G., Levin, Mindy F.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.01.2017
SeriesControl of Movement
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R T ) and actual trajectory (Q T ) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.
AbstractList Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R ) and actual trajectory (Q ) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.
Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R T ) and actual trajectory (Q T ) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.
Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing.NEW & NOTEWORTHYMotor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.
Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R T ) and actual trajectory (Q T ) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.
Author Feldman, Anatol G.
Levin, Mindy F.
Tomita, Yosuke
Author_xml – sequence: 1
  givenname: Yosuke
  surname: Tomita
  fullname: Tomita, Yosuke
  organization: School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada;, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
– sequence: 2
  givenname: Anatol G.
  surname: Feldman
  fullname: Feldman, Anatol G.
  organization: Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada; and, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
– sequence: 3
  givenname: Mindy F.
  surname: Levin
  fullname: Levin, Mindy F.
  organization: School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada;, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27784802$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLAzEUhYMoWh9LtzJLN1PzmGRmNqIUX1AQRNchk7mpKTOJTaYF_72ptqJiNiH3fvfccM4h2nXeAUKnBI8J4fRi7sYY05qOKSZiB41SjeaE19UuGqUGzRkuywN0GOMcY1xyTPfRAS3LqqgwHaGrJzAQwA2Z9m4IvsuUa7PeDz5ksFjalerAaci8yQIo_WrdLDPB91kcEphex2jPqC7CyeY-Qi-3N8-T-3z6ePcwuZ7muuBsyEUtdDpUEF2Yhoum4Fy3dcM5sIKDaKpaUNaaghXMUKJLDIwRYKZtFacM2BG6_NJ9WzY9tDp9OahOvgXbq_AuvbLyd8fZVznzK5n84DUnSeB8IxD8YglxkL2NGrpOOfDLKEnFuCiFYGVCz37u-l6ytS0B7AvQwccYwEhtBzXYtYXKdpJguQ5Hzp38DEeuw0lT-Z-prfD__Af6a5E0
CitedBy_id crossref_primary_10_1016_j_msksp_2023_102829
crossref_primary_10_1123_mc_2022_0026
crossref_primary_10_1007_s00221_017_5133_y
crossref_primary_10_1152_jn_00531_2021
crossref_primary_10_1109_TNSRE_2020_3021200
crossref_primary_10_1152_jn_00483_2018
crossref_primary_10_1177_1545968318760725
crossref_primary_10_1007_s00221_019_05498_y
crossref_primary_10_1152_jn_00729_2019
crossref_primary_10_1177_1545968321989348
crossref_primary_10_1371_journal_pone_0295101
crossref_primary_10_1177_15459683241231528
Cites_doi 10.1113/jphysiol.1959.sp006261
10.1007/s00221-014-4128-1
10.1007/s00221-002-1186-6
10.1016/0966-6362(96)82849-9
10.1123/mc.2014-0084
10.1016/0301-0082(92)90034-C
10.1016/0014-4886(72)90091-X
10.1093/cercor/bhp021
10.1152/jn.00909.2006
10.1152/jn.1996.75.1.60
10.1007/s00221-006-0602-8
10.1007/s00221-003-1721-0
10.1152/jn.01143.2015
10.1007/s00221-011-2608-0
10.1152/jn.1998.79.3.1409
10.1016/S0959-4388(99)00028-8
10.1007/s00221-006-0591-7
10.1123/mcj.4.2.185
10.1038/nn963
10.1007/s00221-004-2049-0
10.3233/VES-130485
10.1016/0166-2236(87)90043-9
10.1016/0166-4328(96)00030-7
10.1007/s00221-005-2245-6
10.1152/jn.1986.55.6.1369
10.1152/jn.00163.2011
10.1088/1741-2560/2/3/S09
10.1080/00222895.1982.10735273
10.1007/s00426-003-0140-y
10.1523/JNEUROSCI.05-09-02318.1985
10.1007/BF00238107
10.1007/s002210000643
10.1007/s002210000604
10.1080/00222895.1986.10735369
10.1113/jphysiol.2001.012809
10.1007/s002210100694
10.1152/jn.1995.73.5.2120
10.1007/978-1-4939-2736-4
10.1123/mcj.2.3.189
10.1016/S0304-3940(00)00923-X
10.1016/S0950-5601(54)80044-X
10.1152/jn.1995.74.4.1787
10.1016/j.humov.2005.09.011
10.1007/s002210050669
10.1113/jphysiol.2009.186858
10.1177/1545968313510973
10.1123/mcj.11.3.276
10.1007/s00221-006-0445-3
10.1007/s00221-003-1624-0
10.1016/0166-2236(82)90111-4
10.1109/10.362914
10.1111/ijs.12016
10.1007/s002210050716
10.1007/BF00238859
10.1038/81497
ContentType Journal Article
Copyright Copyright © 2017 the American Physiological Society.
Copyright © 2017 the American Physiological Society 2017 American Physiological Society
Copyright_xml – notice: Copyright © 2017 the American Physiological Society.
– notice: Copyright © 2017 the American Physiological Society 2017 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00292.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 315
ExternalDocumentID PMC5225951
27784802
10_1152_jn_00292_2016
Genre Journal Article
GrantInformation_xml – fundername: Natural Science and Engineering Research Council of Canada
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c453t-696cccc261c4fb56b455cd9b55e345e6b89623df4343f21c70e331e3fdda523e3
ISSN 0022-3077
IngestDate Thu Aug 21 13:59:34 EDT 2025
Fri Jul 11 16:04:26 EDT 2025
Mon Jul 21 06:02:52 EDT 2025
Tue Jul 01 04:09:07 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords synergy
interjoint coordination
adaptation
compensation
redundancy
motor control
arm movement
Language English
License Copyright © 2017 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-696cccc261c4fb56b455cd9b55e345e6b89623df4343f21c70e331e3fdda523e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.physiology.org/doi/pdf/10.1152/jn.00292.2016
PMID 27784802
PQID 1835676637
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5225951
proquest_miscellaneous_1835676637
pubmed_primary_27784802
crossref_citationtrail_10_1152_jn_00292_2016
crossref_primary_10_1152_jn_00292_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationSeriesTitle Control of Movement
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2017
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
Sambasivan K (B47) 2015; 10
B23
B24
B25
B26
B27
B29
Lashley KS (B28) 1951
Bernstein NA (B6) 1967
von Holst E (B56) 1973
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
Sibindi TM (B49) 2013; 23
B5
B7
B9
B40
B41
Tomita Y (B53) 2015
B42
B44
B45
Capaday C (B8) 1995; 10
B46
B48
Rosen R (B43) 2013
B50
B51
B52
B10
B54
B11
B55
B12
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
Asatryan DG (B4) 1965; 10
Won J (B60) 1995; 10
B61
B62
B63
15856209 - Exp Brain Res. 2005 Jul;164(2):225-41
15136283 - J Mot Behav. 1986 Mar;18(1):17-54
27052586 - J Neurophysiol. 2016 Jun 1;115(6):3186-94
15153410 - J Mot Behav. 1982 Sep;14(3):194-212
19276327 - Cereb Cortex. 2009 Nov;19(11):2625-39
3709722 - Exp Brain Res. 1986;62(2):401-10
7623104 - J Neurophysiol. 1995 May;73(5):2120-2
11500575 - Motor Control. 2000 Apr;4(2):185-200
4650889 - Exp Neurol. 1972 Dec;37(3):481-94
7672021 - Exp Brain Res. 1995;104(2):287-96
10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27
11790827 - J Physiol. 2002 Jan 15;538(Pt 2):659-71
10729635 - Neurosci Lett. 2000 Mar 31;283(1):65-8
25344311 - Exp Brain Res. 2015 Feb;233(2):487-502
14610628 - Exp Brain Res. 2003 Dec;153(3):275-88
21676927 - J Neurophysiol. 2011 Sep;106(3):1424-36
17715460 - Motor Control. 2007 Jul;11(3):276-308
6802666 - Exp Brain Res. 1982;46(1):139-43
1736324 - Prog Neurobiol. 1992;38(1):35-56
16337298 - Hum Mov Sci. 2005 Oct-Dec;24(5-6):621-43
12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
8751070 - Exp Brain Res. 1995;107(1):125-36
8822542 - J Neurophysiol. 1996 Jan;75(1):60-74
21387096 - Exp Brain Res. 2011 Apr;210(1):91-115
11460767 - Exp Brain Res. 2001 Jun;138(3):288-303
16847611 - Exp Brain Res. 2006 Nov;175(4):726-44
16874517 - Exp Brain Res. 2007 Jan;176(1):54-69
4031998 - J Neurosci. 1985 Sep;5(9):2318-30
7851935 - IEEE Trans Biomed Eng. 1995 Jan;42(1):87-101
16135889 - J Neural Eng. 2005 Sep;2(3):S266-78
10204767 - Exp Brain Res. 1999 Mar;125(2):139-52
12232697 - Exp Brain Res. 2002 Oct;146(3):394-8
16676171 - Exp Brain Res. 2006 Sep;174(2):229-39
26068599 - Motor Control. 2016 Jan;20(1):87-108
11291724 - Exp Brain Res. 2001 Feb;136(4):439-46
3734861 - J Neurophysiol. 1986 Jun;55(6):1369-81
12836023 - Psychol Res. 2004 Aug;68(4):245-51
16992029 - J Physiol. 1959 Oct;147(3):547-64
8905138 - Behav Brain Res. 1996 Oct;80(1-2):153-60
9644289 - Motor Control. 1998 Jul;2(3):189-205
20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70
10333007 - Exp Brain Res. 1999 May;126(1):55-67
8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92
9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24
15490137 - Exp Brain Res. 2005 Feb;161(1):91-103
17428903 - J Neurophysiol. 2007 Jun;97(6):4069-78
24284604 - J Vestib Res. 2013;23(4-5):237-47
11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7
14658018 - Exp Brain Res. 2004 Apr;155(3):291-300
24270057 - Neurorehabil Neural Repair. 2014 May;28(4):355-66
11355386 - Exp Brain Res. 2001 Apr;137(3-4):411-23
References_xml – ident: B33
  doi: 10.1113/jphysiol.1959.sp006261
– ident: B34
  doi: 10.1007/s00221-014-4128-1
– ident: B9
  doi: 10.1007/s00221-002-1186-6
– volume-title: Cerebral Mechanisms in Behavior
  year: 1951
  ident: B28
– ident: B58
  doi: 10.1016/0966-6362(96)82849-9
– ident: B62
  doi: 10.1123/mc.2014-0084
– ident: B32
  doi: 10.1016/0301-0082(92)90034-C
– volume: 10
  start-page: 925
  year: 1965
  ident: B4
  publication-title: Biophysics
– ident: B16
  doi: 10.1016/0014-4886(72)90091-X
– ident: B45
  doi: 10.1093/cercor/bhp021
– ident: B41
  doi: 10.1152/jn.00909.2006
– ident: B57
  doi: 10.1152/jn.1996.75.1.60
– ident: B61
  doi: 10.1007/s00221-006-0602-8
– ident: B50
  doi: 10.1007/s00221-003-1721-0
– ident: B54
  doi: 10.1152/jn.01143.2015
– ident: B14
  doi: 10.1007/s00221-011-2608-0
– ident: B20
  doi: 10.1152/jn.1998.79.3.1409
– ident: B26
  doi: 10.1016/S0959-4388(99)00028-8
– ident: B18
  doi: 10.1007/s00221-006-0591-7
– ident: B63
  doi: 10.1123/mcj.4.2.185
– ident: B52
  doi: 10.1038/nn963
– ident: B15
  doi: 10.1007/s00221-004-2049-0
– volume-title: Optimality Principles in Biology
  year: 2013
  ident: B43
– volume: 23
  start-page: 237
  year: 2013
  ident: B49
  publication-title: J Vestib Res
  doi: 10.3233/VES-130485
– ident: B21
  doi: 10.1016/0166-2236(87)90043-9
– volume: 10
  start-page: 287
  year: 1995
  ident: B8
  publication-title: Exp Brain Res
– ident: B46
  doi: 10.1016/0166-4328(96)00030-7
– ident: B3
  doi: 10.1007/s00221-005-2245-6
– ident: B23
  doi: 10.1152/jn.1986.55.6.1369
– ident: B35
  doi: 10.1152/jn.00163.2011
– start-page: 139
  volume-title: The Behavioral Physiology of Animals and Man. The Collected Papers of Erich von Holst
  year: 1973
  ident: B56
– ident: B24
  doi: 10.1088/1741-2560/2/3/S09
– ident: B10
  doi: 10.1080/00222895.1982.10735273
– ident: B42
  doi: 10.1007/s00426-003-0140-y
– ident: B5
  doi: 10.1523/JNEUROSCI.05-09-02318.1985
– ident: B7
  doi: 10.1007/BF00238107
– ident: B19
  doi: 10.1007/s002210000643
– ident: B25
  doi: 10.1007/s002210000604
– ident: B12
  doi: 10.1080/00222895.1986.10735369
– ident: B44
  doi: 10.1113/jphysiol.2001.012809
– ident: B1
  doi: 10.1007/s002210100694
– ident: B31
  doi: 10.1152/jn.1995.73.5.2120
– volume-title: The Coordination and Regulation of Movements
  year: 1967
  ident: B6
– ident: B13
  doi: 10.1007/978-1-4939-2736-4
– ident: B17
  doi: 10.1123/mcj.2.3.189
– ident: B30
  doi: 10.1016/S0304-3940(00)00923-X
– ident: B55
  doi: 10.1016/S0950-5601(54)80044-X
– volume-title: Neuroscience Meeting Planner
  year: 2015
  ident: B53
– volume: 10
  start-page: 125
  year: 1995
  ident: B60
  publication-title: Exp Brain Res
– ident: B11
  doi: 10.1152/jn.1995.74.4.1787
– ident: B51
  doi: 10.1016/j.humov.2005.09.011
– ident: B36
  doi: 10.1007/s002210050669
– ident: B40
  doi: 10.1113/jphysiol.2009.186858
– ident: B48
  doi: 10.1177/1545968313510973
– ident: B29
  doi: 10.1123/mcj.11.3.276
– ident: B39
  doi: 10.1007/s00221-006-0445-3
– ident: B38
  doi: 10.1007/s00221-003-1624-0
– ident: B22
  doi: 10.1016/0166-2236(82)90111-4
– ident: B27
  doi: 10.1109/10.362914
– volume: 10
  start-page: 99
  year: 2015
  ident: B47
  publication-title: Int J Stroke
  doi: 10.1111/ijs.12016
– ident: B2
  doi: 10.1007/s002210050716
– ident: B37
  doi: 10.1007/BF00238859
– ident: B59
  doi: 10.1038/81497
– reference: 16847611 - Exp Brain Res. 2006 Nov;175(4):726-44
– reference: 21387096 - Exp Brain Res. 2011 Apr;210(1):91-115
– reference: 11460767 - Exp Brain Res. 2001 Jun;138(3):288-303
– reference: 11790827 - J Physiol. 2002 Jan 15;538(Pt 2):659-71
– reference: 16337298 - Hum Mov Sci. 2005 Oct-Dec;24(5-6):621-43
– reference: 10333007 - Exp Brain Res. 1999 May;126(1):55-67
– reference: 16992029 - J Physiol. 1959 Oct;147(3):547-64
– reference: 19276327 - Cereb Cortex. 2009 Nov;19(11):2625-39
– reference: 8751070 - Exp Brain Res. 1995;107(1):125-36
– reference: 8822542 - J Neurophysiol. 1996 Jan;75(1):60-74
– reference: 15136283 - J Mot Behav. 1986 Mar;18(1):17-54
– reference: 7672021 - Exp Brain Res. 1995;104(2):287-96
– reference: 17428903 - J Neurophysiol. 2007 Jun;97(6):4069-78
– reference: 10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27
– reference: 12836023 - Psychol Res. 2004 Aug;68(4):245-51
– reference: 12232697 - Exp Brain Res. 2002 Oct;146(3):394-8
– reference: 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
– reference: 27052586 - J Neurophysiol. 2016 Jun 1;115(6):3186-94
– reference: 3734861 - J Neurophysiol. 1986 Jun;55(6):1369-81
– reference: 15856209 - Exp Brain Res. 2005 Jul;164(2):225-41
– reference: 7851935 - IEEE Trans Biomed Eng. 1995 Jan;42(1):87-101
– reference: 3709722 - Exp Brain Res. 1986;62(2):401-10
– reference: 9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24
– reference: 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92
– reference: 16135889 - J Neural Eng. 2005 Sep;2(3):S266-78
– reference: 25344311 - Exp Brain Res. 2015 Feb;233(2):487-502
– reference: 11291724 - Exp Brain Res. 2001 Feb;136(4):439-46
– reference: 17715460 - Motor Control. 2007 Jul;11(3):276-308
– reference: 15490137 - Exp Brain Res. 2005 Feb;161(1):91-103
– reference: 1736324 - Prog Neurobiol. 1992;38(1):35-56
– reference: 9644289 - Motor Control. 1998 Jul;2(3):189-205
– reference: 26068599 - Motor Control. 2016 Jan;20(1):87-108
– reference: 20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70
– reference: 8905138 - Behav Brain Res. 1996 Oct;80(1-2):153-60
– reference: 4650889 - Exp Neurol. 1972 Dec;37(3):481-94
– reference: 11500575 - Motor Control. 2000 Apr;4(2):185-200
– reference: 7623104 - J Neurophysiol. 1995 May;73(5):2120-2
– reference: 6802666 - Exp Brain Res. 1982;46(1):139-43
– reference: 21676927 - J Neurophysiol. 2011 Sep;106(3):1424-36
– reference: 4031998 - J Neurosci. 1985 Sep;5(9):2318-30
– reference: 16676171 - Exp Brain Res. 2006 Sep;174(2):229-39
– reference: 11355386 - Exp Brain Res. 2001 Apr;137(3-4):411-23
– reference: 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7
– reference: 10204767 - Exp Brain Res. 1999 Mar;125(2):139-52
– reference: 14610628 - Exp Brain Res. 2003 Dec;153(3):275-88
– reference: 24270057 - Neurorehabil Neural Repair. 2014 May;28(4):355-66
– reference: 14658018 - Exp Brain Res. 2004 Apr;155(3):291-300
– reference: 16874517 - Exp Brain Res. 2007 Jan;176(1):54-69
– reference: 24284604 - J Vestib Res. 2013;23(4-5):237-47
– reference: 15153410 - J Mot Behav. 1982 Sep;14(3):194-212
– reference: 10729635 - Neurosci Lett. 2000 Mar 31;283(1):65-8
SSID ssj0007502
Score 2.2966046
Snippet Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or...
Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 303
SubjectTerms Adult
Biomechanical Phenomena
Extremities - innervation
Female
Humans
Male
Movement - physiology
Posture - physiology
Psychomotor Performance - physiology
Range of Motion, Articular - physiology
Torso - innervation
Young Adult
Title Referent control and motor equivalence of reaching from standing
URI https://www.ncbi.nlm.nih.gov/pubmed/27784802
https://www.proquest.com/docview/1835676637
https://pubmed.ncbi.nlm.nih.gov/PMC5225951
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCGOOjMJCR0F5GShLb-XhjQpQJBAKpk8ZTFH9pHZ0DWzpp--s5O4mTbJ006ENUuY7d-vfL-e56d0bojUozQvJSBkJrHtCI86AsIxVoLRORaCq1y3r_-i3ZP6CfD9lhHz_vsktqPhWXa_NK_gdVaANcbZbsPyDrB4UGeA_4whUQhuutMG6rxNY-4Nx6wWHtbRXvP6sFTOWeW9AHT33QpE0n6ZJZbtBMXY1L5_IY-dzn1cmi0TV_VmerX54RM7WUrR91z4ANv9z9NO3jfM4XbXi-kRe7s-nQyxClAy_DIOo_bI9cUa2whDZQh7KRNG1SMUe0aWQjCclgmyVNFud1Cc5sRdhjYz1duc2Ui9ZUyr6yg_m4QmfRsLg4NoW7vbC330X3YrAhrBD88qMvJQ-qUl9KHn5YV4CVxe9Gs48VlmtWyNVg2oF2Mn-IHrTg4b2GI5vojjKP0JaD4-QC7-DvHs0t9L6jDW5pg4EN2NEGD2iDK4072mBLG9zR5jE6mH2cf9gP2oM0AkEZqYMkTwS8wFgWVHOWcMqYkDlnTBHKVMKzHLRgqW2WsY4jkYaKkEgRLWXJYqLIE7RhKqOeIcyJSkOdaEVFSTUMlTMOQ4qIpkwQmU7Q2261CtFWmbeHnSyLtdhM0I7v_rspr3JTx9fd0hcgAO2_WqVR1eqsgD2JJSkozjD30wYKPxTgntEsjCcoHYHkO9ji6uNPzOLIFVkHbjOwPp7f9gu-QPf752YbbdSnK_US9NWav3K8-wvhjJdi
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Referent+control+and+motor+equivalence+of+reaching+from+standing&rft.jtitle=Journal+of+neurophysiology&rft.au=Tomita%2C+Yosuke&rft.au=Feldman%2C+Anatol+G.&rft.au=Levin%2C+Mindy+F.&rft.date=2017-01-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=117&rft.issue=1&rft.spage=303&rft.epage=315&rft_id=info:doi/10.1152%2Fjn.00292.2016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00292_2016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon