Referent control and motor equivalence of reaching from standing
Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces....
Saved in:
Published in | Journal of neurophysiology Vol. 117; no. 1; pp. 303 - 315 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.01.2017
|
Series | Control of Movement |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R
T
) and actual trajectory (Q
T
) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing.
NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. |
---|---|
AbstractList | Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R
) and actual trajectory (Q
) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing.
Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R T ) and actual trajectory (Q T ) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing.NEW & NOTEWORTHYMotor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (R T ) and actual trajectory (Q T ) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. |
Author | Feldman, Anatol G. Levin, Mindy F. Tomita, Yosuke |
Author_xml | – sequence: 1 givenname: Yosuke surname: Tomita fullname: Tomita, Yosuke organization: School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada;, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada – sequence: 2 givenname: Anatol G. surname: Feldman fullname: Feldman, Anatol G. organization: Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada; and, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada – sequence: 3 givenname: Mindy F. surname: Levin fullname: Levin, Mindy F. organization: School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada;, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27784802$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYMoWh9LtzJLN1PzmGRmNqIUX1AQRNchk7mpKTOJTaYF_72ptqJiNiH3fvfccM4h2nXeAUKnBI8J4fRi7sYY05qOKSZiB41SjeaE19UuGqUGzRkuywN0GOMcY1xyTPfRAS3LqqgwHaGrJzAQwA2Z9m4IvsuUa7PeDz5ksFjalerAaci8yQIo_WrdLDPB91kcEphex2jPqC7CyeY-Qi-3N8-T-3z6ePcwuZ7muuBsyEUtdDpUEF2Yhoum4Fy3dcM5sIKDaKpaUNaaghXMUKJLDIwRYKZtFacM2BG6_NJ9WzY9tDp9OahOvgXbq_AuvbLyd8fZVznzK5n84DUnSeB8IxD8YglxkL2NGrpOOfDLKEnFuCiFYGVCz37u-l6ytS0B7AvQwccYwEhtBzXYtYXKdpJguQ5Hzp38DEeuw0lT-Z-prfD__Af6a5E0 |
CitedBy_id | crossref_primary_10_1016_j_msksp_2023_102829 crossref_primary_10_1123_mc_2022_0026 crossref_primary_10_1007_s00221_017_5133_y crossref_primary_10_1152_jn_00531_2021 crossref_primary_10_1109_TNSRE_2020_3021200 crossref_primary_10_1152_jn_00483_2018 crossref_primary_10_1177_1545968318760725 crossref_primary_10_1007_s00221_019_05498_y crossref_primary_10_1152_jn_00729_2019 crossref_primary_10_1177_1545968321989348 crossref_primary_10_1371_journal_pone_0295101 crossref_primary_10_1177_15459683241231528 |
Cites_doi | 10.1113/jphysiol.1959.sp006261 10.1007/s00221-014-4128-1 10.1007/s00221-002-1186-6 10.1016/0966-6362(96)82849-9 10.1123/mc.2014-0084 10.1016/0301-0082(92)90034-C 10.1016/0014-4886(72)90091-X 10.1093/cercor/bhp021 10.1152/jn.00909.2006 10.1152/jn.1996.75.1.60 10.1007/s00221-006-0602-8 10.1007/s00221-003-1721-0 10.1152/jn.01143.2015 10.1007/s00221-011-2608-0 10.1152/jn.1998.79.3.1409 10.1016/S0959-4388(99)00028-8 10.1007/s00221-006-0591-7 10.1123/mcj.4.2.185 10.1038/nn963 10.1007/s00221-004-2049-0 10.3233/VES-130485 10.1016/0166-2236(87)90043-9 10.1016/0166-4328(96)00030-7 10.1007/s00221-005-2245-6 10.1152/jn.1986.55.6.1369 10.1152/jn.00163.2011 10.1088/1741-2560/2/3/S09 10.1080/00222895.1982.10735273 10.1007/s00426-003-0140-y 10.1523/JNEUROSCI.05-09-02318.1985 10.1007/BF00238107 10.1007/s002210000643 10.1007/s002210000604 10.1080/00222895.1986.10735369 10.1113/jphysiol.2001.012809 10.1007/s002210100694 10.1152/jn.1995.73.5.2120 10.1007/978-1-4939-2736-4 10.1123/mcj.2.3.189 10.1016/S0304-3940(00)00923-X 10.1016/S0950-5601(54)80044-X 10.1152/jn.1995.74.4.1787 10.1016/j.humov.2005.09.011 10.1007/s002210050669 10.1113/jphysiol.2009.186858 10.1177/1545968313510973 10.1123/mcj.11.3.276 10.1007/s00221-006-0445-3 10.1007/s00221-003-1624-0 10.1016/0166-2236(82)90111-4 10.1109/10.362914 10.1111/ijs.12016 10.1007/s002210050716 10.1007/BF00238859 10.1038/81497 |
ContentType | Journal Article |
Copyright | Copyright © 2017 the American Physiological Society. Copyright © 2017 the American Physiological Society 2017 American Physiological Society |
Copyright_xml | – notice: Copyright © 2017 the American Physiological Society. – notice: Copyright © 2017 the American Physiological Society 2017 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00292.2016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 315 |
ExternalDocumentID | PMC5225951 27784802 10_1152_jn_00292_2016 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science and Engineering Research Council of Canada |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-696cccc261c4fb56b455cd9b55e345e6b89623df4343f21c70e331e3fdda523e3 |
ISSN | 0022-3077 |
IngestDate | Thu Aug 21 13:59:34 EDT 2025 Fri Jul 11 16:04:26 EDT 2025 Mon Jul 21 06:02:52 EDT 2025 Tue Jul 01 04:09:07 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | synergy interjoint coordination adaptation compensation redundancy motor control arm movement |
Language | English |
License | Copyright © 2017 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-696cccc261c4fb56b455cd9b55e345e6b89623df4343f21c70e331e3fdda523e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.physiology.org/doi/pdf/10.1152/jn.00292.2016 |
PMID | 27784802 |
PQID | 1835676637 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5225951 proquest_miscellaneous_1835676637 pubmed_primary_27784802 crossref_citationtrail_10_1152_jn_00292_2016 crossref_primary_10_1152_jn_00292_2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationSeriesTitle | Control of Movement |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2017 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 Sambasivan K (B47) 2015; 10 B23 B24 B25 B26 B27 B29 Lashley KS (B28) 1951 Bernstein NA (B6) 1967 von Holst E (B56) 1973 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 Sibindi TM (B49) 2013; 23 B5 B7 B9 B40 B41 Tomita Y (B53) 2015 B42 B44 B45 Capaday C (B8) 1995; 10 B46 B48 Rosen R (B43) 2013 B50 B51 B52 B10 B54 B11 B55 B12 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 Asatryan DG (B4) 1965; 10 Won J (B60) 1995; 10 B61 B62 B63 15856209 - Exp Brain Res. 2005 Jul;164(2):225-41 15136283 - J Mot Behav. 1986 Mar;18(1):17-54 27052586 - J Neurophysiol. 2016 Jun 1;115(6):3186-94 15153410 - J Mot Behav. 1982 Sep;14(3):194-212 19276327 - Cereb Cortex. 2009 Nov;19(11):2625-39 3709722 - Exp Brain Res. 1986;62(2):401-10 7623104 - J Neurophysiol. 1995 May;73(5):2120-2 11500575 - Motor Control. 2000 Apr;4(2):185-200 4650889 - Exp Neurol. 1972 Dec;37(3):481-94 7672021 - Exp Brain Res. 1995;104(2):287-96 10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27 11790827 - J Physiol. 2002 Jan 15;538(Pt 2):659-71 10729635 - Neurosci Lett. 2000 Mar 31;283(1):65-8 25344311 - Exp Brain Res. 2015 Feb;233(2):487-502 14610628 - Exp Brain Res. 2003 Dec;153(3):275-88 21676927 - J Neurophysiol. 2011 Sep;106(3):1424-36 17715460 - Motor Control. 2007 Jul;11(3):276-308 6802666 - Exp Brain Res. 1982;46(1):139-43 1736324 - Prog Neurobiol. 1992;38(1):35-56 16337298 - Hum Mov Sci. 2005 Oct-Dec;24(5-6):621-43 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35 8751070 - Exp Brain Res. 1995;107(1):125-36 8822542 - J Neurophysiol. 1996 Jan;75(1):60-74 21387096 - Exp Brain Res. 2011 Apr;210(1):91-115 11460767 - Exp Brain Res. 2001 Jun;138(3):288-303 16847611 - Exp Brain Res. 2006 Nov;175(4):726-44 16874517 - Exp Brain Res. 2007 Jan;176(1):54-69 4031998 - J Neurosci. 1985 Sep;5(9):2318-30 7851935 - IEEE Trans Biomed Eng. 1995 Jan;42(1):87-101 16135889 - J Neural Eng. 2005 Sep;2(3):S266-78 10204767 - Exp Brain Res. 1999 Mar;125(2):139-52 12232697 - Exp Brain Res. 2002 Oct;146(3):394-8 16676171 - Exp Brain Res. 2006 Sep;174(2):229-39 26068599 - Motor Control. 2016 Jan;20(1):87-108 11291724 - Exp Brain Res. 2001 Feb;136(4):439-46 3734861 - J Neurophysiol. 1986 Jun;55(6):1369-81 12836023 - Psychol Res. 2004 Aug;68(4):245-51 16992029 - J Physiol. 1959 Oct;147(3):547-64 8905138 - Behav Brain Res. 1996 Oct;80(1-2):153-60 9644289 - Motor Control. 1998 Jul;2(3):189-205 20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70 10333007 - Exp Brain Res. 1999 May;126(1):55-67 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92 9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24 15490137 - Exp Brain Res. 2005 Feb;161(1):91-103 17428903 - J Neurophysiol. 2007 Jun;97(6):4069-78 24284604 - J Vestib Res. 2013;23(4-5):237-47 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7 14658018 - Exp Brain Res. 2004 Apr;155(3):291-300 24270057 - Neurorehabil Neural Repair. 2014 May;28(4):355-66 11355386 - Exp Brain Res. 2001 Apr;137(3-4):411-23 |
References_xml | – ident: B33 doi: 10.1113/jphysiol.1959.sp006261 – ident: B34 doi: 10.1007/s00221-014-4128-1 – ident: B9 doi: 10.1007/s00221-002-1186-6 – volume-title: Cerebral Mechanisms in Behavior year: 1951 ident: B28 – ident: B58 doi: 10.1016/0966-6362(96)82849-9 – ident: B62 doi: 10.1123/mc.2014-0084 – ident: B32 doi: 10.1016/0301-0082(92)90034-C – volume: 10 start-page: 925 year: 1965 ident: B4 publication-title: Biophysics – ident: B16 doi: 10.1016/0014-4886(72)90091-X – ident: B45 doi: 10.1093/cercor/bhp021 – ident: B41 doi: 10.1152/jn.00909.2006 – ident: B57 doi: 10.1152/jn.1996.75.1.60 – ident: B61 doi: 10.1007/s00221-006-0602-8 – ident: B50 doi: 10.1007/s00221-003-1721-0 – ident: B54 doi: 10.1152/jn.01143.2015 – ident: B14 doi: 10.1007/s00221-011-2608-0 – ident: B20 doi: 10.1152/jn.1998.79.3.1409 – ident: B26 doi: 10.1016/S0959-4388(99)00028-8 – ident: B18 doi: 10.1007/s00221-006-0591-7 – ident: B63 doi: 10.1123/mcj.4.2.185 – ident: B52 doi: 10.1038/nn963 – ident: B15 doi: 10.1007/s00221-004-2049-0 – volume-title: Optimality Principles in Biology year: 2013 ident: B43 – volume: 23 start-page: 237 year: 2013 ident: B49 publication-title: J Vestib Res doi: 10.3233/VES-130485 – ident: B21 doi: 10.1016/0166-2236(87)90043-9 – volume: 10 start-page: 287 year: 1995 ident: B8 publication-title: Exp Brain Res – ident: B46 doi: 10.1016/0166-4328(96)00030-7 – ident: B3 doi: 10.1007/s00221-005-2245-6 – ident: B23 doi: 10.1152/jn.1986.55.6.1369 – ident: B35 doi: 10.1152/jn.00163.2011 – start-page: 139 volume-title: The Behavioral Physiology of Animals and Man. The Collected Papers of Erich von Holst year: 1973 ident: B56 – ident: B24 doi: 10.1088/1741-2560/2/3/S09 – ident: B10 doi: 10.1080/00222895.1982.10735273 – ident: B42 doi: 10.1007/s00426-003-0140-y – ident: B5 doi: 10.1523/JNEUROSCI.05-09-02318.1985 – ident: B7 doi: 10.1007/BF00238107 – ident: B19 doi: 10.1007/s002210000643 – ident: B25 doi: 10.1007/s002210000604 – ident: B12 doi: 10.1080/00222895.1986.10735369 – ident: B44 doi: 10.1113/jphysiol.2001.012809 – ident: B1 doi: 10.1007/s002210100694 – ident: B31 doi: 10.1152/jn.1995.73.5.2120 – volume-title: The Coordination and Regulation of Movements year: 1967 ident: B6 – ident: B13 doi: 10.1007/978-1-4939-2736-4 – ident: B17 doi: 10.1123/mcj.2.3.189 – ident: B30 doi: 10.1016/S0304-3940(00)00923-X – ident: B55 doi: 10.1016/S0950-5601(54)80044-X – volume-title: Neuroscience Meeting Planner year: 2015 ident: B53 – volume: 10 start-page: 125 year: 1995 ident: B60 publication-title: Exp Brain Res – ident: B11 doi: 10.1152/jn.1995.74.4.1787 – ident: B51 doi: 10.1016/j.humov.2005.09.011 – ident: B36 doi: 10.1007/s002210050669 – ident: B40 doi: 10.1113/jphysiol.2009.186858 – ident: B48 doi: 10.1177/1545968313510973 – ident: B29 doi: 10.1123/mcj.11.3.276 – ident: B39 doi: 10.1007/s00221-006-0445-3 – ident: B38 doi: 10.1007/s00221-003-1624-0 – ident: B22 doi: 10.1016/0166-2236(82)90111-4 – ident: B27 doi: 10.1109/10.362914 – volume: 10 start-page: 99 year: 2015 ident: B47 publication-title: Int J Stroke doi: 10.1111/ijs.12016 – ident: B2 doi: 10.1007/s002210050716 – ident: B37 doi: 10.1007/BF00238859 – ident: B59 doi: 10.1038/81497 – reference: 16847611 - Exp Brain Res. 2006 Nov;175(4):726-44 – reference: 21387096 - Exp Brain Res. 2011 Apr;210(1):91-115 – reference: 11460767 - Exp Brain Res. 2001 Jun;138(3):288-303 – reference: 11790827 - J Physiol. 2002 Jan 15;538(Pt 2):659-71 – reference: 16337298 - Hum Mov Sci. 2005 Oct-Dec;24(5-6):621-43 – reference: 10333007 - Exp Brain Res. 1999 May;126(1):55-67 – reference: 16992029 - J Physiol. 1959 Oct;147(3):547-64 – reference: 19276327 - Cereb Cortex. 2009 Nov;19(11):2625-39 – reference: 8751070 - Exp Brain Res. 1995;107(1):125-36 – reference: 8822542 - J Neurophysiol. 1996 Jan;75(1):60-74 – reference: 15136283 - J Mot Behav. 1986 Mar;18(1):17-54 – reference: 7672021 - Exp Brain Res. 1995;104(2):287-96 – reference: 17428903 - J Neurophysiol. 2007 Jun;97(6):4069-78 – reference: 10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27 – reference: 12836023 - Psychol Res. 2004 Aug;68(4):245-51 – reference: 12232697 - Exp Brain Res. 2002 Oct;146(3):394-8 – reference: 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35 – reference: 27052586 - J Neurophysiol. 2016 Jun 1;115(6):3186-94 – reference: 3734861 - J Neurophysiol. 1986 Jun;55(6):1369-81 – reference: 15856209 - Exp Brain Res. 2005 Jul;164(2):225-41 – reference: 7851935 - IEEE Trans Biomed Eng. 1995 Jan;42(1):87-101 – reference: 3709722 - Exp Brain Res. 1986;62(2):401-10 – reference: 9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24 – reference: 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92 – reference: 16135889 - J Neural Eng. 2005 Sep;2(3):S266-78 – reference: 25344311 - Exp Brain Res. 2015 Feb;233(2):487-502 – reference: 11291724 - Exp Brain Res. 2001 Feb;136(4):439-46 – reference: 17715460 - Motor Control. 2007 Jul;11(3):276-308 – reference: 15490137 - Exp Brain Res. 2005 Feb;161(1):91-103 – reference: 1736324 - Prog Neurobiol. 1992;38(1):35-56 – reference: 9644289 - Motor Control. 1998 Jul;2(3):189-205 – reference: 26068599 - Motor Control. 2016 Jan;20(1):87-108 – reference: 20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70 – reference: 8905138 - Behav Brain Res. 1996 Oct;80(1-2):153-60 – reference: 4650889 - Exp Neurol. 1972 Dec;37(3):481-94 – reference: 11500575 - Motor Control. 2000 Apr;4(2):185-200 – reference: 7623104 - J Neurophysiol. 1995 May;73(5):2120-2 – reference: 6802666 - Exp Brain Res. 1982;46(1):139-43 – reference: 21676927 - J Neurophysiol. 2011 Sep;106(3):1424-36 – reference: 4031998 - J Neurosci. 1985 Sep;5(9):2318-30 – reference: 16676171 - Exp Brain Res. 2006 Sep;174(2):229-39 – reference: 11355386 - Exp Brain Res. 2001 Apr;137(3-4):411-23 – reference: 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7 – reference: 10204767 - Exp Brain Res. 1999 Mar;125(2):139-52 – reference: 14610628 - Exp Brain Res. 2003 Dec;153(3):275-88 – reference: 24270057 - Neurorehabil Neural Repair. 2014 May;28(4):355-66 – reference: 14658018 - Exp Brain Res. 2004 Apr;155(3):291-300 – reference: 16874517 - Exp Brain Res. 2007 Jan;176(1):54-69 – reference: 24284604 - J Vestib Res. 2013;23(4-5):237-47 – reference: 15153410 - J Mot Behav. 1982 Sep;14(3):194-212 – reference: 10729635 - Neurosci Lett. 2000 Mar 31;283(1):65-8 |
SSID | ssj0007502 |
Score | 2.2966046 |
Snippet | Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or... Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 303 |
SubjectTerms | Adult Biomechanical Phenomena Extremities - innervation Female Humans Male Movement - physiology Posture - physiology Psychomotor Performance - physiology Range of Motion, Articular - physiology Torso - innervation Young Adult |
Title | Referent control and motor equivalence of reaching from standing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27784802 https://www.proquest.com/docview/1835676637 https://pubmed.ncbi.nlm.nih.gov/PMC5225951 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCGOOjMJCR0F5GShLb-XhjQpQJBAKpk8ZTFH9pHZ0DWzpp--s5O4mTbJ006ENUuY7d-vfL-e56d0bojUozQvJSBkJrHtCI86AsIxVoLRORaCq1y3r_-i3ZP6CfD9lhHz_vsktqPhWXa_NK_gdVaANcbZbsPyDrB4UGeA_4whUQhuutMG6rxNY-4Nx6wWHtbRXvP6sFTOWeW9AHT33QpE0n6ZJZbtBMXY1L5_IY-dzn1cmi0TV_VmerX54RM7WUrR91z4ANv9z9NO3jfM4XbXi-kRe7s-nQyxClAy_DIOo_bI9cUa2whDZQh7KRNG1SMUe0aWQjCclgmyVNFud1Cc5sRdhjYz1duc2Ui9ZUyr6yg_m4QmfRsLg4NoW7vbC330X3YrAhrBD88qMvJQ-qUl9KHn5YV4CVxe9Gs48VlmtWyNVg2oF2Mn-IHrTg4b2GI5vojjKP0JaD4-QC7-DvHs0t9L6jDW5pg4EN2NEGD2iDK4072mBLG9zR5jE6mH2cf9gP2oM0AkEZqYMkTwS8wFgWVHOWcMqYkDlnTBHKVMKzHLRgqW2WsY4jkYaKkEgRLWXJYqLIE7RhKqOeIcyJSkOdaEVFSTUMlTMOQ4qIpkwQmU7Q2261CtFWmbeHnSyLtdhM0I7v_rspr3JTx9fd0hcgAO2_WqVR1eqsgD2JJSkozjD30wYKPxTgntEsjCcoHYHkO9ji6uNPzOLIFVkHbjOwPp7f9gu-QPf752YbbdSnK_US9NWav3K8-wvhjJdi |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Referent+control+and+motor+equivalence+of+reaching+from+standing&rft.jtitle=Journal+of+neurophysiology&rft.au=Tomita%2C+Yosuke&rft.au=Feldman%2C+Anatol+G.&rft.au=Levin%2C+Mindy+F.&rft.date=2017-01-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=117&rft.issue=1&rft.spage=303&rft.epage=315&rft_id=info:doi/10.1152%2Fjn.00292.2016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00292_2016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |