The mechanical and strength properties of diamond

Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a...

Full description

Saved in:
Bibliographic Details
Published inReports on progress in physics Vol. 75; no. 12; pp. 126505 - 35
Main Author Field, J E
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.12.2012
Subjects
Online AccessGet full text
ISSN0034-4885
1361-6633
1361-6633
DOI10.1088/0034-4885/75/12/126505

Cover

Loading…
Abstract Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research.
AbstractList Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research.
Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research.Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research.
Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. The developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research.
Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research.
Author Field, J E
Author_xml – sequence: 1
  givenname: J E
  surname: Field
  fullname: Field, J E
  organization: University of Cambridge Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23168381$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtqwzAUQEVJaR7tLwSPXdzoWg9L0KWEviDQJbuQZblRsKVUcob-fR2cdugSuKDlHN3LmaOJD94itAT8AFiIFcaE5lQItirZCophOMPsCs2AcMg5J2SCZn_QFM1T2mMMIAp5g6YFAS6IgBmC7c5mnTU77Z3RbaZ9naU-Wv_Z77JDDAcbe2dTFpqsdroLvr5F141uk707vwu0fXnert_yzcfr-_ppkxvKSJ9zoFobTknFGCFATQNESkEKrWusm0pqwUCSuqyaqtKkLKwxtqw4l6IRsiQLdD9-OxzxdbSpV51Lxrat9jYck4IShByW4OIyCoJLQiWlA7o8o8eqs7U6RNfp-K1-gwzA4wiYGFKKtlHG9bp3wfdRu1YBVqf-6pRWndKqkiko1Nh_0Pk__XfDRbEYRRcOah-O0Q9tL0k_BvSVNg
CODEN RPPHAG
CitedBy_id crossref_primary_10_1080_17436753_2017_1389462
crossref_primary_10_1016_j_joule_2018_05_007
crossref_primary_10_1016_j_carbon_2024_119643
crossref_primary_10_3390_ma12152492
crossref_primary_10_1063_5_0057163
crossref_primary_10_1126_science_abc4174
crossref_primary_10_1080_10910344_2019_1575412
crossref_primary_10_3390_ma17143437
crossref_primary_10_1063_1_5109782
crossref_primary_10_1038_s41467_019_13378_w
crossref_primary_10_1080_14786435_2022_2086715
crossref_primary_10_1016_j_jmapro_2023_09_054
crossref_primary_10_1107_S1600576720014752
crossref_primary_10_1016_j_jcrysgro_2023_127217
crossref_primary_10_1016_j_jmatprotec_2021_117300
crossref_primary_10_3390_lubricants6030084
crossref_primary_10_1016_j_apt_2017_06_008
crossref_primary_10_1016_j_apsusc_2023_158500
crossref_primary_10_1016_j_ijrmhm_2024_106763
crossref_primary_10_1016_j_jmrt_2025_03_109
crossref_primary_10_1016_j_ijrmhm_2019_105036
crossref_primary_10_1016_j_diamond_2020_107839
crossref_primary_10_1016_j_matpr_2020_12_165
crossref_primary_10_1021_acsomega_2c07637
crossref_primary_10_1039_D3TC03701K
crossref_primary_10_1007_s11706_022_0590_z
crossref_primary_10_1103_PhysRevB_108_174514
crossref_primary_10_1016_j_scriptamat_2021_113855
crossref_primary_10_1016_j_matchemphys_2020_123638
crossref_primary_10_1063_5_0218705
crossref_primary_10_1088_1361_6641_ab9a5f
crossref_primary_10_1016_j_optlastec_2018_03_031
crossref_primary_10_1016_j_diamond_2022_108899
crossref_primary_10_1016_j_diamond_2017_06_004
crossref_primary_10_3389_fmech_2021_652001
crossref_primary_10_1126_science_aad2080
crossref_primary_10_1016_j_jmatprotec_2016_03_005
crossref_primary_10_1016_j_wear_2018_04_010
crossref_primary_10_1002_adts_202301171
crossref_primary_10_1038_am_2016_106
crossref_primary_10_1016_j_optlastec_2021_107569
crossref_primary_10_1007_s00170_014_6516_x
crossref_primary_10_1016_j_jmatprotec_2024_118527
crossref_primary_10_1007_s00170_018_2041_7
crossref_primary_10_1016_j_actbio_2023_08_030
crossref_primary_10_1088_1361_648X_ad6bdb
crossref_primary_10_2138_rmg_2022_88_13
crossref_primary_10_1038_s41467_024_54279_x
crossref_primary_10_1016_j_optlastec_2022_108403
crossref_primary_10_1016_j_diamond_2025_112189
crossref_primary_10_4028_www_scientific_net_AMR_1017_304
crossref_primary_10_1016_j_ijmecsci_2024_109417
crossref_primary_10_1016_j_matt_2020_02_011
crossref_primary_10_1016_j_carbon_2021_04_025
crossref_primary_10_1016_j_commatsci_2014_08_040
crossref_primary_10_1016_j_diamond_2024_111370
crossref_primary_10_1557_s43577_021_00206_0
crossref_primary_10_1016_j_diamond_2015_06_004
crossref_primary_10_1016_j_mtla_2022_101487
crossref_primary_10_1016_j_jmapro_2024_09_083
crossref_primary_10_1016_j_ijrmhm_2023_106509
crossref_primary_10_1063_5_0176867
crossref_primary_10_1007_s00170_015_7935_z
crossref_primary_10_1126_science_aar4165
crossref_primary_10_1016_j_diamond_2024_111008
crossref_primary_10_1063_1_4939051
crossref_primary_10_1007_s00170_017_1529_x
crossref_primary_10_1016_j_wear_2024_205355
crossref_primary_10_1007_s00170_022_10463_1
crossref_primary_10_1098_rspa_2022_0253
crossref_primary_10_1016_j_cartre_2022_100219
crossref_primary_10_1016_j_triboint_2019_106056
crossref_primary_10_1080_26941112_2021_1877021
crossref_primary_10_1016_j_eml_2022_101931
crossref_primary_10_1016_j_optlastec_2020_106839
crossref_primary_10_1021_acs_nanolett_5b04989
crossref_primary_10_1016_j_carbon_2020_04_086
crossref_primary_10_1016_j_diamond_2023_110246
crossref_primary_10_1088_2040_8986_ac0873
crossref_primary_10_1016_j_diamond_2024_111755
crossref_primary_10_1007_s11249_020_01360_3
crossref_primary_10_1016_j_jallcom_2016_10_172
crossref_primary_10_3390_photonics11080763
crossref_primary_10_1016_j_carbon_2018_11_026
crossref_primary_10_1016_j_diamond_2018_02_013
crossref_primary_10_1063_5_0080144
crossref_primary_10_1103_PhysRevB_101_224109
crossref_primary_10_3390_min13091203
crossref_primary_10_1063_1_4927213
crossref_primary_10_1002_adfm_201807658
crossref_primary_10_1039_D3CP05098J
crossref_primary_10_1016_j_eml_2023_102113
crossref_primary_10_1016_j_jmps_2021_104633
crossref_primary_10_1021_acs_jpclett_4c02612
crossref_primary_10_1039_D4CP03755C
crossref_primary_10_1140_epjs_s11734_024_01458_y
crossref_primary_10_1080_26941112_2022_2151322
crossref_primary_10_1103_PhysRevB_96_075205
crossref_primary_10_1039_C7RA04821A
crossref_primary_10_1016_j_ijrmhm_2024_106609
crossref_primary_10_1016_j_compositesb_2016_02_011
crossref_primary_10_1016_j_diamond_2021_108461
crossref_primary_10_4103_jdras_jdras_22_22
crossref_primary_10_1111_jace_20257
crossref_primary_10_1016_j_diamond_2022_109151
crossref_primary_10_1016_j_engfailanal_2023_107432
crossref_primary_10_1002_smll_202400798
crossref_primary_10_1016_j_ijrmhm_2024_106560
crossref_primary_10_1016_j_cma_2025_117792
crossref_primary_10_1080_08957959_2019_1695254
crossref_primary_10_1007_s12541_016_0138_1
crossref_primary_10_1007_s40843_020_1373_3
crossref_primary_10_1016_j_jallcom_2023_172168
crossref_primary_10_1016_j_jmatprotec_2022_117511
crossref_primary_10_1016_j_cartre_2024_100353
crossref_primary_10_1021_nl500410g
crossref_primary_10_1364_OE_27_030371
crossref_primary_10_1016_j_chemosphere_2015_11_115
crossref_primary_10_1016_j_carbon_2015_12_001
crossref_primary_10_1088_1361_6463_acc5f8
crossref_primary_10_1134_S0020441215010303
crossref_primary_10_1016_j_diamond_2022_109384
crossref_primary_10_1016_j_triboint_2024_109507
crossref_primary_10_1016_j_mtnano_2024_100514
crossref_primary_10_1515_jmbm_2017_0025
crossref_primary_10_1016_j_ijrmhm_2023_106397
crossref_primary_10_1016_j_mtphys_2022_100705
crossref_primary_10_1016_j_chempr_2019_06_011
crossref_primary_10_1016_j_mser_2024_100857
crossref_primary_10_1177_0954405419884787
crossref_primary_10_3390_ma14061408
crossref_primary_10_1002_anie_202409507
crossref_primary_10_1016_j_ijsolstr_2019_02_016
crossref_primary_10_1021_acs_jpclett_3c03044
crossref_primary_10_1038_s41428_022_00644_w
crossref_primary_10_1098_rsbm_2021_0013
crossref_primary_10_1016_j_optlaseng_2018_01_002
crossref_primary_10_1007_s11431_020_1590_8
crossref_primary_10_1016_j_diamond_2024_111602
crossref_primary_10_1126_science_aat5211
crossref_primary_10_1007_s10704_021_00517_y
crossref_primary_10_1016_j_diamond_2024_111042
crossref_primary_10_1088_1612_202X_ab13b4
crossref_primary_10_1016_j_triboint_2024_109322
crossref_primary_10_1016_j_triboint_2020_106298
crossref_primary_10_1039_C6RA05830B
crossref_primary_10_3390_ma13163530
crossref_primary_10_1039_C6CS00109B
crossref_primary_10_1016_j_matdes_2015_10_062
crossref_primary_10_1002_adma_201705501
crossref_primary_10_1016_j_vacuum_2023_112226
crossref_primary_10_1002_ange_202409507
crossref_primary_10_1364_OE_470128
crossref_primary_10_1007_s00170_016_8751_9
crossref_primary_10_1007_s10854_019_01376_z
crossref_primary_10_1016_j_carbon_2019_10_078
crossref_primary_10_3103_S1068366616030168
Cites_doi 10.1007/978-1-4684-7470-1_121
10.1080/14786435908243252
10.1088/0370-1301/69/10/303
10.1063/1.1661636
10.1179/026708388790329909
10.1080/01418618308236543
10.1063/1.357214
10.1016/0022-0248(81)90197-4
10.1007/BF00550720
10.1016/S0031-8914(52)80049-7
10.1088/0953-8984/21/36/364206
10.1080/14786430500482336
10.1103/PhysRevLett.85.4904
10.1063/1.368198
10.1103/PhysRevB.11.3139
10.1098/rspa.1973.0082
10.1007/BF00547459
10.1103/PhysRev.105.116
10.1080/00107517608210841
10.3390/ma2042467
10.1080/01418639408240133
10.1016/0040-6090(92)90497-Y
10.1557/JMR.1992.1432
10.1103/PhysRevLett.80.3428
10.1088/0022-3727/5/10/323
10.1016/S0925-9635(99)00088-6
10.1080/01418618208236213
10.1007/BF03172510
10.1080/01418619108205582
10.1007/978-1-4684-2991-6_17
10.1098/rspa.1974.0074
10.1038/44323
10.1080/01418618608242810
10.1116/1.571616
10.1088/0370-1301/69/1/307
10.1016/0925-9635(93)90265-4
10.1080/14786436608211997
10.1038/nmat2902
10.1038/182518b0
10.1063/1.325277
10.1088/0022-3727/30/2/007
10.1117/12.439181
10.1007/s100510050049
10.1098/rspa.1962.0243
10.1088/0022-3727/6/15/303
10.1038/nature10740
10.1063/1.1661318
10.1088/0370-1328/74/1/308
10.1098/rspa.1966.0237
10.1080/01418618108240397
10.1016/0925-9635(94)90176-7
10.1080/14786437008220952
10.1063/1.1735052
10.1007/BF00782253
10.1088/0022-3727/39/18/R01
10.1080/14786430310001613246
10.1016/0169-4332(92)90367-7
10.1130/0091-7613(1997)025<1019:DFTIRK>2.3.CO;2
10.1098/rspa.1956.0040
10.1080/14786436508218894
10.1016/0925-9635(95)00430-0
10.1038/nphys1491
10.1063/1.1135966
10.1016/S0927-796X(02)00005-0
10.1088/0370-1301/70/5/309
10.1007/s001930050079
10.1016/S0031-8914(54)80032-2
10.1115/1.3625051
10.1088/0022-3727/33/6/302
10.1143/JJAP.21.L183
10.1002/(SICI)1521-396X(199903)172:1<91::AID-PSSA91>3.0.CO;2-J
10.1063/1.326378
10.1063/1.3448027
10.1016/j.jeurceramsoc.2005.04.008
10.1103/PhysRevB.64.212103
10.1016/0039-6028(77)90459-9
10.1038/195765a0
10.1016/j.diamond.2011.05.019
10.1088/0022-3727/25/1A/007
10.1088/0022-3727/9/1/009
10.1016/0039-6028(86)90665-5
10.1063/1.3446966
10.1088/0022-3727/25/10/006
10.1016/0925-9635(95)00362-2
10.1098/rspa.1955.0132
10.1088/0034-4885/12/1/309
10.1038/164193a0
10.6028/jres.034.030
10.1002/bbpc.19550590503
10.1016/S0081-1947(08)60529-9
10.1098/rsta.1987.0018
10.1098/rspa.1964.0236
10.1080/14786430802616557
10.1038/nature02449
10.1098/rspa.1973.0072
10.1557/PROC-383-327
10.1016/S0925-9635(98)00347-1
10.1126/science.198.4321.1037
10.1063/1.3529454
10.1016/S0007-8506(07)61737-5
10.1002/andp.18912790505
10.1080/0141861021000055673
10.1016/0257-8972(91)90335-T
10.1080/00318087608227724
10.1080/14786440808520497
10.1007/BF03170745
10.1126/science.200.4346.1145
10.1111/j.1945-5100.2009.tb00740.x
10.1098/rspa.1998.0155
10.1063/1.1733716
10.1098/rspa.1955.0131
10.1016/S0925-9635(02)00197-8
10.3390/ma3021390
10.1098/rspa.2004.1339
10.1098/rspa.1946.0082
10.1098/rspa.1958.0250
10.1016/S0043-1648(01)00861-4
10.1016/S0043-1648(03)00385-5
10.1016/0013-7944(83)90087-5
10.1080/14786437408213559
10.1016/S0263-4368(98)00049-3
10.1098/rspa.1964.0114
10.1023/B:JMSC.0000016153.90600.a6
10.1179/174329409X433939
10.1016/0925-9635(93)90250-6
10.1088/0022-3727/33/8/315
10.1107/S0365110X53001290
10.1016/0022-5096(57)90002-9
10.1080/14786441108521022
10.1038/333440a0
10.1007/BF00755735
10.1016/S0043-1648(99)00189-1
10.1103/PhysRevLett.84.5160
10.1098/rspa.1981.0001
10.1088/0022-3727/10/10/014
10.1007/978-1-4899-5877-8
ContentType Journal Article
Copyright 2012 IOP Publishing Ltd
Copyright_xml – notice: 2012 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
DOI 10.1088/0034-4885/75/12/126505
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList PubMed
MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Geology
DocumentTitleAlternate The mechanical and strength properties of diamond
EISSN 1361-6633
EndPage 35
ExternalDocumentID 23168381
10_1088_0034_4885_75_12_126505
rpp7655
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
123
1JI
1WK
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
S3P
SY9
TN5
UCJ
VO1
W28
WH7
XPP
ZCG
ZMT
~02
AAYXX
ADEQX
AERVB
CITATION
02O
29P
5ZI
AAGCF
ABEFU
ACARI
ACKIV
ACWPO
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
CBCFC
CEBXE
MVM
NPM
OHT
T37
XOL
ZY4
7X8
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c453t-614aac643b553314cf1399832aad0afb9a85193d7bfbba372ecce7b6698f8973
IEDL.DBID IOP
ISSN 0034-4885
1361-6633
IngestDate Fri Jul 11 11:42:52 EDT 2025
Fri Jul 11 03:55:40 EDT 2025
Mon Jul 21 06:09:16 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Tue Jul 01 02:52:53 EDT 2025
Wed Aug 21 03:33:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-614aac643b553314cf1399832aad0afb9a85193d7bfbba372ecce7b6698f8973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23168381
PQID 1186934944
PQPubID 23479
PageCount 35
ParticipantIDs proquest_miscellaneous_1186934944
iop_journals_10_1088_0034_4885_75_12_126505
proquest_miscellaneous_1718961402
crossref_citationtrail_10_1088_0034_4885_75_12_126505
pubmed_primary_23168381
crossref_primary_10_1088_0034_4885_75_12_126505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Reports on progress in physics
PublicationTitleAbbrev RoPP
PublicationTitleAlternate Rep. Prog. Phys
PublicationYear 2012
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Townsend D (142) 1985
Field J E (61) 1962
Krishnan R S (43) 1947
Bogatyreva G P (107) 1972; 4
Nikitin Y I (90) 1970; 2
Schulzhenko A A (102) 1969; 1
Bowden F P (167) 1950
230
Tabor D (186) 1951
231
Stephenson R F (29) 1977
233
113
Wilks E M (217) 1952; 43
234
235
115
236
237
238
Howes V R (68) 1959; 74
Dyer H B (108) 1972; 32
Tsypin N V (91) 1973; 5
Roberts D C (119) 1979; 39
Mukhin M E (96) 1974
12
14
Whittaker H (208) 1946; 31
17
18
19
Moore M (37) 1979
Schulzhenko A A (103) 1973; 5
120
Trefilov V I (16) 1978; 23
121
Brookes C A (196) 1979
122
Uvarov V A (109) 1974
123
3
124
4
Stupkina L M (94) 1970; 15
125
126
127
128
9
Kurochkin P N (95) 1974
20
21
22
Slawson C B (216) 1950; 10
23
24
Berman R (6) 1979
25
27
Bailey A I (223) 1956; 16
28
Gigl P F (118) 1979
130
Warren P D (80) 1994; 5
131
132
133
134
135
Grodzinski P (214) 1949; 9
31
32
33
34
Seward C R (152) 1994; 5
38
Wilks E M (202) 1972; 5
Spörl R Heidinger R Kennedy G R Brierley C J (139) 1999
140
141
143
144
145
148
149
Pospiech J (198) 1970; 15
40
Denning R M (210) 1953; 38
41
42
45
46
47
48
49
Bowden F P (168) 1964
Roesler F C (81) 1956; 69
Bradley C C (189) 1969
Field J E (1) 1979
150
151
Ziminov N V (97) 1974
Simkin E S (110) 1982
157
159
50
Chandrasekharan V (44) 1950; 32
Bakul V N Prikhna A I Gobdanovich M G (88) 1969
53
Yagudin G I (111) 1974
57
Martinez I (13) 1998; 327
162
163
Winchell H (209) 1946; 31
164
165
166
Kittel C (35) 1996
Windischmann H (138) 1991
62
65
66
69
van Bouwelen F M (228) 1997; 57
Seal M (161) 1965; 25
Hukao Y (212) 1955; 15
172
Jilbert G H (137) 1997
173
174
Ramage J B (60) 1956
176
179
73
Pipkin N J Wilson W I Field J E (117) 1977
75
76
77
Grodzinski P (59) 1953
Hayward I P (146) 1990; 1
Evans T (39) 1979
180
182
Evans T (184) 1967
183
Wilks J (203) 1979
185
Roesler F C (82) 1956; 69
187
de Carli P S (15) 1967
Grodzinski P (215) 1956
Leslie J (170) 1804
Grillo S E (178) 2000; 33
83
84
87
Feng Z (99) 1989; 49
Pickles C S J Brandon J R Coe S E Sussman R S (129) 1999
Denning R M (211) 1955; 40
Field J E (2) 1992
190
191
192
193
Howes V R (78) 1965
194
195
Tolkowsky M (169) 1920
Harris J W (7) 1979
Evans T (30) 1978
Tabor D (155) 1992
Coleman K R Schardin H Helwich O (112) 1959
Orowan E (64) 1948; 12
Sellschop J P F (26) 1979
Wilks E M (201) 1965
Belling N G (93) 1974
Bell J G (71) 1975; 35
Zsolnay L M (106) 1971
Cooper R E (114) 1961
Bakul V N (89) 1970; 2
Wilks E M (219) 1954; 45
Tolansky S (67) 1957; 70
Bridgman P W (188) 1949
Feng Z (147) 1990; 1
Kennedy G C (10) 1967
Field J E (63) 1992
Bakul V N (199) 1973; 5
Belling N G (92) 1964
Sutton J R (54) 1928
Bell J G (79) 1977; 10
Stachel T (8) 2009; 21
Rameshan S (55) 1946; 24
Wilks E M (154) 1991
Naletov A M (85) 1979; 24
Erdemir A (181) 2006; 39
Field J E (52) 1979
Feng Z (158) 1992; 25
Hayward I P (175) 1992
Klein C A Hallock R B Miller R P Ravi K V Dismukes J P (136) 1995
Bergheimer H (205) 1938; 74
Novikov N V (86) 1991; 2
Casey M (171) 1973; 6
Grillo S E (177) 1997; 30
Pauling L (56) 1960
Chrenko R M Strong H M (72) 1975
200
Auerbach F (105) 1891; 43
204
Thornton A G (224) 1976; 9
207
Brookes C A (197) 1992
Field J E (100) 1974; 34
Kraus E H (206) 1939; 24
Gardos M N (156) 1994
Tabor D (153) 1979
213
Bowden F P (70) 1965
Ikawa N (74) 1983; 33
Pluzhnik V I (98) 1968; 28
Grillo S E (232) 2000; 33
Ruoff A L (51) 1979
Feng Z (160) 1992; 25
Butuzov V P (101) 1971; 3
218
Couto M S (227) 1994; 5
Tolansky S (36) 1965
Berman R (5) 1955; 59
Gurov E P (11) 1995; 30
220
221
222
104
225
226
Rosenthal E (58) 1950
229
Dunn K J (116) 1979; 14
References_xml – volume: 30
  start-page: 515
  issn: 0026-1114
  year: 1995
  ident: 11
  publication-title: Meteoritics
– start-page: 914
  year: 1979
  ident: 118
  publication-title: High-Pressure Science and Technology: I. Physical Properties and Material Synthesis
  doi: 10.1007/978-1-4684-7470-1_121
– volume: 57
  start-page: 21
  year: 1997
  ident: 228
  publication-title: Indust. Diamond Rev.
– ident: 220
  doi: 10.1080/14786435908243252
– volume: 69
  start-page: 981
  issn: 0370-1301
  year: 1956
  ident: 82
  publication-title: Proc. Phys. Soc. Lond.
  doi: 10.1088/0370-1301/69/10/303
– ident: 48
  doi: 10.1063/1.1661636
– ident: 120
  doi: 10.1179/026708388790329909
– ident: 149
  doi: 10.1080/01418618308236543
– ident: 165
  doi: 10.1063/1.357214
– volume: 9
  start-page: 118
  year: 1949
  ident: 214
  publication-title: Indust. Diamond Rev.
– ident: 3
  doi: 10.1016/0022-0248(81)90197-4
– year: 1950
  ident: 167
  publication-title: The Friction and Lubrication of Solids: I
– volume: 14
  start-page: 882
  issn: 0022-2461
  year: 1979
  ident: 116
  publication-title: J. Mater. Sci
  doi: 10.1007/BF00550720
– ident: 33
  doi: 10.1016/S0031-8914(52)80049-7
– start-page: 107
  year: 1979
  ident: 26
  publication-title: The Properties of Diamond
– volume: 21
  issn: 0953-8984
  year: 2009
  ident: 8
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/36/364206
– year: 1950
  ident: 58
  publication-title: Here are Diamonds
– year: 1971
  ident: 106
  publication-title: Grinding and Cutting with Diamond Wheels
– ident: 62
  doi: 10.1080/14786430500482336
– ident: 236
  doi: 10.1103/PhysRevLett.85.4904
– year: 1997
  ident: 137
– year: 1969
  ident: 88
– ident: 233
  doi: 10.1063/1.368198
– volume: 34
  start-page: 255
  year: 1974
  ident: 100
  publication-title: Indust. Diamond Rev.
– ident: 49
  doi: 10.1103/PhysRevB.11.3139
– ident: 69
  doi: 10.1098/rspa.1973.0082
– start-page: 661
  year: 1995
  ident: 136
  publication-title: Proc. 4th Int. Symp. on Diamond Materials
– ident: 173
  doi: 10.1007/BF00547459
– ident: 46
  doi: 10.1103/PhysRev.105.116
– start-page: 174
  year: 1965
  ident: 78
  publication-title: Physical Properties of Diamond
– ident: 179
  doi: 10.1080/00107517608210841
– ident: 122
  doi: 10.3390/ma2042467
– volume: 25
  start-page: 111
  year: 1965
  ident: 161
  publication-title: Indust. Diamond Rev.
– ident: 226
  doi: 10.1080/01418639408240133
– year: 1979
  ident: 1
  publication-title: The Properties of Diamond
– ident: 124
  doi: 10.1016/0040-6090(92)90497-Y
– ident: 125
  doi: 10.1557/JMR.1992.1432
– ident: 235
  doi: 10.1103/PhysRevLett.80.3428
– volume: 5
  start-page: 1902
  issn: 0022-3727
  year: 1972
  ident: 202
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/5/10/323
– volume: 5
  start-page: 5
  year: 1973
  ident: 199
  publication-title: Sinteticheskie Almazy
– year: 1964
  ident: 92
  publication-title: Industrial Diamond Buyers Guide
– ident: 204
  doi: 10.1016/S0925-9635(99)00088-6
– ident: 140
  doi: 10.1080/01418618208236213
– volume: 32
  start-page: 379
  issn: 0370-0089
  year: 1950
  ident: 44
  publication-title: Proc. Indian Acad. Sci.
  doi: 10.1007/BF03172510
– volume: 2
  start-page: 8
  year: 1970
  ident: 89
  publication-title: Sinteticheskie Almazy
– start-page: 44
  year: 1982
  ident: 110
  publication-title: Fiz. Tekh. Vysokih Davlenii
– ident: 174
  doi: 10.1080/01418619108205582
– ident: 121
  doi: 10.1007/978-1-4684-2991-6_17
– year: 1992
  ident: 175
  publication-title: Wear
– ident: 113
  doi: 10.1098/rspa.1974.0074
– start-page: 135
  year: 1965
  ident: 36
  publication-title: Physical Properties of Diamond
– ident: 234
  doi: 10.1038/44323
– ident: 148
  doi: 10.1080/01418618608242810
– ident: 164
  doi: 10.1116/1.571616
– volume: 327
  start-page: 75
  year: 1998
  ident: 13
  publication-title: C. R. Acad. Sci. Ser.
– start-page: 435
  year: 1999
  ident: 129
  publication-title: Proc. 9th Cimtec World Forum on New Materials. Symp. IV: Diamond Films
– start-page: 325
  year: 1979
  ident: 153
  publication-title: The Properties of Diamond
– start-page: 187
  year: 1956
  ident: 215
– volume: 69
  start-page: 55
  issn: 0370-1301
  year: 1956
  ident: 81
  publication-title: Proc. Phys. Soc. Lond.
  doi: 10.1088/0370-1301/69/1/307
– volume: 39
  start-page: 237
  year: 1979
  ident: 119
  publication-title: Indust. Diamond Rev.
– ident: 166
  doi: 10.1016/0925-9635(93)90265-4
– start-page: 5
  year: 1974
  ident: 97
  publication-title: Almazy Sverkh. Materialy
– start-page: 515
  year: 1992
  ident: 197
  publication-title: The Properties of Natural and Synthetic Diamond
– ident: 183
  doi: 10.1080/14786436608211997
– ident: 238
  doi: 10.1038/nmat2902
– volume: 1
  start-page: 53
  issn: 0954-027X
  year: 1990
  ident: 146
  publication-title: J. Hard Mater.
– volume: 15
  start-page: 45
  year: 1955
  ident: 212
  publication-title: Indust. Diamond Rev.
– ident: 45
  doi: 10.1038/182518b0
– ident: 192
  doi: 10.1063/1.325277
– volume: 30
  start-page: 202
  issn: 0022-3727
  year: 1997
  ident: 177
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/30/2/007
– year: 1949
  ident: 188
  publication-title: The Physics of High Pressure
– ident: 135
  doi: 10.1117/12.439181
– ident: 176
  doi: 10.1007/s100510050049
– volume: 35
  start-page: 135
  year: 1975
  ident: 71
  publication-title: Indust. Diamond Rev.
– start-page: 221
  year: 1965
  ident: 201
  publication-title: Physical Properties of Diamond
– start-page: 245
  year: 1979
  ident: 37
  publication-title: The Properties of Diamond
– ident: 27
  doi: 10.1098/rspa.1962.0243
– volume: 6
  start-page: 1772
  issn: 0022-3727
  year: 1973
  ident: 171
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/6/15/303
– ident: 9
  doi: 10.1038/nature10740
– ident: 47
  doi: 10.1063/1.1661318
– start-page: 767
  year: 1991
  ident: 138
  publication-title: New Diamond Science and Technology
– volume: 74
  start-page: 48
  issn: 0370-1328
  year: 1959
  ident: 68
  publication-title: Proc. Phys. Soc. Lond.
  doi: 10.1088/0370-1328/74/1/308
– start-page: 32
  year: 1959
  ident: 112
  publication-title: Proc. 4th Int. Kongress Kurzzeitphotographie
– ident: 159
  doi: 10.1098/rspa.1966.0237
– volume: 33
  start-page: 343
  issn: 0030-6177
  year: 1983
  ident: 74
  publication-title: Technol. Rep. Osaka Univ.
– ident: 83
  doi: 10.1080/01418618108240397
– volume: 31
  start-page: 208
  issn: 0003-004X
  year: 1946
  ident: 208
  publication-title: Am. Mineral.
– ident: 126
  doi: 10.1016/0925-9635(94)90176-7
– year: 1977
  ident: 29
– ident: 84
  doi: 10.1080/14786437008220952
– ident: 218
  doi: 10.1063/1.1735052
– ident: 17
  doi: 10.1007/BF00782253
– year: 1985
  ident: 142
– volume: 39
  start-page: R311
  issn: 0022-3727
  year: 2006
  ident: 181
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/39/18/R01
– ident: 133
  doi: 10.1080/14786430310001613246
– ident: 225
  doi: 10.1016/0169-4332(92)90367-7
– ident: 12
  doi: 10.1130/0091-7613(1997)025<1019:DFTIRK>2.3.CO;2
– year: 1974
  ident: 93
  publication-title: The Friatester: Ten Years Later
– ident: 32
  doi: 10.1098/rspa.1956.0040
– volume: 31
  start-page: 209
  issn: 0003-004X
  year: 1946
  ident: 209
  publication-title: Am. Mineral.
– volume: 40
  start-page: 186
  issn: 0003-004X
  year: 1955
  ident: 211
  publication-title: Am. Mineral.
– ident: 182
  doi: 10.1080/14786436508218894
– ident: 162
  doi: 10.1016/0925-9635(95)00430-0
– ident: 191
  doi: 10.1038/nphys1491
– ident: 194
  doi: 10.1063/1.1135966
– volume: 4
  start-page: 35
  year: 1972
  ident: 107
  publication-title: Sinteticheskie Almazy
– start-page: 419
  year: 1994
  ident: 156
  publication-title: Synthetic Diamond: Emerging CVD Science and Technology
– ident: 180
  doi: 10.1016/S0927-796X(02)00005-0
– start-page: 281
  year: 1979
  ident: 52
  publication-title: The Properties of Diamond
– volume: 32
  start-page: 335
  year: 1972
  ident: 108
  publication-title: Indust. Diamond Rev.
– volume: 70
  start-page: 521
  issn: 0370-1301
  year: 1957
  ident: 67
  publication-title: Proc. Phys. Soc. Lond.
  doi: 10.1088/0370-1301/70/5/309
– ident: 24
  doi: 10.1007/s001930050079
– ident: 34
  doi: 10.1016/S0031-8914(54)80032-2
– volume: 5
  start-page: 213
  issn: 0954-027X
  year: 1994
  ident: 80
  publication-title: J. Hard Mater.
– start-page: 49
  year: 1967
  ident: 15
  publication-title: Science and Technology of Industrial Diamonds vol 1 Science
– ident: 76
  doi: 10.1115/1.3625051
– year: 1804
  ident: 170
  publication-title: An Experimental Enquiry into the Nature and Propagation of Heat
– volume: 33
  start-page: 595
  issn: 0022-3727
  year: 2000
  ident: 178
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/33/6/302
– start-page: 17
  year: 1978
  ident: 30
  publication-title: Diamond Research 1978
– ident: 4
  doi: 10.1143/JJAP.21.L183
– ident: 230
  doi: 10.1002/(SICI)1521-396X(199903)172:1<91::AID-PSSA91>3.0.CO;2-J
– start-page: 4
  year: 1974
  ident: 96
  publication-title: Almazy Sverkh. Materialy
– volume: 5
  start-page: 32
  year: 1973
  ident: 91
  publication-title: Sinteticheskie Almazy
– volume: 74
  start-page: 318
  year: 1938
  ident: 205
  publication-title: Neues Jahrbuch für Miner. Geol. und Palaeont. Beilagen
– volume: 10
  start-page: 168
  year: 1950
  ident: 216
  publication-title: Indust. Diamond Rev.
– start-page: 351
  year: 1979
  ident: 203
  publication-title: The Properties of Diamond
– start-page: 555
  year: 1979
  ident: 7
  publication-title: The Properties of Diamond
– ident: 185
  doi: 10.1063/1.326378
– ident: 195
  doi: 10.1063/1.3448027
– year: 1975
  ident: 72
– volume: 23
  start-page: 269
  year: 1978
  ident: 16
  publication-title: Sov. Phys.—Dokl.
– ident: 128
  doi: 10.1016/j.jeurceramsoc.2005.04.008
– ident: 237
  doi: 10.1103/PhysRevB.64.212103
– start-page: 184
  year: 1965
  ident: 70
  publication-title: Physical Properties of Diamond
– ident: 163
  doi: 10.1016/0039-6028(77)90459-9
– start-page: 3
  year: 1979
  ident: 6
  publication-title: The Properties of Diamond
– year: 1956
  ident: 60
– ident: 22
  doi: 10.1038/195765a0
– year: 1951
  ident: 186
  publication-title: The Hardness of Metals
– ident: 25
  doi: 10.1016/j.diamond.2011.05.019
– year: 1953
  ident: 59
  publication-title: Diamond Technology Production Methods for Diamond and Gemstones
– volume: 25
  start-page: A33
  issn: 0022-3727
  year: 1992
  ident: 158
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/25/1A/007
– year: 1964
  ident: 168
  publication-title: The Friction and Lubrication of Solids: II
– start-page: 525
  year: 1979
  ident: 51
  publication-title: High-Pressure Science and Technology: II. Applications and Mechanical Properties
– volume: 9
  start-page: 27
  issn: 0022-3727
  year: 1976
  ident: 224
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/9/1/009
– ident: 38
  doi: 10.1016/0039-6028(86)90665-5
– start-page: 1
  year: 1974
  ident: 95
  publication-title: Almazy Sverkh. Materialy
– ident: 21
  doi: 10.1063/1.3446966
– volume: 25
  start-page: 1418
  issn: 0022-3727
  year: 1992
  ident: 160
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/25/10/006
– volume: 1
  start-page: 7
  year: 1969
  ident: 102
  publication-title: Sinteticheskie Almazy
– start-page: 41
  year: 1967
  ident: 10
  publication-title: Science and Technology of Industrial Diamonds vol 1 Science
– ident: 127
  doi: 10.1016/0925-9635(95)00362-2
– ident: 66
  doi: 10.1098/rspa.1955.0132
– volume: 12
  start-page: 185
  issn: 0034-4885
  year: 1948
  ident: 64
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/12/1/309
– ident: 213
  doi: 10.1038/164193a0
– ident: 207
  doi: 10.6028/jres.034.030
– volume: 59
  start-page: 333
  issn: 0372-8382
  year: 1955
  ident: 5
  publication-title: Z. Elektrochem.
  doi: 10.1002/bbpc.19550590503
– ident: 50
  doi: 10.1016/S0081-1947(08)60529-9
– ident: 31
  doi: 10.1098/rsta.1987.0018
– ident: 151
  doi: 10.1098/rspa.1964.0236
– volume: 24
  start-page: 661
  issn: 0003-004X
  year: 1939
  ident: 206
  publication-title: Am. Mineral.
– start-page: 547
  year: 1992
  ident: 155
  publication-title: The Properties of Natural and Synthetic Diamond
– ident: 150
  doi: 10.1080/14786430802616557
– volume: 5
  start-page: 49
  issn: 0954-027X
  year: 1994
  ident: 152
  publication-title: J. Hard Mater.
– ident: 40
  doi: 10.1038/nature02449
– volume: 49
  start-page: 104
  year: 1989
  ident: 99
  publication-title: Indust. Diamond Rev.
– ident: 115
  doi: 10.1098/rspa.1973.0072
– ident: 87
  doi: 10.1557/PROC-383-327
– year: 1960
  ident: 56
  publication-title: The Nature of the Chemical Bond
– ident: 229
  doi: 10.1016/S0925-9635(98)00347-1
– ident: 73
  doi: 10.1126/science.198.4321.1037
– volume: 15
  start-page: 267
  year: 1970
  ident: 198
  publication-title: Arch. Hutnictwa
– year: 1920
  ident: 169
– ident: 190
  doi: 10.1063/1.3529454
– ident: 75
  doi: 10.1016/S0007-8506(07)61737-5
– volume: 43
  start-page: 207
  year: 1891
  ident: 105
  publication-title: Misc. Documents House Representatives
– volume: 28
  start-page: 126
  year: 1968
  ident: 98
  publication-title: Indust. Diamond Rev.
– volume: 5
  start-page: 31
  issn: 0954-027X
  year: 1994
  ident: 227
  publication-title: J. Hard Mater.
– start-page: 125
  year: 1977
  ident: 117
  publication-title: Proc. 27th Annual Diamond Conf.
– ident: 104
  doi: 10.1002/andp.18912790505
– start-page: 105
  year: 1967
  ident: 184
  publication-title: Science and Technology of Industrial Diamonds vol 1 Science
– ident: 231
  doi: 10.1080/0141861021000055673
– ident: 157
  doi: 10.1016/0257-8972(91)90335-T
– ident: 28
  doi: 10.1080/00318087608227724
– start-page: 335
  year: 1999
  ident: 139
  publication-title: Proc. 9th Cimtec World Forum on New Materials. Symp. IV: Diamond Films
– volume: 2
  start-page: 3
  issn: 0954-027X
  year: 1991
  ident: 86
  publication-title: J. Hard Mater.
– volume: 38
  start-page: 108
  issn: 0003-004X
  year: 1953
  ident: 210
  publication-title: Am. Mineral.
– volume: 45
  start-page: 844
  year: 1954
  ident: 219
  publication-title: Phil. Mag.
  doi: 10.1080/14786440808520497
– year: 1992
  ident: 2
  publication-title: The Properties of Natural and Synthetic Diamond
– volume: 24
  start-page: 114
  issn: 0370-0089
  year: 1946
  ident: 55
  publication-title: Proc. Indian Acad. Sci.
  doi: 10.1007/BF03170745
– ident: 193
  doi: 10.1126/science.200.4346.1145
– ident: 14
  doi: 10.1111/j.1945-5100.2009.tb00740.x
– ident: 143
  doi: 10.1098/rspa.1998.0155
– ident: 23
  doi: 10.1063/1.1733716
– start-page: 383
  year: 1979
  ident: 196
  publication-title: The Properties of Diamond
– start-page: 5
  year: 1974
  ident: 111
  publication-title: Almazy Sverkh. Materialy
– ident: 65
  doi: 10.1098/rspa.1955.0131
– ident: 130
  doi: 10.1016/S0925-9635(02)00197-8
– ident: 123
  doi: 10.3390/ma3021390
– start-page: 514
  year: 1962
  ident: 61
  publication-title: Proc. 6th Int. Congress on High-Speed Photography
– ident: 221
  doi: 10.1098/rspa.2004.1339
– ident: 41
  doi: 10.1098/rspa.1946.0082
– ident: 77
  doi: 10.1098/rspa.1958.0250
– start-page: 473
  year: 1992
  ident: 63
  publication-title: The Properties of Natural and Synthetic Diamond
– ident: 131
  doi: 10.1016/S0043-1648(01)00861-4
– ident: 145
  doi: 10.1016/S0043-1648(03)00385-5
– volume: 5
  start-page: 4
  year: 1973
  ident: 103
  publication-title: Sinteticheskie Almazy
– volume: 2
  start-page: 24
  year: 1970
  ident: 90
  publication-title: Sinteticheskie Almazy
– ident: 141
  doi: 10.1016/0013-7944(83)90087-5
– ident: 200
  doi: 10.1080/14786437408213559
– ident: 132
  doi: 10.1016/S0263-4368(98)00049-3
– issn: 0370-0089
  year: 1947
  ident: 43
  publication-title: Proc. Indian Acad. Sci.
– volume: 15
  start-page: 728
  year: 1970
  ident: 94
  publication-title: Sov. Phys.—Crystallogr.
– year: 1961
  ident: 114
– ident: 187
  doi: 10.1098/rspa.1964.0114
– volume: 16
  start-page: 145
  year: 1956
  ident: 223
  publication-title: Indust. Diamond Rev.
– ident: 134
  doi: 10.1023/B:JMSC.0000016153.90600.a6
– ident: 20
  doi: 10.1179/174329409X433939
– ident: 53
  doi: 10.1016/0925-9635(93)90250-6
– volume: 33
  start-page: 985
  issn: 0022-3727
  year: 2000
  ident: 232
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/33/8/315
– year: 1928
  ident: 54
  publication-title: Diamond: A Descriptive Treatise
– ident: 42
  doi: 10.1107/S0365110X53001290
– ident: 172
  doi: 10.1016/0022-5096(57)90002-9
– volume: 3
  start-page: 11
  year: 1971
  ident: 101
  publication-title: Sinteticheskie Almazy
– volume: 1
  start-page: 273
  issn: 0954-027X
  year: 1990
  ident: 147
  publication-title: J. Hard Mater.
– volume: 43
  start-page: 1140
  year: 1952
  ident: 217
  publication-title: Phil. Mag.
  doi: 10.1080/14786441108521022
– start-page: 1
  year: 1974
  ident: 109
  publication-title: Almazy Sverkh. Materialy
– year: 1991
  ident: 154
  publication-title: The Properties and Applications of Diamond
– ident: 18
  doi: 10.1038/333440a0
– ident: 19
  doi: 10.1007/BF00755735
– year: 1996
  ident: 35
  publication-title: Introduction to Solid State Physics
– ident: 144
  doi: 10.1016/S0043-1648(99)00189-1
– ident: 57
  doi: 10.1103/PhysRevLett.84.5160
– volume: 24
  start-page: 391
  year: 1979
  ident: 85
  publication-title: Sov. Phys.—Dokl.
– ident: 222
  doi: 10.1098/rspa.1981.0001
– volume: 10
  start-page: 1379
  issn: 0022-3727
  year: 1977
  ident: 79
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/10/10/014
– year: 1969
  ident: 189
  publication-title: High Pressure Methods in Solid State Research
  doi: 10.1007/978-1-4899-5877-8
– start-page: 403
  year: 1979
  ident: 39
  publication-title: The Properties of Diamond
SSID ssj0011829
Score 2.4772334
SecondaryResourceType review_article
Snippet Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126505
SubjectTerms Carbon
Diamonds
Earth surface
Gems
Geology
Hardness
Thermal conductivity
Title The mechanical and strength properties of diamond
URI https://iopscience.iop.org/article/10.1088/0034-4885/75/12/126505
https://www.ncbi.nlm.nih.gov/pubmed/23168381
https://www.proquest.com/docview/1186934944
https://www.proquest.com/docview/1718961402
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5sRfDi-1FfrOBN0uaxm90cRSxF8HGo4G3ZTTYKalra9OKvdyabFBRqESGHHDJhMvtt5kvmRcgFht4CP7IekHXhMR37njZCeDy2mqexb5MAC4Xv7uPBE7t95k02YVULMxrXr_4unLpGwc6EdUKcxPFjzAPc8Z7gvSCEA1gGb5HVSIKzwRq-h8d5IAHos2PAtUxTJLzwPt_8Uwt0WEw9KxfU3ySmUd5lnrx1Z6Xppp8_-jr-6-m2yEZNUOmVE9gmK7bYIWtVomg63SUB4Ip-WKwXxuWlusgo1psUL-UrHeOf_Qm2aKWjnALyAOPZHhn2b4bXA68eu-CljEclfEwyrVNgKoYDFwxYmgNLTGDna535OjeJlkj7MmFyY3QkQkCBFSaOE5nLRET7pF2MCntIKDO5FTbSmeY5Q8eXJljXKgJjJGex7RDe2FqldUtynIzxrqrQuJTYuZQptIYSXAWhctbokN5cbuyaciyVuASDq3p_Tpdefd4suYLdhiEUXdjRDORwghd29GG_XAPuPgEj-mGHHDi8zLUMcU4YkKSjP-lzTNaBp4Uui-aEtMvJzJ4CFyrNWYX2LwOs9ag
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CMSF92M8i8QNdesjadojAqbx5gAStyhpU5CAbtq6C78eu-kmgTQQQuqhh7hKHSf-WtufAY4o9OZ7oXERrAuXqchzlRbC5ZFRPI08k_hUKHxzG3Ue2eUTf5qC83EtTLdXH_1NvLVEwVaFdUJcTO3HmIt2x1uCt_wAL0QZvNXL8mmY5WEUVnV8d_fjYAJCaIuCa7lRofDEZ33xUdM4j8nws3JD7SWbLjKo2Asp--S1OSx1M_34xu347zdchsUaqDonVmgFpkyxCnNVwmg6WAMf7ct5N1Q3TMvsqCJzqO6keC5fnB794e8TVavTzR20QLT1bB0e2ucPpx23br_gpoyHJX5UMqVSRCyaIyb0WZojWkzwBFAq81SuExUT_MuEzrVWoQjQGozQUZTEeZyIcANmim5htsBhOjfChCpTPGfkANOE6luFr3XMWWQawEf6lmlNTU4dMt5kFSKPY2IwZZI0IgWXfiCtRhrQGsv1LDnHrxLHqHRZ79PBr6MPR8sucddRKEUVpjtEOerkRcw-7Icx6PYTVKIXNGDT2sx4lgH1C0OwtP2n-RzA_P1ZW15f3F7twAJCt8Am1uzCTNkfmj2ER6Xer4z_E-2B-ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanical+and+strength+properties+of+diamond&rft.jtitle=Reports+on+progress+in+physics&rft.au=Field%2C+J+E&rft.date=2012-12-01&rft.pub=IOP+Publishing&rft.issn=0034-4885&rft.eissn=1361-6633&rft.volume=75&rft.issue=12&rft_id=info:doi/10.1088%2F0034-4885%2F75%2F12%2F126505&rft.externalDocID=rpp7655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon