The mechanical and strength properties of diamond
Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a...
Saved in:
Published in | Reports on progress in physics Vol. 75; no. 12; pp. 126505 - 35 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0034-4885 1361-6633 1361-6633 |
DOI | 10.1088/0034-4885/75/12/126505 |
Cover
Loading…
Abstract | Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research. |
---|---|
AbstractList | Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research. Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research.Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research. Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. The developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research. Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials based on carbon, namely the fullerenes and graphines have been identified in recent years and are now the subject of intense research. |
Author | Field, J E |
Author_xml | – sequence: 1 givenname: J E surname: Field fullname: Field, J E organization: University of Cambridge Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23168381$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtqwzAUQEVJaR7tLwSPXdzoWg9L0KWEviDQJbuQZblRsKVUcob-fR2cdugSuKDlHN3LmaOJD94itAT8AFiIFcaE5lQItirZCophOMPsCs2AcMg5J2SCZn_QFM1T2mMMIAp5g6YFAS6IgBmC7c5mnTU77Z3RbaZ9naU-Wv_Z77JDDAcbe2dTFpqsdroLvr5F141uk707vwu0fXnert_yzcfr-_ppkxvKSJ9zoFobTknFGCFATQNESkEKrWusm0pqwUCSuqyaqtKkLKwxtqw4l6IRsiQLdD9-OxzxdbSpV51Lxrat9jYck4IShByW4OIyCoJLQiWlA7o8o8eqs7U6RNfp-K1-gwzA4wiYGFKKtlHG9bp3wfdRu1YBVqf-6pRWndKqkiko1Nh_0Pk__XfDRbEYRRcOah-O0Q9tL0k_BvSVNg |
CODEN | RPPHAG |
CitedBy_id | crossref_primary_10_1080_17436753_2017_1389462 crossref_primary_10_1016_j_joule_2018_05_007 crossref_primary_10_1016_j_carbon_2024_119643 crossref_primary_10_3390_ma12152492 crossref_primary_10_1063_5_0057163 crossref_primary_10_1126_science_abc4174 crossref_primary_10_1080_10910344_2019_1575412 crossref_primary_10_3390_ma17143437 crossref_primary_10_1063_1_5109782 crossref_primary_10_1038_s41467_019_13378_w crossref_primary_10_1080_14786435_2022_2086715 crossref_primary_10_1016_j_jmapro_2023_09_054 crossref_primary_10_1107_S1600576720014752 crossref_primary_10_1016_j_jcrysgro_2023_127217 crossref_primary_10_1016_j_jmatprotec_2021_117300 crossref_primary_10_3390_lubricants6030084 crossref_primary_10_1016_j_apt_2017_06_008 crossref_primary_10_1016_j_apsusc_2023_158500 crossref_primary_10_1016_j_ijrmhm_2024_106763 crossref_primary_10_1016_j_jmrt_2025_03_109 crossref_primary_10_1016_j_ijrmhm_2019_105036 crossref_primary_10_1016_j_diamond_2020_107839 crossref_primary_10_1016_j_matpr_2020_12_165 crossref_primary_10_1021_acsomega_2c07637 crossref_primary_10_1039_D3TC03701K crossref_primary_10_1007_s11706_022_0590_z crossref_primary_10_1103_PhysRevB_108_174514 crossref_primary_10_1016_j_scriptamat_2021_113855 crossref_primary_10_1016_j_matchemphys_2020_123638 crossref_primary_10_1063_5_0218705 crossref_primary_10_1088_1361_6641_ab9a5f crossref_primary_10_1016_j_optlastec_2018_03_031 crossref_primary_10_1016_j_diamond_2022_108899 crossref_primary_10_1016_j_diamond_2017_06_004 crossref_primary_10_3389_fmech_2021_652001 crossref_primary_10_1126_science_aad2080 crossref_primary_10_1016_j_jmatprotec_2016_03_005 crossref_primary_10_1016_j_wear_2018_04_010 crossref_primary_10_1002_adts_202301171 crossref_primary_10_1038_am_2016_106 crossref_primary_10_1016_j_optlastec_2021_107569 crossref_primary_10_1007_s00170_014_6516_x crossref_primary_10_1016_j_jmatprotec_2024_118527 crossref_primary_10_1007_s00170_018_2041_7 crossref_primary_10_1016_j_actbio_2023_08_030 crossref_primary_10_1088_1361_648X_ad6bdb crossref_primary_10_2138_rmg_2022_88_13 crossref_primary_10_1038_s41467_024_54279_x crossref_primary_10_1016_j_optlastec_2022_108403 crossref_primary_10_1016_j_diamond_2025_112189 crossref_primary_10_4028_www_scientific_net_AMR_1017_304 crossref_primary_10_1016_j_ijmecsci_2024_109417 crossref_primary_10_1016_j_matt_2020_02_011 crossref_primary_10_1016_j_carbon_2021_04_025 crossref_primary_10_1016_j_commatsci_2014_08_040 crossref_primary_10_1016_j_diamond_2024_111370 crossref_primary_10_1557_s43577_021_00206_0 crossref_primary_10_1016_j_diamond_2015_06_004 crossref_primary_10_1016_j_mtla_2022_101487 crossref_primary_10_1016_j_jmapro_2024_09_083 crossref_primary_10_1016_j_ijrmhm_2023_106509 crossref_primary_10_1063_5_0176867 crossref_primary_10_1007_s00170_015_7935_z crossref_primary_10_1126_science_aar4165 crossref_primary_10_1016_j_diamond_2024_111008 crossref_primary_10_1063_1_4939051 crossref_primary_10_1007_s00170_017_1529_x crossref_primary_10_1016_j_wear_2024_205355 crossref_primary_10_1007_s00170_022_10463_1 crossref_primary_10_1098_rspa_2022_0253 crossref_primary_10_1016_j_cartre_2022_100219 crossref_primary_10_1016_j_triboint_2019_106056 crossref_primary_10_1080_26941112_2021_1877021 crossref_primary_10_1016_j_eml_2022_101931 crossref_primary_10_1016_j_optlastec_2020_106839 crossref_primary_10_1021_acs_nanolett_5b04989 crossref_primary_10_1016_j_carbon_2020_04_086 crossref_primary_10_1016_j_diamond_2023_110246 crossref_primary_10_1088_2040_8986_ac0873 crossref_primary_10_1016_j_diamond_2024_111755 crossref_primary_10_1007_s11249_020_01360_3 crossref_primary_10_1016_j_jallcom_2016_10_172 crossref_primary_10_3390_photonics11080763 crossref_primary_10_1016_j_carbon_2018_11_026 crossref_primary_10_1016_j_diamond_2018_02_013 crossref_primary_10_1063_5_0080144 crossref_primary_10_1103_PhysRevB_101_224109 crossref_primary_10_3390_min13091203 crossref_primary_10_1063_1_4927213 crossref_primary_10_1002_adfm_201807658 crossref_primary_10_1039_D3CP05098J crossref_primary_10_1016_j_eml_2023_102113 crossref_primary_10_1016_j_jmps_2021_104633 crossref_primary_10_1021_acs_jpclett_4c02612 crossref_primary_10_1039_D4CP03755C crossref_primary_10_1140_epjs_s11734_024_01458_y crossref_primary_10_1080_26941112_2022_2151322 crossref_primary_10_1103_PhysRevB_96_075205 crossref_primary_10_1039_C7RA04821A crossref_primary_10_1016_j_ijrmhm_2024_106609 crossref_primary_10_1016_j_compositesb_2016_02_011 crossref_primary_10_1016_j_diamond_2021_108461 crossref_primary_10_4103_jdras_jdras_22_22 crossref_primary_10_1111_jace_20257 crossref_primary_10_1016_j_diamond_2022_109151 crossref_primary_10_1016_j_engfailanal_2023_107432 crossref_primary_10_1002_smll_202400798 crossref_primary_10_1016_j_ijrmhm_2024_106560 crossref_primary_10_1016_j_cma_2025_117792 crossref_primary_10_1080_08957959_2019_1695254 crossref_primary_10_1007_s12541_016_0138_1 crossref_primary_10_1007_s40843_020_1373_3 crossref_primary_10_1016_j_jallcom_2023_172168 crossref_primary_10_1016_j_jmatprotec_2022_117511 crossref_primary_10_1016_j_cartre_2024_100353 crossref_primary_10_1021_nl500410g crossref_primary_10_1364_OE_27_030371 crossref_primary_10_1016_j_chemosphere_2015_11_115 crossref_primary_10_1016_j_carbon_2015_12_001 crossref_primary_10_1088_1361_6463_acc5f8 crossref_primary_10_1134_S0020441215010303 crossref_primary_10_1016_j_diamond_2022_109384 crossref_primary_10_1016_j_triboint_2024_109507 crossref_primary_10_1016_j_mtnano_2024_100514 crossref_primary_10_1515_jmbm_2017_0025 crossref_primary_10_1016_j_ijrmhm_2023_106397 crossref_primary_10_1016_j_mtphys_2022_100705 crossref_primary_10_1016_j_chempr_2019_06_011 crossref_primary_10_1016_j_mser_2024_100857 crossref_primary_10_1177_0954405419884787 crossref_primary_10_3390_ma14061408 crossref_primary_10_1002_anie_202409507 crossref_primary_10_1016_j_ijsolstr_2019_02_016 crossref_primary_10_1021_acs_jpclett_3c03044 crossref_primary_10_1038_s41428_022_00644_w crossref_primary_10_1098_rsbm_2021_0013 crossref_primary_10_1016_j_optlaseng_2018_01_002 crossref_primary_10_1007_s11431_020_1590_8 crossref_primary_10_1016_j_diamond_2024_111602 crossref_primary_10_1126_science_aat5211 crossref_primary_10_1007_s10704_021_00517_y crossref_primary_10_1016_j_diamond_2024_111042 crossref_primary_10_1088_1612_202X_ab13b4 crossref_primary_10_1016_j_triboint_2024_109322 crossref_primary_10_1016_j_triboint_2020_106298 crossref_primary_10_1039_C6RA05830B crossref_primary_10_3390_ma13163530 crossref_primary_10_1039_C6CS00109B crossref_primary_10_1016_j_matdes_2015_10_062 crossref_primary_10_1002_adma_201705501 crossref_primary_10_1016_j_vacuum_2023_112226 crossref_primary_10_1002_ange_202409507 crossref_primary_10_1364_OE_470128 crossref_primary_10_1007_s00170_016_8751_9 crossref_primary_10_1007_s10854_019_01376_z crossref_primary_10_1016_j_carbon_2019_10_078 crossref_primary_10_3103_S1068366616030168 |
Cites_doi | 10.1007/978-1-4684-7470-1_121 10.1080/14786435908243252 10.1088/0370-1301/69/10/303 10.1063/1.1661636 10.1179/026708388790329909 10.1080/01418618308236543 10.1063/1.357214 10.1016/0022-0248(81)90197-4 10.1007/BF00550720 10.1016/S0031-8914(52)80049-7 10.1088/0953-8984/21/36/364206 10.1080/14786430500482336 10.1103/PhysRevLett.85.4904 10.1063/1.368198 10.1103/PhysRevB.11.3139 10.1098/rspa.1973.0082 10.1007/BF00547459 10.1103/PhysRev.105.116 10.1080/00107517608210841 10.3390/ma2042467 10.1080/01418639408240133 10.1016/0040-6090(92)90497-Y 10.1557/JMR.1992.1432 10.1103/PhysRevLett.80.3428 10.1088/0022-3727/5/10/323 10.1016/S0925-9635(99)00088-6 10.1080/01418618208236213 10.1007/BF03172510 10.1080/01418619108205582 10.1007/978-1-4684-2991-6_17 10.1098/rspa.1974.0074 10.1038/44323 10.1080/01418618608242810 10.1116/1.571616 10.1088/0370-1301/69/1/307 10.1016/0925-9635(93)90265-4 10.1080/14786436608211997 10.1038/nmat2902 10.1038/182518b0 10.1063/1.325277 10.1088/0022-3727/30/2/007 10.1117/12.439181 10.1007/s100510050049 10.1098/rspa.1962.0243 10.1088/0022-3727/6/15/303 10.1038/nature10740 10.1063/1.1661318 10.1088/0370-1328/74/1/308 10.1098/rspa.1966.0237 10.1080/01418618108240397 10.1016/0925-9635(94)90176-7 10.1080/14786437008220952 10.1063/1.1735052 10.1007/BF00782253 10.1088/0022-3727/39/18/R01 10.1080/14786430310001613246 10.1016/0169-4332(92)90367-7 10.1130/0091-7613(1997)025<1019:DFTIRK>2.3.CO;2 10.1098/rspa.1956.0040 10.1080/14786436508218894 10.1016/0925-9635(95)00430-0 10.1038/nphys1491 10.1063/1.1135966 10.1016/S0927-796X(02)00005-0 10.1088/0370-1301/70/5/309 10.1007/s001930050079 10.1016/S0031-8914(54)80032-2 10.1115/1.3625051 10.1088/0022-3727/33/6/302 10.1143/JJAP.21.L183 10.1002/(SICI)1521-396X(199903)172:1<91::AID-PSSA91>3.0.CO;2-J 10.1063/1.326378 10.1063/1.3448027 10.1016/j.jeurceramsoc.2005.04.008 10.1103/PhysRevB.64.212103 10.1016/0039-6028(77)90459-9 10.1038/195765a0 10.1016/j.diamond.2011.05.019 10.1088/0022-3727/25/1A/007 10.1088/0022-3727/9/1/009 10.1016/0039-6028(86)90665-5 10.1063/1.3446966 10.1088/0022-3727/25/10/006 10.1016/0925-9635(95)00362-2 10.1098/rspa.1955.0132 10.1088/0034-4885/12/1/309 10.1038/164193a0 10.6028/jres.034.030 10.1002/bbpc.19550590503 10.1016/S0081-1947(08)60529-9 10.1098/rsta.1987.0018 10.1098/rspa.1964.0236 10.1080/14786430802616557 10.1038/nature02449 10.1098/rspa.1973.0072 10.1557/PROC-383-327 10.1016/S0925-9635(98)00347-1 10.1126/science.198.4321.1037 10.1063/1.3529454 10.1016/S0007-8506(07)61737-5 10.1002/andp.18912790505 10.1080/0141861021000055673 10.1016/0257-8972(91)90335-T 10.1080/00318087608227724 10.1080/14786440808520497 10.1007/BF03170745 10.1126/science.200.4346.1145 10.1111/j.1945-5100.2009.tb00740.x 10.1098/rspa.1998.0155 10.1063/1.1733716 10.1098/rspa.1955.0131 10.1016/S0925-9635(02)00197-8 10.3390/ma3021390 10.1098/rspa.2004.1339 10.1098/rspa.1946.0082 10.1098/rspa.1958.0250 10.1016/S0043-1648(01)00861-4 10.1016/S0043-1648(03)00385-5 10.1016/0013-7944(83)90087-5 10.1080/14786437408213559 10.1016/S0263-4368(98)00049-3 10.1098/rspa.1964.0114 10.1023/B:JMSC.0000016153.90600.a6 10.1179/174329409X433939 10.1016/0925-9635(93)90250-6 10.1088/0022-3727/33/8/315 10.1107/S0365110X53001290 10.1016/0022-5096(57)90002-9 10.1080/14786441108521022 10.1038/333440a0 10.1007/BF00755735 10.1016/S0043-1648(99)00189-1 10.1103/PhysRevLett.84.5160 10.1098/rspa.1981.0001 10.1088/0022-3727/10/10/014 10.1007/978-1-4899-5877-8 |
ContentType | Journal Article |
Copyright | 2012 IOP Publishing Ltd |
Copyright_xml | – notice: 2012 IOP Publishing Ltd |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD H8D L7M |
DOI | 10.1088/0034-4885/75/12/126505 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Geology |
DocumentTitleAlternate | The mechanical and strength properties of diamond |
EISSN | 1361-6633 |
EndPage | 35 |
ExternalDocumentID | 23168381 10_1088_0034_4885_75_12_126505 rpp7655 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | -~X 123 1JI 1WK 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q 9BW AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ACAFW ACBEA ACGFO ACGFS ACHIP ACNCT ADIYS AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 R4D RIN RKQ RNS RO9 ROL RPA S3P SY9 TN5 UCJ VO1 W28 WH7 XPP ZCG ZMT ~02 AAYXX ADEQX AERVB CITATION 02O 29P 5ZI AAGCF ABEFU ACARI ACKIV ACWPO AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM CBCFC CEBXE MVM NPM OHT T37 XOL ZY4 7X8 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c453t-614aac643b553314cf1399832aad0afb9a85193d7bfbba372ecce7b6698f8973 |
IEDL.DBID | IOP |
ISSN | 0034-4885 1361-6633 |
IngestDate | Fri Jul 11 11:42:52 EDT 2025 Fri Jul 11 03:55:40 EDT 2025 Mon Jul 21 06:09:16 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 02:52:53 EDT 2025 Wed Aug 21 03:33:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-614aac643b553314cf1399832aad0afb9a85193d7bfbba372ecce7b6698f8973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23168381 |
PQID | 1186934944 |
PQPubID | 23479 |
PageCount | 35 |
ParticipantIDs | proquest_miscellaneous_1186934944 iop_journals_10_1088_0034_4885_75_12_126505 proquest_miscellaneous_1718961402 crossref_citationtrail_10_1088_0034_4885_75_12_126505 pubmed_primary_23168381 crossref_primary_10_1088_0034_4885_75_12_126505 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Reports on progress in physics |
PublicationTitleAbbrev | RoPP |
PublicationTitleAlternate | Rep. Prog. Phys |
PublicationYear | 2012 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Townsend D (142) 1985 Field J E (61) 1962 Krishnan R S (43) 1947 Bogatyreva G P (107) 1972; 4 Nikitin Y I (90) 1970; 2 Schulzhenko A A (102) 1969; 1 Bowden F P (167) 1950 230 Tabor D (186) 1951 231 Stephenson R F (29) 1977 233 113 Wilks E M (217) 1952; 43 234 235 115 236 237 238 Howes V R (68) 1959; 74 Dyer H B (108) 1972; 32 Tsypin N V (91) 1973; 5 Roberts D C (119) 1979; 39 Mukhin M E (96) 1974 12 14 Whittaker H (208) 1946; 31 17 18 19 Moore M (37) 1979 Schulzhenko A A (103) 1973; 5 120 Trefilov V I (16) 1978; 23 121 Brookes C A (196) 1979 122 Uvarov V A (109) 1974 123 3 124 4 Stupkina L M (94) 1970; 15 125 126 127 128 9 Kurochkin P N (95) 1974 20 21 22 Slawson C B (216) 1950; 10 23 24 Berman R (6) 1979 25 27 Bailey A I (223) 1956; 16 28 Gigl P F (118) 1979 130 Warren P D (80) 1994; 5 131 132 133 134 135 Grodzinski P (214) 1949; 9 31 32 33 34 Seward C R (152) 1994; 5 38 Wilks E M (202) 1972; 5 Spörl R Heidinger R Kennedy G R Brierley C J (139) 1999 140 141 143 144 145 148 149 Pospiech J (198) 1970; 15 40 Denning R M (210) 1953; 38 41 42 45 46 47 48 49 Bowden F P (168) 1964 Roesler F C (81) 1956; 69 Bradley C C (189) 1969 Field J E (1) 1979 150 151 Ziminov N V (97) 1974 Simkin E S (110) 1982 157 159 50 Chandrasekharan V (44) 1950; 32 Bakul V N Prikhna A I Gobdanovich M G (88) 1969 53 Yagudin G I (111) 1974 57 Martinez I (13) 1998; 327 162 163 Winchell H (209) 1946; 31 164 165 166 Kittel C (35) 1996 Windischmann H (138) 1991 62 65 66 69 van Bouwelen F M (228) 1997; 57 Seal M (161) 1965; 25 Hukao Y (212) 1955; 15 172 Jilbert G H (137) 1997 173 174 Ramage J B (60) 1956 176 179 73 Pipkin N J Wilson W I Field J E (117) 1977 75 76 77 Grodzinski P (59) 1953 Hayward I P (146) 1990; 1 Evans T (39) 1979 180 182 Evans T (184) 1967 183 Wilks J (203) 1979 185 Roesler F C (82) 1956; 69 187 de Carli P S (15) 1967 Grodzinski P (215) 1956 Leslie J (170) 1804 Grillo S E (178) 2000; 33 83 84 87 Feng Z (99) 1989; 49 Pickles C S J Brandon J R Coe S E Sussman R S (129) 1999 Denning R M (211) 1955; 40 Field J E (2) 1992 190 191 192 193 Howes V R (78) 1965 194 195 Tolkowsky M (169) 1920 Harris J W (7) 1979 Evans T (30) 1978 Tabor D (155) 1992 Coleman K R Schardin H Helwich O (112) 1959 Orowan E (64) 1948; 12 Sellschop J P F (26) 1979 Wilks E M (201) 1965 Belling N G (93) 1974 Bell J G (71) 1975; 35 Zsolnay L M (106) 1971 Cooper R E (114) 1961 Bakul V N (89) 1970; 2 Wilks E M (219) 1954; 45 Tolansky S (67) 1957; 70 Bridgman P W (188) 1949 Feng Z (147) 1990; 1 Kennedy G C (10) 1967 Field J E (63) 1992 Bakul V N (199) 1973; 5 Belling N G (92) 1964 Sutton J R (54) 1928 Bell J G (79) 1977; 10 Stachel T (8) 2009; 21 Rameshan S (55) 1946; 24 Wilks E M (154) 1991 Naletov A M (85) 1979; 24 Erdemir A (181) 2006; 39 Field J E (52) 1979 Feng Z (158) 1992; 25 Hayward I P (175) 1992 Klein C A Hallock R B Miller R P Ravi K V Dismukes J P (136) 1995 Bergheimer H (205) 1938; 74 Novikov N V (86) 1991; 2 Casey M (171) 1973; 6 Grillo S E (177) 1997; 30 Pauling L (56) 1960 Chrenko R M Strong H M (72) 1975 200 Auerbach F (105) 1891; 43 204 Thornton A G (224) 1976; 9 207 Brookes C A (197) 1992 Field J E (100) 1974; 34 Kraus E H (206) 1939; 24 Gardos M N (156) 1994 Tabor D (153) 1979 213 Bowden F P (70) 1965 Ikawa N (74) 1983; 33 Pluzhnik V I (98) 1968; 28 Grillo S E (232) 2000; 33 Ruoff A L (51) 1979 Feng Z (160) 1992; 25 Butuzov V P (101) 1971; 3 218 Couto M S (227) 1994; 5 Tolansky S (36) 1965 Berman R (5) 1955; 59 Gurov E P (11) 1995; 30 220 221 222 104 225 226 Rosenthal E (58) 1950 229 Dunn K J (116) 1979; 14 |
References_xml | – volume: 30 start-page: 515 issn: 0026-1114 year: 1995 ident: 11 publication-title: Meteoritics – start-page: 914 year: 1979 ident: 118 publication-title: High-Pressure Science and Technology: I. Physical Properties and Material Synthesis doi: 10.1007/978-1-4684-7470-1_121 – volume: 57 start-page: 21 year: 1997 ident: 228 publication-title: Indust. Diamond Rev. – ident: 220 doi: 10.1080/14786435908243252 – volume: 69 start-page: 981 issn: 0370-1301 year: 1956 ident: 82 publication-title: Proc. Phys. Soc. Lond. doi: 10.1088/0370-1301/69/10/303 – ident: 48 doi: 10.1063/1.1661636 – ident: 120 doi: 10.1179/026708388790329909 – ident: 149 doi: 10.1080/01418618308236543 – ident: 165 doi: 10.1063/1.357214 – volume: 9 start-page: 118 year: 1949 ident: 214 publication-title: Indust. Diamond Rev. – ident: 3 doi: 10.1016/0022-0248(81)90197-4 – year: 1950 ident: 167 publication-title: The Friction and Lubrication of Solids: I – volume: 14 start-page: 882 issn: 0022-2461 year: 1979 ident: 116 publication-title: J. Mater. Sci doi: 10.1007/BF00550720 – ident: 33 doi: 10.1016/S0031-8914(52)80049-7 – start-page: 107 year: 1979 ident: 26 publication-title: The Properties of Diamond – volume: 21 issn: 0953-8984 year: 2009 ident: 8 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/36/364206 – year: 1950 ident: 58 publication-title: Here are Diamonds – year: 1971 ident: 106 publication-title: Grinding and Cutting with Diamond Wheels – ident: 62 doi: 10.1080/14786430500482336 – ident: 236 doi: 10.1103/PhysRevLett.85.4904 – year: 1997 ident: 137 – year: 1969 ident: 88 – ident: 233 doi: 10.1063/1.368198 – volume: 34 start-page: 255 year: 1974 ident: 100 publication-title: Indust. Diamond Rev. – ident: 49 doi: 10.1103/PhysRevB.11.3139 – ident: 69 doi: 10.1098/rspa.1973.0082 – start-page: 661 year: 1995 ident: 136 publication-title: Proc. 4th Int. Symp. on Diamond Materials – ident: 173 doi: 10.1007/BF00547459 – ident: 46 doi: 10.1103/PhysRev.105.116 – start-page: 174 year: 1965 ident: 78 publication-title: Physical Properties of Diamond – ident: 179 doi: 10.1080/00107517608210841 – ident: 122 doi: 10.3390/ma2042467 – volume: 25 start-page: 111 year: 1965 ident: 161 publication-title: Indust. Diamond Rev. – ident: 226 doi: 10.1080/01418639408240133 – year: 1979 ident: 1 publication-title: The Properties of Diamond – ident: 124 doi: 10.1016/0040-6090(92)90497-Y – ident: 125 doi: 10.1557/JMR.1992.1432 – ident: 235 doi: 10.1103/PhysRevLett.80.3428 – volume: 5 start-page: 1902 issn: 0022-3727 year: 1972 ident: 202 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/5/10/323 – volume: 5 start-page: 5 year: 1973 ident: 199 publication-title: Sinteticheskie Almazy – year: 1964 ident: 92 publication-title: Industrial Diamond Buyers Guide – ident: 204 doi: 10.1016/S0925-9635(99)00088-6 – ident: 140 doi: 10.1080/01418618208236213 – volume: 32 start-page: 379 issn: 0370-0089 year: 1950 ident: 44 publication-title: Proc. Indian Acad. Sci. doi: 10.1007/BF03172510 – volume: 2 start-page: 8 year: 1970 ident: 89 publication-title: Sinteticheskie Almazy – start-page: 44 year: 1982 ident: 110 publication-title: Fiz. Tekh. Vysokih Davlenii – ident: 174 doi: 10.1080/01418619108205582 – ident: 121 doi: 10.1007/978-1-4684-2991-6_17 – year: 1992 ident: 175 publication-title: Wear – ident: 113 doi: 10.1098/rspa.1974.0074 – start-page: 135 year: 1965 ident: 36 publication-title: Physical Properties of Diamond – ident: 234 doi: 10.1038/44323 – ident: 148 doi: 10.1080/01418618608242810 – ident: 164 doi: 10.1116/1.571616 – volume: 327 start-page: 75 year: 1998 ident: 13 publication-title: C. R. Acad. Sci. Ser. – start-page: 435 year: 1999 ident: 129 publication-title: Proc. 9th Cimtec World Forum on New Materials. Symp. IV: Diamond Films – start-page: 325 year: 1979 ident: 153 publication-title: The Properties of Diamond – start-page: 187 year: 1956 ident: 215 – volume: 69 start-page: 55 issn: 0370-1301 year: 1956 ident: 81 publication-title: Proc. Phys. Soc. Lond. doi: 10.1088/0370-1301/69/1/307 – volume: 39 start-page: 237 year: 1979 ident: 119 publication-title: Indust. Diamond Rev. – ident: 166 doi: 10.1016/0925-9635(93)90265-4 – start-page: 5 year: 1974 ident: 97 publication-title: Almazy Sverkh. Materialy – start-page: 515 year: 1992 ident: 197 publication-title: The Properties of Natural and Synthetic Diamond – ident: 183 doi: 10.1080/14786436608211997 – ident: 238 doi: 10.1038/nmat2902 – volume: 1 start-page: 53 issn: 0954-027X year: 1990 ident: 146 publication-title: J. Hard Mater. – volume: 15 start-page: 45 year: 1955 ident: 212 publication-title: Indust. Diamond Rev. – ident: 45 doi: 10.1038/182518b0 – ident: 192 doi: 10.1063/1.325277 – volume: 30 start-page: 202 issn: 0022-3727 year: 1997 ident: 177 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/30/2/007 – year: 1949 ident: 188 publication-title: The Physics of High Pressure – ident: 135 doi: 10.1117/12.439181 – ident: 176 doi: 10.1007/s100510050049 – volume: 35 start-page: 135 year: 1975 ident: 71 publication-title: Indust. Diamond Rev. – start-page: 221 year: 1965 ident: 201 publication-title: Physical Properties of Diamond – start-page: 245 year: 1979 ident: 37 publication-title: The Properties of Diamond – ident: 27 doi: 10.1098/rspa.1962.0243 – volume: 6 start-page: 1772 issn: 0022-3727 year: 1973 ident: 171 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/6/15/303 – ident: 9 doi: 10.1038/nature10740 – ident: 47 doi: 10.1063/1.1661318 – start-page: 767 year: 1991 ident: 138 publication-title: New Diamond Science and Technology – volume: 74 start-page: 48 issn: 0370-1328 year: 1959 ident: 68 publication-title: Proc. Phys. Soc. Lond. doi: 10.1088/0370-1328/74/1/308 – start-page: 32 year: 1959 ident: 112 publication-title: Proc. 4th Int. Kongress Kurzzeitphotographie – ident: 159 doi: 10.1098/rspa.1966.0237 – volume: 33 start-page: 343 issn: 0030-6177 year: 1983 ident: 74 publication-title: Technol. Rep. Osaka Univ. – ident: 83 doi: 10.1080/01418618108240397 – volume: 31 start-page: 208 issn: 0003-004X year: 1946 ident: 208 publication-title: Am. Mineral. – ident: 126 doi: 10.1016/0925-9635(94)90176-7 – year: 1977 ident: 29 – ident: 84 doi: 10.1080/14786437008220952 – ident: 218 doi: 10.1063/1.1735052 – ident: 17 doi: 10.1007/BF00782253 – year: 1985 ident: 142 – volume: 39 start-page: R311 issn: 0022-3727 year: 2006 ident: 181 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/39/18/R01 – ident: 133 doi: 10.1080/14786430310001613246 – ident: 225 doi: 10.1016/0169-4332(92)90367-7 – ident: 12 doi: 10.1130/0091-7613(1997)025<1019:DFTIRK>2.3.CO;2 – year: 1974 ident: 93 publication-title: The Friatester: Ten Years Later – ident: 32 doi: 10.1098/rspa.1956.0040 – volume: 31 start-page: 209 issn: 0003-004X year: 1946 ident: 209 publication-title: Am. Mineral. – volume: 40 start-page: 186 issn: 0003-004X year: 1955 ident: 211 publication-title: Am. Mineral. – ident: 182 doi: 10.1080/14786436508218894 – ident: 162 doi: 10.1016/0925-9635(95)00430-0 – ident: 191 doi: 10.1038/nphys1491 – ident: 194 doi: 10.1063/1.1135966 – volume: 4 start-page: 35 year: 1972 ident: 107 publication-title: Sinteticheskie Almazy – start-page: 419 year: 1994 ident: 156 publication-title: Synthetic Diamond: Emerging CVD Science and Technology – ident: 180 doi: 10.1016/S0927-796X(02)00005-0 – start-page: 281 year: 1979 ident: 52 publication-title: The Properties of Diamond – volume: 32 start-page: 335 year: 1972 ident: 108 publication-title: Indust. Diamond Rev. – volume: 70 start-page: 521 issn: 0370-1301 year: 1957 ident: 67 publication-title: Proc. Phys. Soc. Lond. doi: 10.1088/0370-1301/70/5/309 – ident: 24 doi: 10.1007/s001930050079 – ident: 34 doi: 10.1016/S0031-8914(54)80032-2 – volume: 5 start-page: 213 issn: 0954-027X year: 1994 ident: 80 publication-title: J. Hard Mater. – start-page: 49 year: 1967 ident: 15 publication-title: Science and Technology of Industrial Diamonds vol 1 Science – ident: 76 doi: 10.1115/1.3625051 – year: 1804 ident: 170 publication-title: An Experimental Enquiry into the Nature and Propagation of Heat – volume: 33 start-page: 595 issn: 0022-3727 year: 2000 ident: 178 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/33/6/302 – start-page: 17 year: 1978 ident: 30 publication-title: Diamond Research 1978 – ident: 4 doi: 10.1143/JJAP.21.L183 – ident: 230 doi: 10.1002/(SICI)1521-396X(199903)172:1<91::AID-PSSA91>3.0.CO;2-J – start-page: 4 year: 1974 ident: 96 publication-title: Almazy Sverkh. Materialy – volume: 5 start-page: 32 year: 1973 ident: 91 publication-title: Sinteticheskie Almazy – volume: 74 start-page: 318 year: 1938 ident: 205 publication-title: Neues Jahrbuch für Miner. Geol. und Palaeont. Beilagen – volume: 10 start-page: 168 year: 1950 ident: 216 publication-title: Indust. Diamond Rev. – start-page: 351 year: 1979 ident: 203 publication-title: The Properties of Diamond – start-page: 555 year: 1979 ident: 7 publication-title: The Properties of Diamond – ident: 185 doi: 10.1063/1.326378 – ident: 195 doi: 10.1063/1.3448027 – year: 1975 ident: 72 – volume: 23 start-page: 269 year: 1978 ident: 16 publication-title: Sov. Phys.—Dokl. – ident: 128 doi: 10.1016/j.jeurceramsoc.2005.04.008 – ident: 237 doi: 10.1103/PhysRevB.64.212103 – start-page: 184 year: 1965 ident: 70 publication-title: Physical Properties of Diamond – ident: 163 doi: 10.1016/0039-6028(77)90459-9 – start-page: 3 year: 1979 ident: 6 publication-title: The Properties of Diamond – year: 1956 ident: 60 – ident: 22 doi: 10.1038/195765a0 – year: 1951 ident: 186 publication-title: The Hardness of Metals – ident: 25 doi: 10.1016/j.diamond.2011.05.019 – year: 1953 ident: 59 publication-title: Diamond Technology Production Methods for Diamond and Gemstones – volume: 25 start-page: A33 issn: 0022-3727 year: 1992 ident: 158 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/25/1A/007 – year: 1964 ident: 168 publication-title: The Friction and Lubrication of Solids: II – start-page: 525 year: 1979 ident: 51 publication-title: High-Pressure Science and Technology: II. Applications and Mechanical Properties – volume: 9 start-page: 27 issn: 0022-3727 year: 1976 ident: 224 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/9/1/009 – ident: 38 doi: 10.1016/0039-6028(86)90665-5 – start-page: 1 year: 1974 ident: 95 publication-title: Almazy Sverkh. Materialy – ident: 21 doi: 10.1063/1.3446966 – volume: 25 start-page: 1418 issn: 0022-3727 year: 1992 ident: 160 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/25/10/006 – volume: 1 start-page: 7 year: 1969 ident: 102 publication-title: Sinteticheskie Almazy – start-page: 41 year: 1967 ident: 10 publication-title: Science and Technology of Industrial Diamonds vol 1 Science – ident: 127 doi: 10.1016/0925-9635(95)00362-2 – ident: 66 doi: 10.1098/rspa.1955.0132 – volume: 12 start-page: 185 issn: 0034-4885 year: 1948 ident: 64 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/12/1/309 – ident: 213 doi: 10.1038/164193a0 – ident: 207 doi: 10.6028/jres.034.030 – volume: 59 start-page: 333 issn: 0372-8382 year: 1955 ident: 5 publication-title: Z. Elektrochem. doi: 10.1002/bbpc.19550590503 – ident: 50 doi: 10.1016/S0081-1947(08)60529-9 – ident: 31 doi: 10.1098/rsta.1987.0018 – ident: 151 doi: 10.1098/rspa.1964.0236 – volume: 24 start-page: 661 issn: 0003-004X year: 1939 ident: 206 publication-title: Am. Mineral. – start-page: 547 year: 1992 ident: 155 publication-title: The Properties of Natural and Synthetic Diamond – ident: 150 doi: 10.1080/14786430802616557 – volume: 5 start-page: 49 issn: 0954-027X year: 1994 ident: 152 publication-title: J. Hard Mater. – ident: 40 doi: 10.1038/nature02449 – volume: 49 start-page: 104 year: 1989 ident: 99 publication-title: Indust. Diamond Rev. – ident: 115 doi: 10.1098/rspa.1973.0072 – ident: 87 doi: 10.1557/PROC-383-327 – year: 1960 ident: 56 publication-title: The Nature of the Chemical Bond – ident: 229 doi: 10.1016/S0925-9635(98)00347-1 – ident: 73 doi: 10.1126/science.198.4321.1037 – volume: 15 start-page: 267 year: 1970 ident: 198 publication-title: Arch. Hutnictwa – year: 1920 ident: 169 – ident: 190 doi: 10.1063/1.3529454 – ident: 75 doi: 10.1016/S0007-8506(07)61737-5 – volume: 43 start-page: 207 year: 1891 ident: 105 publication-title: Misc. Documents House Representatives – volume: 28 start-page: 126 year: 1968 ident: 98 publication-title: Indust. Diamond Rev. – volume: 5 start-page: 31 issn: 0954-027X year: 1994 ident: 227 publication-title: J. Hard Mater. – start-page: 125 year: 1977 ident: 117 publication-title: Proc. 27th Annual Diamond Conf. – ident: 104 doi: 10.1002/andp.18912790505 – start-page: 105 year: 1967 ident: 184 publication-title: Science and Technology of Industrial Diamonds vol 1 Science – ident: 231 doi: 10.1080/0141861021000055673 – ident: 157 doi: 10.1016/0257-8972(91)90335-T – ident: 28 doi: 10.1080/00318087608227724 – start-page: 335 year: 1999 ident: 139 publication-title: Proc. 9th Cimtec World Forum on New Materials. Symp. IV: Diamond Films – volume: 2 start-page: 3 issn: 0954-027X year: 1991 ident: 86 publication-title: J. Hard Mater. – volume: 38 start-page: 108 issn: 0003-004X year: 1953 ident: 210 publication-title: Am. Mineral. – volume: 45 start-page: 844 year: 1954 ident: 219 publication-title: Phil. Mag. doi: 10.1080/14786440808520497 – year: 1992 ident: 2 publication-title: The Properties of Natural and Synthetic Diamond – volume: 24 start-page: 114 issn: 0370-0089 year: 1946 ident: 55 publication-title: Proc. Indian Acad. Sci. doi: 10.1007/BF03170745 – ident: 193 doi: 10.1126/science.200.4346.1145 – ident: 14 doi: 10.1111/j.1945-5100.2009.tb00740.x – ident: 143 doi: 10.1098/rspa.1998.0155 – ident: 23 doi: 10.1063/1.1733716 – start-page: 383 year: 1979 ident: 196 publication-title: The Properties of Diamond – start-page: 5 year: 1974 ident: 111 publication-title: Almazy Sverkh. Materialy – ident: 65 doi: 10.1098/rspa.1955.0131 – ident: 130 doi: 10.1016/S0925-9635(02)00197-8 – ident: 123 doi: 10.3390/ma3021390 – start-page: 514 year: 1962 ident: 61 publication-title: Proc. 6th Int. Congress on High-Speed Photography – ident: 221 doi: 10.1098/rspa.2004.1339 – ident: 41 doi: 10.1098/rspa.1946.0082 – ident: 77 doi: 10.1098/rspa.1958.0250 – start-page: 473 year: 1992 ident: 63 publication-title: The Properties of Natural and Synthetic Diamond – ident: 131 doi: 10.1016/S0043-1648(01)00861-4 – ident: 145 doi: 10.1016/S0043-1648(03)00385-5 – volume: 5 start-page: 4 year: 1973 ident: 103 publication-title: Sinteticheskie Almazy – volume: 2 start-page: 24 year: 1970 ident: 90 publication-title: Sinteticheskie Almazy – ident: 141 doi: 10.1016/0013-7944(83)90087-5 – ident: 200 doi: 10.1080/14786437408213559 – ident: 132 doi: 10.1016/S0263-4368(98)00049-3 – issn: 0370-0089 year: 1947 ident: 43 publication-title: Proc. Indian Acad. Sci. – volume: 15 start-page: 728 year: 1970 ident: 94 publication-title: Sov. Phys.—Crystallogr. – year: 1961 ident: 114 – ident: 187 doi: 10.1098/rspa.1964.0114 – volume: 16 start-page: 145 year: 1956 ident: 223 publication-title: Indust. Diamond Rev. – ident: 134 doi: 10.1023/B:JMSC.0000016153.90600.a6 – ident: 20 doi: 10.1179/174329409X433939 – ident: 53 doi: 10.1016/0925-9635(93)90250-6 – volume: 33 start-page: 985 issn: 0022-3727 year: 2000 ident: 232 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/33/8/315 – year: 1928 ident: 54 publication-title: Diamond: A Descriptive Treatise – ident: 42 doi: 10.1107/S0365110X53001290 – ident: 172 doi: 10.1016/0022-5096(57)90002-9 – volume: 3 start-page: 11 year: 1971 ident: 101 publication-title: Sinteticheskie Almazy – volume: 1 start-page: 273 issn: 0954-027X year: 1990 ident: 147 publication-title: J. Hard Mater. – volume: 43 start-page: 1140 year: 1952 ident: 217 publication-title: Phil. Mag. doi: 10.1080/14786441108521022 – start-page: 1 year: 1974 ident: 109 publication-title: Almazy Sverkh. Materialy – year: 1991 ident: 154 publication-title: The Properties and Applications of Diamond – ident: 18 doi: 10.1038/333440a0 – ident: 19 doi: 10.1007/BF00755735 – year: 1996 ident: 35 publication-title: Introduction to Solid State Physics – ident: 144 doi: 10.1016/S0043-1648(99)00189-1 – ident: 57 doi: 10.1103/PhysRevLett.84.5160 – volume: 24 start-page: 391 year: 1979 ident: 85 publication-title: Sov. Phys.—Dokl. – ident: 222 doi: 10.1098/rspa.1981.0001 – volume: 10 start-page: 1379 issn: 0022-3727 year: 1977 ident: 79 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/10/10/014 – year: 1969 ident: 189 publication-title: High Pressure Methods in Solid State Research doi: 10.1007/978-1-4899-5877-8 – start-page: 403 year: 1979 ident: 39 publication-title: The Properties of Diamond |
SSID | ssj0011829 |
Score | 2.4772334 |
SecondaryResourceType | review_article |
Snippet | Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126505 |
SubjectTerms | Carbon Diamonds Earth surface Gems Geology Hardness Thermal conductivity |
Title | The mechanical and strength properties of diamond |
URI | https://iopscience.iop.org/article/10.1088/0034-4885/75/12/126505 https://www.ncbi.nlm.nih.gov/pubmed/23168381 https://www.proquest.com/docview/1186934944 https://www.proquest.com/docview/1718961402 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5sRfDi-1FfrOBN0uaxm90cRSxF8HGo4G3ZTTYKalra9OKvdyabFBRqESGHHDJhMvtt5kvmRcgFht4CP7IekHXhMR37njZCeDy2mqexb5MAC4Xv7uPBE7t95k02YVULMxrXr_4unLpGwc6EdUKcxPFjzAPc8Z7gvSCEA1gGb5HVSIKzwRq-h8d5IAHos2PAtUxTJLzwPt_8Uwt0WEw9KxfU3ySmUd5lnrx1Z6Xppp8_-jr-6-m2yEZNUOmVE9gmK7bYIWtVomg63SUB4Ip-WKwXxuWlusgo1psUL-UrHeOf_Qm2aKWjnALyAOPZHhn2b4bXA68eu-CljEclfEwyrVNgKoYDFwxYmgNLTGDna535OjeJlkj7MmFyY3QkQkCBFSaOE5nLRET7pF2MCntIKDO5FTbSmeY5Q8eXJljXKgJjJGex7RDe2FqldUtynIzxrqrQuJTYuZQptIYSXAWhctbokN5cbuyaciyVuASDq3p_Tpdefd4suYLdhiEUXdjRDORwghd29GG_XAPuPgEj-mGHHDi8zLUMcU4YkKSjP-lzTNaBp4Uui-aEtMvJzJ4CFyrNWYX2LwOs9ag |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CMSF92M8i8QNdesjadojAqbx5gAStyhpU5CAbtq6C78eu-kmgTQQQuqhh7hKHSf-WtufAY4o9OZ7oXERrAuXqchzlRbC5ZFRPI08k_hUKHxzG3Ue2eUTf5qC83EtTLdXH_1NvLVEwVaFdUJcTO3HmIt2x1uCt_wAL0QZvNXL8mmY5WEUVnV8d_fjYAJCaIuCa7lRofDEZ33xUdM4j8nws3JD7SWbLjKo2Asp--S1OSx1M_34xu347zdchsUaqDonVmgFpkyxCnNVwmg6WAMf7ct5N1Q3TMvsqCJzqO6keC5fnB794e8TVavTzR20QLT1bB0e2ucPpx23br_gpoyHJX5UMqVSRCyaIyb0WZojWkzwBFAq81SuExUT_MuEzrVWoQjQGozQUZTEeZyIcANmim5htsBhOjfChCpTPGfkANOE6luFr3XMWWQawEf6lmlNTU4dMt5kFSKPY2IwZZI0IgWXfiCtRhrQGsv1LDnHrxLHqHRZ79PBr6MPR8sucddRKEUVpjtEOerkRcw-7Icx6PYTVKIXNGDT2sx4lgH1C0OwtP2n-RzA_P1ZW15f3F7twAJCt8Am1uzCTNkfmj2ER6Xer4z_E-2B-ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanical+and+strength+properties+of+diamond&rft.jtitle=Reports+on+progress+in+physics&rft.au=Field%2C+J+E&rft.date=2012-12-01&rft.pub=IOP+Publishing&rft.issn=0034-4885&rft.eissn=1361-6633&rft.volume=75&rft.issue=12&rft_id=info:doi/10.1088%2F0034-4885%2F75%2F12%2F126505&rft.externalDocID=rpp7655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon |