Vertebral rotation estimation from frontal X-rays using a quasi-automated pedicle detection method

Purpose Measurement of vertebral axial rotation (VAR) is relevant for the assessment of scoliosis. Stokes method allows estimating VAR in frontal X-rays from the relative position of the pedicles and the vertebral body. This method requires identifying these landmarks for each vertebral level, which...

Full description

Saved in:
Bibliographic Details
Published inEuropean spine journal Vol. 28; no. 12; pp. 3026 - 3034
Main Authors Ebrahimi, Shahin, Gajny, Laurent, Vergari, Claudio, Angelini, Elsa D., Skalli, Wafa
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Measurement of vertebral axial rotation (VAR) is relevant for the assessment of scoliosis. Stokes method allows estimating VAR in frontal X-rays from the relative position of the pedicles and the vertebral body. This method requires identifying these landmarks for each vertebral level, which is time-consuming. In this work, a quasi-automated method for pedicle detection and VAR estimation was proposed. Method A total of 149 healthy and adolescent idiopathic scoliotic (AIS) subjects were included in this retrospective study. Their frontal X-rays were collected from multiple sites and manually annotated to identify the spinal midline and pedicle positions. Then, an automated pedicle detector was developed based on image analysis, machine learning and fast manual identification of a few landmarks. VARs were calculated using the Stokes method in a validation dataset of 11 healthy (age 6–33 years) and 46 AIS subjects (age 6–16 years, Cobb 10°–46°), both from detected pedicles and those manually annotated to compare them. Sensitivity of pedicle location to the manual inputs was quantified on 20 scoliotic subjects, using 10 perturbed versions of the manual inputs. Results Pedicles centers were localized with a precision of 84% and mean difference of 1.2 ± 1.2 mm, when comparing with manual identification. Comparison of VAR values between automated and manual pedicle localization yielded a signed difference of − 0.2 ± 3.4°. The uncertainty on pedicle location was smaller than 2 mm along each image axis. Conclusion The proposed method allowed calculating VAR values in frontal radiographs with minimal user intervention and robust quasi-automated pedicle localization. Graphic abstract These slides can be retrieved under Electronic Supplementary Material.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0940-6719
1432-0932
1432-0932
DOI:10.1007/s00586-019-06158-z