Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages
The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guiz...
Saved in:
Published in | DNA research Vol. 24; no. 5; pp. 523 - 535 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs. |
---|---|
AbstractList | The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs. The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig ( S. scrofa ), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs. The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs. |
Author | Liang, Guoming Yang, Yalan Li, Kui Tang, Zhonglin Niu, Guanglin |
AuthorAffiliation | 3 Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China 2 Department of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China 1 State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China – name: 3 Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China – name: 2 Department of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China |
Author_xml | – sequence: 1 givenname: Guoming surname: Liang fullname: Liang, Guoming – sequence: 2 givenname: Yalan surname: Yang fullname: Yang, Yalan – sequence: 3 givenname: Guanglin surname: Niu fullname: Niu, Guanglin – sequence: 4 givenname: Zhonglin surname: Tang fullname: Tang, Zhonglin – sequence: 5 givenname: Kui surname: Li fullname: Li, Kui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28575165$$D View this record in MEDLINE/PubMed |
BookMark | eNptUcFO3DAQtRAVC9seuVY-ckmx4zhOLkgIlW2lFZWAu-XYk11Xjr21Ewp_j7e7IIo4zejNm_dG807QoQ8eEDql5BslLTs3XkVI5yY9krI8QMdU8Lqgdc0Oc88qUpQNa2boJKXfhFSUM3GEZmXDBac1P0Z6AT4MUPy1BvAmht4661c49PhuSjjpjCisbdSTUxHf3lwmrDKYEvbWAw5xpXyGvMHjOgJgAw_gwmYAPyqH06hWkD6jT71yCb7s6xzdX3-_v_pRLH8tfl5dLgtdcTYWvO07EK0moGkHra4JUCMYNLQzLSVlS0oOjJdG0FZ0fam7ygioCOe077uazdHFTnYzdQMYnU-IyslNtIOKTzIoK_-feLuWq_AguWCiySfM0dleIIY_E6RRDjZpcE55CFOStCWZyhhnmfr1rderyctjM4HtCP-eFaGX2o5qtGFrbZ2kRG7jk7v45C6-vFW823oR_pj_DFudohk |
CitedBy_id | crossref_primary_10_3390_ani11051430 crossref_primary_10_1186_s12943_019_1069_0 crossref_primary_10_3389_fgene_2019_01010 crossref_primary_10_1186_s12864_021_07645_8 crossref_primary_10_3390_ani15050708 crossref_primary_10_1016_j_jtemb_2023_127320 crossref_primary_10_18632_aging_102315 crossref_primary_10_1002_cam4_1574 crossref_primary_10_1016_j_biocel_2018_04_016 crossref_primary_10_3390_ijms22031390 crossref_primary_10_1016_j_bbagrm_2019_07_001 crossref_primary_10_3390_ani10071114 crossref_primary_10_1038_s41598_024_76940_7 crossref_primary_10_3390_ijms232416065 crossref_primary_10_1080_10495398_2023_2286609 crossref_primary_10_3389_fcell_2020_00322 crossref_primary_10_1071_RD18474 crossref_primary_10_1186_s12864_023_09612_x crossref_primary_10_1016_j_neulet_2019_02_032 crossref_primary_10_2147_OTT_S317403 crossref_primary_10_1007_s12032_023_01980_4 crossref_primary_10_1142_S2591722620400098 crossref_primary_10_3389_fcell_2019_00289 crossref_primary_10_1111_age_12781 crossref_primary_10_1186_s12864_023_09284_7 crossref_primary_10_3390_genes13050746 crossref_primary_10_1016_j_plantsci_2018_06_016 crossref_primary_10_1021_acs_jafc_1c07358 crossref_primary_10_3389_fgene_2021_769690 crossref_primary_10_3389_fgene_2018_00172 crossref_primary_10_3389_fgene_2021_777232 crossref_primary_10_1080_15476286_2019_1621621 crossref_primary_10_1159_000517303 crossref_primary_10_3390_genes13112062 crossref_primary_10_3389_fgene_2020_00999 crossref_primary_10_3389_fgene_2022_970097 crossref_primary_10_1186_s12864_019_6377_7 crossref_primary_10_1007_s00284_018_1576_z crossref_primary_10_1016_j_plantsci_2020_110521 crossref_primary_10_3390_ani11071863 crossref_primary_10_5582_irdr_2018_01013 crossref_primary_10_1007_s12031_021_01882_y crossref_primary_10_1016_j_ejbt_2019_06_004 crossref_primary_10_1186_s12711_022_00754_2 crossref_primary_10_1016_j_cbd_2024_101277 crossref_primary_10_3390_ijms242216484 crossref_primary_10_1111_jcmm_15629 crossref_primary_10_1021_acs_jafc_4c01550 crossref_primary_10_1172_jci_insight_175625 crossref_primary_10_3390_cells8020177 crossref_primary_10_1007_s00438_021_01835_5 crossref_primary_10_1038_s41598_020_64711_z crossref_primary_10_3390_ijms21155217 crossref_primary_10_3389_fgene_2021_685541 crossref_primary_10_1016_j_ijbiomac_2023_126322 crossref_primary_10_1002_jcsm_12859 crossref_primary_10_1093_dnares_dsz006 crossref_primary_10_1111_rda_13816 crossref_primary_10_3390_genes14010066 crossref_primary_10_3390_vetsci10020075 crossref_primary_10_1093_bib_bbaa001 crossref_primary_10_1080_10495398_2022_2118130 crossref_primary_10_1186_s12864_021_07896_5 crossref_primary_10_1016_j_repbio_2024_100860 crossref_primary_10_1155_2021_5383210 crossref_primary_10_1080_14737159_2021_1967749 crossref_primary_10_1002_jcb_27614 crossref_primary_10_1093_bib_bbab444 crossref_primary_10_1111_febs_15525 crossref_primary_10_2478_aoas_2019_0053 crossref_primary_10_3390_biom10081180 crossref_primary_10_3390_ijms22179385 crossref_primary_10_1016_j_virol_2018_11_014 crossref_primary_10_1007_s11427_023_2514_y crossref_primary_10_1038_s42003_022_04263_2 crossref_primary_10_3390_cells9081806 crossref_primary_10_1016_j_acthis_2020_151506 crossref_primary_10_1007_s00438_022_01887_1 crossref_primary_10_3389_fgene_2020_587559 crossref_primary_10_3389_fphys_2024_1476487 crossref_primary_10_2147_CMAR_S292074 crossref_primary_10_1007_s13258_021_01154_4 crossref_primary_10_1093_molehr_gaad027 crossref_primary_10_3389_fgene_2019_00756 crossref_primary_10_1128_mBio_02984_21 crossref_primary_10_1134_S1068162022020042 crossref_primary_10_2174_1566524022666220701141914 crossref_primary_10_1021_acs_jafc_4c00762 crossref_primary_10_1016_j_rvsc_2022_09_036 crossref_primary_10_3389_fgene_2020_00135 crossref_primary_10_1038_s41392_021_00569_5 crossref_primary_10_3389_fcimb_2021_764089 crossref_primary_10_3390_ijms232315204 crossref_primary_10_3389_fcell_2021_619329 crossref_primary_10_1016_S2095_3119_20_63235_X crossref_primary_10_18632_oncotarget_22710 crossref_primary_10_3390_biology10090841 crossref_primary_10_1186_s12864_020_6649_2 crossref_primary_10_2217_bmm_2020_0591 crossref_primary_10_1016_j_neulet_2020_135050 crossref_primary_10_3389_fncel_2017_00354 crossref_primary_10_3389_fvets_2022_833946 crossref_primary_10_3390_biom13020314 crossref_primary_10_3390_genes16010065 crossref_primary_10_3390_biom12030478 crossref_primary_10_1016_j_ijbiomac_2019_11_119 crossref_primary_10_1016_j_psj_2024_103783 crossref_primary_10_3390_genes13111974 crossref_primary_10_3389_fphys_2021_732208 crossref_primary_10_1016_j_phrs_2021_105722 crossref_primary_10_1093_bib_bby111 crossref_primary_10_3389_fgene_2022_858763 crossref_primary_10_7124_bc_000A23 crossref_primary_10_1016_j_domaniend_2019_106401 crossref_primary_10_1016_j_biopha_2020_110251 crossref_primary_10_3390_ijms25168900 crossref_primary_10_3390_ani12172208 crossref_primary_10_5713_ajas_17_0563 crossref_primary_10_1261_rna_067132_118 |
Cites_doi | 10.1093/nar/gkl243 10.1086/424760 10.1038/nrm3611 10.1093/nar/gkv1220 10.1038/nature11622 10.1007/s00335-015-9558-y 10.1186/1755-8794-5-55 10.1186/s13059-015-0706-1 10.1101/gad.251926.114 10.1016/j.celrep.2014.12.002 10.1038/emboj.2013.63 10.1161/CIRCGENETICS.109.912345 10.1038/31927 10.1016/j.ceb.2003.11.011 10.1126/science.1260419 10.1016/S0960-9822(02)00809-6 10.1126/science.1106927 10.1007/s12015-013-9485-9 10.1002/wrna.1294 10.1261/rna.043687.113 10.1038/ncomms11215 10.1242/jeb.030759 10.1038/nature11928 10.1038/nsmb.2959 10.1016/0092-8674(93)90279-Y 10.1038/280339a0 10.1016/j.molcel.2014.08.019 10.1038/nbt.2890 10.1371/journal.pgen.1003777 10.1016/j.semcdb.2014.08.009 10.1093/bioinformatics/btr509 10.1093/nar/gkt1181 10.1093/nar/gkv1273 10.1161/01.CIR.103.4.485 10.1016/j.theriogenology.2007.09.030 10.1038/srep15544 10.1186/gb-2007-8-4-r45 10.1186/s12864-015-1580-7 10.1016/j.molcel.2015.03.027 10.1007/s00335-002-2263-7 10.1016/S0092-8674(00)80479-1 10.1186/gb-2007-8-6-r115 10.1016/j.mce.2015.03.012 10.1038/srep05150 10.1159/000252808 10.1038/nature11993 10.1371/journal.pone.0030733 10.1111/febs.12253 10.1038/nature13553 10.1016/j.cell.2014.09.001 10.3382/ps.2010-00641 10.1186/s13059-014-0571-3 10.1371/journal.pbio.0020363 10.1152/ajpendo.90562.2008 10.1016/j.proghi.2007.01.001 10.1038/nmeth.1923 10.1007/s11010-011-1077-x 10.1186/1471-2164-6-1 10.1261/rna.052282.115 10.1016/j.meatsci.2015.07.025 |
ContentType | Journal Article |
Copyright | The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017 |
Copyright_xml | – notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. – notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/dnares/dsx022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1756-1663 |
EndPage | 535 |
ExternalDocumentID | PMC5737845 28575165 10_1093_dnares_dsx022 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; ; grantid: 31171192, 31330074 |
GroupedDBID | --- .I3 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS 5WA 70E AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ADBBV ADHZD ADRAZ AEGXH AENEX AENZO AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ KQ8 KSI M48 O5R O5S OAWHX OJQWA OK1 OVT P2P PEELM RD5 RNS ROZ RPM RXO SV3 TOX TR2 WG7 X7H ZKX ~91 ~D7 ~S- CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-59fbe79c0ec1be9c60e1d73e81bd91029025e352d7197bf2cb4d7e40551ffb63 |
IEDL.DBID | M48 |
ISSN | 1340-2838 1756-1663 |
IngestDate | Thu Aug 21 14:03:05 EDT 2025 Fri Jul 11 11:31:08 EDT 2025 Tue Apr 29 04:32:09 EDT 2025 Tue Jul 01 03:08:55 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | circRNAs organs profiling skeletal muscle pig |
Language | English |
License | The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-59fbe79c0ec1be9c60e1d73e81bd91029025e352d7197bf2cb4d7e40551ffb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Dr. Minoru Ko |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/dnares/dsx022 |
PMID | 28575165 |
PQID | 1905733353 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5737845 proquest_miscellaneous_1905733353 pubmed_primary_28575165 crossref_citationtrail_10_1093_dnares_dsx022 crossref_primary_10_1093_dnares_dsx022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | DNA research |
PublicationTitleAlternate | DNA Res |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20171218122453_dsx022-B31) 2004; 2 ( key 20171218122453_dsx022-B64) 2014; 32 ( key 20171218122453_dsx022-B5) 2015; 16 ( key 20171218122453_dsx022-B61) 2015; 44 ( key 20171218122453_dsx022-B7) 2014; 9 ( key 20171218122453_dsx022-B17) 2008; 69 ( key 20171218122453_dsx022-B51) 2015; 347 ( key 20171218122453_dsx022-B58) 2015; 55 ( key 20171218122453_dsx022-B47) 2012; 360 ( key 20171218122453_dsx022-B53) 2008; 295 ( key 20171218122453_dsx022-B19) 2007; 3 ( key 20171218122453_dsx022-B23) 2007; 8 ( key 20171218122453_dsx022-B75) 2016; 44 ( key 20171218122453_dsx022-B20) 2007; 8 ( key 20171218122453_dsx022-B35) 2015; 58 ( key 20171218122453_dsx022-B9) 2015; 16 ( key 20171218122453_dsx022-B55) 2004; 16 ( key 20171218122453_dsx022-B68) 2013; 280 ( key 20171218122453_dsx022-B52) 2010; 89 ( key 20171218122453_dsx022-B63) 2015; 21 ( key 20171218122453_dsx022-B12) 1998; 392 ( key 20171218122453_dsx022-B42) 2013; 32 ( key 20171218122453_dsx022-B40); 91 ( key 20171218122453_dsx022-B3) 2014; 159 ( key 20171218122453_dsx022-B36) 2016; 17 ( key 20171218122453_dsx022-B72) 2013; 4 ( key 20171218122453_dsx022-B43) 2015; 409 ( key 20171218122453_dsx022-B49) 2002; 12 ( key 20171218122453_dsx022-B46) 2015; 6 ( key 20171218122453_dsx022-B8) 2015; 16 ( key 20171218122453_dsx022-B66); 75 ( key 20171218122453_dsx022-B24) 2015; 291 ( key 20171218122453_dsx022-B57) 2015; 110 ( key 20171218122453_dsx022-B14) 2012; 491 ( key 20171218122453_dsx022-B44) 2016; 7 ( key 20171218122453_dsx022-B27) 2011; 27 ( key 20171218122453_dsx022-B67) 2010; 115 ( key 20171218122453_dsx022-B13) 2005; 307 ( key 20171218122453_dsx022-B15) 2005; 6 ( key 20171218122453_dsx022-B26) 2012; 9 ( key 20171218122453_dsx022-B74) 2015; 13 ( key 20171218122453_dsx022-B1) 1979; 280 ( key 20171218122453_dsx022-B32) 2006; 34 ( key 20171218122453_dsx022-B2) 2013; 495 ( key 20171218122453_dsx022-B30) 2006; 7 Suppl 5 ( key 20171218122453_dsx022-B29) 2014; 42 ( key 20171218122453_dsx022-B25) 2015; 5 ( key 20171218122453_dsx022-B33) 2013; 9 ( key 20171218122453_dsx022-B4) 2014; 15 ( key 20171218122453_dsx022-B70) 2007; 42 ( key 20171218122453_dsx022-B34) 2013; 19 ( key 20171218122453_dsx022-B37) 2014; 56 ( key 20171218122453_dsx022-B22) 2015; 16 ( key 20171218122453_dsx022-B45) 2013; 14 ( key 20171218122453_dsx022-B54) 2014; 4 ( key 20171218122453_dsx022-B38) 2014; 28 ( key 20171218122453_dsx022-B18) 2012; 5 ( key 20171218122453_dsx022-B48) 2010; 3 ( key 20171218122453_dsx022-B56) 2010; 213 ( key 20171218122453_dsx022-B65) 2001; 103 ( key 20171218122453_dsx022-B39); 10 ( key 20171218122453_dsx022-B60) 2015; 16 ( key 20171218122453_dsx022-B41) 2014; 514 ( key 20171218122453_dsx022-B69) 2014; 36 ( key 20171218122453_dsx022-B21) 2003; 14 ( key 20171218122453_dsx022-B10) 2013; 495 ( key 20171218122453_dsx022-B11) 2015; 22 ( key 20171218122453_dsx022-B73) 2016; 44 ( key 20171218122453_dsx022-B16) 2014; 10 ( key 20171218122453_dsx022-B28) 2014; 20 ( key 20171218122453_dsx022-B71) 2012; 7 ( key 20171218122453_dsx022-B6) 2015 ( key 20171218122453_dsx022-B62); 73 ( key 20171218122453_dsx022-B50) 2014; 4 ( key 20171218122453_dsx022-B59) 2015; 26 26464523 - RNA. 2015 Dec;21(12):2076-87 26669964 - RNA Biol. 2016;13(1):34-42 7684656 - Cell. 1993 Jun 4;73(5):1019-30 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 15322983 - Am J Hum Genet. 2004 Oct;75(4):703-8 26590255 - Nucleic Acids Res. 2016 Jan 4;44(D1):D196-202 25070500 - Genome Biol. 2014 Jul 29;15(7):409 22319583 - PLoS One. 2012;7(2):e30733 24339831 - Front Genet. 2013 Dec 10;4:283 12925889 - Mamm Genome. 2003 Aug;14(8):565-79 24039610 - PLoS Genet. 2013;9(9):e1003777 25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80 23249747 - RNA. 2013 Feb;19(2):141-57 25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64 26230526 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):563-79 26458558 - Mol Genet Genomics. 2016 Apr;291(2):559-73 23151582 - Nature. 2012 Nov 15;491(7424):393-8 25543144 - Cell Rep. 2015 Jan 6;10(1):103-11 27050392 - Nat Commun. 2016 Apr 06;7:11215 25119025 - Nature. 2014 Oct 9;514(7521):252-256 20008370 - J Exp Biol. 2010 Jan 1;213(1):137-45 25613900 - Science. 2015 Jan 23;347(6220):1260419 17988725 - Theriogenology. 2008 Jan 1;69(1):2-9 17407547 - Genome Biol. 2007;8(4):R45 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 15761152 - Science. 2005 Mar 11;307(5715):1618-21 17502225 - Prog Histochem Cytochem. 2007;42(1):1-57 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66 24889152 - Sci Rep. 2014 Jun 03;4:5150 26263039 - Meat Sci. 2015 Dec;110:224-9 23503588 - EMBO J. 2013 Jul 3;32(13):1842-54 9582070 - Nature. 1998 Apr 30;392(6679):917-20 26201400 - Genome Biol. 2015 Jul 23;16:148 15885146 - BMC Genomics. 2005 May 10;6:70 23151353 - BMC Med Genomics. 2012 Nov 15;5:55 24811520 - Nat Biotechnol. 2014 May;32(5):453-61 21959974 - Mol Cell Biochem. 2012 Jan;360(1-2):373-82 26204923 - New Phytol. 2015 Oct;208(1):88-95 20215591 - Circ Cardiovasc Genet. 2010 Apr;3(2):155-61 12007417 - Curr Biol. 2002 Apr 30;12(9):735-9 27315811 - Genome Biol. 2016 Jun 17;17 (1):130 21076104 - Poult Sci. 2010 Dec;89(12 ):2651-9 25583365 - Genome Biol. 2015 Jan 13;16:4 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93 9428511 - Cell. 1997 Dec 26;91(7):875-9 26541409 - Genome Biol. 2015 Nov 05;16:245 11157710 - Circulation. 2001 Jan 30;103(4):485-90 25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47 26179476 - Eur J Nutr. 2016 Jun;55(4):1777-87 18827171 - Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40 25678226 - Mamm Genome. 2015 Apr;26(3-4):181-90 24474938 - Front Physiol. 2014 Jan 16;4:408 460409 - Nature. 1979 Jul 26;280(5720):339-40 23446348 - Nature. 2013 Mar 21;495(7441):333-8 17254305 - BMC Bioinformatics. 2006 Dec 18;7 Suppl 5:S20 23800994 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):475-88 26076956 - Genome Biol. 2015 Jun 16;16:126 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85 25242744 - Cell. 2014 Sep 25;159(1):134-147 16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4 15037306 - Curr Opin Cell Biol. 2004 Feb;16(1):61-7 26496978 - Sci Rep. 2015 Oct 26;5:15544 17384733 - Int J Biol Sci. 2007 Feb 09;3(3):132-52 26578591 - Nucleic Acids Res. 2016 Jan 4;44(D1):D1005-10 17573972 - Genome Biol. 2007;8(6):R115 25152334 - Semin Cell Dev Biol. 2014 Dec;36:213-23 26450965 - Nucleic Acids Res. 2016 Jan 4;44(D1):D209-15 23446346 - Nature. 2013 Mar 21;495(7441):384-8 15502875 - PLoS Biol. 2004 Nov;2(11):e363 24338594 - Stem Cell Rev. 2014 Apr;10(2):162-76 25817543 - Mol Cell Endocrinol. 2015 Jul 5;409:103-12 25234927 - RNA. 2014 Nov;20(11):1666-70 23517348 - FEBS J. 2013 Sep;280(17):4294-314 19864899 - Cardiology. 2010;115(1):49-60 25962502 - BMC Genomics. 2015 May 12;16:377 |
References_xml | – volume: 34 start-page: W451 year: 2006 ident: key 20171218122453_dsx022-B32 article-title: RNAhybrid: microRNA target prediction easy, fast and flexible, publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl243 – volume: 75 start-page: 703 ident: key 20171218122453_dsx022-B66 article-title: Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1), publication-title: Am. J. Hum. Genet doi: 10.1086/424760 – volume: 14 start-page: 475 year: 2013 ident: key 20171218122453_dsx022-B45 article-title: Diversifying microRNA sequence and function, publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm3611 – volume: 44 start-page: D1005 year: 2016 ident: key 20171218122453_dsx022-B75 article-title: SomamiR 2.0: a database of cancer somatic mutations altering microRNA–ceRNA interactions, publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1220 – volume: 491 start-page: 393 year: 2012 ident: key 20171218122453_dsx022-B14 article-title: Analyses of pig genomes provide insight into porcine demography and evolution, publication-title: Nature doi: 10.1038/nature11622 – volume: 26 start-page: 181 year: 2015 ident: key 20171218122453_dsx022-B59 article-title: Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs, publication-title: Mamm. Genome doi: 10.1007/s00335-015-9558-y – volume: 5 start-page: 55 year: 2012 ident: key 20171218122453_dsx022-B18 article-title: Completion of the swine genome will simplify the production of swine as a large animal biomedical model, publication-title: BMC Med Genomics doi: 10.1186/1755-8794-5-55 – volume: 16 start-page: 148 year: 2015 ident: key 20171218122453_dsx022-B5 article-title: Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos, publication-title: Genome Biol doi: 10.1186/s13059-015-0706-1 – volume: 28 start-page: 2233 year: 2014 ident: key 20171218122453_dsx022-B38 article-title: Short intronic repeat sequences facilitate circular RNA production, publication-title: Genes Dev doi: 10.1101/gad.251926.114 – volume: 10 start-page: 103 ident: key 20171218122453_dsx022-B39 article-title: Exon circularization requires canonical splice signals publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.002 – volume: 16 start-page: 015 year: 2015 ident: key 20171218122453_dsx022-B9 article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development, publication-title: Genome Biol – volume: 32 start-page: 1842 year: 2013 ident: key 20171218122453_dsx022-B42 article-title: The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway, publication-title: EMBO J doi: 10.1038/emboj.2013.63 – volume: 3 start-page: 155 year: 2010 ident: key 20171218122453_dsx022-B48 article-title: Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy, publication-title: Circ. Cardiovasc. Genet doi: 10.1161/CIRCGENETICS.109.912345 – volume: 392 start-page: 917 year: 1998 ident: key 20171218122453_dsx022-B12 article-title: A molecular timescale for vertebrate evolution, publication-title: Nature doi: 10.1038/31927 – volume: 16 start-page: 61 year: 2004 ident: key 20171218122453_dsx022-B55 article-title: Relating biochemistry and function in the myosin superfamily, publication-title: Curr. Opin. Cell Biol doi: 10.1016/j.ceb.2003.11.011 – volume: 347 start-page: 1260419 year: 2015 ident: key 20171218122453_dsx022-B51 article-title: Proteomics. Tissue-based map of the human proteome, publication-title: Science doi: 10.1126/science.1260419 – volume: 4 start-page: 283 year: 2013 ident: key 20171218122453_dsx022-B72 article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits, publication-title: Front. Genet – volume: 12 start-page: 735 year: 2002 ident: key 20171218122453_dsx022-B49 article-title: Identification of tissue-specific microRNAs from mouse, publication-title: Curr Biol doi: 10.1016/S0960-9822(02)00809-6 – volume: 4 start-page: 408 year: 2014 ident: key 20171218122453_dsx022-B54 article-title: Role of microRNAs in skeletal muscle hypertrophy, publication-title: Front. Physiol, – volume: 16 start-page: 015 year: 2015 ident: key 20171218122453_dsx022-B8 article-title: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development, publication-title: Genome Biol – volume: 307 start-page: 1618 year: 2005 ident: key 20171218122453_dsx022-B13 article-title: Worldwide phylogeography of wild boar reveals multiple centers of pig domestication, publication-title: Science doi: 10.1126/science.1106927 – volume: 19 start-page: 426 year: 2013 ident: key 20171218122453_dsx022-B34 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats, publication-title: RNA – volume: 10 start-page: 162 year: 2014 ident: key 20171218122453_dsx022-B16 article-title: Comparative gene expression signature of pig, human and mouse induced pluripotent stem cell lines reveals insight into pig pluripotency gene networks, publication-title: Stem Cell Rev. Rep doi: 10.1007/s12015-013-9485-9 – volume: 15 start-page: 014 year: 2014 ident: key 20171218122453_dsx022-B4 article-title: Expanded identification and characterization of mammalian circular RNAs, publication-title: Genome Biol – volume: 17 start-page: 1 year: 2016 ident: key 20171218122453_dsx022-B36 article-title: Tracing the expression of circular RNAs in human pre-implantation embryos, publication-title: Genome Biol – volume: 55 start-page: 1777 year: 2015 ident: key 20171218122453_dsx022-B58 article-title: Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs publication-title: Eur. J. Nutr – volume: 6 start-page: 563 year: 2015 ident: key 20171218122453_dsx022-B46 article-title: Biogenesis, identification, and function of exonic circular RNAs, publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1294 – volume: 20 start-page: 1666 year: 2014 ident: key 20171218122453_dsx022-B28 article-title: circBase: a database for circular RNAs, publication-title: RNA doi: 10.1261/rna.043687.113 – volume: 7, start-page: 11215 year: 2016 ident: key 20171218122453_dsx022-B44 article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs, publication-title: Nat. Commun doi: 10.1038/ncomms11215 – volume: 213 start-page: 137 year: 2010 ident: key 20171218122453_dsx022-B56 article-title: Fibre type-specific expression patterns of myosin heavy chain genes in adult torafugu Takifugu rubripes muscles, publication-title: J. Exp. Biol doi: 10.1242/jeb.030759 – volume: 495 start-page: 333 year: 2013 ident: key 20171218122453_dsx022-B2 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency, publication-title: Nature doi: 10.1038/nature11928 – volume: 22 start-page: 256 year: 2015 ident: key 20171218122453_dsx022-B11 article-title: Exon-intron circular RNAs regulate transcription in the nucleus, publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.2959 – volume: 73 start-page: 1019 ident: key 20171218122453_dsx022-B62 article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis, publication-title: Cell doi: 10.1016/0092-8674(93)90279-Y – volume: 280 start-page: 339 year: 1979 ident: key 20171218122453_dsx022-B1 article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells, publication-title: Nature doi: 10.1038/280339a0 – volume: 56 start-page: 55 year: 2014 ident: key 20171218122453_dsx022-B37 article-title: circRNA biogenesis competes with pre-mRNA splicing, publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 32 start-page: 453 year: 2014 ident: key 20171218122453_dsx022-B64 article-title: Detecting and characterizing circular RNAs, publication-title: Nat. Biotech doi: 10.1038/nbt.2890 – volume: 9 start-page: e1003777 year: 2013 ident: key 20171218122453_dsx022-B33 article-title: Cell-type specific features of circular RNA expression publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003777 – volume: 36 start-page: 213 year: 2014 ident: key 20171218122453_dsx022-B69 article-title: Tight junctions and the regulation of gene expression, publication-title: Semin. Cell Dev. Biol doi: 10.1016/j.semcdb.2014.08.009 – volume: 27 start-page: 2987 year: 2011 ident: key 20171218122453_dsx022-B27 article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr509 – volume: 42 start-page: D68 year: 2014 ident: key 20171218122453_dsx022-B29 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data, publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1181 – volume: 44 start-page: D196 year: 2016 ident: key 20171218122453_dsx022-B73 article-title: deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data, publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1273 – volume: 103 start-page: 485 year: 2001 ident: key 20171218122453_dsx022-B65 article-title: Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia, publication-title: Circulation doi: 10.1161/01.CIR.103.4.485 – volume: 69 start-page: 2 year: 2008 ident: key 20171218122453_dsx022-B17 article-title: Are animal models as good as we think?, publication-title: Theriogenology doi: 10.1016/j.theriogenology.2007.09.030 – volume: 5 start-page: 15544 year: 2015 ident: key 20171218122453_dsx022-B25 article-title: Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs, publication-title: Sci. Rep doi: 10.1038/srep15544 – volume: 8 start-page: R45 year: 2007 ident: key 20171218122453_dsx022-B20 article-title: Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags, publication-title: Genome Biol doi: 10.1186/gb-2007-8-4-r45 – volume: 16 start-page: 377 year: 2015 ident: key 20171218122453_dsx022-B22 article-title: Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs, publication-title: BMC Genomics doi: 10.1186/s12864-015-1580-7 – volume: 58 start-page: 870 year: 2015 ident: key 20171218122453_dsx022-B35 article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed, publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.027 – volume: 14 start-page: 565 year: 2003 ident: key 20171218122453_dsx022-B21 article-title: EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human, publication-title: Mamm. Genome doi: 10.1007/s00335-002-2263-7 – volume: 91 start-page: 875 ident: key 20171218122453_dsx022-B40 article-title: Classification of introns: U2-type or U12-type, publication-title: Cell doi: 10.1016/S0092-8674(00)80479-1 – volume: 8 start-page: R115 year: 2007 ident: key 20171218122453_dsx022-B23 article-title: LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs, publication-title: Genome Biol doi: 10.1186/gb-2007-8-6-r115 – volume: 409 start-page: 103 year: 2015 ident: key 20171218122453_dsx022-B43 article-title: The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor, publication-title: Mol Cell. Endocrinol doi: 10.1016/j.mce.2015.03.012 – volume: 4 start-page: 5150 year: 2014 ident: key 20171218122453_dsx022-B50 article-title: Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues, publication-title: Sci. Rep doi: 10.1038/srep05150 – volume: 115 start-page: 49 year: 2010 ident: key 20171218122453_dsx022-B67 article-title: Cardiomyopathy: a systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations, publication-title: Cardiology doi: 10.1159/000252808 – volume: 495 start-page: 384 year: 2013 ident: key 20171218122453_dsx022-B10 article-title: Natural RNA circles function as efficient microRNA sponges, publication-title: Nature doi: 10.1038/nature11993 – volume: 7 Suppl 5, start-page: S20 year: 2006 ident: key 20171218122453_dsx022-B30 article-title: MicroTar: predicting microRNA targets from RNA duplexes, publication-title: BMC Bioinformatics – volume: 44 start-page: D209 year: 2015 ident: key 20171218122453_dsx022-B61 article-title: CircNet: a database of circular RNAs derived from transcriptome sequencing data, publication-title: Nucleic Acids Res – volume: 7 start-page: e30733 year: 2012 ident: key 20171218122453_dsx022-B71 article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types publication-title: PLoS One doi: 10.1371/journal.pone.0030733 – volume: 9 start-page: 15 year: 2014 ident: key 20171218122453_dsx022-B7 article-title: Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation, publication-title: Cell Rep – volume: 280 start-page: 4294 year: 2013 ident: key 20171218122453_dsx022-B68 article-title: Mechanisms regulating skeletal muscle growth and atrophy, publication-title: FEBS J doi: 10.1111/febs.12253 – year: 2015 ident: key 20171218122453_dsx022-B6 – volume: 291 start-page: , 559 year: 2015 ident: key 20171218122453_dsx022-B24 article-title: Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds, publication-title: Mol. Genet. Genomics – volume: 514 start-page: 252 year: 2014 ident: key 20171218122453_dsx022-B41 article-title: Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway, publication-title: Nature doi: 10.1038/nature13553 – volume: 13 start-page: 34 year: 2015 ident: key 20171218122453_dsx022-B74 article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs publication-title: RNA Biol – volume: 159 start-page: 134 year: 2014 ident: key 20171218122453_dsx022-B3 article-title: Complementary sequence-mediated exon circularization, publication-title: Cell doi: 10.1016/j.cell.2014.09.001 – volume: 89 start-page: 2651 year: 2010 ident: key 20171218122453_dsx022-B52 article-title: Effects of divergent selection for 8-week body weight on postnatal enzyme activity pattern of 3 fiber types in fast muscles of male broilers (Gallus gallus domesticus), publication-title: Poult. Sci doi: 10.3382/ps.2010-00641 – volume: 16 start-page: 4 year: 2015 ident: key 20171218122453_dsx022-B60 article-title: CIRI: an efficient and unbiased algorithm for de novo circular RNA identification, publication-title: Genome Biol doi: 10.1186/s13059-014-0571-3 – volume: 3 start-page: 132 year: 2007 ident: key 20171218122453_dsx022-B19 article-title: Advances in swine transcriptomics, publication-title: Int. J. Biol. Sci – volume: 2 start-page: e363 year: 2004 ident: key 20171218122453_dsx022-B31 article-title: Human microRNA targets, publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020363 – volume: 295 start-page: E1333 year: 2008 ident: key 20171218122453_dsx022-B53 article-title: Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids, publication-title: Am. J. Physiol. –Endocrinol. Metab doi: 10.1152/ajpendo.90562.2008 – volume: 42 start-page: 1 year: 2007 ident: key 20171218122453_dsx022-B70 article-title: Role of tight junctions in cell proliferation and cancer, publication-title: Prog. Histochem. Cytochem doi: 10.1016/j.proghi.2007.01.001 – volume: 9 start-page: 357 year: 2012 ident: key 20171218122453_dsx022-B26 article-title: Fast gapped-read alignment with Bowtie 2, publication-title: Nat. Meth doi: 10.1038/nmeth.1923 – volume: 360 start-page: 373 year: 2012 ident: key 20171218122453_dsx022-B47 article-title: A low prevalence of MYH7/MYBPC3 mutations among Familial Hypertrophic Cardiomyopathy patients in India, publication-title: Mol. Cell. Biochem doi: 10.1007/s11010-011-1077-x – volume: 6 start-page: 1 year: 2005 ident: key 20171218122453_dsx022-B15 article-title: , Pigs in sequence space: a 0.66 X coverage pig genome survey based on shotgun sequencing, publication-title: BMC Genomics doi: 10.1186/1471-2164-6-1 – volume: 21 start-page: 2076 year: 2015 ident: key 20171218122453_dsx022-B63 article-title: Transcriptome-wide investigation of circular RNAs in rice, publication-title: RNA doi: 10.1261/rna.052282.115 – volume: 110 start-page: 224 year: 2015 ident: key 20171218122453_dsx022-B57 article-title: Effects of intergenic single nucleotide polymorphisms in the fast myosin heavy chain cluster on muscle fiber characteristics and meat quality in Berkshire pigs, publication-title: Meat Sci doi: 10.1016/j.meatsci.2015.07.025 – reference: 26496978 - Sci Rep. 2015 Oct 26;5:15544 – reference: 12007417 - Curr Biol. 2002 Apr 30;12(9):735-9 – reference: 26204923 - New Phytol. 2015 Oct;208(1):88-95 – reference: 26263039 - Meat Sci. 2015 Dec;110:224-9 – reference: 25543144 - Cell Rep. 2015 Jan 6;10(1):103-11 – reference: 25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64 – reference: 460409 - Nature. 1979 Jul 26;280(5720):339-40 – reference: 23151582 - Nature. 2012 Nov 15;491(7424):393-8 – reference: 24039610 - PLoS Genet. 2013;9(9):e1003777 – reference: 26541409 - Genome Biol. 2015 Nov 05;16:245 – reference: 26201400 - Genome Biol. 2015 Jul 23;16:148 – reference: 26464523 - RNA. 2015 Dec;21(12):2076-87 – reference: 12925889 - Mamm Genome. 2003 Aug;14(8):565-79 – reference: 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93 – reference: 24338594 - Stem Cell Rev. 2014 Apr;10(2):162-76 – reference: 23800994 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):475-88 – reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8 – reference: 27050392 - Nat Commun. 2016 Apr 06;7:11215 – reference: 24889152 - Sci Rep. 2014 Jun 03;4:5150 – reference: 23517348 - FEBS J. 2013 Sep;280(17):4294-314 – reference: 25817543 - Mol Cell Endocrinol. 2015 Jul 5;409:103-12 – reference: 25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80 – reference: 9428511 - Cell. 1997 Dec 26;91(7):875-9 – reference: 17502225 - Prog Histochem Cytochem. 2007;42(1):1-57 – reference: 16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4 – reference: 24339831 - Front Genet. 2013 Dec 10;4:283 – reference: 25583365 - Genome Biol. 2015 Jan 13;16:4 – reference: 23446346 - Nature. 2013 Mar 21;495(7441):384-8 – reference: 24811520 - Nat Biotechnol. 2014 May;32(5):453-61 – reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 – reference: 26590255 - Nucleic Acids Res. 2016 Jan 4;44(D1):D196-202 – reference: 26450965 - Nucleic Acids Res. 2016 Jan 4;44(D1):D209-15 – reference: 17573972 - Genome Biol. 2007;8(6):R115 – reference: 25152334 - Semin Cell Dev Biol. 2014 Dec;36:213-23 – reference: 26578591 - Nucleic Acids Res. 2016 Jan 4;44(D1):D1005-10 – reference: 23503588 - EMBO J. 2013 Jul 3;32(13):1842-54 – reference: 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85 – reference: 26458558 - Mol Genet Genomics. 2016 Apr;291(2):559-73 – reference: 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 – reference: 26230526 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):563-79 – reference: 17384733 - Int J Biol Sci. 2007 Feb 09;3(3):132-52 – reference: 17254305 - BMC Bioinformatics. 2006 Dec 18;7 Suppl 5:S20 – reference: 25678226 - Mamm Genome. 2015 Apr;26(3-4):181-90 – reference: 25119025 - Nature. 2014 Oct 9;514(7521):252-256 – reference: 17407547 - Genome Biol. 2007;8(4):R45 – reference: 15761152 - Science. 2005 Mar 11;307(5715):1618-21 – reference: 25234927 - RNA. 2014 Nov;20(11):1666-70 – reference: 17988725 - Theriogenology. 2008 Jan 1;69(1):2-9 – reference: 23151353 - BMC Med Genomics. 2012 Nov 15;5:55 – reference: 9582070 - Nature. 1998 Apr 30;392(6679):917-20 – reference: 23249747 - RNA. 2013 Feb;19(2):141-57 – reference: 25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47 – reference: 20008370 - J Exp Biol. 2010 Jan 1;213(1):137-45 – reference: 24474938 - Front Physiol. 2014 Jan 16;4:408 – reference: 25070500 - Genome Biol. 2014 Jul 29;15(7):409 – reference: 27315811 - Genome Biol. 2016 Jun 17;17 (1):130 – reference: 25242744 - Cell. 2014 Sep 25;159(1):134-147 – reference: 15502875 - PLoS Biol. 2004 Nov;2(11):e363 – reference: 21959974 - Mol Cell Biochem. 2012 Jan;360(1-2):373-82 – reference: 15322983 - Am J Hum Genet. 2004 Oct;75(4):703-8 – reference: 26179476 - Eur J Nutr. 2016 Jun;55(4):1777-87 – reference: 25613900 - Science. 2015 Jan 23;347(6220):1260419 – reference: 15037306 - Curr Opin Cell Biol. 2004 Feb;16(1):61-7 – reference: 25962502 - BMC Genomics. 2015 May 12;16:377 – reference: 19864899 - Cardiology. 2010;115(1):49-60 – reference: 22319583 - PLoS One. 2012;7(2):e30733 – reference: 26076956 - Genome Biol. 2015 Jun 16;16:126 – reference: 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66 – reference: 26669964 - RNA Biol. 2016;13(1):34-42 – reference: 11157710 - Circulation. 2001 Jan 30;103(4):485-90 – reference: 20215591 - Circ Cardiovasc Genet. 2010 Apr;3(2):155-61 – reference: 21076104 - Poult Sci. 2010 Dec;89(12 ):2651-9 – reference: 18827171 - Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40 – reference: 15885146 - BMC Genomics. 2005 May 10;6:70 – reference: 7684656 - Cell. 1993 Jun 4;73(5):1019-30 |
SSID | ssj0041537 |
Score | 2.5260155 |
Snippet | The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 523 |
SubjectTerms | Animals Base Sequence Conserved Sequence Databases, Nucleic Acid Female Humans Male Mice MicroRNAs - metabolism Organ Specificity RNA - chemistry RNA - genetics RNA - metabolism RNA - physiology Sus scrofa - genetics Sus scrofa - growth & development Sus scrofa - metabolism Transcriptome |
Title | Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28575165 https://www.proquest.com/docview/1905733353 https://pubmed.ncbi.nlm.nih.gov/PMC5737845 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dS8MwEA9-IPgifjs_RgTxyerapM36IDLEKYIKOmFvpUkuOtBM1w31v_fSdptz-tKHNk3LXdLf77jr7wg5kBEgjDHmccBYleNX2Ksrg9tdBCyMFcY_ucTGzW109civ22F7LClUGjD7M7Rz_aQeey_Hn-9fZ7jhT0sxpBNt3a86Jzr7RECaJfMISsI1M7jho4QCwhQTpcTm1C1OENg1qvQdwvxEpynK-bty8gcUNZfJUskhaaNw-gqZAbtKFoqukl9rRF2C7b6C99HRQIue3IhPtGvowyCjmfvyplR1enkFKr2_bWQ0zV-HWqScNO_zhKespn10NFA9rivCpyKbfIJsnbSaF63zK6_speApHrK-F8ZGgohVDZQvIVZRDXwtGCBr1cgYApdtBCRjWvixkCZQkmsByOZC3xgZsQ0yZ7sWtgjVUcg1q0EQI_uqmbCuYx0HMjUpi6ThrEKOhiZMVKkz7tpdvCRFvpslhfGTwvgVcjga_lYIbPw3cH_ojwS3gMtrpBa6gyxBTuNUHXHJVchm4Z_RVEPHVoiY8NxogJPXnrxiO8-5zDbOKeo83P53zh2yGDiQz0v7dslcvzeAPaQofVnNQ_tqvgTx2LprfwPFWuyp |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+profiling+of+Sus+scrofa+circular+RNAs+across+nine+organs+and+three+developmental+stages&rft.jtitle=DNA+research&rft.au=Liang%2C+Guoming&rft.au=Yang%2C+Yalan&rft.au=Niu%2C+Guanglin&rft.au=Tang%2C+Zhonglin&rft.date=2017-10-01&rft.eissn=1756-1663&rft.volume=24&rft.issue=5&rft.spage=523&rft_id=info:doi/10.1093%2Fdnares%2Fdsx022&rft_id=info%3Apmid%2F28575165&rft.externalDocID=28575165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-2838&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-2838&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-2838&client=summon |