Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages

The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guiz...

Full description

Saved in:
Bibliographic Details
Published inDNA research Vol. 24; no. 5; pp. 523 - 535
Main Authors Liang, Guoming, Yang, Yalan, Niu, Guanglin, Tang, Zhonglin, Li, Kui
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.
AbstractList The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.
The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig ( S. scrofa ), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.
The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.
Author Liang, Guoming
Yang, Yalan
Li, Kui
Tang, Zhonglin
Niu, Guanglin
AuthorAffiliation 3 Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
2 Department of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
1 State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
– name: 3 Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
– name: 2 Department of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
Author_xml – sequence: 1
  givenname: Guoming
  surname: Liang
  fullname: Liang, Guoming
– sequence: 2
  givenname: Yalan
  surname: Yang
  fullname: Yang, Yalan
– sequence: 3
  givenname: Guanglin
  surname: Niu
  fullname: Niu, Guanglin
– sequence: 4
  givenname: Zhonglin
  surname: Tang
  fullname: Tang, Zhonglin
– sequence: 5
  givenname: Kui
  surname: Li
  fullname: Li, Kui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28575165$$D View this record in MEDLINE/PubMed
BookMark eNptUcFO3DAQtRAVC9seuVY-ckmx4zhOLkgIlW2lFZWAu-XYk11Xjr21Ewp_j7e7IIo4zejNm_dG807QoQ8eEDql5BslLTs3XkVI5yY9krI8QMdU8Lqgdc0Oc88qUpQNa2boJKXfhFSUM3GEZmXDBac1P0Z6AT4MUPy1BvAmht4661c49PhuSjjpjCisbdSTUxHf3lwmrDKYEvbWAw5xpXyGvMHjOgJgAw_gwmYAPyqH06hWkD6jT71yCb7s6xzdX3-_v_pRLH8tfl5dLgtdcTYWvO07EK0moGkHra4JUCMYNLQzLSVlS0oOjJdG0FZ0fam7ygioCOe077uazdHFTnYzdQMYnU-IyslNtIOKTzIoK_-feLuWq_AguWCiySfM0dleIIY_E6RRDjZpcE55CFOStCWZyhhnmfr1rderyctjM4HtCP-eFaGX2o5qtGFrbZ2kRG7jk7v45C6-vFW823oR_pj_DFudohk
CitedBy_id crossref_primary_10_3390_ani11051430
crossref_primary_10_1186_s12943_019_1069_0
crossref_primary_10_3389_fgene_2019_01010
crossref_primary_10_1186_s12864_021_07645_8
crossref_primary_10_3390_ani15050708
crossref_primary_10_1016_j_jtemb_2023_127320
crossref_primary_10_18632_aging_102315
crossref_primary_10_1002_cam4_1574
crossref_primary_10_1016_j_biocel_2018_04_016
crossref_primary_10_3390_ijms22031390
crossref_primary_10_1016_j_bbagrm_2019_07_001
crossref_primary_10_3390_ani10071114
crossref_primary_10_1038_s41598_024_76940_7
crossref_primary_10_3390_ijms232416065
crossref_primary_10_1080_10495398_2023_2286609
crossref_primary_10_3389_fcell_2020_00322
crossref_primary_10_1071_RD18474
crossref_primary_10_1186_s12864_023_09612_x
crossref_primary_10_1016_j_neulet_2019_02_032
crossref_primary_10_2147_OTT_S317403
crossref_primary_10_1007_s12032_023_01980_4
crossref_primary_10_1142_S2591722620400098
crossref_primary_10_3389_fcell_2019_00289
crossref_primary_10_1111_age_12781
crossref_primary_10_1186_s12864_023_09284_7
crossref_primary_10_3390_genes13050746
crossref_primary_10_1016_j_plantsci_2018_06_016
crossref_primary_10_1021_acs_jafc_1c07358
crossref_primary_10_3389_fgene_2021_769690
crossref_primary_10_3389_fgene_2018_00172
crossref_primary_10_3389_fgene_2021_777232
crossref_primary_10_1080_15476286_2019_1621621
crossref_primary_10_1159_000517303
crossref_primary_10_3390_genes13112062
crossref_primary_10_3389_fgene_2020_00999
crossref_primary_10_3389_fgene_2022_970097
crossref_primary_10_1186_s12864_019_6377_7
crossref_primary_10_1007_s00284_018_1576_z
crossref_primary_10_1016_j_plantsci_2020_110521
crossref_primary_10_3390_ani11071863
crossref_primary_10_5582_irdr_2018_01013
crossref_primary_10_1007_s12031_021_01882_y
crossref_primary_10_1016_j_ejbt_2019_06_004
crossref_primary_10_1186_s12711_022_00754_2
crossref_primary_10_1016_j_cbd_2024_101277
crossref_primary_10_3390_ijms242216484
crossref_primary_10_1111_jcmm_15629
crossref_primary_10_1021_acs_jafc_4c01550
crossref_primary_10_1172_jci_insight_175625
crossref_primary_10_3390_cells8020177
crossref_primary_10_1007_s00438_021_01835_5
crossref_primary_10_1038_s41598_020_64711_z
crossref_primary_10_3390_ijms21155217
crossref_primary_10_3389_fgene_2021_685541
crossref_primary_10_1016_j_ijbiomac_2023_126322
crossref_primary_10_1002_jcsm_12859
crossref_primary_10_1093_dnares_dsz006
crossref_primary_10_1111_rda_13816
crossref_primary_10_3390_genes14010066
crossref_primary_10_3390_vetsci10020075
crossref_primary_10_1093_bib_bbaa001
crossref_primary_10_1080_10495398_2022_2118130
crossref_primary_10_1186_s12864_021_07896_5
crossref_primary_10_1016_j_repbio_2024_100860
crossref_primary_10_1155_2021_5383210
crossref_primary_10_1080_14737159_2021_1967749
crossref_primary_10_1002_jcb_27614
crossref_primary_10_1093_bib_bbab444
crossref_primary_10_1111_febs_15525
crossref_primary_10_2478_aoas_2019_0053
crossref_primary_10_3390_biom10081180
crossref_primary_10_3390_ijms22179385
crossref_primary_10_1016_j_virol_2018_11_014
crossref_primary_10_1007_s11427_023_2514_y
crossref_primary_10_1038_s42003_022_04263_2
crossref_primary_10_3390_cells9081806
crossref_primary_10_1016_j_acthis_2020_151506
crossref_primary_10_1007_s00438_022_01887_1
crossref_primary_10_3389_fgene_2020_587559
crossref_primary_10_3389_fphys_2024_1476487
crossref_primary_10_2147_CMAR_S292074
crossref_primary_10_1007_s13258_021_01154_4
crossref_primary_10_1093_molehr_gaad027
crossref_primary_10_3389_fgene_2019_00756
crossref_primary_10_1128_mBio_02984_21
crossref_primary_10_1134_S1068162022020042
crossref_primary_10_2174_1566524022666220701141914
crossref_primary_10_1021_acs_jafc_4c00762
crossref_primary_10_1016_j_rvsc_2022_09_036
crossref_primary_10_3389_fgene_2020_00135
crossref_primary_10_1038_s41392_021_00569_5
crossref_primary_10_3389_fcimb_2021_764089
crossref_primary_10_3390_ijms232315204
crossref_primary_10_3389_fcell_2021_619329
crossref_primary_10_1016_S2095_3119_20_63235_X
crossref_primary_10_18632_oncotarget_22710
crossref_primary_10_3390_biology10090841
crossref_primary_10_1186_s12864_020_6649_2
crossref_primary_10_2217_bmm_2020_0591
crossref_primary_10_1016_j_neulet_2020_135050
crossref_primary_10_3389_fncel_2017_00354
crossref_primary_10_3389_fvets_2022_833946
crossref_primary_10_3390_biom13020314
crossref_primary_10_3390_genes16010065
crossref_primary_10_3390_biom12030478
crossref_primary_10_1016_j_ijbiomac_2019_11_119
crossref_primary_10_1016_j_psj_2024_103783
crossref_primary_10_3390_genes13111974
crossref_primary_10_3389_fphys_2021_732208
crossref_primary_10_1016_j_phrs_2021_105722
crossref_primary_10_1093_bib_bby111
crossref_primary_10_3389_fgene_2022_858763
crossref_primary_10_7124_bc_000A23
crossref_primary_10_1016_j_domaniend_2019_106401
crossref_primary_10_1016_j_biopha_2020_110251
crossref_primary_10_3390_ijms25168900
crossref_primary_10_3390_ani12172208
crossref_primary_10_5713_ajas_17_0563
crossref_primary_10_1261_rna_067132_118
Cites_doi 10.1093/nar/gkl243
10.1086/424760
10.1038/nrm3611
10.1093/nar/gkv1220
10.1038/nature11622
10.1007/s00335-015-9558-y
10.1186/1755-8794-5-55
10.1186/s13059-015-0706-1
10.1101/gad.251926.114
10.1016/j.celrep.2014.12.002
10.1038/emboj.2013.63
10.1161/CIRCGENETICS.109.912345
10.1038/31927
10.1016/j.ceb.2003.11.011
10.1126/science.1260419
10.1016/S0960-9822(02)00809-6
10.1126/science.1106927
10.1007/s12015-013-9485-9
10.1002/wrna.1294
10.1261/rna.043687.113
10.1038/ncomms11215
10.1242/jeb.030759
10.1038/nature11928
10.1038/nsmb.2959
10.1016/0092-8674(93)90279-Y
10.1038/280339a0
10.1016/j.molcel.2014.08.019
10.1038/nbt.2890
10.1371/journal.pgen.1003777
10.1016/j.semcdb.2014.08.009
10.1093/bioinformatics/btr509
10.1093/nar/gkt1181
10.1093/nar/gkv1273
10.1161/01.CIR.103.4.485
10.1016/j.theriogenology.2007.09.030
10.1038/srep15544
10.1186/gb-2007-8-4-r45
10.1186/s12864-015-1580-7
10.1016/j.molcel.2015.03.027
10.1007/s00335-002-2263-7
10.1016/S0092-8674(00)80479-1
10.1186/gb-2007-8-6-r115
10.1016/j.mce.2015.03.012
10.1038/srep05150
10.1159/000252808
10.1038/nature11993
10.1371/journal.pone.0030733
10.1111/febs.12253
10.1038/nature13553
10.1016/j.cell.2014.09.001
10.3382/ps.2010-00641
10.1186/s13059-014-0571-3
10.1371/journal.pbio.0020363
10.1152/ajpendo.90562.2008
10.1016/j.proghi.2007.01.001
10.1038/nmeth.1923
10.1007/s11010-011-1077-x
10.1186/1471-2164-6-1
10.1261/rna.052282.115
10.1016/j.meatsci.2015.07.025
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017
Copyright_xml – notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
– notice: The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/dnares/dsx022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-1663
EndPage 535
ExternalDocumentID PMC5737845
28575165
10_1093_dnares_dsx022
Genre Journal Article
GrantInformation_xml – fundername: ; ;
  grantid: 31171192, 31330074
GroupedDBID ---
.I3
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
5WA
70E
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ADBBV
ADHZD
ADRAZ
AEGXH
AENEX
AENZO
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
KQ8
KSI
M48
O5R
O5S
OAWHX
OJQWA
OK1
OVT
P2P
PEELM
RD5
RNS
ROZ
RPM
RXO
SV3
TOX
TR2
WG7
X7H
ZKX
~91
~D7
~S-
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c453t-59fbe79c0ec1be9c60e1d73e81bd91029025e352d7197bf2cb4d7e40551ffb63
IEDL.DBID M48
ISSN 1340-2838
1756-1663
IngestDate Thu Aug 21 14:03:05 EDT 2025
Fri Jul 11 11:31:08 EDT 2025
Tue Apr 29 04:32:09 EDT 2025
Tue Jul 01 03:08:55 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords circRNAs
organs
profiling
skeletal muscle
pig
Language English
License The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-59fbe79c0ec1be9c60e1d73e81bd91029025e352d7197bf2cb4d7e40551ffb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Dr. Minoru Ko
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/dnares/dsx022
PMID 28575165
PQID 1905733353
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5737845
proquest_miscellaneous_1905733353
pubmed_primary_28575165
crossref_citationtrail_10_1093_dnares_dsx022
crossref_primary_10_1093_dnares_dsx022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle DNA research
PublicationTitleAlternate DNA Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20171218122453_dsx022-B31) 2004; 2
( key 20171218122453_dsx022-B64) 2014; 32
( key 20171218122453_dsx022-B5) 2015; 16
( key 20171218122453_dsx022-B61) 2015; 44
( key 20171218122453_dsx022-B7) 2014; 9
( key 20171218122453_dsx022-B17) 2008; 69
( key 20171218122453_dsx022-B51) 2015; 347
( key 20171218122453_dsx022-B58) 2015; 55
( key 20171218122453_dsx022-B47) 2012; 360
( key 20171218122453_dsx022-B53) 2008; 295
( key 20171218122453_dsx022-B19) 2007; 3
( key 20171218122453_dsx022-B23) 2007; 8
( key 20171218122453_dsx022-B75) 2016; 44
( key 20171218122453_dsx022-B20) 2007; 8
( key 20171218122453_dsx022-B35) 2015; 58
( key 20171218122453_dsx022-B9) 2015; 16
( key 20171218122453_dsx022-B55) 2004; 16
( key 20171218122453_dsx022-B68) 2013; 280
( key 20171218122453_dsx022-B52) 2010; 89
( key 20171218122453_dsx022-B63) 2015; 21
( key 20171218122453_dsx022-B12) 1998; 392
( key 20171218122453_dsx022-B42) 2013; 32
( key 20171218122453_dsx022-B40); 91
( key 20171218122453_dsx022-B3) 2014; 159
( key 20171218122453_dsx022-B36) 2016; 17
( key 20171218122453_dsx022-B72) 2013; 4
( key 20171218122453_dsx022-B43) 2015; 409
( key 20171218122453_dsx022-B49) 2002; 12
( key 20171218122453_dsx022-B46) 2015; 6
( key 20171218122453_dsx022-B8) 2015; 16
( key 20171218122453_dsx022-B66); 75
( key 20171218122453_dsx022-B24) 2015; 291
( key 20171218122453_dsx022-B57) 2015; 110
( key 20171218122453_dsx022-B14) 2012; 491
( key 20171218122453_dsx022-B44) 2016; 7
( key 20171218122453_dsx022-B27) 2011; 27
( key 20171218122453_dsx022-B67) 2010; 115
( key 20171218122453_dsx022-B13) 2005; 307
( key 20171218122453_dsx022-B15) 2005; 6
( key 20171218122453_dsx022-B26) 2012; 9
( key 20171218122453_dsx022-B74) 2015; 13
( key 20171218122453_dsx022-B1) 1979; 280
( key 20171218122453_dsx022-B32) 2006; 34
( key 20171218122453_dsx022-B2) 2013; 495
( key 20171218122453_dsx022-B30) 2006; 7 Suppl 5
( key 20171218122453_dsx022-B29) 2014; 42
( key 20171218122453_dsx022-B25) 2015; 5
( key 20171218122453_dsx022-B33) 2013; 9
( key 20171218122453_dsx022-B4) 2014; 15
( key 20171218122453_dsx022-B70) 2007; 42
( key 20171218122453_dsx022-B34) 2013; 19
( key 20171218122453_dsx022-B37) 2014; 56
( key 20171218122453_dsx022-B22) 2015; 16
( key 20171218122453_dsx022-B45) 2013; 14
( key 20171218122453_dsx022-B54) 2014; 4
( key 20171218122453_dsx022-B38) 2014; 28
( key 20171218122453_dsx022-B18) 2012; 5
( key 20171218122453_dsx022-B48) 2010; 3
( key 20171218122453_dsx022-B56) 2010; 213
( key 20171218122453_dsx022-B65) 2001; 103
( key 20171218122453_dsx022-B39); 10
( key 20171218122453_dsx022-B60) 2015; 16
( key 20171218122453_dsx022-B41) 2014; 514
( key 20171218122453_dsx022-B69) 2014; 36
( key 20171218122453_dsx022-B21) 2003; 14
( key 20171218122453_dsx022-B10) 2013; 495
( key 20171218122453_dsx022-B11) 2015; 22
( key 20171218122453_dsx022-B73) 2016; 44
( key 20171218122453_dsx022-B16) 2014; 10
( key 20171218122453_dsx022-B28) 2014; 20
( key 20171218122453_dsx022-B71) 2012; 7
( key 20171218122453_dsx022-B6) 2015
( key 20171218122453_dsx022-B62); 73
( key 20171218122453_dsx022-B50) 2014; 4
( key 20171218122453_dsx022-B59) 2015; 26
26464523 - RNA. 2015 Dec;21(12):2076-87
26669964 - RNA Biol. 2016;13(1):34-42
7684656 - Cell. 1993 Jun 4;73(5):1019-30
24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73
15322983 - Am J Hum Genet. 2004 Oct;75(4):703-8
26590255 - Nucleic Acids Res. 2016 Jan 4;44(D1):D196-202
25070500 - Genome Biol. 2014 Jul 29;15(7):409
22319583 - PLoS One. 2012;7(2):e30733
24339831 - Front Genet. 2013 Dec 10;4:283
12925889 - Mamm Genome. 2003 Aug;14(8):565-79
24039610 - PLoS Genet. 2013;9(9):e1003777
25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80
23249747 - RNA. 2013 Feb;19(2):141-57
25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64
26230526 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):563-79
26458558 - Mol Genet Genomics. 2016 Apr;291(2):559-73
23151582 - Nature. 2012 Nov 15;491(7424):393-8
25543144 - Cell Rep. 2015 Jan 6;10(1):103-11
27050392 - Nat Commun. 2016 Apr 06;7:11215
25119025 - Nature. 2014 Oct 9;514(7521):252-256
20008370 - J Exp Biol. 2010 Jan 1;213(1):137-45
25613900 - Science. 2015 Jan 23;347(6220):1260419
17988725 - Theriogenology. 2008 Jan 1;69(1):2-9
17407547 - Genome Biol. 2007;8(4):R45
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
15761152 - Science. 2005 Mar 11;307(5715):1618-21
17502225 - Prog Histochem Cytochem. 2007;42(1):1-57
25242144 - Mol Cell. 2014 Oct 2;56(1):55-66
24889152 - Sci Rep. 2014 Jun 03;4:5150
26263039 - Meat Sci. 2015 Dec;110:224-9
23503588 - EMBO J. 2013 Jul 3;32(13):1842-54
9582070 - Nature. 1998 Apr 30;392(6679):917-20
26201400 - Genome Biol. 2015 Jul 23;16:148
15885146 - BMC Genomics. 2005 May 10;6:70
23151353 - BMC Med Genomics. 2012 Nov 15;5:55
24811520 - Nat Biotechnol. 2014 May;32(5):453-61
21959974 - Mol Cell Biochem. 2012 Jan;360(1-2):373-82
26204923 - New Phytol. 2015 Oct;208(1):88-95
20215591 - Circ Cardiovasc Genet. 2010 Apr;3(2):155-61
12007417 - Curr Biol. 2002 Apr 30;12(9):735-9
27315811 - Genome Biol. 2016 Jun 17;17 (1):130
21076104 - Poult Sci. 2010 Dec;89(12 ):2651-9
25583365 - Genome Biol. 2015 Jan 13;16:4
21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93
9428511 - Cell. 1997 Dec 26;91(7):875-9
26541409 - Genome Biol. 2015 Nov 05;16:245
11157710 - Circulation. 2001 Jan 30;103(4):485-90
25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47
26179476 - Eur J Nutr. 2016 Jun;55(4):1777-87
18827171 - Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40
25678226 - Mamm Genome. 2015 Apr;26(3-4):181-90
24474938 - Front Physiol. 2014 Jan 16;4:408
460409 - Nature. 1979 Jul 26;280(5720):339-40
23446348 - Nature. 2013 Mar 21;495(7441):333-8
17254305 - BMC Bioinformatics. 2006 Dec 18;7 Suppl 5:S20
23800994 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):475-88
26076956 - Genome Biol. 2015 Jun 16;16:126
25921068 - Mol Cell. 2015 Jun 4;58(5):870-85
25242744 - Cell. 2014 Sep 25;159(1):134-147
16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4
15037306 - Curr Opin Cell Biol. 2004 Feb;16(1):61-7
26496978 - Sci Rep. 2015 Oct 26;5:15544
17384733 - Int J Biol Sci. 2007 Feb 09;3(3):132-52
26578591 - Nucleic Acids Res. 2016 Jan 4;44(D1):D1005-10
17573972 - Genome Biol. 2007;8(6):R115
25152334 - Semin Cell Dev Biol. 2014 Dec;36:213-23
26450965 - Nucleic Acids Res. 2016 Jan 4;44(D1):D209-15
23446346 - Nature. 2013 Mar 21;495(7441):384-8
15502875 - PLoS Biol. 2004 Nov;2(11):e363
24338594 - Stem Cell Rev. 2014 Apr;10(2):162-76
25817543 - Mol Cell Endocrinol. 2015 Jul 5;409:103-12
25234927 - RNA. 2014 Nov;20(11):1666-70
23517348 - FEBS J. 2013 Sep;280(17):4294-314
19864899 - Cardiology. 2010;115(1):49-60
25962502 - BMC Genomics. 2015 May 12;16:377
References_xml – volume: 34
  start-page: W451
  year: 2006
  ident: key 20171218122453_dsx022-B32
  article-title: RNAhybrid: microRNA target prediction easy, fast and flexible,
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl243
– volume: 75
  start-page: 703
  ident: key 20171218122453_dsx022-B66
  article-title: Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1),
  publication-title: Am. J. Hum. Genet
  doi: 10.1086/424760
– volume: 14
  start-page: 475
  year: 2013
  ident: key 20171218122453_dsx022-B45
  article-title: Diversifying microRNA sequence and function,
  publication-title: Nat. Rev. Mol. Cell Biol
  doi: 10.1038/nrm3611
– volume: 44
  start-page: D1005
  year: 2016
  ident: key 20171218122453_dsx022-B75
  article-title: SomamiR 2.0: a database of cancer somatic mutations altering microRNA–ceRNA interactions,
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1220
– volume: 491
  start-page: 393
  year: 2012
  ident: key 20171218122453_dsx022-B14
  article-title: Analyses of pig genomes provide insight into porcine demography and evolution,
  publication-title: Nature
  doi: 10.1038/nature11622
– volume: 26
  start-page: 181
  year: 2015
  ident: key 20171218122453_dsx022-B59
  article-title: Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs,
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-015-9558-y
– volume: 5
  start-page: 55
  year: 2012
  ident: key 20171218122453_dsx022-B18
  article-title: Completion of the swine genome will simplify the production of swine as a large animal biomedical model,
  publication-title: BMC Med Genomics
  doi: 10.1186/1755-8794-5-55
– volume: 16
  start-page: 148
  year: 2015
  ident: key 20171218122453_dsx022-B5
  article-title: Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos,
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0706-1
– volume: 28
  start-page: 2233
  year: 2014
  ident: key 20171218122453_dsx022-B38
  article-title: Short intronic repeat sequences facilitate circular RNA production,
  publication-title: Genes Dev
  doi: 10.1101/gad.251926.114
– volume: 10
  start-page: 103
  ident: key 20171218122453_dsx022-B39
  article-title: Exon circularization requires canonical splice signals
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.002
– volume: 16
  start-page: 015
  year: 2015
  ident: key 20171218122453_dsx022-B9
  article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development,
  publication-title: Genome Biol
– volume: 32
  start-page: 1842
  year: 2013
  ident: key 20171218122453_dsx022-B42
  article-title: The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway,
  publication-title: EMBO J
  doi: 10.1038/emboj.2013.63
– volume: 3
  start-page: 155
  year: 2010
  ident: key 20171218122453_dsx022-B48
  article-title: Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy,
  publication-title: Circ. Cardiovasc. Genet
  doi: 10.1161/CIRCGENETICS.109.912345
– volume: 392
  start-page: 917
  year: 1998
  ident: key 20171218122453_dsx022-B12
  article-title: A molecular timescale for vertebrate evolution,
  publication-title: Nature
  doi: 10.1038/31927
– volume: 16
  start-page: 61
  year: 2004
  ident: key 20171218122453_dsx022-B55
  article-title: Relating biochemistry and function in the myosin superfamily,
  publication-title: Curr. Opin. Cell Biol
  doi: 10.1016/j.ceb.2003.11.011
– volume: 347
  start-page: 1260419
  year: 2015
  ident: key 20171218122453_dsx022-B51
  article-title: Proteomics. Tissue-based map of the human proteome,
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 4
  start-page: 283
  year: 2013
  ident: key 20171218122453_dsx022-B72
  article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits,
  publication-title: Front. Genet
– volume: 12
  start-page: 735
  year: 2002
  ident: key 20171218122453_dsx022-B49
  article-title: Identification of tissue-specific microRNAs from mouse,
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(02)00809-6
– volume: 4
  start-page: 408
  year: 2014
  ident: key 20171218122453_dsx022-B54
  article-title: Role of microRNAs in skeletal muscle hypertrophy,
  publication-title: Front. Physiol,
– volume: 16
  start-page: 015
  year: 2015
  ident: key 20171218122453_dsx022-B8
  article-title: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development,
  publication-title: Genome Biol
– volume: 307
  start-page: 1618
  year: 2005
  ident: key 20171218122453_dsx022-B13
  article-title: Worldwide phylogeography of wild boar reveals multiple centers of pig domestication,
  publication-title: Science
  doi: 10.1126/science.1106927
– volume: 19
  start-page: 426
  year: 2013
  ident: key 20171218122453_dsx022-B34
  article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats,
  publication-title: RNA
– volume: 10
  start-page: 162
  year: 2014
  ident: key 20171218122453_dsx022-B16
  article-title: Comparative gene expression signature of pig, human and mouse induced pluripotent stem cell lines reveals insight into pig pluripotency gene networks,
  publication-title: Stem Cell Rev. Rep
  doi: 10.1007/s12015-013-9485-9
– volume: 15
  start-page: 014
  year: 2014
  ident: key 20171218122453_dsx022-B4
  article-title: Expanded identification and characterization of mammalian circular RNAs,
  publication-title: Genome Biol
– volume: 17
  start-page: 1
  year: 2016
  ident: key 20171218122453_dsx022-B36
  article-title: Tracing the expression of circular RNAs in human pre-implantation embryos,
  publication-title: Genome Biol
– volume: 55
  start-page: 1777
  year: 2015
  ident: key 20171218122453_dsx022-B58
  article-title: Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs
  publication-title: Eur. J. Nutr
– volume: 6
  start-page: 563
  year: 2015
  ident: key 20171218122453_dsx022-B46
  article-title: Biogenesis, identification, and function of exonic circular RNAs,
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1294
– volume: 20
  start-page: 1666
  year: 2014
  ident: key 20171218122453_dsx022-B28
  article-title: circBase: a database for circular RNAs,
  publication-title: RNA
  doi: 10.1261/rna.043687.113
– volume: 7,
  start-page: 11215
  year: 2016
  ident: key 20171218122453_dsx022-B44
  article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs,
  publication-title: Nat. Commun
  doi: 10.1038/ncomms11215
– volume: 213
  start-page: 137
  year: 2010
  ident: key 20171218122453_dsx022-B56
  article-title: Fibre type-specific expression patterns of myosin heavy chain genes in adult torafugu Takifugu rubripes muscles,
  publication-title: J. Exp. Biol
  doi: 10.1242/jeb.030759
– volume: 495
  start-page: 333
  year: 2013
  ident: key 20171218122453_dsx022-B2
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency,
  publication-title: Nature
  doi: 10.1038/nature11928
– volume: 22
  start-page: 256
  year: 2015
  ident: key 20171218122453_dsx022-B11
  article-title: Exon-intron circular RNAs regulate transcription in the nucleus,
  publication-title: Nat. Struct. Mol. Biol
  doi: 10.1038/nsmb.2959
– volume: 73
  start-page: 1019
  ident: key 20171218122453_dsx022-B62
  article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis,
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90279-Y
– volume: 280
  start-page: 339
  year: 1979
  ident: key 20171218122453_dsx022-B1
  article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells,
  publication-title: Nature
  doi: 10.1038/280339a0
– volume: 56
  start-page: 55
  year: 2014
  ident: key 20171218122453_dsx022-B37
  article-title: circRNA biogenesis competes with pre-mRNA splicing,
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.08.019
– volume: 32
  start-page: 453
  year: 2014
  ident: key 20171218122453_dsx022-B64
  article-title: Detecting and characterizing circular RNAs,
  publication-title: Nat. Biotech
  doi: 10.1038/nbt.2890
– volume: 9
  start-page: e1003777
  year: 2013
  ident: key 20171218122453_dsx022-B33
  article-title: Cell-type specific features of circular RNA expression
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003777
– volume: 36
  start-page: 213
  year: 2014
  ident: key 20171218122453_dsx022-B69
  article-title: Tight junctions and the regulation of gene expression,
  publication-title: Semin. Cell Dev. Biol
  doi: 10.1016/j.semcdb.2014.08.009
– volume: 27
  start-page: 2987
  year: 2011
  ident: key 20171218122453_dsx022-B27
  article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data,
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr509
– volume: 42
  start-page: D68
  year: 2014
  ident: key 20171218122453_dsx022-B29
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data,
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1181
– volume: 44
  start-page: D196
  year: 2016
  ident: key 20171218122453_dsx022-B73
  article-title: deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data,
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1273
– volume: 103
  start-page: 485
  year: 2001
  ident: key 20171218122453_dsx022-B65
  article-title: Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia,
  publication-title: Circulation
  doi: 10.1161/01.CIR.103.4.485
– volume: 69
  start-page: 2
  year: 2008
  ident: key 20171218122453_dsx022-B17
  article-title: Are animal models as good as we think?,
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2007.09.030
– volume: 5
  start-page: 15544
  year: 2015
  ident: key 20171218122453_dsx022-B25
  article-title: Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs,
  publication-title: Sci. Rep
  doi: 10.1038/srep15544
– volume: 8
  start-page: R45
  year: 2007
  ident: key 20171218122453_dsx022-B20
  article-title: Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags,
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-4-r45
– volume: 16
  start-page: 377
  year: 2015
  ident: key 20171218122453_dsx022-B22
  article-title: Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs,
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1580-7
– volume: 58
  start-page: 870
  year: 2015
  ident: key 20171218122453_dsx022-B35
  article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed,
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.03.027
– volume: 14
  start-page: 565
  year: 2003
  ident: key 20171218122453_dsx022-B21
  article-title: EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human,
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-002-2263-7
– volume: 91
  start-page: 875
  ident: key 20171218122453_dsx022-B40
  article-title: Classification of introns: U2-type or U12-type,
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80479-1
– volume: 8
  start-page: R115
  year: 2007
  ident: key 20171218122453_dsx022-B23
  article-title: LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs,
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-6-r115
– volume: 409
  start-page: 103
  year: 2015
  ident: key 20171218122453_dsx022-B43
  article-title: The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor,
  publication-title: Mol Cell. Endocrinol
  doi: 10.1016/j.mce.2015.03.012
– volume: 4
  start-page: 5150
  year: 2014
  ident: key 20171218122453_dsx022-B50
  article-title: Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues,
  publication-title: Sci. Rep
  doi: 10.1038/srep05150
– volume: 115
  start-page: 49
  year: 2010
  ident: key 20171218122453_dsx022-B67
  article-title: Cardiomyopathy: a systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations,
  publication-title: Cardiology
  doi: 10.1159/000252808
– volume: 495
  start-page: 384
  year: 2013
  ident: key 20171218122453_dsx022-B10
  article-title: Natural RNA circles function as efficient microRNA sponges,
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 7 Suppl 5,
  start-page: S20
  year: 2006
  ident: key 20171218122453_dsx022-B30
  article-title: MicroTar: predicting microRNA targets from RNA duplexes,
  publication-title: BMC Bioinformatics
– volume: 44
  start-page: D209
  year: 2015
  ident: key 20171218122453_dsx022-B61
  article-title: CircNet: a database of circular RNAs derived from transcriptome sequencing data,
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: e30733
  year: 2012
  ident: key 20171218122453_dsx022-B71
  article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030733
– volume: 9
  start-page: 15
  year: 2014
  ident: key 20171218122453_dsx022-B7
  article-title: Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation,
  publication-title: Cell Rep
– volume: 280
  start-page: 4294
  year: 2013
  ident: key 20171218122453_dsx022-B68
  article-title: Mechanisms regulating skeletal muscle growth and atrophy,
  publication-title: FEBS J
  doi: 10.1111/febs.12253
– year: 2015
  ident: key 20171218122453_dsx022-B6
– volume: 291
  start-page: , 559
  year: 2015
  ident: key 20171218122453_dsx022-B24
  article-title: Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds,
  publication-title: Mol. Genet. Genomics
– volume: 514
  start-page: 252
  year: 2014
  ident: key 20171218122453_dsx022-B41
  article-title: Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway,
  publication-title: Nature
  doi: 10.1038/nature13553
– volume: 13
  start-page: 34
  year: 2015
  ident: key 20171218122453_dsx022-B74
  article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs
  publication-title: RNA Biol
– volume: 159
  start-page: 134
  year: 2014
  ident: key 20171218122453_dsx022-B3
  article-title: Complementary sequence-mediated exon circularization,
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.001
– volume: 89
  start-page: 2651
  year: 2010
  ident: key 20171218122453_dsx022-B52
  article-title: Effects of divergent selection for 8-week body weight on postnatal enzyme activity pattern of 3 fiber types in fast muscles of male broilers (Gallus gallus domesticus),
  publication-title: Poult. Sci
  doi: 10.3382/ps.2010-00641
– volume: 16
  start-page: 4
  year: 2015
  ident: key 20171218122453_dsx022-B60
  article-title: CIRI: an efficient and unbiased algorithm for de novo circular RNA identification,
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0571-3
– volume: 3
  start-page: 132
  year: 2007
  ident: key 20171218122453_dsx022-B19
  article-title: Advances in swine transcriptomics,
  publication-title: Int. J. Biol. Sci
– volume: 2
  start-page: e363
  year: 2004
  ident: key 20171218122453_dsx022-B31
  article-title: Human microRNA targets,
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020363
– volume: 295
  start-page: E1333
  year: 2008
  ident: key 20171218122453_dsx022-B53
  article-title: Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids,
  publication-title: Am. J. Physiol. –Endocrinol. Metab
  doi: 10.1152/ajpendo.90562.2008
– volume: 42
  start-page: 1
  year: 2007
  ident: key 20171218122453_dsx022-B70
  article-title: Role of tight junctions in cell proliferation and cancer,
  publication-title: Prog. Histochem. Cytochem
  doi: 10.1016/j.proghi.2007.01.001
– volume: 9
  start-page: 357
  year: 2012
  ident: key 20171218122453_dsx022-B26
  article-title: Fast gapped-read alignment with Bowtie 2,
  publication-title: Nat. Meth
  doi: 10.1038/nmeth.1923
– volume: 360
  start-page: 373
  year: 2012
  ident: key 20171218122453_dsx022-B47
  article-title: A low prevalence of MYH7/MYBPC3 mutations among Familial Hypertrophic Cardiomyopathy patients in India,
  publication-title: Mol. Cell. Biochem
  doi: 10.1007/s11010-011-1077-x
– volume: 6
  start-page: 1
  year: 2005
  ident: key 20171218122453_dsx022-B15
  article-title: , Pigs in sequence space: a 0.66 X coverage pig genome survey based on shotgun sequencing,
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-6-1
– volume: 21
  start-page: 2076
  year: 2015
  ident: key 20171218122453_dsx022-B63
  article-title: Transcriptome-wide investigation of circular RNAs in rice,
  publication-title: RNA
  doi: 10.1261/rna.052282.115
– volume: 110
  start-page: 224
  year: 2015
  ident: key 20171218122453_dsx022-B57
  article-title: Effects of intergenic single nucleotide polymorphisms in the fast myosin heavy chain cluster on muscle fiber characteristics and meat quality in Berkshire pigs,
  publication-title: Meat Sci
  doi: 10.1016/j.meatsci.2015.07.025
– reference: 26496978 - Sci Rep. 2015 Oct 26;5:15544
– reference: 12007417 - Curr Biol. 2002 Apr 30;12(9):735-9
– reference: 26204923 - New Phytol. 2015 Oct;208(1):88-95
– reference: 26263039 - Meat Sci. 2015 Dec;110:224-9
– reference: 25543144 - Cell Rep. 2015 Jan 6;10(1):103-11
– reference: 25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64
– reference: 460409 - Nature. 1979 Jul 26;280(5720):339-40
– reference: 23151582 - Nature. 2012 Nov 15;491(7424):393-8
– reference: 24039610 - PLoS Genet. 2013;9(9):e1003777
– reference: 26541409 - Genome Biol. 2015 Nov 05;16:245
– reference: 26201400 - Genome Biol. 2015 Jul 23;16:148
– reference: 26464523 - RNA. 2015 Dec;21(12):2076-87
– reference: 12925889 - Mamm Genome. 2003 Aug;14(8):565-79
– reference: 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93
– reference: 24338594 - Stem Cell Rev. 2014 Apr;10(2):162-76
– reference: 23800994 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):475-88
– reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8
– reference: 27050392 - Nat Commun. 2016 Apr 06;7:11215
– reference: 24889152 - Sci Rep. 2014 Jun 03;4:5150
– reference: 23517348 - FEBS J. 2013 Sep;280(17):4294-314
– reference: 25817543 - Mol Cell Endocrinol. 2015 Jul 5;409:103-12
– reference: 25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80
– reference: 9428511 - Cell. 1997 Dec 26;91(7):875-9
– reference: 17502225 - Prog Histochem Cytochem. 2007;42(1):1-57
– reference: 16845047 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4
– reference: 24339831 - Front Genet. 2013 Dec 10;4:283
– reference: 25583365 - Genome Biol. 2015 Jan 13;16:4
– reference: 23446346 - Nature. 2013 Mar 21;495(7441):384-8
– reference: 24811520 - Nat Biotechnol. 2014 May;32(5):453-61
– reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
– reference: 26590255 - Nucleic Acids Res. 2016 Jan 4;44(D1):D196-202
– reference: 26450965 - Nucleic Acids Res. 2016 Jan 4;44(D1):D209-15
– reference: 17573972 - Genome Biol. 2007;8(6):R115
– reference: 25152334 - Semin Cell Dev Biol. 2014 Dec;36:213-23
– reference: 26578591 - Nucleic Acids Res. 2016 Jan 4;44(D1):D1005-10
– reference: 23503588 - EMBO J. 2013 Jul 3;32(13):1842-54
– reference: 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85
– reference: 26458558 - Mol Genet Genomics. 2016 Apr;291(2):559-73
– reference: 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73
– reference: 26230526 - Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):563-79
– reference: 17384733 - Int J Biol Sci. 2007 Feb 09;3(3):132-52
– reference: 17254305 - BMC Bioinformatics. 2006 Dec 18;7 Suppl 5:S20
– reference: 25678226 - Mamm Genome. 2015 Apr;26(3-4):181-90
– reference: 25119025 - Nature. 2014 Oct 9;514(7521):252-256
– reference: 17407547 - Genome Biol. 2007;8(4):R45
– reference: 15761152 - Science. 2005 Mar 11;307(5715):1618-21
– reference: 25234927 - RNA. 2014 Nov;20(11):1666-70
– reference: 17988725 - Theriogenology. 2008 Jan 1;69(1):2-9
– reference: 23151353 - BMC Med Genomics. 2012 Nov 15;5:55
– reference: 9582070 - Nature. 1998 Apr 30;392(6679):917-20
– reference: 23249747 - RNA. 2013 Feb;19(2):141-57
– reference: 25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47
– reference: 20008370 - J Exp Biol. 2010 Jan 1;213(1):137-45
– reference: 24474938 - Front Physiol. 2014 Jan 16;4:408
– reference: 25070500 - Genome Biol. 2014 Jul 29;15(7):409
– reference: 27315811 - Genome Biol. 2016 Jun 17;17 (1):130
– reference: 25242744 - Cell. 2014 Sep 25;159(1):134-147
– reference: 15502875 - PLoS Biol. 2004 Nov;2(11):e363
– reference: 21959974 - Mol Cell Biochem. 2012 Jan;360(1-2):373-82
– reference: 15322983 - Am J Hum Genet. 2004 Oct;75(4):703-8
– reference: 26179476 - Eur J Nutr. 2016 Jun;55(4):1777-87
– reference: 25613900 - Science. 2015 Jan 23;347(6220):1260419
– reference: 15037306 - Curr Opin Cell Biol. 2004 Feb;16(1):61-7
– reference: 25962502 - BMC Genomics. 2015 May 12;16:377
– reference: 19864899 - Cardiology. 2010;115(1):49-60
– reference: 22319583 - PLoS One. 2012;7(2):e30733
– reference: 26076956 - Genome Biol. 2015 Jun 16;16:126
– reference: 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66
– reference: 26669964 - RNA Biol. 2016;13(1):34-42
– reference: 11157710 - Circulation. 2001 Jan 30;103(4):485-90
– reference: 20215591 - Circ Cardiovasc Genet. 2010 Apr;3(2):155-61
– reference: 21076104 - Poult Sci. 2010 Dec;89(12 ):2651-9
– reference: 18827171 - Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40
– reference: 15885146 - BMC Genomics. 2005 May 10;6:70
– reference: 7684656 - Cell. 1993 Jun 4;73(5):1019-30
SSID ssj0041537
Score 2.5260155
Snippet The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 523
SubjectTerms Animals
Base Sequence
Conserved Sequence
Databases, Nucleic Acid
Female
Humans
Male
Mice
MicroRNAs - metabolism
Organ Specificity
RNA - chemistry
RNA - genetics
RNA - metabolism
RNA - physiology
Sus scrofa - genetics
Sus scrofa - growth & development
Sus scrofa - metabolism
Transcriptome
Title Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages
URI https://www.ncbi.nlm.nih.gov/pubmed/28575165
https://www.proquest.com/docview/1905733353
https://pubmed.ncbi.nlm.nih.gov/PMC5737845
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dS8MwEA9-IPgifjs_RgTxyerapM36IDLEKYIKOmFvpUkuOtBM1w31v_fSdptz-tKHNk3LXdLf77jr7wg5kBEgjDHmccBYleNX2Ksrg9tdBCyMFcY_ucTGzW109civ22F7LClUGjD7M7Rz_aQeey_Hn-9fZ7jhT0sxpBNt3a86Jzr7RECaJfMISsI1M7jho4QCwhQTpcTm1C1OENg1qvQdwvxEpynK-bty8gcUNZfJUskhaaNw-gqZAbtKFoqukl9rRF2C7b6C99HRQIue3IhPtGvowyCjmfvyplR1enkFKr2_bWQ0zV-HWqScNO_zhKespn10NFA9rivCpyKbfIJsnbSaF63zK6_speApHrK-F8ZGgohVDZQvIVZRDXwtGCBr1cgYApdtBCRjWvixkCZQkmsByOZC3xgZsQ0yZ7sWtgjVUcg1q0EQI_uqmbCuYx0HMjUpi6ThrEKOhiZMVKkz7tpdvCRFvpslhfGTwvgVcjga_lYIbPw3cH_ojwS3gMtrpBa6gyxBTuNUHXHJVchm4Z_RVEPHVoiY8NxogJPXnrxiO8-5zDbOKeo83P53zh2yGDiQz0v7dslcvzeAPaQofVnNQ_tqvgTx2LprfwPFWuyp
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+profiling+of+Sus+scrofa+circular+RNAs+across+nine+organs+and+three+developmental+stages&rft.jtitle=DNA+research&rft.au=Liang%2C+Guoming&rft.au=Yang%2C+Yalan&rft.au=Niu%2C+Guanglin&rft.au=Tang%2C+Zhonglin&rft.date=2017-10-01&rft.eissn=1756-1663&rft.volume=24&rft.issue=5&rft.spage=523&rft_id=info:doi/10.1093%2Fdnares%2Fdsx022&rft_id=info%3Apmid%2F28575165&rft.externalDocID=28575165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-2838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-2838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-2838&client=summon