Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and d-amphetamine in the rat

Phencyclidine (PCP), a glutamate/N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to induce a range of symptoms similar to those of patients with schizophrenia, while D-amphetamine induces predominantly positive symptoms. Previous studies in our laboratory have shown that PCP can sele...

Full description

Saved in:
Bibliographic Details
Published inPsychopharmacologia Vol. 179; no. 2; pp. 336 - 348
Main Authors IDRIS, N. F, REPETO, P, NEILL, J. C, LARGE, C. H
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.05.2005
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phencyclidine (PCP), a glutamate/N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to induce a range of symptoms similar to those of patients with schizophrenia, while D-amphetamine induces predominantly positive symptoms. Previous studies in our laboratory have shown that PCP can selectively impair the performance of an operant reversal-learning task in the rat. Furthermore, we found that the novel antipsychotic ziprasidone, but not the classical antipsychotic haloperidol, could prevent the PCP-induced deficit. The aim of the present study was to validate the model further using the atypical antipsychotic clozapine and then to investigate the effects of lamotrigine, a broad-spectrum anticonvulsant that is known to reduce glutamate release in vitro and is able to prevent ketamine-induced psychotic symptoms in healthy human volunteers. A further aim was to compare effects of PCP and D-amphetamine in the test and investigate the effects of the typical antipsychotic haloperidol against the latter. Female hooded-Lister rats were food deprived and trained to respond for food in a reversal-learning paradigm. PCP at 1.5 mg/kg and 2.0 mg/kg and D-amphetamine at 0.5 mg/kg significantly and selectively impaired performance in the reversal phase of the task. The cognitive deficit induced by 1.5 mg/kg PCP was attenuated by prior administration of lamotrigine (20 mg/kg and 30 mg/kg) or clozapine (5 mg/kg), but not haloperidol (0.05 mg/kg). In direct contrast, haloperidol (0.05 mg/kg), but not lamotrigine (25 mg/kg) or clozapine (5 mg/kg), prevented a similar cognitive impairment produced by D-amphetamine (0.5 mg/kg). Our findings provide further data to support the use of PCP-induced disruption of reversal learning in rodents to investigate novel antipsychotic drugs. The results also provide evidence for different mechanisms of PCP and D-amphetamine-induced disruption of performance in the test, and their different sensitivities to typical and atypical antipsychotic drugs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0033-3158
1432-2072
DOI:10.1007/s00213-004-2058-5