Dip1 Defines a Class of Arp2/3 Complex Activators that Function without Preformed Actin Filaments
Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed...
Saved in:
Published in | Current biology Vol. 23; no. 20; pp. 1990 - 1998 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
21.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed filaments, to which the WASP-bound Arp2/3 complex can bind to form branches, but the source of the first substrate filaments for branching is unknown.
Here we show that Dip1, a member of the WISH/DIP/SPIN90 family of actin regulators, potently activates Arp2/3 complex without preformed filaments. Unlike other Arp2/3 complex activators, Dip1 does not bind actin monomers or filaments, and it interacts with the complex using a non-WASP-like binding mode. In addition, Dip1-activated Arp2/3 complex creates linear instead of branched actin filament networks.
Our data show the mechanism by which Dip1 and other WISH/DIP/SPIN90 proteins can provide seed filaments to Arp2/3 complex to serve as master switches in initiating branched actin assembly. This mechanism is distinct from other known activators of Arp2/3 complex.
•Dip1 is a potent activator of Arp2/3 complex•Dip1-mediated activation of Arp2/3 complex does not require preformed actin filaments•Dip1 mechanism may allow it to provide seed filaments for branched network assembly•The mechanism of Dip1 is conserved in the WISH/DIP/SPIN90 family |
---|---|
AbstractList | BACKGROUND: Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed filaments, to which the WASP-bound Arp2/3 complex can bind to form branches, but the source of the first substrate filaments for branching is unknown. RESULTS: Here we show that Dip1, a member of the WISH/DIP/SPIN90 family of actin regulators, potently activates Arp2/3 complex without preformed filaments. Unlike other Arp2/3 complex activators, Dip1 does not bind actin monomers or filaments, and it interacts with the complex using a non-WASP-like binding mode. In addition, Dip1-activated Arp2/3 complex creates linear instead of branched actin filament networks. CONCLUSIONS: Our data show the mechanism by which Dip1 and other WISH/DIP/SPIN90 proteins can provide seed filaments to Arp2/3 complex to serve as master switches in initiating branched actin assembly. This mechanism is distinct from other known activators of Arp2/3 complex. Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed filaments, to which the WASP-bound Arp2/3 complex can bind to form branches, but the source of the first substrate filaments for branching is unknown. Here we show that Dip1, a member of the WISH/DIP/SPIN90 family of actin regulators, potently activates Arp2/3 complex without preformed filaments. Unlike other Arp2/3 complex activators, Dip1 does not bind actin monomers or filaments, and it interacts with the complex using a non-WASP-like binding mode. In addition, Dip1-activated Arp2/3 complex creates linear instead of branched actin filament networks. Our data show the mechanism by which Dip1 and other WISH/DIP/SPIN90 proteins can provide seed filaments to Arp2/3 complex to serve as master switches in initiating branched actin assembly. This mechanism is distinct from other known activators of Arp2/3 complex. Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed filaments, to which the WASP-bound Arp2/3 complex can bind to form branches, but the source of the first substrate filaments for branching is unknown. Here we show that Dip1, a member of the WISH/DIP/SPIN90 family of actin regulators, potently activates Arp2/3 complex without preformed filaments. Unlike other Arp2/3 complex activators, Dip1 does not bind actin monomers or filaments, and it interacts with the complex using a non-WASP-like binding mode. In addition, Dip1-activated Arp2/3 complex creates linear instead of branched actin filament networks. Our data show the mechanism by which Dip1 and other WISH/DIP/SPIN90 proteins can provide seed filaments to Arp2/3 complex to serve as master switches in initiating branched actin assembly. This mechanism is distinct from other known activators of Arp2/3 complex. •Dip1 is a potent activator of Arp2/3 complex•Dip1-mediated activation of Arp2/3 complex does not require preformed actin filaments•Dip1 mechanism may allow it to provide seed filaments for branched network assembly•The mechanism of Dip1 is conserved in the WISH/DIP/SPIN90 family Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed filaments, to which the WASP-bound Arp2/3 complex can bind to form branches, but the source of the first substrate filaments for branching is unknown.BACKGROUNDArp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed filaments, to which the WASP-bound Arp2/3 complex can bind to form branches, but the source of the first substrate filaments for branching is unknown.Here we show that Dip1, a member of the WISH/DIP/SPIN90 family of actin regulators, potently activates Arp2/3 complex without preformed filaments. Unlike other Arp2/3 complex activators, Dip1 does not bind actin monomers or filaments, and it interacts with the complex using a non-WASP-like binding mode. In addition, Dip1-activated Arp2/3 complex creates linear instead of branched actin filament networks.RESULTSHere we show that Dip1, a member of the WISH/DIP/SPIN90 family of actin regulators, potently activates Arp2/3 complex without preformed filaments. Unlike other Arp2/3 complex activators, Dip1 does not bind actin monomers or filaments, and it interacts with the complex using a non-WASP-like binding mode. In addition, Dip1-activated Arp2/3 complex creates linear instead of branched actin filament networks.Our data show the mechanism by which Dip1 and other WISH/DIP/SPIN90 proteins can provide seed filaments to Arp2/3 complex to serve as master switches in initiating branched actin assembly. This mechanism is distinct from other known activators of Arp2/3 complex.CONCLUSIONSOur data show the mechanism by which Dip1 and other WISH/DIP/SPIN90 proteins can provide seed filaments to Arp2/3 complex to serve as master switches in initiating branched actin assembly. This mechanism is distinct from other known activators of Arp2/3 complex. |
Author | Nolen, Brad J. Luan, Qing Wagner, Andrew R. Liu, Su-Ling |
Author_xml | – sequence: 1 givenname: Andrew R. surname: Wagner fullname: Wagner, Andrew R. organization: Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA – sequence: 2 givenname: Qing surname: Luan fullname: Luan, Qing organization: Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA – sequence: 3 givenname: Su-Ling surname: Liu fullname: Liu, Su-Ling organization: Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA – sequence: 4 givenname: Brad J. surname: Nolen fullname: Nolen, Brad J. email: bnolen@uoregon.edu organization: Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24120641$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFD2ADXrJJajuJY4vVaMpQpEogQdeWY79Qj5I42E4Lf4_DtJsuysrS07lX8rln6GTyEyD0lpKSEsovDqVZupIRWpVElITJF2hDRSsLUtfNCdoQyUkhBWOn6CzGAyGUCclfoVNWU0Z4TTdIX7qZ4kvo3QQRa7wbdIzY93gbZnZR4Z0f5wF-461J7k4nHyJOtzrh_TLli5_wvUu3fkn4W4DehxHsP3TCezfoEaYUX6OXvR4ivHl4z9HN_tOP3VVx_fXzl932ujB1U6WibmjXMjDCWGs0VNCAYbzXhliwlNo6HwWjHavbTlrSkdZwKwXtO2p1pUV1jj4ce-fgfy0QkxpdNDAMegK_REV5y0jDueD_R7M-SSsuV_TdA7p0-XNqDm7U4Y96NJiB9giY4GPMEpRxSa9qUtBuUJSodSt1UHkrtW6liFB5q5ykT5KP5c9l3h8zvfZK_wwuqpvvGWgIIZXkYiU-HgnIru8cBBWNg8mAdQFMUta7Z_r_AnAOtOQ |
CitedBy_id | crossref_primary_10_1042_BST20230638 crossref_primary_10_1371_journal_ppat_1011512 crossref_primary_10_1091_mbc_E18_07_0426 crossref_primary_10_1073_pnas_2421467122 crossref_primary_10_1016_j_tibs_2017_03_002 crossref_primary_10_1152_physrev_00006_2017 crossref_primary_10_1242_jcs_176768 crossref_primary_10_1016_j_cub_2022_01_071 crossref_primary_10_1016_j_tibs_2016_03_004 crossref_primary_10_1371_journal_pgen_1008694 crossref_primary_10_1093_femspd_ftv078 crossref_primary_10_1016_j_jbc_2022_102019 crossref_primary_10_1038_ncomms12226 crossref_primary_10_1073_pnas_2109506119 crossref_primary_10_1016_j_mcn_2017_03_007 crossref_primary_10_1002_cm_21855 crossref_primary_10_1038_s41467_024_46062_9 crossref_primary_10_3389_fcell_2021_658865 crossref_primary_10_1007_s12038_023_00341_7 crossref_primary_10_1073_pnas_1517798113 crossref_primary_10_1016_j_gde_2019_07_016 crossref_primary_10_1111_sji_70009 crossref_primary_10_1083_jcb_202401091 crossref_primary_10_1016_j_jbc_2024_105766 crossref_primary_10_7554_eLife_60419 crossref_primary_10_1371_journal_ppat_1007485 crossref_primary_10_1038_s41556_020_0531_y crossref_primary_10_1016_j_cub_2022_01_004 crossref_primary_10_1016_j_ceb_2016_04_005 crossref_primary_10_1073_pnas_1717594115 crossref_primary_10_15252_embj_2018100005 crossref_primary_10_1016_j_cub_2018_10_045 crossref_primary_10_1016_j_cub_2013_11_022 crossref_primary_10_1073_pnas_2202723119 crossref_primary_10_1186_s12964_024_01871_9 crossref_primary_10_1038_s41580_022_00508_4 crossref_primary_10_1038_s41467_019_12085_w crossref_primary_10_1016_j_cub_2019_08_023 crossref_primary_10_1007_s00018_015_1914_2 crossref_primary_10_1016_j_ceb_2023_102156 crossref_primary_10_1126_sciadv_adj7681 crossref_primary_10_1080_19336918_2018_1448352 crossref_primary_10_1242_jcs_233502 crossref_primary_10_1091_mbc_E15_07_0508 crossref_primary_10_1007_s00441_014_1955_0 crossref_primary_10_1038_nrm3861 crossref_primary_10_1074_jbc_C115_689265 crossref_primary_10_15252_embj_2022113008 crossref_primary_10_1016_j_tcb_2021_10_006 crossref_primary_10_1073_pnas_1808830116 crossref_primary_10_1101_cshperspect_a018226 crossref_primary_10_1016_j_neuropharm_2015_06_019 crossref_primary_10_1038_s41594_024_01297_4 crossref_primary_10_1073_pnas_2206722119 crossref_primary_10_1038_s41594_020_0481_x crossref_primary_10_7554_eLife_49840 crossref_primary_10_1038_s44319_024_00201_x crossref_primary_10_1016_j_ejcb_2023_151301 crossref_primary_10_12688_f1000research_18669_1 crossref_primary_10_1074_jbc_M114_587527 |
Cites_doi | 10.1091/mbc.E04-08-0734 10.1016/j.cell.2008.05.032 10.1074/jbc.M112.406744 10.1083/jcb.200709092 10.1038/35060020 10.1016/S0955-0674(02)00015-7 10.1016/j.cub.2011.04.047 10.1016/j.chembiol.2013.03.019 10.1038/35010008 10.1242/jcs.001115 10.1021/bi991843+ 10.1083/jcb.152.3.471 10.1016/0006-291X(80)91175-4 10.7554/eLife.00884 10.1021/bi00278a021 10.1083/jcb.200404159 10.1083/jcb.99.3.769 10.1074/jbc.M504450200 10.1016/S0171-9335(98)80007-1 10.1038/nrm1940 10.1016/j.molcel.2008.10.012 10.1016/j.cub.2010.06.020 10.1016/j.ceb.2008.12.001 10.1073/pnas.0507021102 10.1091/mbc.E10-02-0157 10.1016/S0960-9822(01)00395-5 10.1021/bi00564a033 10.1016/S0960-9822(01)00603-0 10.1080/15419060701225010 10.1016/j.cub.2012.12.024 10.1083/jcb.200502053 10.1073/pnas.96.7.3739 10.1038/nrm3492 10.1073/pnas.1100125108 10.1073/pnas.95.11.6181 10.1016/j.cub.2006.04.040 10.1016/j.cub.2009.12.056 10.1016/j.tcb.2010.11.001 10.1016/j.cub.2007.02.012 10.1074/jbc.M111.219964 10.1146/annurev.biochem.75.103004.142647 10.1016/j.cub.2013.05.005 10.1016/S0960-9822(03)00383-X 10.1038/nrm2026 10.1074/jbc.M111.239004 10.1083/jcb.94.1.213 10.1371/journal.pbio.0060001 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.cub.2013.08.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 1998 |
ExternalDocumentID | 24120641 10_1016_j_cub_2013_08_029 US201500039689 S096098221301035X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM092917 – fundername: NIGMS NIH HHS grantid: GM007759 – fundername: NIGMS NIH HHS grantid: T32 GM007759 – fundername: NIGMS NIH HHS grantid: R01-GM092917 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F AAMRU AAQXK ABWVN ACRPL ADMUD ADNMO ADVLN AKAPO AKRWK ASPBG AVWKF CAG COF FBQ FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- SEW UHS XIH XPP Y6R ZGI AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c453t-451b72ec8cddcae3e5ec26fac0ded11d4cae821b247b9d0b07c6d981fb1da3a83 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Mon Jul 21 11:41:13 EDT 2025 Fri Jul 11 11:27:51 EDT 2025 Thu Apr 03 07:06:28 EDT 2025 Tue Jul 01 04:07:59 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Thu Apr 03 09:42:37 EDT 2025 Fri Feb 23 02:28:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-451b72ec8cddcae3e5ec26fac0ded11d4cae821b247b9d0b07c6d981fb1da3a83 |
Notes | http://dx.doi.org/10.1016/j.cub.2013.08.029 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S096098221301035X |
PMID | 24120641 |
PQID | 1445913696 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1672056686 proquest_miscellaneous_1445913696 pubmed_primary_24120641 crossref_citationtrail_10_1016_j_cub_2013_08_029 crossref_primary_10_1016_j_cub_2013_08_029 fao_agris_US201500039689 elsevier_sciencedirect_doi_10_1016_j_cub_2013_08_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-21 |
PublicationDateYYYYMMDD | 2013-10-21 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Achard, Martiel, Michelot, Guérin, Reymann, Blanchoin, Boujemaa-Paterski (bib7) 2010; 20 Kaksonen, Toret, Drubin (bib15) 2006; 7 Young, Cooper, Bridgman (bib38) 2004; 166 Urbanek, Smith, Allwood, Booth, Ayscough (bib40) 2013; 23 Hetrick, Han, Helgeson, Nolen (bib6) 2013; 20 Blanchoin, Pollard, Hitchcock-DeGregori (bib11) 2001; 11 Goode, Eck (bib39) 2007; 76 Blanchoin, Amann, Higgs, Marchand, Kaiser, Pollard (bib26) 2000; 404 Pollard (bib46) 1984; 99 Kim, Kim, Lim, Choi, Park, Sung, Yeo, Chang, Kim, Song (bib12) 2006; 281 Basu, Chang (bib14) 2011; 21 Tseng, Pollard (bib22) 1982; 94 Mullins, Heuser, Pollard (bib35) 1998; 95 Chen, Pollard (bib41) 2013; 23 Ti, Jurgenson, Nolen, Pollard (bib27) 2011; 108 Martin, Chang (bib30) 2006; 16 Rodal, Manning, Goode, Drubin (bib24) 2003; 13 Zalevsky, Lempert, Kranitz, Mullins (bib25) 2001; 11 Galletta, Chuang, Cooper (bib44) 2008; 6 Pelham, Chang (bib31) 2001; 3 Cooper, Buhle, Walker, Tsong, Pollard (bib1) 1983; 22 Arai, Nakano, Mabuchi (bib34) 1998; 76 Campellone, Webb, Znameroski, Welch (bib28) 2008; 134 Kovar, Sirotkin, Lord (bib42) 2011; 21 Weaver, Young, Lee, Cooper (bib43) 2003; 15 Iwasa, Mullins (bib8) 2007; 17 Sirotkin, Beltzner, Marchand, Pollard (bib17) 2005; 170 Rotty, Wu, Bear (bib4) 2013; 14 Liu, Needham, May, Nolen (bib10) 2011; 286 Skau, Courson, Bestul, Winkelman, Rock, Sirotkin, Kovar (bib9) 2011; 286 Sirotkin, Berro, Macmillan, Zhao, Pollard (bib16) 2010; 21 Skoumpla, Coulton, Lehman, Geeves, Mulvihill (bib32) 2007; 120 Kim, Kim, Kim, Bae, Ahnn, Song (bib29) 2007; 14 Higgs, Blanchoin, Pollard (bib18) 1999; 38 MacLean-Fletcher, Pollard (bib45) 1980; 96 Mockrin, Korn (bib21) 1980; 19 Chereau, Kerff, Graceffa, Grabarek, Langsetmo, Dominguez (bib5) 2005; 102 Fukuoka, Suetsugu, Miki, Fukami, Endo, Takenawa (bib13) 2001; 152 Rodal, Kozubowski, Goode, Drubin, Hartwig (bib37) 2005; 16 Padrick, Cheng, Ismail, Panchal, Doolittle, Kim, Skehan, Umetani, Brautigam, Leong, Rosen (bib19) 2008; 32 Helgeson, Nolen (bib20) 2013; 2 Skau, Kovar (bib33) 2010; 20 Chesarone, Goode (bib2) 2009; 21 Rouiller, Xu, Amann, Egile, Nickell, Nicastro, Li, Pollard, Volkmann, Hanein (bib36) 2008; 180 Goley, Welch (bib3) 2006; 7 Machesky, Mullins, Higgs, Kaiser, Blanchoin, May, Hall, Pollard (bib23) 1999; 96 Liu, May, Helgeson, Nolen (bib47) 2013; 288 Tseng (10.1016/j.cub.2013.08.029_bib22) 1982; 94 Rouiller (10.1016/j.cub.2013.08.029_bib36) 2008; 180 Arai (10.1016/j.cub.2013.08.029_bib34) 1998; 76 Chen (10.1016/j.cub.2013.08.029_bib41) 2013; 23 Liu (10.1016/j.cub.2013.08.029_bib47) 2013; 288 Martin (10.1016/j.cub.2013.08.029_bib30) 2006; 16 Rodal (10.1016/j.cub.2013.08.029_bib37) 2005; 16 Galletta (10.1016/j.cub.2013.08.029_bib44) 2008; 6 Kovar (10.1016/j.cub.2013.08.029_bib42) 2011; 21 Young (10.1016/j.cub.2013.08.029_bib38) 2004; 166 Kim (10.1016/j.cub.2013.08.029_bib12) 2006; 281 Kaksonen (10.1016/j.cub.2013.08.029_bib15) 2006; 7 Mullins (10.1016/j.cub.2013.08.029_bib35) 1998; 95 Skau (10.1016/j.cub.2013.08.029_bib33) 2010; 20 Zalevsky (10.1016/j.cub.2013.08.029_bib25) 2001; 11 Achard (10.1016/j.cub.2013.08.029_bib7) 2010; 20 Skoumpla (10.1016/j.cub.2013.08.029_bib32) 2007; 120 Rotty (10.1016/j.cub.2013.08.029_bib4) 2013; 14 Cooper (10.1016/j.cub.2013.08.029_bib1) 1983; 22 MacLean-Fletcher (10.1016/j.cub.2013.08.029_bib45) 1980; 96 Pollard (10.1016/j.cub.2013.08.029_bib46) 1984; 99 Padrick (10.1016/j.cub.2013.08.029_bib19) 2008; 32 Goley (10.1016/j.cub.2013.08.029_bib3) 2006; 7 Rodal (10.1016/j.cub.2013.08.029_bib24) 2003; 13 Blanchoin (10.1016/j.cub.2013.08.029_bib11) 2001; 11 Pelham (10.1016/j.cub.2013.08.029_bib31) 2001; 3 Chesarone (10.1016/j.cub.2013.08.029_bib2) 2009; 21 Machesky (10.1016/j.cub.2013.08.029_bib23) 1999; 96 Campellone (10.1016/j.cub.2013.08.029_bib28) 2008; 134 Kim (10.1016/j.cub.2013.08.029_bib29) 2007; 14 Fukuoka (10.1016/j.cub.2013.08.029_bib13) 2001; 152 Urbanek (10.1016/j.cub.2013.08.029_bib40) 2013; 23 Helgeson (10.1016/j.cub.2013.08.029_bib20) 2013; 2 Goode (10.1016/j.cub.2013.08.029_bib39) 2007; 76 Iwasa (10.1016/j.cub.2013.08.029_bib8) 2007; 17 Basu (10.1016/j.cub.2013.08.029_bib14) 2011; 21 Chereau (10.1016/j.cub.2013.08.029_bib5) 2005; 102 Blanchoin (10.1016/j.cub.2013.08.029_bib26) 2000; 404 Sirotkin (10.1016/j.cub.2013.08.029_bib16) 2010; 21 Higgs (10.1016/j.cub.2013.08.029_bib18) 1999; 38 Mockrin (10.1016/j.cub.2013.08.029_bib21) 1980; 19 Hetrick (10.1016/j.cub.2013.08.029_bib6) 2013; 20 Sirotkin (10.1016/j.cub.2013.08.029_bib17) 2005; 170 Ti (10.1016/j.cub.2013.08.029_bib27) 2011; 108 Skau (10.1016/j.cub.2013.08.029_bib9) 2011; 286 Liu (10.1016/j.cub.2013.08.029_bib10) 2011; 286 Weaver (10.1016/j.cub.2013.08.029_bib43) 2003; 15 17453829 - Cell Commun Adhes. 2007 Jan-Feb;14(1):33-43 21145239 - Trends Cell Biol. 2011 Mar;21(3):177-87 23212475 - Nat Rev Mol Cell Biol. 2013 Jan;14(1):7-12 16990851 - Nat Rev Mol Cell Biol. 2006 Oct;7(10):713-26 18316411 - J Cell Biol. 2008 Mar 10;180(5):887-95 6540783 - J Cell Biol. 1984 Sep;99(3):769-77 23727096 - Curr Biol. 2013 Jul 8;23(13):1154-62 15525671 - Mol Biol Cell. 2005 Jan;16(1):372-84 16782006 - Curr Biol. 2006 Jun 20;16(12):1161-70 11157975 - J Cell Biol. 2001 Feb 5;152(3):471-82 16723976 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):404-14 21676862 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):E463-71 17373907 - Annu Rev Biochem. 2007;76:593-627 17331727 - Curr Biol. 2007 Mar 6;17(5):395-406 11231572 - Nat Cell Biol. 2001 Mar;3(3):235-44 16253999 - J Biol Chem. 2006 Jan 6;281(1):617-25 19168341 - Curr Opin Cell Biol. 2009 Feb;21(1):28-37 20188562 - Curr Biol. 2010 Mar 9;20(5):423-8 20587778 - Mol Biol Cell. 2010 Aug 15;21(16):2894-904 11525747 - Curr Biol. 2001 Aug 21;11(16):1300-4 16275905 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16644-9 20705466 - Curr Biol. 2010 Aug 24;20(16):1415-22 7119015 - J Cell Biol. 1982 Jul;94(1):213-8 12517700 - Curr Opin Cell Biol. 2003 Feb;15(1):23-30 6893667 - Biochem Biophys Res Commun. 1980 Sep 16;96(1):18-27 21620704 - Curr Biol. 2011 Jun 7;21(11):905-16 18177206 - PLoS Biol. 2008 Jan;6(1):e1 23290554 - Curr Biol. 2013 Feb 4;23(3):196-203 10563804 - Biochemistry. 1999 Nov 16;38(46):15212-22 23148219 - J Biol Chem. 2013 Jan 4;288(1):487-97 9600938 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6181-6 16087707 - J Cell Biol. 2005 Aug 15;170(4):637-48 9765059 - Eur J Cell Biol. 1998 Aug;76(4):288-95 12814545 - Curr Biol. 2003 Jun 17;13(12):1000-8 15337772 - J Cell Biol. 2004 Aug 30;166(5):629-35 10097107 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3739-44 10801131 - Nature. 2000 Apr 27;404(6781):1007-11 6860660 - Biochemistry. 1983 Apr 26;22(9):2193-202 21454476 - J Biol Chem. 2011 May 13;286(19):17039-46 11747816 - Curr Biol. 2001 Dec 11;11(24):1903-13 18614018 - Cell. 2008 Jul 11;134(1):148-61 6893804 - Biochemistry. 1980 Nov 11;19(23):5359-62 21642440 - J Biol Chem. 2011 Jul 29;286(30):26964-77 23623350 - Chem Biol. 2013 May 23;20(5):701-12 18995840 - Mol Cell. 2008 Nov 7;32(3):426-38 |
References_xml | – volume: 2 start-page: e00884 year: 2013 ident: bib20 article-title: Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP publication-title: Elife – volume: 134 start-page: 148 year: 2008 end-page: 161 ident: bib28 article-title: WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport publication-title: Cell – volume: 6 start-page: e1 year: 2008 ident: bib44 article-title: Distinct roles for Arp2/3 regulators in actin assembly and endocytosis publication-title: PLoS Biol. – volume: 7 start-page: 713 year: 2006 end-page: 726 ident: bib3 article-title: The ARP2/3 complex: an actin nucleator comes of age publication-title: Nat. Rev. Mol. Cell Biol. – volume: 94 start-page: 213 year: 1982 end-page: 218 ident: bib22 article-title: Mechanism of action of Acanthamoeba profilin: demonstration of actin species specificity and regulation by micromolar concentrations of MgCl2 publication-title: J. Cell Biol. – volume: 96 start-page: 3739 year: 1999 end-page: 3744 ident: bib23 article-title: Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 1154 year: 2013 end-page: 1162 ident: bib41 article-title: Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches publication-title: Curr. Biol. – volume: 15 start-page: 23 year: 2003 end-page: 30 ident: bib43 article-title: Integration of signals to the Arp2/3 complex publication-title: Curr. Opin. Cell Biol. – volume: 11 start-page: 1300 year: 2001 end-page: 1304 ident: bib11 article-title: Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin publication-title: Curr. Biol. – volume: 281 start-page: 617 year: 2006 end-page: 625 ident: bib12 article-title: Interaction of SPIN90 with the Arp2/3 complex mediates lamellipodia and actin comet tail formation publication-title: J. Biol. Chem. – volume: 20 start-page: 701 year: 2013 end-page: 712 ident: bib6 article-title: Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change publication-title: Chem. Biol. – volume: 102 start-page: 16644 year: 2005 end-page: 16649 ident: bib5 article-title: Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 177 year: 2011 end-page: 187 ident: bib42 article-title: Three’s company: the fission yeast actin cytoskeleton publication-title: Trends Cell Biol. – volume: 21 start-page: 2894 year: 2010 end-page: 2904 ident: bib16 article-title: Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast publication-title: Mol. Biol. Cell – volume: 20 start-page: 1415 year: 2010 end-page: 1422 ident: bib33 article-title: Fimbrin and tropomyosin competition regulates endocytosis and cytokinesis kinetics in fission yeast publication-title: Curr. Biol. – volume: 76 start-page: 593 year: 2007 end-page: 627 ident: bib39 article-title: Mechanism and function of formins in the control of actin assembly publication-title: Annu. Rev. Biochem. – volume: 21 start-page: 28 year: 2009 end-page: 37 ident: bib2 article-title: Actin nucleation and elongation factors: mechanisms and interplay publication-title: Curr. Opin. Cell Biol. – volume: 166 start-page: 629 year: 2004 end-page: 635 ident: bib38 article-title: Yeast actin patches are networks of branched actin filaments publication-title: J. Cell Biol. – volume: 286 start-page: 17039 year: 2011 end-page: 17046 ident: bib10 article-title: Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin publication-title: J. Biol. Chem. – volume: 3 start-page: 235 year: 2001 end-page: 244 ident: bib31 article-title: Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe publication-title: Nat. Cell Biol. – volume: 95 start-page: 6181 year: 1998 end-page: 6186 ident: bib35 article-title: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 404 year: 2006 end-page: 414 ident: bib15 article-title: Harnessing actin dynamics for clathrin-mediated endocytosis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 14 start-page: 7 year: 2013 end-page: 12 ident: bib4 article-title: New insights into the regulation and cellular functions of the ARP2/3 complex publication-title: Nat. Rev. Mol. Cell Biol. – volume: 32 start-page: 426 year: 2008 end-page: 438 ident: bib19 article-title: Hierarchical regulation of WASP/WAVE proteins publication-title: Mol. Cell – volume: 288 start-page: 487 year: 2013 end-page: 497 ident: bib47 article-title: Insertions within the actin core of actin-related protein 3 (Arp3) modulate branching nucleation by Arp2/3 complex publication-title: J. Biol. Chem. – volume: 286 start-page: 26964 year: 2011 end-page: 26977 ident: bib9 article-title: Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast publication-title: J. Biol. Chem. – volume: 108 start-page: E463 year: 2011 end-page: E471 ident: bib27 article-title: Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 33 year: 2007 end-page: 43 ident: bib29 article-title: F-actin binding region of SPIN90 C-terminus is essential for actin polymerization and lamellipodia formation publication-title: Cell Commun. Adhes. – volume: 21 start-page: 905 year: 2011 end-page: 916 ident: bib14 article-title: Characterization of dip1p reveals a switch in Arp2/3-dependent actin assembly for fission yeast endocytosis publication-title: Curr. Biol. – volume: 404 start-page: 1007 year: 2000 end-page: 1011 ident: bib26 article-title: Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins publication-title: Nature – volume: 152 start-page: 471 year: 2001 end-page: 482 ident: bib13 article-title: A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42 publication-title: J. Cell Biol. – volume: 11 start-page: 1903 year: 2001 end-page: 1913 ident: bib25 article-title: Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities publication-title: Curr. Biol. – volume: 170 start-page: 637 year: 2005 end-page: 648 ident: bib17 article-title: Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast publication-title: J. Cell Biol. – volume: 17 start-page: 395 year: 2007 end-page: 406 ident: bib8 article-title: Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly publication-title: Curr. Biol. – volume: 38 start-page: 15212 year: 1999 end-page: 15222 ident: bib18 article-title: Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization publication-title: Biochemistry – volume: 19 start-page: 5359 year: 1980 end-page: 5362 ident: bib21 article-title: Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate publication-title: Biochemistry – volume: 16 start-page: 1161 year: 2006 end-page: 1170 ident: bib30 article-title: Dynamics of the formin for3p in actin cable assembly publication-title: Curr. Biol. – volume: 16 start-page: 372 year: 2005 end-page: 384 ident: bib37 article-title: Actin and septin ultrastructures at the budding yeast cell cortex publication-title: Mol. Biol. Cell – volume: 96 start-page: 18 year: 1980 end-page: 27 ident: bib45 article-title: Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association publication-title: Biochem. Biophys. Res. Commun. – volume: 20 start-page: 423 year: 2010 end-page: 428 ident: bib7 article-title: A “primer”-based mechanism underlies branched actin filament network formation and motility publication-title: Curr. Biol. – volume: 23 start-page: 196 year: 2013 end-page: 203 ident: bib40 article-title: A novel actin-binding motif in Las17/WASP nucleates actin filaments independently of Arp2/3 publication-title: Curr. Biol. – volume: 76 start-page: 288 year: 1998 end-page: 295 ident: bib34 article-title: Subcellular localization and possible function of actin, tropomyosin and actin-related protein 3 (Arp3) in the fission yeast Schizosaccharomyces pombe publication-title: Eur. J. Cell Biol. – volume: 180 start-page: 887 year: 2008 end-page: 895 ident: bib36 article-title: The structural basis of actin filament branching by the Arp2/3 complex publication-title: J. Cell Biol. – volume: 120 start-page: 1635 year: 2007 end-page: 1645 ident: bib32 article-title: Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe publication-title: J. Cell Sci. – volume: 99 start-page: 769 year: 1984 end-page: 777 ident: bib46 article-title: Polymerization of ADP-actin publication-title: J. Cell Biol. – volume: 13 start-page: 1000 year: 2003 end-page: 1008 ident: bib24 article-title: Negative regulation of yeast WASp by two SH3 domain-containing proteins publication-title: Curr. Biol. – volume: 22 start-page: 2193 year: 1983 end-page: 2202 ident: bib1 article-title: Kinetic evidence for a monomer activation step in actin polymerization publication-title: Biochemistry – volume: 16 start-page: 372 year: 2005 ident: 10.1016/j.cub.2013.08.029_bib37 article-title: Actin and septin ultrastructures at the budding yeast cell cortex publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E04-08-0734 – volume: 134 start-page: 148 year: 2008 ident: 10.1016/j.cub.2013.08.029_bib28 article-title: WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport publication-title: Cell doi: 10.1016/j.cell.2008.05.032 – volume: 288 start-page: 487 year: 2013 ident: 10.1016/j.cub.2013.08.029_bib47 article-title: Insertions within the actin core of actin-related protein 3 (Arp3) modulate branching nucleation by Arp2/3 complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.406744 – volume: 180 start-page: 887 year: 2008 ident: 10.1016/j.cub.2013.08.029_bib36 article-title: The structural basis of actin filament branching by the Arp2/3 complex publication-title: J. Cell Biol. doi: 10.1083/jcb.200709092 – volume: 3 start-page: 235 year: 2001 ident: 10.1016/j.cub.2013.08.029_bib31 article-title: Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe publication-title: Nat. Cell Biol. doi: 10.1038/35060020 – volume: 15 start-page: 23 year: 2003 ident: 10.1016/j.cub.2013.08.029_bib43 article-title: Integration of signals to the Arp2/3 complex publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(02)00015-7 – volume: 21 start-page: 905 year: 2011 ident: 10.1016/j.cub.2013.08.029_bib14 article-title: Characterization of dip1p reveals a switch in Arp2/3-dependent actin assembly for fission yeast endocytosis publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.04.047 – volume: 20 start-page: 701 year: 2013 ident: 10.1016/j.cub.2013.08.029_bib6 article-title: Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2013.03.019 – volume: 404 start-page: 1007 year: 2000 ident: 10.1016/j.cub.2013.08.029_bib26 article-title: Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins publication-title: Nature doi: 10.1038/35010008 – volume: 120 start-page: 1635 year: 2007 ident: 10.1016/j.cub.2013.08.029_bib32 article-title: Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe publication-title: J. Cell Sci. doi: 10.1242/jcs.001115 – volume: 38 start-page: 15212 year: 1999 ident: 10.1016/j.cub.2013.08.029_bib18 article-title: Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization publication-title: Biochemistry doi: 10.1021/bi991843+ – volume: 152 start-page: 471 year: 2001 ident: 10.1016/j.cub.2013.08.029_bib13 article-title: A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42 publication-title: J. Cell Biol. doi: 10.1083/jcb.152.3.471 – volume: 96 start-page: 18 year: 1980 ident: 10.1016/j.cub.2013.08.029_bib45 article-title: Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(80)91175-4 – volume: 2 start-page: e00884 year: 2013 ident: 10.1016/j.cub.2013.08.029_bib20 article-title: Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP publication-title: Elife doi: 10.7554/eLife.00884 – volume: 22 start-page: 2193 year: 1983 ident: 10.1016/j.cub.2013.08.029_bib1 article-title: Kinetic evidence for a monomer activation step in actin polymerization publication-title: Biochemistry doi: 10.1021/bi00278a021 – volume: 166 start-page: 629 year: 2004 ident: 10.1016/j.cub.2013.08.029_bib38 article-title: Yeast actin patches are networks of branched actin filaments publication-title: J. Cell Biol. doi: 10.1083/jcb.200404159 – volume: 99 start-page: 769 year: 1984 ident: 10.1016/j.cub.2013.08.029_bib46 article-title: Polymerization of ADP-actin publication-title: J. Cell Biol. doi: 10.1083/jcb.99.3.769 – volume: 281 start-page: 617 year: 2006 ident: 10.1016/j.cub.2013.08.029_bib12 article-title: Interaction of SPIN90 with the Arp2/3 complex mediates lamellipodia and actin comet tail formation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504450200 – volume: 76 start-page: 288 year: 1998 ident: 10.1016/j.cub.2013.08.029_bib34 article-title: Subcellular localization and possible function of actin, tropomyosin and actin-related protein 3 (Arp3) in the fission yeast Schizosaccharomyces pombe publication-title: Eur. J. Cell Biol. doi: 10.1016/S0171-9335(98)80007-1 – volume: 7 start-page: 404 year: 2006 ident: 10.1016/j.cub.2013.08.029_bib15 article-title: Harnessing actin dynamics for clathrin-mediated endocytosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1940 – volume: 32 start-page: 426 year: 2008 ident: 10.1016/j.cub.2013.08.029_bib19 article-title: Hierarchical regulation of WASP/WAVE proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.10.012 – volume: 20 start-page: 1415 year: 2010 ident: 10.1016/j.cub.2013.08.029_bib33 article-title: Fimbrin and tropomyosin competition regulates endocytosis and cytokinesis kinetics in fission yeast publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.06.020 – volume: 21 start-page: 28 year: 2009 ident: 10.1016/j.cub.2013.08.029_bib2 article-title: Actin nucleation and elongation factors: mechanisms and interplay publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2008.12.001 – volume: 102 start-page: 16644 year: 2005 ident: 10.1016/j.cub.2013.08.029_bib5 article-title: Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0507021102 – volume: 21 start-page: 2894 year: 2010 ident: 10.1016/j.cub.2013.08.029_bib16 article-title: Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E10-02-0157 – volume: 11 start-page: 1300 year: 2001 ident: 10.1016/j.cub.2013.08.029_bib11 article-title: Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00395-5 – volume: 19 start-page: 5359 year: 1980 ident: 10.1016/j.cub.2013.08.029_bib21 article-title: Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate publication-title: Biochemistry doi: 10.1021/bi00564a033 – volume: 11 start-page: 1903 year: 2001 ident: 10.1016/j.cub.2013.08.029_bib25 article-title: Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00603-0 – volume: 14 start-page: 33 year: 2007 ident: 10.1016/j.cub.2013.08.029_bib29 article-title: F-actin binding region of SPIN90 C-terminus is essential for actin polymerization and lamellipodia formation publication-title: Cell Commun. Adhes. doi: 10.1080/15419060701225010 – volume: 23 start-page: 196 year: 2013 ident: 10.1016/j.cub.2013.08.029_bib40 article-title: A novel actin-binding motif in Las17/WASP nucleates actin filaments independently of Arp2/3 publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.12.024 – volume: 170 start-page: 637 year: 2005 ident: 10.1016/j.cub.2013.08.029_bib17 article-title: Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast publication-title: J. Cell Biol. doi: 10.1083/jcb.200502053 – volume: 96 start-page: 3739 year: 1999 ident: 10.1016/j.cub.2013.08.029_bib23 article-title: Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.7.3739 – volume: 14 start-page: 7 year: 2013 ident: 10.1016/j.cub.2013.08.029_bib4 article-title: New insights into the regulation and cellular functions of the ARP2/3 complex publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3492 – volume: 108 start-page: E463 year: 2011 ident: 10.1016/j.cub.2013.08.029_bib27 article-title: Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1100125108 – volume: 95 start-page: 6181 year: 1998 ident: 10.1016/j.cub.2013.08.029_bib35 article-title: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.11.6181 – volume: 16 start-page: 1161 year: 2006 ident: 10.1016/j.cub.2013.08.029_bib30 article-title: Dynamics of the formin for3p in actin cable assembly publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.04.040 – volume: 20 start-page: 423 year: 2010 ident: 10.1016/j.cub.2013.08.029_bib7 article-title: A “primer”-based mechanism underlies branched actin filament network formation and motility publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.12.056 – volume: 21 start-page: 177 year: 2011 ident: 10.1016/j.cub.2013.08.029_bib42 article-title: Three’s company: the fission yeast actin cytoskeleton publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2010.11.001 – volume: 17 start-page: 395 year: 2007 ident: 10.1016/j.cub.2013.08.029_bib8 article-title: Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.02.012 – volume: 286 start-page: 17039 year: 2011 ident: 10.1016/j.cub.2013.08.029_bib10 article-title: Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.219964 – volume: 76 start-page: 593 year: 2007 ident: 10.1016/j.cub.2013.08.029_bib39 article-title: Mechanism and function of formins in the control of actin assembly publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.75.103004.142647 – volume: 23 start-page: 1154 year: 2013 ident: 10.1016/j.cub.2013.08.029_bib41 article-title: Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.05.005 – volume: 13 start-page: 1000 year: 2003 ident: 10.1016/j.cub.2013.08.029_bib24 article-title: Negative regulation of yeast WASp by two SH3 domain-containing proteins publication-title: Curr. Biol. doi: 10.1016/S0960-9822(03)00383-X – volume: 7 start-page: 713 year: 2006 ident: 10.1016/j.cub.2013.08.029_bib3 article-title: The ARP2/3 complex: an actin nucleator comes of age publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2026 – volume: 286 start-page: 26964 year: 2011 ident: 10.1016/j.cub.2013.08.029_bib9 article-title: Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.239004 – volume: 94 start-page: 213 year: 1982 ident: 10.1016/j.cub.2013.08.029_bib22 article-title: Mechanism of action of Acanthamoeba profilin: demonstration of actin species specificity and regulation by micromolar concentrations of MgCl2 publication-title: J. Cell Biol. doi: 10.1083/jcb.94.1.213 – volume: 6 start-page: e1 year: 2008 ident: 10.1016/j.cub.2013.08.029_bib44 article-title: Distinct roles for Arp2/3 regulators in actin assembly and endocytosis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060001 – reference: 6893667 - Biochem Biophys Res Commun. 1980 Sep 16;96(1):18-27 – reference: 17373907 - Annu Rev Biochem. 2007;76:593-627 – reference: 6893804 - Biochemistry. 1980 Nov 11;19(23):5359-62 – reference: 11747816 - Curr Biol. 2001 Dec 11;11(24):1903-13 – reference: 12517700 - Curr Opin Cell Biol. 2003 Feb;15(1):23-30 – reference: 18614018 - Cell. 2008 Jul 11;134(1):148-61 – reference: 20705466 - Curr Biol. 2010 Aug 24;20(16):1415-22 – reference: 21454476 - J Biol Chem. 2011 May 13;286(19):17039-46 – reference: 20587778 - Mol Biol Cell. 2010 Aug 15;21(16):2894-904 – reference: 16253999 - J Biol Chem. 2006 Jan 6;281(1):617-25 – reference: 16723976 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):404-14 – reference: 17453829 - Cell Commun Adhes. 2007 Jan-Feb;14(1):33-43 – reference: 10801131 - Nature. 2000 Apr 27;404(6781):1007-11 – reference: 16990851 - Nat Rev Mol Cell Biol. 2006 Oct;7(10):713-26 – reference: 17331727 - Curr Biol. 2007 Mar 6;17(5):395-406 – reference: 6860660 - Biochemistry. 1983 Apr 26;22(9):2193-202 – reference: 18177206 - PLoS Biol. 2008 Jan;6(1):e1 – reference: 23727096 - Curr Biol. 2013 Jul 8;23(13):1154-62 – reference: 9765059 - Eur J Cell Biol. 1998 Aug;76(4):288-95 – reference: 10097107 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3739-44 – reference: 23623350 - Chem Biol. 2013 May 23;20(5):701-12 – reference: 7119015 - J Cell Biol. 1982 Jul;94(1):213-8 – reference: 20188562 - Curr Biol. 2010 Mar 9;20(5):423-8 – reference: 10563804 - Biochemistry. 1999 Nov 16;38(46):15212-22 – reference: 15337772 - J Cell Biol. 2004 Aug 30;166(5):629-35 – reference: 23148219 - J Biol Chem. 2013 Jan 4;288(1):487-97 – reference: 18316411 - J Cell Biol. 2008 Mar 10;180(5):887-95 – reference: 15525671 - Mol Biol Cell. 2005 Jan;16(1):372-84 – reference: 21145239 - Trends Cell Biol. 2011 Mar;21(3):177-87 – reference: 11525747 - Curr Biol. 2001 Aug 21;11(16):1300-4 – reference: 6540783 - J Cell Biol. 1984 Sep;99(3):769-77 – reference: 9600938 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6181-6 – reference: 16782006 - Curr Biol. 2006 Jun 20;16(12):1161-70 – reference: 16275905 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16644-9 – reference: 11157975 - J Cell Biol. 2001 Feb 5;152(3):471-82 – reference: 12814545 - Curr Biol. 2003 Jun 17;13(12):1000-8 – reference: 16087707 - J Cell Biol. 2005 Aug 15;170(4):637-48 – reference: 19168341 - Curr Opin Cell Biol. 2009 Feb;21(1):28-37 – reference: 18995840 - Mol Cell. 2008 Nov 7;32(3):426-38 – reference: 23290554 - Curr Biol. 2013 Feb 4;23(3):196-203 – reference: 21676862 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):E463-71 – reference: 23212475 - Nat Rev Mol Cell Biol. 2013 Jan;14(1):7-12 – reference: 21642440 - J Biol Chem. 2011 Jul 29;286(30):26964-77 – reference: 21620704 - Curr Biol. 2011 Jun 7;21(11):905-16 – reference: 11231572 - Nat Cell Biol. 2001 Mar;3(3):235-44 |
SSID | ssj0012896 |
Score | 2.3673244 |
Snippet | Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3... BACKGROUND: Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1990 |
SubjectTerms | actin Actin Cytoskeleton - metabolism Actin-Related Protein 2-3 Complex - genetics Actin-Related Protein 2-3 Complex - metabolism Amino Acid Sequence binding proteins Electrophoresis, Polyacrylamide Gel Immunoblotting microfilaments Microscopy, Fluorescence Molecular Sequence Data regulator genes Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism Sequence Alignment transcription factors |
Title | Dip1 Defines a Class of Arp2/3 Complex Activators that Function without Preformed Actin Filaments |
URI | https://dx.doi.org/10.1016/j.cub.2013.08.029 https://www.ncbi.nlm.nih.gov/pubmed/24120641 https://www.proquest.com/docview/1445913696 https://www.proquest.com/docview/1672056686 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpQqGXkqSPpHmgQk8Fs6uHJfm4eSyhgRCaLt2bkCW52RLsJfFC--87I9sLgXYPPVoegTwjz3ySRvMR8skZHgvn8gxClc4kYOTMFRo5NHRkWB-uCCnb4kZdzeSXeT7fIufDXRhMq-x9f-fTk7fuW0a9NkfLxWJ0l4qlQXwDL8zGIp-DHxbSpEt887P1SQIsKNJ5JY4CpYeTzZTj5VclZneJVMUzocy_xqYXlWv-jUBTJJruktc9hKSTbpR7ZCvW--RlRyr5-w1xF4sloxexwoR26miivaRNBR2WfCQoeoCH-ItOfGI2ax6faHvvWjqFCIdWorg126xaegsDBEQbQxKt6XQBswfzLt6S2fTy2_lV1hMpZF7mos1kzkrNozc-BO-iiHn0XFXOj0MMjAUJjYazkktdgm3KsfYqFIZVJQtOOCPeke26qeMBoTEoDahBhkI6WTFtgiq1SBybUYHkIRkPKrS-rzKOZBcPdkgn-2lB6xa1bpEAkxeH5PO6y7IrsbFJWA52sc_miYUQsKnbAdjQuh_gOe3sjuM-D15LVgZefRwMa-HXwvMSV8dm9QSrIpkXDAkPN8gozQFDKgMy77tZsf4IAEccEB_78H9jPiKv8AkDJWPHZLt9XMUTQEBteUp2Jtdfv1-fpqn-B-f0AJk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELeACbGXibFBGR_zpD1Nilo7jp088lWVwdAkqNQ3y7Ed6ISSClIJ_nvunKTSJOgDr_FZcnz23c--8_0I-WlS7jNjkghclYoEYOTIZAo5NJRnWB8ucyHb4kqOxuL3JJmskJPuLQymVba2v7HpwVq3X_rtbPZn02n_OhRLA_8GVpgN4mSySj4AGlC4O88nx4tQApwoQsASh4HiXWgzJHnZeY7pXXEo4xlg5qvOabUw1dsQNLii4Sb51GJIetQM8zNZ8eUWWW9YJZ-_EHM6nTF66gvMaKeGBt5LWhXQYcb7MUUTcO-f6JEN1GbVwyOt70xNh-DiUE0U72areU3_wgAB0noXREs6nMLywcSLr2Q8PLs5GUUtk0JkRRLXkUhYrri3qXXOGh_7xFsuC2MHzjvGnICPKWc5FyoH5eQDZaXLUlbkzJnYpPE2WSur0vcI9U4qgA3CZcKIgqnUyVzFgWTTS5DcJYNuCrVty4wj28W97vLJ_mmYdY2zrpEBk2e75Neiy6ypsbFMWHR60f8tFA0-YFm3HuhQm1swnXp8zfGiB98lyxSafnSK1bC3MGBiSl_NH-FYJJKMIePhEhmpOIBImYLMTrMqFj8B6IgD5GPf3jfm72RjdPPnUl-eX13skY_Ygl6Ts32yVj_M_QHAoTo_DMv9BcC9Ahc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dip1+Defines+a+Class+of+Arp2%2F3+Complex+Activators+that+Function+without+Preformed+Actin+Filaments&rft.jtitle=Current+biology&rft.au=Wagner%2C+Andrew+R&rft.au=Luan%2C+Qing&rft.au=Liu%2C+Su-Ling&rft.au=Nolen%2C+Brad+J&rft.date=2013-10-21&rft.issn=0960-9822&rft.volume=23&rft.issue=20+p.1990-1998&rft.spage=1990&rft.epage=1998&rft_id=info:doi/10.1016%2Fj.cub.2013.08.029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |