Vertical distribution of inorganic nanoparticles in a Norwegian fjord
Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass s...
Saved in:
Published in | Marine environmental research Vol. 188; p. 105975 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1–399, 1–412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1–12 for Al, 2–13 for Fe, 0.3–11 Mn, 0.02–0.5 for Pb, 46 to 318 Si and 0.04–0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.
[Display omitted]
•New data on the distribution of inorganic nanoparticles in a coastal environment.•Single particle ICP-MS and total metals combined with scanning electron microscopy for data on both particle concentrations and compositions.•Al-, Fe-, Mn-, Pb-, Si- and Ti-based particles determined to concentrations in nanograms to micrograms per liter. |
---|---|
AbstractList | Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles. Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1–399, 1–412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 10⁸ particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1–12 for Al, 2–13 for Fe, 0.3–11 Mn, 0.02–0.5 for Pb, 46 to 318 Si and 0.04–0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles. Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1–399, 1–412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1–12 for Al, 2–13 for Fe, 0.3–11 Mn, 0.02–0.5 for Pb, 46 to 318 Si and 0.04–0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles. [Display omitted] •New data on the distribution of inorganic nanoparticles in a coastal environment.•Single particle ICP-MS and total metals combined with scanning electron microscopy for data on both particle concentrations and compositions.•Al-, Fe-, Mn-, Pb-, Si- and Ti-based particles determined to concentrations in nanograms to micrograms per liter. Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 10 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles. |
ArticleNumber | 105975 |
Author | Loeschner, Katrin Bruvold, Are S. Ervik, Torunn Kringlen Valdersnes, Stig Bienfait, André Marcel |
Author_xml | – sequence: 1 givenname: Are S. orcidid: 0000-0001-7425-5426 surname: Bruvold fullname: Bruvold, Are S. email: aresb@hi.no organization: Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway – sequence: 2 givenname: André Marcel surname: Bienfait fullname: Bienfait, André Marcel organization: Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway – sequence: 3 givenname: Torunn Kringlen surname: Ervik fullname: Ervik, Torunn Kringlen organization: Norwegian Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304, Oslo, Norway – sequence: 4 givenname: Katrin surname: Loeschner fullname: Loeschner, Katrin organization: National Food Institute, Technical University of Denmark, Kemitorvet 201, DK-2800, Kgs, Lyngby, Denmark – sequence: 5 givenname: Stig surname: Valdersnes fullname: Valdersnes, Stig organization: Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37086530$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT9vFDEQxS0URC6BrwBb0uwxY6937YIiisIfKUoaktby2rORT3v2Ye8F8e3x6UIKGlKMRnr6vVe8d8ZOYorE2AeENQL2nzbrrc0UHzOVNQcuqir1IF-xFapBt8A1nrAVYIctouhP2VkpGwCQA8o37FQMoHopYMWu7ikvwdm58aEsOYz7JaTYpKkJMeUHG4Nroo1pZw_YTKXqjW1uUv5FD8HGZtqk7N-y15OdC717-ufs7svVj8tv7fXt1--XF9et66RY2k5A7zsLxCenJJc9dKCEFjhqDzhKdFJ1VqmJa41T7xSN0nmvCOsNNeKcfTzm7nL6uaeymG0ojubZRkr7YrgSHUchB3gBChK41FJX9P0Tuh-35M0uh9rub_O3pQoMR8DlVEqm6RlBMIc9zMY872EOe5jjHtX5-R-nC4s9VLxkG-YX-C-OfqqtPgbKprhA0ZEPmdxifAr_zfgDnCurKg |
CitedBy_id | crossref_primary_10_1016_j_marenvres_2023_105975 crossref_primary_10_1021_acs_jafc_4c04721 crossref_primary_10_1093_jaoacint_qsae024 |
Cites_doi | 10.1039/C6JA00011H 10.1016/S0302-3524(82)80067-4 10.1016/j.sab.2020.105883 10.1021/acs.est.9b05996 10.1002/etc.723 10.1021/acs.est.1c00488 10.1039/C9JA00168A 10.1021/acsearthspacechem.1c00350 10.1021/es00009a005 10.1136/jech.38.1.85 10.1016/j.marenvres.2023.105975 10.1016/j.foodcont.2020.107550 10.1039/C9JA00186G 10.1039/C7JA00402H 10.1080/10408348708085568 10.1007/s00216-016-9676-8 10.1029/2018GB006145 10.1039/c2ja30073g 10.4319/lo.2010.55.1.0187 10.1007/s00216-020-02783-6 10.1016/0304-4203(92)90045-C 10.1021/acs.est.0c01189 10.1039/b507886e 10.1021/acsestwater.1c00206 10.1021/acs.jafc.0c07363 10.1002/imt2.43 10.3389/fenvs.2020.00151 10.1007/s00216-022-04052-0 10.1016/j.talanta.2021.122201 10.1098/rstb.1984.0037 10.32614/RJ-2013-014 10.1039/C8JA00397A 10.1021/acs.est.9b03036 10.1007/s00216-017-0530-4 10.1021/ac201952t 10.1016/j.scitotenv.2019.05.318 10.1016/j.talanta.2017.05.051 10.1016/j.envpol.2013.11.014 10.3390/ma12172677 10.1016/j.impact.2018.01.003 10.3354/ame011127 10.1039/C8JA00037A 10.1016/j.envres.2021.111447 10.1021/ez500164v 10.1073/pnas.2014378117 10.1126/science.aau8299 10.1016/j.sab.2021.106104 10.1016/j.talanta.2021.123060 10.1897/08-090.1 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.marenvres.2023.105975 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Oceanography Environmental Sciences |
EISSN | 1879-0291 |
ExternalDocumentID | 37086530 10_1016_j_marenvres_2023_105975 S0141113623001034 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SCU SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH UQL VOH WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c453t-4306d4a0e2fc8525604083931b9d01b51c584a88f2991f6c8eb5cdd8e1d8e7453 |
IEDL.DBID | .~1 |
ISSN | 0141-1136 1879-0291 |
IngestDate | Fri Jul 11 12:21:43 EDT 2025 Fri Jul 11 04:37:43 EDT 2025 Thu Apr 03 07:05:20 EDT 2025 Tue Jul 01 03:18:19 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Fri Feb 23 02:37:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles SP-ICP-MS Fjord Coast Colloids Metals Sampling Seawater |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-4306d4a0e2fc8525604083931b9d01b51c584a88f2991f6c8eb5cdd8e1d8e7453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7425-5426 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141113623001034 |
PMID | 37086530 |
PQID | 2805025959 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834213570 proquest_miscellaneous_2805025959 pubmed_primary_37086530 crossref_primary_10_1016_j_marenvres_2023_105975 crossref_citationtrail_10_1016_j_marenvres_2023_105975 elsevier_sciencedirect_doi_10_1016_j_marenvres_2023_105975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 2023-Jun 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Marine environmental research |
PublicationTitleAlternate | Mar Environ Res |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jreije, Hadioui, Wilkinson (bib24) 2022; 238 Waegeneers, De Vos, Verleysen, Ruttens, Mast (bib64) 2019; 12 Montaño, von der Kammer, Cuss, Ranville (bib42) 2019; 34 Li, Shakiba, Deng, Chen, Louie, Hu (bib34) 2020; 54 Donahue, Francek, Kiyotake, Thomas, Yang, Wang (bib10) 2020; 412 Ohnemus, Torrie, Twining (bib70) 2019; 33 Vidmar, Buerki-Thurnherr, Loeschner (bib61) 2018; 33 Liu, Murphy, Winchester, Hackley (bib37) 2017; 409 Gu (bib17) 2022; 1 Montaño, Cuss, Holliday, Javed, Shotyk, Sobocinski (bib43) 2022; 6 Langen, Johnson, Coale, Elrod (bib33) 1997; 10 Kvellestad (bib30) 2021 Mason (bib39) 2013 Libes (bib35) 2009 Pace, Rogers, Jarolimek, Coleman, Higgins, Ranville (bib45) 2011; 83 Rand, Ranville (bib47) 2019; 53 Liddell (bib36) 1984; 38 Meermann, Nischwitz (bib40) 2018; 33 Sanchís, Jiménez-Lamana, Abad, Szpunar, Farré (bib51) 2020; 54 (bib5) 2012 (bib13) 1990 Hendriks, Ramkorun-Schmidt, Gundlach-Graham, Koch, Grass, Jakubowski (bib22) 2019; 34 Toncelli, Mylona, Tsapakis, Pergantis (bib60) 2016; 31 Buffle, Leppard (bib9) 1995; 29 Farkas, Nordtug, Svendheim, Amico, Davies, Ciesielski (bib12) 2021; 200 Hochella, Mogk, Ranville, Allen, Luther, Marr (bib23) 2019; 363 Kögel (bib29) 2019 . Kahle, Wickham (bib69) 2013; 5 Azimzada, Jreije, Hadioui, Shaw, Farner, Wilkinson (bib3) 2021; 55 Sturgeon, Berman, Kremling (bib57) 1987; 18 Westbroek, De Jong, van der Wal, Borman (bib67) 1984; 304 LaFleur (bib32) 1976; I Simonsen, Teien, Lind, Saetra, Albretsen, Salbu (bib52) 2019; 687 Guthrie (bib18) 2020 Gonzalez de Vega, Lockwood, Xu, Gonzalez de Vega, Scholz, Horstmann (bib16) 2022; 414 Kálomista, Kéri, Galbács (bib25) 2017; 172 Hawkings, Skidmore, Wadham, Priscu, Morton, Hatton (bib19) 2020; 117 von der Heyden, Hauser, Mishra, Martinez, Bowie, Tyliszczak (bib63) 2014; 1 Kammer, Ferguson, Holden, Masion, Rogers, Klaine (bib26) 2012; 31 Timerbaev, Kuznetsova, Keppler (bib59) 2021; 226 Lockwood, Gonzalez de Vega, Clases (bib38) 2021; 10 Stumm, Morgan (bib56) 1996 Rodushkin, Nordlund, Engström, Baxter (bib49) 2005; 20 Agatemor (bib2) 2011; 18 Bruvold (bib8) 2022 Elderfield (bib11) 2006 Montaño, Olesik, Barber, Challis, Ranville (bib41) 2016; 408 Bruvold, Are Sæle, 2023. Raw SP-ICP-MS data for the publication "Vertical distribution of inorganic nanoparticles in a Norwegian fjord". Gondikas, Gallego Urrea, Halbach, Derrien, Hassellöv (bib15) 2020; 8 Hendriks, Gundlach-Graham, Günther (bib21) 2019; 34 Wilkinson, Lead (bib68) 2007 Abdolahpur Monikh, Praetorius, Schmid, Kozin, Meisterjahn, Makarova (bib1) 2018; 11 Wells, Goldberg (bib66) 1992; 40 Vidmar, Hässmann, Loeschner (bib62) 2021; 69 Rand, Flores, Sharma, Gardea-Torresdey, Westerhoff (bib48) 2021; 1 Baker, Tyler, Galloway (bib4) 2014; 186 Barrón, Torrent (bib6) 2013; 14 Olesik, Gray (bib44) 2012; 27 Klaine, Alvarez, Batley, Fernandes, Handy, Lyon (bib28) 2008; 27 Heldal, Fagerbakke, Tuomi, Bratbak (bib20) 1996; 11 Staalstrøm, Molvær (bib54) 2009 Stolpe, Hassellöv (bib55) 2010; 55 Botté, Zaidi, Guery, Fichet, Leignel (bib7) 2022 Wells (bib65) 2002 Laborda, Gimenez-Ingalaturre, Bolea, Castillo (bib31) 2020; 169 Rand (bib46) 2019 Geiss, Bianchi, Senaldi, Bucher, Verleysen, Waegeneers (bib14) 2021; 120 Skei, Melsom (bib53) 1982; 14 Kinnunen, Perämäki, Matilainen (bib27) 2021; 177 Rygg (bib50) 2008 Taylor (bib58) 2001 Buffle (10.1016/j.marenvres.2023.105975_bib9) 1995; 29 Mason (10.1016/j.marenvres.2023.105975_bib39) 2013 Rand (10.1016/j.marenvres.2023.105975_bib47) 2019; 53 LaFleur (10.1016/j.marenvres.2023.105975_bib32) 1976; I Toncelli (10.1016/j.marenvres.2023.105975_bib60) 2016; 31 Meermann (10.1016/j.marenvres.2023.105975_bib40) 2018; 33 Simonsen (10.1016/j.marenvres.2023.105975_bib52) 2019; 687 von der Heyden (10.1016/j.marenvres.2023.105975_bib63) 2014; 1 Botté (10.1016/j.marenvres.2023.105975_bib7) 2022 Sturgeon (10.1016/j.marenvres.2023.105975_bib57) 1987; 18 Laborda (10.1016/j.marenvres.2023.105975_bib31) 2020; 169 Elderfield (10.1016/j.marenvres.2023.105975_bib11) 2006 Hendriks (10.1016/j.marenvres.2023.105975_bib22) 2019; 34 Rand (10.1016/j.marenvres.2023.105975_bib46) 2019 Rygg (10.1016/j.marenvres.2023.105975_bib50) 2008 Kahle (10.1016/j.marenvres.2023.105975_bib69) 2013; 5 Taylor (10.1016/j.marenvres.2023.105975_bib58) 2001 (10.1016/j.marenvres.2023.105975_bib13) 1990 Agatemor (10.1016/j.marenvres.2023.105975_bib2) 2011; 18 Hochella (10.1016/j.marenvres.2023.105975_bib23) 2019; 363 Skei (10.1016/j.marenvres.2023.105975_bib53) 1982; 14 Liu (10.1016/j.marenvres.2023.105975_bib37) 2017; 409 Montaño (10.1016/j.marenvres.2023.105975_bib43) 2022; 6 Heldal (10.1016/j.marenvres.2023.105975_bib20) 1996; 11 Klaine (10.1016/j.marenvres.2023.105975_bib28) 2008; 27 Azimzada (10.1016/j.marenvres.2023.105975_bib3) 2021; 55 Jreije (10.1016/j.marenvres.2023.105975_bib24) 2022; 238 Kvellestad (10.1016/j.marenvres.2023.105975_bib30) 2021 Pace (10.1016/j.marenvres.2023.105975_bib45) 2011; 83 (10.1016/j.marenvres.2023.105975_bib5) 2012 Kinnunen (10.1016/j.marenvres.2023.105975_bib27) 2021; 177 Guthrie (10.1016/j.marenvres.2023.105975_bib18) 2020 Kálomista (10.1016/j.marenvres.2023.105975_bib25) 2017; 172 Ohnemus (10.1016/j.marenvres.2023.105975_bib70) 2019; 33 Kammer (10.1016/j.marenvres.2023.105975_bib26) 2012; 31 Donahue (10.1016/j.marenvres.2023.105975_bib10) 2020; 412 Stumm (10.1016/j.marenvres.2023.105975_bib56) 1996 Libes (10.1016/j.marenvres.2023.105975_bib35) 2009 Stolpe (10.1016/j.marenvres.2023.105975_bib55) 2010; 55 Geiss (10.1016/j.marenvres.2023.105975_bib14) 2021; 120 Montaño (10.1016/j.marenvres.2023.105975_bib41) 2016; 408 Hendriks (10.1016/j.marenvres.2023.105975_bib21) 2019; 34 Rand (10.1016/j.marenvres.2023.105975_bib48) 2021; 1 Barrón (10.1016/j.marenvres.2023.105975_bib6) 2013; 14 Gu (10.1016/j.marenvres.2023.105975_bib17) 2022; 1 Wells (10.1016/j.marenvres.2023.105975_bib65) 2002 Gonzalez de Vega (10.1016/j.marenvres.2023.105975_bib16) 2022; 414 Olesik (10.1016/j.marenvres.2023.105975_bib44) 2012; 27 Timerbaev (10.1016/j.marenvres.2023.105975_bib59) 2021; 226 Farkas (10.1016/j.marenvres.2023.105975_bib12) 2021; 200 Westbroek (10.1016/j.marenvres.2023.105975_bib67) 1984; 304 Lockwood (10.1016/j.marenvres.2023.105975_bib38) 2021; 10 Sanchís (10.1016/j.marenvres.2023.105975_bib51) 2020; 54 Wilkinson (10.1016/j.marenvres.2023.105975_bib68) 2007 Rodushkin (10.1016/j.marenvres.2023.105975_bib49) 2005; 20 Montaño (10.1016/j.marenvres.2023.105975_bib42) 2019; 34 Waegeneers (10.1016/j.marenvres.2023.105975_bib64) 2019; 12 Abdolahpur Monikh (10.1016/j.marenvres.2023.105975_bib1) 2018; 11 Baker (10.1016/j.marenvres.2023.105975_bib4) 2014; 186 Staalstrøm (10.1016/j.marenvres.2023.105975_bib54) 2009 Hawkings (10.1016/j.marenvres.2023.105975_bib19) 2020; 117 10.1016/j.marenvres.2023.105975_bib71 Langen (10.1016/j.marenvres.2023.105975_bib33) 1997; 10 Vidmar (10.1016/j.marenvres.2023.105975_bib62) 2021; 69 Gondikas (10.1016/j.marenvres.2023.105975_bib15) 2020; 8 Liddell (10.1016/j.marenvres.2023.105975_bib36) 1984; 38 Wells (10.1016/j.marenvres.2023.105975_bib66) 1992; 40 Vidmar (10.1016/j.marenvres.2023.105975_bib61) 2018; 33 Bruvold (10.1016/j.marenvres.2023.105975_bib8) 2022 Li (10.1016/j.marenvres.2023.105975_bib34) 2020; 54 Kögel (10.1016/j.marenvres.2023.105975_bib29) 2019 |
References_xml | – volume: 412 start-page: 5205 year: 2020 end-page: 5216 ident: bib10 article-title: Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) publication-title: Anal. Bioanal. Chem. – volume: 69 start-page: 9979 year: 2021 end-page: 9990 ident: bib62 article-title: Single-particle ICP–MS as a screening technique for the presence of potential inorganic nanoparticles in food publication-title: J. Agric. Food Chem. – volume: 238 year: 2022 ident: bib24 article-title: Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS publication-title: Talanta – year: 2019 ident: bib29 article-title: Analysis of Heavy Metals, Other Elements and Persistent Organic Pollutants in Seafood from the Førdefjord 2017 – volume: 304 start-page: 435 year: 1984 end-page: 444 ident: bib67 article-title: Mechanism of calcification in the marine alga publication-title: Phil. Trans. Roy. Soc. Lond. B – volume: 38 start-page: 85 year: 1984 end-page: 88 ident: bib36 article-title: Simple exact analysis of the standardised mortality ratio publication-title: J. Epidemiol. Community Health – volume: 226 year: 2021 ident: bib59 article-title: Current trends and challenges in analysis and characterization of engineered nanoparticles in seawater publication-title: Talanta – volume: 172 start-page: 147 year: 2017 end-page: 154 ident: bib25 article-title: Optimization of plasma sampling depth and aerosol gas flow rates for single particle inductively coupled plasma mass spectrometry analysis publication-title: Talanta – volume: I start-page: 684 year: 1976 ident: bib32 article-title: Accuracy in trace analysis : sampling publication-title: sample handling, analysis – volume: 40 start-page: 5 year: 1992 end-page: 18 ident: bib66 article-title: Marine submicron particles publication-title: Mar. Chem. – volume: 33 start-page: 1432 year: 2018 end-page: 1468 ident: bib40 article-title: ICP-MS for the analysis at the nanoscale – a tutorial review publication-title: J. Anal. At. Spectrom. – reference: Bruvold, Are Sæle, 2023. Raw SP-ICP-MS data for the publication "Vertical distribution of inorganic nanoparticles in a Norwegian fjord". – volume: 55 start-page: 9836 year: 2021 end-page: 9844 ident: bib3 article-title: Quantification and characterization of Ti-, Ce-, and Ag-nanoparticles in Global surface waters and precipitation publication-title: Environ. Sci. Technol. – volume: 83 start-page: 9361 year: 2011 end-page: 9369 ident: bib45 article-title: Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry publication-title: Anal. Chem. – volume: 12 start-page: 2677 year: 2019 ident: bib64 article-title: Estimation of the uncertainties related to the measurement of the size and quantities of individual silver nanoparticles in confectionery publication-title: Materials – year: 1990 ident: bib13 publication-title: Heavy Metals in the Marine Environment – volume: 31 start-page: 1430 year: 2016 end-page: 1439 ident: bib60 article-title: Flow injection with on-line dilution and single particle inductively coupled plasma – mass spectrometry for monitoring silver nanoparticles in seawater and in marine microorganisms publication-title: J. Anal. At. Spectrom. – volume: 414 start-page: 5671 year: 2022 end-page: 5681 ident: bib16 article-title: Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS publication-title: Anal. Bioanal. Chem. – volume: 14 start-page: 61 year: 1982 ident: bib53 article-title: Seasonal and vertical variations in the chemical composition of suspended particulate matter in an oxygen-deficient fjord publication-title: Estuar. Coast Shelf Sci. – volume: 117 start-page: 31648 year: 2020 end-page: 31659 ident: bib19 article-title: Enhanced trace element mobilization by Earth's ice sheets publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2009 ident: bib54 article-title: Spredning Av Partikler I Overflatelaget Utenfor Engebøfjellet – volume: 11 year: 2018 ident: bib1 article-title: Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability publication-title: NanoImpact – start-page: 1 year: 2006 ident: bib11 publication-title: Treatise on Geochemistry. 6: the Oceans and Marine Geochemistry/Vol – volume: 363 year: 2019 ident: bib23 article-title: Natural, incidental, and engineered nanomaterials and their impacts on the Earth system publication-title: Science – year: 2020 ident: bib18 article-title: NIST/SEMATECH E-Handbook of Statistical Methods (NIST Handbook 151) – volume: 27 start-page: 1825 year: 2008 end-page: 1851 ident: bib28 article-title: Nanomaterials in the environment: behavior, fate, bioavailability, and effects publication-title: Environ. Toxicol. Chem. – volume: 54 start-page: 6761 year: 2020 end-page: 6770 ident: bib34 article-title: Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles publication-title: Environ. Sci. Technol. – volume: 34 start-page: 716 year: 2019 end-page: 728 ident: bib22 article-title: Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing publication-title: J. Anal. Atomic Spectrom. – volume: 6 start-page: 943 year: 2022 end-page: 952 ident: bib43 article-title: Exploring nanogeochemical environments: new insights from single particle ICP-TOFMS and AF4-ICPMS publication-title: ACS Earth Space Chem – year: 2009 ident: bib35 article-title: Introduction to Marine Biogeochemistry – volume: 27 start-page: 1143 year: 2012 end-page: 1155 ident: bib44 article-title: Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle publication-title: J. Anal. At. Spectrom. – year: 2019 ident: bib46 article-title: Using single particle ICP-MS to study occurrence and behavior of engineered, natural, and incidental nanoparticles in freshwater streams – volume: 186 start-page: 257 year: 2014 end-page: 271 ident: bib4 article-title: Impacts of metal and metal oxide nanoparticles on marine organisms publication-title: Environ. Pollut. – volume: 10 year: 1997 ident: bib33 article-title: Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations publication-title: Geochem. Cosmochim. Acta – volume: 18 year: 2011 ident: bib2 article-title: Matrix effects in inductively coupled plasma mass spectrometry: a review publication-title: Anal. Chim. Acta – volume: 31 start-page: 32 year: 2012 end-page: 49 ident: bib26 article-title: Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies publication-title: Environ. Toxicol. Chem. – volume: 34 start-page: 1768 year: 2019 end-page: 1772 ident: bib42 article-title: Opportunities for examining the natural nanogeochemical environment using recent advances in nanoparticle analysis publication-title: J. Anal. At. Spectrom. – volume: 120 year: 2021 ident: bib14 article-title: Particle size analysis of pristine food-grade titanium dioxide and E 171 in confectionery products: interlaboratory testing of a single-particle inductively coupled plasma mass spectrometry screening method and confirmation with transmission electron microscopy publication-title: Food Control – volume: 1 year: 2022 ident: bib17 article-title: Complex heatmap visualization publication-title: iMeta – volume: 34 start-page: 1900 year: 2019 end-page: 1909 ident: bib21 article-title: Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model publication-title: J. Anal. Atomic Spectrom. – year: 2021 ident: bib30 article-title: A Permitted Discharge of Mining Waste to the Marine Environment - Critical Review Regarding Heavy Metals and Chemicals – volume: 33 start-page: 752 year: 2018 end-page: 761 ident: bib61 article-title: Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS publication-title: J. Anal. At. Spectrom. – year: 2012 ident: bib5 publication-title: Nature's Nanostructures – year: 2007 ident: bib68 article-title: Environmental Colloids and Particles: Behaviour, Separation and Characterisation – year: 2001 ident: bib58 article-title: Inductively Coupled Plasma-Mass Spectrometry – volume: 53 start-page: 11214 year: 2019 end-page: 11222 ident: bib47 article-title: Characteristics and stability of incidental iron oxide nanoparticles during remediation of a mining-impacted stream publication-title: Environ. Sci. Technol. – volume: 1 start-page: 387 year: 2014 end-page: 392 ident: bib63 article-title: Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon publication-title: Environ. Sci. Technol. Lett. – year: 2013 ident: bib39 article-title: Trace Metals in Aquatic Systems: Mason/Trace Metals in Aquatic Systems – volume: 10 start-page: 1039 year: 2021 ident: bib38 article-title: An interactive Python-based data processing platform for single particle and single cell ICP-MS publication-title: J. Anal. At. Spectrom. – volume: 20 start-page: 1250 year: 2005 ident: bib49 article-title: Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma publication-title: J. Anal. At. Spectrom. – volume: 14 start-page: 297 year: 2013 end-page: 336 ident: bib6 article-title: Iron, manganese and aluminium oxides and oxyhydroxides publication-title: Eur. Mineral Union Notes Mineral – volume: 11 start-page: 127 year: 1996 end-page: 133 ident: bib20 article-title: Abundant populations of iron and manganese sequestering bacteria in coastal water publication-title: Aquat. Microb. Ecol. – year: 2022 ident: bib7 article-title: Aluminium in aquatic environments: abundance and ecotoxicological impacts publication-title: Aquat. Ecol. – volume: 1 start-page: 2242 year: 2021 end-page: 2250 ident: bib48 article-title: Quantifying nanoparticle associated Ti, Ce, Au, and Pd occurrence in 35 U.S. Surface waters publication-title: ACS EST Water – volume: 54 start-page: 3969 year: 2020 end-page: 3978 ident: bib51 article-title: Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besòs and ebro rivers publication-title: Environ. Sci. Technol. – volume: 29 start-page: 2176 year: 1995 end-page: 2184 ident: bib9 article-title: Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results publication-title: Environ. Sci. Technol. – year: 2008 ident: bib50 article-title: Dyrelivet På Bunnen Av Førdefjorden Og Bunnsedimentenes Sammensetning – volume: 5 start-page: 144 year: 2013 ident: bib69 article-title: ggmap: spatial visualization with ggplot2 publication-title: R J. – volume: 408 start-page: 5053 year: 2016 end-page: 5074 ident: bib41 article-title: Single Particle ICP-MS: advances toward routine analysis of nanomaterials publication-title: Anal. Bioanal. Chem. – reference: . – year: 2022 ident: bib8 article-title: GitHub Repository for Distribution of Inorganic Nanoparticles and Trace Elements in a Norwegian Fjord – volume: 33 start-page: 725 year: 2019 end-page: 748 ident: bib70 article-title: Exposing the Distributions and Elemental Associations of Scavenged Particulate Phases in the Ocean Using Basin‐Scale Multi‐Element Data Sets publication-title: Global Biogeochem. Cycles – volume: 55 start-page: 187 year: 2010 end-page: 202 ident: bib55 article-title: Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions publication-title: Limnol. Oceanogr. – volume: 200 year: 2021 ident: bib12 article-title: Effects of mine tailing exposure on early life stages of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) publication-title: Environ. Res. – volume: 177 year: 2021 ident: bib27 article-title: Optimization of instrumental parameters for improving sensitivity of single particle inductively-coupled plasma mass spectrometry analysis of gold publication-title: Spectrochim. Acta B Atom Spectrosc. – volume: 18 start-page: 209 year: 1987 end-page: 244 ident: bib57 article-title: Sampling and storage of natural water for trace metals publication-title: CRC Crit. Rev. Anal. Chem. – volume: 687 start-page: 1147 year: 2019 end-page: 1163 ident: bib52 article-title: Modeling key processes affecting Al speciation and transport in estuaries publication-title: Sci. Total Environ. – start-page: 367 year: 2002 end-page: 404 ident: bib65 article-title: Marine colloids and trace metals publication-title: Biogeochemistry of Marine Dissolved Organic Matter – volume: 169 year: 2020 ident: bib31 article-title: About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry publication-title: Spectrochim. Acta B Atom Spectrosc. – volume: 8 year: 2020 ident: bib15 article-title: Nanomaterial fate in seawater: a rapid sink or intermittent stabilization? publication-title: Front. Environ. Sci. – year: 1996 ident: bib56 article-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters – volume: 409 start-page: 6027 year: 2017 end-page: 6039 ident: bib37 article-title: Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles publication-title: Anal. Bioanal. Chem. – year: 2020 ident: 10.1016/j.marenvres.2023.105975_bib18 – volume: 31 start-page: 1430 year: 2016 ident: 10.1016/j.marenvres.2023.105975_bib60 article-title: Flow injection with on-line dilution and single particle inductively coupled plasma – mass spectrometry for monitoring silver nanoparticles in seawater and in marine microorganisms publication-title: J. Anal. At. Spectrom. doi: 10.1039/C6JA00011H – volume: 14 start-page: 61 year: 1982 ident: 10.1016/j.marenvres.2023.105975_bib53 article-title: Seasonal and vertical variations in the chemical composition of suspended particulate matter in an oxygen-deficient fjord publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/S0302-3524(82)80067-4 – volume: 169 year: 2020 ident: 10.1016/j.marenvres.2023.105975_bib31 article-title: About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry publication-title: Spectrochim. Acta B Atom Spectrosc. doi: 10.1016/j.sab.2020.105883 – volume: 54 start-page: 3969 year: 2020 ident: 10.1016/j.marenvres.2023.105975_bib51 article-title: Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besòs and ebro rivers publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05996 – year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib46 – volume: 10 start-page: 1039 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib38 article-title: An interactive Python-based data processing platform for single particle and single cell ICP-MS publication-title: J. Anal. At. Spectrom. – year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib30 – year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib29 – volume: 31 start-page: 32 year: 2012 ident: 10.1016/j.marenvres.2023.105975_bib26 article-title: Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.723 – start-page: 367 year: 2002 ident: 10.1016/j.marenvres.2023.105975_bib65 article-title: Marine colloids and trace metals – volume: 55 start-page: 9836 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib3 article-title: Quantification and characterization of Ti-, Ce-, and Ag-nanoparticles in Global surface waters and precipitation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c00488 – volume: 34 start-page: 1768 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib42 article-title: Opportunities for examining the natural nanogeochemical environment using recent advances in nanoparticle analysis publication-title: J. Anal. At. Spectrom. doi: 10.1039/C9JA00168A – volume: 6 start-page: 943 year: 2022 ident: 10.1016/j.marenvres.2023.105975_bib43 article-title: Exploring nanogeochemical environments: new insights from single particle ICP-TOFMS and AF4-ICPMS publication-title: ACS Earth Space Chem doi: 10.1021/acsearthspacechem.1c00350 – year: 1996 ident: 10.1016/j.marenvres.2023.105975_bib56 – volume: 29 start-page: 2176 year: 1995 ident: 10.1016/j.marenvres.2023.105975_bib9 article-title: Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results publication-title: Environ. Sci. Technol. doi: 10.1021/es00009a005 – volume: 38 start-page: 85 year: 1984 ident: 10.1016/j.marenvres.2023.105975_bib36 article-title: Simple exact analysis of the standardised mortality ratio publication-title: J. Epidemiol. Community Health doi: 10.1136/jech.38.1.85 – ident: 10.1016/j.marenvres.2023.105975_bib71 doi: 10.1016/j.marenvres.2023.105975 – year: 2008 ident: 10.1016/j.marenvres.2023.105975_bib50 – volume: 120 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib14 publication-title: Food Control doi: 10.1016/j.foodcont.2020.107550 – year: 2007 ident: 10.1016/j.marenvres.2023.105975_bib68 – volume: 34 start-page: 1900 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib21 article-title: Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model publication-title: J. Anal. Atomic Spectrom. doi: 10.1039/C9JA00186G – volume: I start-page: 684 year: 1976 ident: 10.1016/j.marenvres.2023.105975_bib32 article-title: Accuracy in trace analysis : sampling publication-title: sample handling, analysis – volume: 18 year: 2011 ident: 10.1016/j.marenvres.2023.105975_bib2 article-title: Matrix effects in inductively coupled plasma mass spectrometry: a review publication-title: Anal. Chim. Acta – volume: 33 start-page: 752 year: 2018 ident: 10.1016/j.marenvres.2023.105975_bib61 article-title: Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS publication-title: J. Anal. At. Spectrom. doi: 10.1039/C7JA00402H – volume: 18 start-page: 209 year: 1987 ident: 10.1016/j.marenvres.2023.105975_bib57 article-title: Sampling and storage of natural water for trace metals publication-title: CRC Crit. Rev. Anal. Chem. doi: 10.1080/10408348708085568 – volume: 408 start-page: 5053 year: 2016 ident: 10.1016/j.marenvres.2023.105975_bib41 article-title: Single Particle ICP-MS: advances toward routine analysis of nanomaterials publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-016-9676-8 – volume: 33 start-page: 725 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib70 article-title: Exposing the Distributions and Elemental Associations of Scavenged Particulate Phases in the Ocean Using Basin‐Scale Multi‐Element Data Sets publication-title: Global Biogeochem. Cycles doi: 10.1029/2018GB006145 – volume: 27 start-page: 1143 year: 2012 ident: 10.1016/j.marenvres.2023.105975_bib44 article-title: Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle publication-title: J. Anal. At. Spectrom. doi: 10.1039/c2ja30073g – volume: 55 start-page: 187 year: 2010 ident: 10.1016/j.marenvres.2023.105975_bib55 article-title: Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2010.55.1.0187 – volume: 412 start-page: 5205 year: 2020 ident: 10.1016/j.marenvres.2023.105975_bib10 article-title: Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-02783-6 – volume: 40 start-page: 5 year: 1992 ident: 10.1016/j.marenvres.2023.105975_bib66 article-title: Marine submicron particles publication-title: Mar. Chem. doi: 10.1016/0304-4203(92)90045-C – volume: 54 start-page: 6761 year: 2020 ident: 10.1016/j.marenvres.2023.105975_bib34 article-title: Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01189 – volume: 20 start-page: 1250 year: 2005 ident: 10.1016/j.marenvres.2023.105975_bib49 article-title: Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma publication-title: J. Anal. At. Spectrom. doi: 10.1039/b507886e – year: 2022 ident: 10.1016/j.marenvres.2023.105975_bib8 – year: 2001 ident: 10.1016/j.marenvres.2023.105975_bib58 – volume: 1 start-page: 2242 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib48 article-title: Quantifying nanoparticle associated Ti, Ce, Au, and Pd occurrence in 35 U.S. Surface waters publication-title: ACS EST Water doi: 10.1021/acsestwater.1c00206 – volume: 69 start-page: 9979 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib62 article-title: Single-particle ICP–MS as a screening technique for the presence of potential inorganic nanoparticles in food publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c07363 – volume: 1 year: 2022 ident: 10.1016/j.marenvres.2023.105975_bib17 article-title: Complex heatmap visualization publication-title: iMeta doi: 10.1002/imt2.43 – volume: 8 year: 2020 ident: 10.1016/j.marenvres.2023.105975_bib15 article-title: Nanomaterial fate in seawater: a rapid sink or intermittent stabilization? publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2020.00151 – volume: 414 start-page: 5671 year: 2022 ident: 10.1016/j.marenvres.2023.105975_bib16 article-title: Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-022-04052-0 – year: 2022 ident: 10.1016/j.marenvres.2023.105975_bib7 article-title: Aluminium in aquatic environments: abundance and ecotoxicological impacts publication-title: Aquat. Ecol. – year: 1990 ident: 10.1016/j.marenvres.2023.105975_bib13 – volume: 226 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib59 article-title: Current trends and challenges in analysis and characterization of engineered nanoparticles in seawater publication-title: Talanta doi: 10.1016/j.talanta.2021.122201 – volume: 304 start-page: 435 year: 1984 ident: 10.1016/j.marenvres.2023.105975_bib67 article-title: Mechanism of calcification in the marine alga Emiliania huxleyi publication-title: Phil. Trans. Roy. Soc. Lond. B doi: 10.1098/rstb.1984.0037 – volume: 5 start-page: 144 year: 2013 ident: 10.1016/j.marenvres.2023.105975_bib69 article-title: ggmap: spatial visualization with ggplot2 publication-title: R J. doi: 10.32614/RJ-2013-014 – year: 2009 ident: 10.1016/j.marenvres.2023.105975_bib35 – volume: 10 year: 1997 ident: 10.1016/j.marenvres.2023.105975_bib33 article-title: Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations publication-title: Geochem. Cosmochim. Acta – volume: 14 start-page: 297 year: 2013 ident: 10.1016/j.marenvres.2023.105975_bib6 article-title: Iron, manganese and aluminium oxides and oxyhydroxides publication-title: Eur. Mineral Union Notes Mineral – volume: 34 start-page: 716 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib22 article-title: Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing publication-title: J. Anal. Atomic Spectrom. doi: 10.1039/C8JA00397A – volume: 53 start-page: 11214 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib47 article-title: Characteristics and stability of incidental iron oxide nanoparticles during remediation of a mining-impacted stream publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03036 – volume: 409 start-page: 6027 year: 2017 ident: 10.1016/j.marenvres.2023.105975_bib37 article-title: Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0530-4 – volume: 83 start-page: 9361 year: 2011 ident: 10.1016/j.marenvres.2023.105975_bib45 article-title: Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac201952t – volume: 687 start-page: 1147 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib52 article-title: Modeling key processes affecting Al speciation and transport in estuaries publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.318 – year: 2013 ident: 10.1016/j.marenvres.2023.105975_bib39 – year: 2012 ident: 10.1016/j.marenvres.2023.105975_bib5 – start-page: 1 year: 2006 ident: 10.1016/j.marenvres.2023.105975_bib11 – volume: 172 start-page: 147 year: 2017 ident: 10.1016/j.marenvres.2023.105975_bib25 article-title: Optimization of plasma sampling depth and aerosol gas flow rates for single particle inductively coupled plasma mass spectrometry analysis publication-title: Talanta doi: 10.1016/j.talanta.2017.05.051 – volume: 186 start-page: 257 year: 2014 ident: 10.1016/j.marenvres.2023.105975_bib4 article-title: Impacts of metal and metal oxide nanoparticles on marine organisms publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.11.014 – volume: 12 start-page: 2677 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib64 article-title: Estimation of the uncertainties related to the measurement of the size and quantities of individual silver nanoparticles in confectionery publication-title: Materials doi: 10.3390/ma12172677 – volume: 11 year: 2018 ident: 10.1016/j.marenvres.2023.105975_bib1 article-title: Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability publication-title: NanoImpact doi: 10.1016/j.impact.2018.01.003 – volume: 11 start-page: 127 year: 1996 ident: 10.1016/j.marenvres.2023.105975_bib20 article-title: Abundant populations of iron and manganese sequestering bacteria in coastal water publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame011127 – volume: 33 start-page: 1432 year: 2018 ident: 10.1016/j.marenvres.2023.105975_bib40 article-title: ICP-MS for the analysis at the nanoscale – a tutorial review publication-title: J. Anal. At. Spectrom. doi: 10.1039/C8JA00037A – volume: 200 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib12 article-title: Effects of mine tailing exposure on early life stages of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111447 – year: 2009 ident: 10.1016/j.marenvres.2023.105975_bib54 – volume: 1 start-page: 387 year: 2014 ident: 10.1016/j.marenvres.2023.105975_bib63 article-title: Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez500164v – volume: 117 start-page: 31648 year: 2020 ident: 10.1016/j.marenvres.2023.105975_bib19 article-title: Enhanced trace element mobilization by Earth's ice sheets publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2014378117 – volume: 363 year: 2019 ident: 10.1016/j.marenvres.2023.105975_bib23 article-title: Natural, incidental, and engineered nanomaterials and their impacts on the Earth system publication-title: Science doi: 10.1126/science.aau8299 – volume: 177 year: 2021 ident: 10.1016/j.marenvres.2023.105975_bib27 article-title: Optimization of instrumental parameters for improving sensitivity of single particle inductively-coupled plasma mass spectrometry analysis of gold publication-title: Spectrochim. Acta B Atom Spectrosc. doi: 10.1016/j.sab.2021.106104 – volume: 238 year: 2022 ident: 10.1016/j.marenvres.2023.105975_bib24 article-title: Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS publication-title: Talanta doi: 10.1016/j.talanta.2021.123060 – volume: 27 start-page: 1825 year: 2008 ident: 10.1016/j.marenvres.2023.105975_bib28 article-title: Nanomaterials in the environment: behavior, fate, bioavailability, and effects publication-title: Environ. Toxicol. Chem. doi: 10.1897/08-090.1 |
SSID | ssj0005715 |
Score | 2.375122 |
Snippet | Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105975 |
SubjectTerms | atomic absorption spectrometry Coast Colloids detection limit electron microscopy energy-dispersive X-ray analysis Fjord marine environment Metals Nanoparticles Sampling Seawater SP-ICP-MS spatial distribution surveys |
Title | Vertical distribution of inorganic nanoparticles in a Norwegian fjord |
URI | https://dx.doi.org/10.1016/j.marenvres.2023.105975 https://www.ncbi.nlm.nih.gov/pubmed/37086530 https://www.proquest.com/docview/2805025959 https://www.proquest.com/docview/2834213570 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9j4osgfk3nFxV87dY0ydr6JrIxFeaLk72VNEllQ7sxN8UX_3bv2nQ6UPfgQ6GUuxJy19xd88v9CDnXnPLUl4mrRMhcLqR2pa-EG4kEygmFuMO822ev1e3zm4EYVMhVeRYGYZV27S_W9Hy1tk-adjabk-GwibAk5EmH-J2TFWBPUM4D9PLGxzeYR0AtjJG6KL2E8XrGA1evUNc2kEUcOW8jBBz-HKF-y0DzSNTZIps2hXQui1Fuk4rJdsh6QSr5DndtZe9q7a9TbKBgP-OXHbJxp4zMbLPqXdJ-yMHVIKKxja5lwHLGqTPMCtYn5WQgPylRdPDckU5vPH0zj-BeTjqCEnaP9Dvt-6uua-kVXMUFm7kcqgXNpWf8VIUCUx8O-VjEaBJpjyaCgvm4DMMUIhZNWyo0iVBah4bCFcAraqSajTNzQJwUBBIZcKm05JoFid_CHVd4PTOcp7JOWuWUxsr2HkcKjKe4BJmN4oUtYrRFXNiiTryF4qRov7Fa5aK0WbzkSTEEidXKZ6WVY_jOcPNEZmY8B6HQE5AfRiL6S4ZxnzIReHWyX7jIYtQsgOJRMO_wP8M7wt8KnoWqHZPqbDo3J5AUzZLT3OtPydrl9W239wnT1gyK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6xIjSEhAaj0MG2TNpraBzbTbK3ChWVAd0LIN4sx3amopFW0IL477lLnCIkfjzsIZKV3EWWz_bdyZ_vA_hpBRNFrPPQyJSHQmob6tjIMJM5phOGcIdVtc9Rb3gufl_KyyU4aO7CEKzS7_31nl7t1v5N149mdzoedwmWRDzp6L8rsgLxAZapOpVswXL_6Hg4ekJ6JMwjGVlICs9gXtd05-oOU9t9IhIn2tuMMIcvO6nXgtDKGR1-gnUfRQb9uqMbsOTKTVipeSUfsDUwvtUePF1kQwW_km83Ye2Pcbr09ao_w-CiwlejiKVKup4EK5gUwbisiZ9MUKL8tAHS4ftAB6PJzb37izMsKK4wi92C88PB2cEw9AwLoRGSz0KBCYMVOnJxYVJJ0Y_AkCzjLM9sxHLJ0IJCp2mBTosVPZO6XBprU8fwSfAXbWiVk9LtQFCgQK4ToY3VwvIkj3t06Iq_506IQneg1wypMr78OLFg_FMNzuxKLWyhyBaqtkUHooXitK7A8b7Kr8Zm6tlkUugn3lf-0VhZ4VKj8xNduskchdJIYoiYyewtGS5ixmUSdWC7niKLXvME80fJoy__073v8HF4dnqiTo5Gx7uwSl9q5NoetGY3c_cVY6RZ_s2vgUf86A9B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertical+distribution+of+inorganic+nanoparticles+in+a+Norwegian+fjord&rft.jtitle=Marine+environmental+research&rft.au=Bruvold%2C+Are+S.&rft.au=Bienfait%2C+Andr%C3%A9+Marcel&rft.au=Ervik%2C+Torunn+Kringlen&rft.au=Loeschner%2C+Katrin&rft.date=2023-06-01&rft.issn=0141-1136&rft.volume=188&rft.spage=105975&rft_id=info:doi/10.1016%2Fj.marenvres.2023.105975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marenvres_2023_105975 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1136&client=summon |