Vertical distribution of inorganic nanoparticles in a Norwegian fjord

Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass s...

Full description

Saved in:
Bibliographic Details
Published inMarine environmental research Vol. 188; p. 105975
Main Authors Bruvold, Are S., Bienfait, André Marcel, Ervik, Torunn Kringlen, Loeschner, Katrin, Valdersnes, Stig
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1–399, 1–412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1–12 for Al, 2–13 for Fe, 0.3–11 Mn, 0.02–0.5 for Pb, 46 to 318 Si and 0.04–0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles. [Display omitted] •New data on the distribution of inorganic nanoparticles in a coastal environment.•Single particle ICP-MS and total metals combined with scanning electron microscopy for data on both particle concentrations and compositions.•Al-, Fe-, Mn-, Pb-, Si- and Ti-based particles determined to concentrations in nanograms to micrograms per liter.
AbstractList Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.
Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1–399, 1–412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 10⁸ particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1–12 for Al, 2–13 for Fe, 0.3–11 Mn, 0.02–0.5 for Pb, 46 to 318 Si and 0.04–0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.
Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1–399, 1–412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1–12 for Al, 2–13 for Fe, 0.3–11 Mn, 0.02–0.5 for Pb, 46 to 318 Si and 0.04–0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles. [Display omitted] •New data on the distribution of inorganic nanoparticles in a coastal environment.•Single particle ICP-MS and total metals combined with scanning electron microscopy for data on both particle concentrations and compositions.•Al-, Fe-, Mn-, Pb-, Si- and Ti-based particles determined to concentrations in nanograms to micrograms per liter.
Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 10 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.
ArticleNumber 105975
Author Loeschner, Katrin
Bruvold, Are S.
Ervik, Torunn Kringlen
Valdersnes, Stig
Bienfait, André Marcel
Author_xml – sequence: 1
  givenname: Are S.
  orcidid: 0000-0001-7425-5426
  surname: Bruvold
  fullname: Bruvold, Are S.
  email: aresb@hi.no
  organization: Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
– sequence: 2
  givenname: André Marcel
  surname: Bienfait
  fullname: Bienfait, André Marcel
  organization: Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
– sequence: 3
  givenname: Torunn Kringlen
  surname: Ervik
  fullname: Ervik, Torunn Kringlen
  organization: Norwegian Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304, Oslo, Norway
– sequence: 4
  givenname: Katrin
  surname: Loeschner
  fullname: Loeschner, Katrin
  organization: National Food Institute, Technical University of Denmark, Kemitorvet 201, DK-2800, Kgs, Lyngby, Denmark
– sequence: 5
  givenname: Stig
  surname: Valdersnes
  fullname: Valdersnes, Stig
  organization: Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37086530$$D View this record in MEDLINE/PubMed
BookMark eNqNkT9vFDEQxS0URC6BrwBb0uwxY6937YIiisIfKUoaktby2rORT3v2Ye8F8e3x6UIKGlKMRnr6vVe8d8ZOYorE2AeENQL2nzbrrc0UHzOVNQcuqir1IF-xFapBt8A1nrAVYIctouhP2VkpGwCQA8o37FQMoHopYMWu7ikvwdm58aEsOYz7JaTYpKkJMeUHG4Nroo1pZw_YTKXqjW1uUv5FD8HGZtqk7N-y15OdC717-ufs7svVj8tv7fXt1--XF9et66RY2k5A7zsLxCenJJc9dKCEFjhqDzhKdFJ1VqmJa41T7xSN0nmvCOsNNeKcfTzm7nL6uaeymG0ojubZRkr7YrgSHUchB3gBChK41FJX9P0Tuh-35M0uh9rub_O3pQoMR8DlVEqm6RlBMIc9zMY872EOe5jjHtX5-R-nC4s9VLxkG-YX-C-OfqqtPgbKprhA0ZEPmdxifAr_zfgDnCurKg
CitedBy_id crossref_primary_10_1016_j_marenvres_2023_105975
crossref_primary_10_1021_acs_jafc_4c04721
crossref_primary_10_1093_jaoacint_qsae024
Cites_doi 10.1039/C6JA00011H
10.1016/S0302-3524(82)80067-4
10.1016/j.sab.2020.105883
10.1021/acs.est.9b05996
10.1002/etc.723
10.1021/acs.est.1c00488
10.1039/C9JA00168A
10.1021/acsearthspacechem.1c00350
10.1021/es00009a005
10.1136/jech.38.1.85
10.1016/j.marenvres.2023.105975
10.1016/j.foodcont.2020.107550
10.1039/C9JA00186G
10.1039/C7JA00402H
10.1080/10408348708085568
10.1007/s00216-016-9676-8
10.1029/2018GB006145
10.1039/c2ja30073g
10.4319/lo.2010.55.1.0187
10.1007/s00216-020-02783-6
10.1016/0304-4203(92)90045-C
10.1021/acs.est.0c01189
10.1039/b507886e
10.1021/acsestwater.1c00206
10.1021/acs.jafc.0c07363
10.1002/imt2.43
10.3389/fenvs.2020.00151
10.1007/s00216-022-04052-0
10.1016/j.talanta.2021.122201
10.1098/rstb.1984.0037
10.32614/RJ-2013-014
10.1039/C8JA00397A
10.1021/acs.est.9b03036
10.1007/s00216-017-0530-4
10.1021/ac201952t
10.1016/j.scitotenv.2019.05.318
10.1016/j.talanta.2017.05.051
10.1016/j.envpol.2013.11.014
10.3390/ma12172677
10.1016/j.impact.2018.01.003
10.3354/ame011127
10.1039/C8JA00037A
10.1016/j.envres.2021.111447
10.1021/ez500164v
10.1073/pnas.2014378117
10.1126/science.aau8299
10.1016/j.sab.2021.106104
10.1016/j.talanta.2021.123060
10.1897/08-090.1
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.marenvres.2023.105975
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Oceanography
Environmental Sciences
EISSN 1879-0291
ExternalDocumentID 37086530
10_1016_j_marenvres_2023_105975
S0141113623001034
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SCU
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
UQL
VOH
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c453t-4306d4a0e2fc8525604083931b9d01b51c584a88f2991f6c8eb5cdd8e1d8e7453
IEDL.DBID .~1
ISSN 0141-1136
1879-0291
IngestDate Fri Jul 11 12:21:43 EDT 2025
Fri Jul 11 04:37:43 EDT 2025
Thu Apr 03 07:05:20 EDT 2025
Tue Jul 01 03:18:19 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Fri Feb 23 02:37:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nanoparticles
SP-ICP-MS
Fjord
Coast
Colloids
Metals
Sampling
Seawater
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-4306d4a0e2fc8525604083931b9d01b51c584a88f2991f6c8eb5cdd8e1d8e7453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7425-5426
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141113623001034
PMID 37086530
PQID 2805025959
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834213570
proquest_miscellaneous_2805025959
pubmed_primary_37086530
crossref_primary_10_1016_j_marenvres_2023_105975
crossref_citationtrail_10_1016_j_marenvres_2023_105975
elsevier_sciencedirect_doi_10_1016_j_marenvres_2023_105975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Marine environmental research
PublicationTitleAlternate Mar Environ Res
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jreije, Hadioui, Wilkinson (bib24) 2022; 238
Waegeneers, De Vos, Verleysen, Ruttens, Mast (bib64) 2019; 12
Montaño, von der Kammer, Cuss, Ranville (bib42) 2019; 34
Li, Shakiba, Deng, Chen, Louie, Hu (bib34) 2020; 54
Donahue, Francek, Kiyotake, Thomas, Yang, Wang (bib10) 2020; 412
Ohnemus, Torrie, Twining (bib70) 2019; 33
Vidmar, Buerki-Thurnherr, Loeschner (bib61) 2018; 33
Liu, Murphy, Winchester, Hackley (bib37) 2017; 409
Gu (bib17) 2022; 1
Montaño, Cuss, Holliday, Javed, Shotyk, Sobocinski (bib43) 2022; 6
Langen, Johnson, Coale, Elrod (bib33) 1997; 10
Kvellestad (bib30) 2021
Mason (bib39) 2013
Libes (bib35) 2009
Pace, Rogers, Jarolimek, Coleman, Higgins, Ranville (bib45) 2011; 83
Rand, Ranville (bib47) 2019; 53
Liddell (bib36) 1984; 38
Meermann, Nischwitz (bib40) 2018; 33
Sanchís, Jiménez-Lamana, Abad, Szpunar, Farré (bib51) 2020; 54
(bib5) 2012
(bib13) 1990
Hendriks, Ramkorun-Schmidt, Gundlach-Graham, Koch, Grass, Jakubowski (bib22) 2019; 34
Toncelli, Mylona, Tsapakis, Pergantis (bib60) 2016; 31
Buffle, Leppard (bib9) 1995; 29
Farkas, Nordtug, Svendheim, Amico, Davies, Ciesielski (bib12) 2021; 200
Hochella, Mogk, Ranville, Allen, Luther, Marr (bib23) 2019; 363
Kögel (bib29) 2019
.
Kahle, Wickham (bib69) 2013; 5
Azimzada, Jreije, Hadioui, Shaw, Farner, Wilkinson (bib3) 2021; 55
Sturgeon, Berman, Kremling (bib57) 1987; 18
Westbroek, De Jong, van der Wal, Borman (bib67) 1984; 304
LaFleur (bib32) 1976; I
Simonsen, Teien, Lind, Saetra, Albretsen, Salbu (bib52) 2019; 687
Guthrie (bib18) 2020
Gonzalez de Vega, Lockwood, Xu, Gonzalez de Vega, Scholz, Horstmann (bib16) 2022; 414
Kálomista, Kéri, Galbács (bib25) 2017; 172
Hawkings, Skidmore, Wadham, Priscu, Morton, Hatton (bib19) 2020; 117
von der Heyden, Hauser, Mishra, Martinez, Bowie, Tyliszczak (bib63) 2014; 1
Kammer, Ferguson, Holden, Masion, Rogers, Klaine (bib26) 2012; 31
Timerbaev, Kuznetsova, Keppler (bib59) 2021; 226
Lockwood, Gonzalez de Vega, Clases (bib38) 2021; 10
Stumm, Morgan (bib56) 1996
Rodushkin, Nordlund, Engström, Baxter (bib49) 2005; 20
Agatemor (bib2) 2011; 18
Bruvold (bib8) 2022
Elderfield (bib11) 2006
Montaño, Olesik, Barber, Challis, Ranville (bib41) 2016; 408
Bruvold, Are Sæle, 2023. Raw SP-ICP-MS data for the publication "Vertical distribution of inorganic nanoparticles in a Norwegian fjord".
Gondikas, Gallego Urrea, Halbach, Derrien, Hassellöv (bib15) 2020; 8
Hendriks, Gundlach-Graham, Günther (bib21) 2019; 34
Wilkinson, Lead (bib68) 2007
Abdolahpur Monikh, Praetorius, Schmid, Kozin, Meisterjahn, Makarova (bib1) 2018; 11
Wells, Goldberg (bib66) 1992; 40
Vidmar, Hässmann, Loeschner (bib62) 2021; 69
Rand, Flores, Sharma, Gardea-Torresdey, Westerhoff (bib48) 2021; 1
Baker, Tyler, Galloway (bib4) 2014; 186
Barrón, Torrent (bib6) 2013; 14
Olesik, Gray (bib44) 2012; 27
Klaine, Alvarez, Batley, Fernandes, Handy, Lyon (bib28) 2008; 27
Heldal, Fagerbakke, Tuomi, Bratbak (bib20) 1996; 11
Staalstrøm, Molvær (bib54) 2009
Stolpe, Hassellöv (bib55) 2010; 55
Botté, Zaidi, Guery, Fichet, Leignel (bib7) 2022
Wells (bib65) 2002
Laborda, Gimenez-Ingalaturre, Bolea, Castillo (bib31) 2020; 169
Rand (bib46) 2019
Geiss, Bianchi, Senaldi, Bucher, Verleysen, Waegeneers (bib14) 2021; 120
Skei, Melsom (bib53) 1982; 14
Kinnunen, Perämäki, Matilainen (bib27) 2021; 177
Rygg (bib50) 2008
Taylor (bib58) 2001
Buffle (10.1016/j.marenvres.2023.105975_bib9) 1995; 29
Mason (10.1016/j.marenvres.2023.105975_bib39) 2013
Rand (10.1016/j.marenvres.2023.105975_bib47) 2019; 53
LaFleur (10.1016/j.marenvres.2023.105975_bib32) 1976; I
Toncelli (10.1016/j.marenvres.2023.105975_bib60) 2016; 31
Meermann (10.1016/j.marenvres.2023.105975_bib40) 2018; 33
Simonsen (10.1016/j.marenvres.2023.105975_bib52) 2019; 687
von der Heyden (10.1016/j.marenvres.2023.105975_bib63) 2014; 1
Botté (10.1016/j.marenvres.2023.105975_bib7) 2022
Sturgeon (10.1016/j.marenvres.2023.105975_bib57) 1987; 18
Laborda (10.1016/j.marenvres.2023.105975_bib31) 2020; 169
Elderfield (10.1016/j.marenvres.2023.105975_bib11) 2006
Hendriks (10.1016/j.marenvres.2023.105975_bib22) 2019; 34
Rand (10.1016/j.marenvres.2023.105975_bib46) 2019
Rygg (10.1016/j.marenvres.2023.105975_bib50) 2008
Kahle (10.1016/j.marenvres.2023.105975_bib69) 2013; 5
Taylor (10.1016/j.marenvres.2023.105975_bib58) 2001
(10.1016/j.marenvres.2023.105975_bib13) 1990
Agatemor (10.1016/j.marenvres.2023.105975_bib2) 2011; 18
Hochella (10.1016/j.marenvres.2023.105975_bib23) 2019; 363
Skei (10.1016/j.marenvres.2023.105975_bib53) 1982; 14
Liu (10.1016/j.marenvres.2023.105975_bib37) 2017; 409
Montaño (10.1016/j.marenvres.2023.105975_bib43) 2022; 6
Heldal (10.1016/j.marenvres.2023.105975_bib20) 1996; 11
Klaine (10.1016/j.marenvres.2023.105975_bib28) 2008; 27
Azimzada (10.1016/j.marenvres.2023.105975_bib3) 2021; 55
Jreije (10.1016/j.marenvres.2023.105975_bib24) 2022; 238
Kvellestad (10.1016/j.marenvres.2023.105975_bib30) 2021
Pace (10.1016/j.marenvres.2023.105975_bib45) 2011; 83
(10.1016/j.marenvres.2023.105975_bib5) 2012
Kinnunen (10.1016/j.marenvres.2023.105975_bib27) 2021; 177
Guthrie (10.1016/j.marenvres.2023.105975_bib18) 2020
Kálomista (10.1016/j.marenvres.2023.105975_bib25) 2017; 172
Ohnemus (10.1016/j.marenvres.2023.105975_bib70) 2019; 33
Kammer (10.1016/j.marenvres.2023.105975_bib26) 2012; 31
Donahue (10.1016/j.marenvres.2023.105975_bib10) 2020; 412
Stumm (10.1016/j.marenvres.2023.105975_bib56) 1996
Libes (10.1016/j.marenvres.2023.105975_bib35) 2009
Stolpe (10.1016/j.marenvres.2023.105975_bib55) 2010; 55
Geiss (10.1016/j.marenvres.2023.105975_bib14) 2021; 120
Montaño (10.1016/j.marenvres.2023.105975_bib41) 2016; 408
Hendriks (10.1016/j.marenvres.2023.105975_bib21) 2019; 34
Rand (10.1016/j.marenvres.2023.105975_bib48) 2021; 1
Barrón (10.1016/j.marenvres.2023.105975_bib6) 2013; 14
Gu (10.1016/j.marenvres.2023.105975_bib17) 2022; 1
Wells (10.1016/j.marenvres.2023.105975_bib65) 2002
Gonzalez de Vega (10.1016/j.marenvres.2023.105975_bib16) 2022; 414
Olesik (10.1016/j.marenvres.2023.105975_bib44) 2012; 27
Timerbaev (10.1016/j.marenvres.2023.105975_bib59) 2021; 226
Farkas (10.1016/j.marenvres.2023.105975_bib12) 2021; 200
Westbroek (10.1016/j.marenvres.2023.105975_bib67) 1984; 304
Lockwood (10.1016/j.marenvres.2023.105975_bib38) 2021; 10
Sanchís (10.1016/j.marenvres.2023.105975_bib51) 2020; 54
Wilkinson (10.1016/j.marenvres.2023.105975_bib68) 2007
Rodushkin (10.1016/j.marenvres.2023.105975_bib49) 2005; 20
Montaño (10.1016/j.marenvres.2023.105975_bib42) 2019; 34
Waegeneers (10.1016/j.marenvres.2023.105975_bib64) 2019; 12
Abdolahpur Monikh (10.1016/j.marenvres.2023.105975_bib1) 2018; 11
Baker (10.1016/j.marenvres.2023.105975_bib4) 2014; 186
Staalstrøm (10.1016/j.marenvres.2023.105975_bib54) 2009
Hawkings (10.1016/j.marenvres.2023.105975_bib19) 2020; 117
10.1016/j.marenvres.2023.105975_bib71
Langen (10.1016/j.marenvres.2023.105975_bib33) 1997; 10
Vidmar (10.1016/j.marenvres.2023.105975_bib62) 2021; 69
Gondikas (10.1016/j.marenvres.2023.105975_bib15) 2020; 8
Liddell (10.1016/j.marenvres.2023.105975_bib36) 1984; 38
Wells (10.1016/j.marenvres.2023.105975_bib66) 1992; 40
Vidmar (10.1016/j.marenvres.2023.105975_bib61) 2018; 33
Bruvold (10.1016/j.marenvres.2023.105975_bib8) 2022
Li (10.1016/j.marenvres.2023.105975_bib34) 2020; 54
Kögel (10.1016/j.marenvres.2023.105975_bib29) 2019
References_xml – volume: 412
  start-page: 5205
  year: 2020
  end-page: 5216
  ident: bib10
  article-title: Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS)
  publication-title: Anal. Bioanal. Chem.
– volume: 69
  start-page: 9979
  year: 2021
  end-page: 9990
  ident: bib62
  article-title: Single-particle ICP–MS as a screening technique for the presence of potential inorganic nanoparticles in food
  publication-title: J. Agric. Food Chem.
– volume: 238
  year: 2022
  ident: bib24
  article-title: Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS
  publication-title: Talanta
– year: 2019
  ident: bib29
  article-title: Analysis of Heavy Metals, Other Elements and Persistent Organic Pollutants in Seafood from the Førdefjord 2017
– volume: 304
  start-page: 435
  year: 1984
  end-page: 444
  ident: bib67
  article-title: Mechanism of calcification in the marine alga
  publication-title: Phil. Trans. Roy. Soc. Lond. B
– volume: 38
  start-page: 85
  year: 1984
  end-page: 88
  ident: bib36
  article-title: Simple exact analysis of the standardised mortality ratio
  publication-title: J. Epidemiol. Community Health
– volume: 226
  year: 2021
  ident: bib59
  article-title: Current trends and challenges in analysis and characterization of engineered nanoparticles in seawater
  publication-title: Talanta
– volume: 172
  start-page: 147
  year: 2017
  end-page: 154
  ident: bib25
  article-title: Optimization of plasma sampling depth and aerosol gas flow rates for single particle inductively coupled plasma mass spectrometry analysis
  publication-title: Talanta
– volume: I
  start-page: 684
  year: 1976
  ident: bib32
  article-title: Accuracy in trace analysis : sampling
  publication-title: sample handling, analysis
– volume: 40
  start-page: 5
  year: 1992
  end-page: 18
  ident: bib66
  article-title: Marine submicron particles
  publication-title: Mar. Chem.
– volume: 33
  start-page: 1432
  year: 2018
  end-page: 1468
  ident: bib40
  article-title: ICP-MS for the analysis at the nanoscale – a tutorial review
  publication-title: J. Anal. At. Spectrom.
– reference: Bruvold, Are Sæle, 2023. Raw SP-ICP-MS data for the publication "Vertical distribution of inorganic nanoparticles in a Norwegian fjord".
– volume: 55
  start-page: 9836
  year: 2021
  end-page: 9844
  ident: bib3
  article-title: Quantification and characterization of Ti-, Ce-, and Ag-nanoparticles in Global surface waters and precipitation
  publication-title: Environ. Sci. Technol.
– volume: 83
  start-page: 9361
  year: 2011
  end-page: 9369
  ident: bib45
  article-title: Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry
  publication-title: Anal. Chem.
– volume: 12
  start-page: 2677
  year: 2019
  ident: bib64
  article-title: Estimation of the uncertainties related to the measurement of the size and quantities of individual silver nanoparticles in confectionery
  publication-title: Materials
– year: 1990
  ident: bib13
  publication-title: Heavy Metals in the Marine Environment
– volume: 31
  start-page: 1430
  year: 2016
  end-page: 1439
  ident: bib60
  article-title: Flow injection with on-line dilution and single particle inductively coupled plasma – mass spectrometry for monitoring silver nanoparticles in seawater and in marine microorganisms
  publication-title: J. Anal. At. Spectrom.
– volume: 414
  start-page: 5671
  year: 2022
  end-page: 5681
  ident: bib16
  article-title: Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS
  publication-title: Anal. Bioanal. Chem.
– volume: 14
  start-page: 61
  year: 1982
  ident: bib53
  article-title: Seasonal and vertical variations in the chemical composition of suspended particulate matter in an oxygen-deficient fjord
  publication-title: Estuar. Coast Shelf Sci.
– volume: 117
  start-page: 31648
  year: 2020
  end-page: 31659
  ident: bib19
  article-title: Enhanced trace element mobilization by Earth's ice sheets
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– year: 2009
  ident: bib54
  article-title: Spredning Av Partikler I Overflatelaget Utenfor Engebøfjellet
– volume: 11
  year: 2018
  ident: bib1
  article-title: Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability
  publication-title: NanoImpact
– start-page: 1
  year: 2006
  ident: bib11
  publication-title: Treatise on Geochemistry. 6: the Oceans and Marine Geochemistry/Vol
– volume: 363
  year: 2019
  ident: bib23
  article-title: Natural, incidental, and engineered nanomaterials and their impacts on the Earth system
  publication-title: Science
– year: 2020
  ident: bib18
  article-title: NIST/SEMATECH E-Handbook of Statistical Methods (NIST Handbook 151)
– volume: 27
  start-page: 1825
  year: 2008
  end-page: 1851
  ident: bib28
  article-title: Nanomaterials in the environment: behavior, fate, bioavailability, and effects
  publication-title: Environ. Toxicol. Chem.
– volume: 54
  start-page: 6761
  year: 2020
  end-page: 6770
  ident: bib34
  article-title: Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 716
  year: 2019
  end-page: 728
  ident: bib22
  article-title: Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing
  publication-title: J. Anal. Atomic Spectrom.
– volume: 6
  start-page: 943
  year: 2022
  end-page: 952
  ident: bib43
  article-title: Exploring nanogeochemical environments: new insights from single particle ICP-TOFMS and AF4-ICPMS
  publication-title: ACS Earth Space Chem
– year: 2009
  ident: bib35
  article-title: Introduction to Marine Biogeochemistry
– volume: 27
  start-page: 1143
  year: 2012
  end-page: 1155
  ident: bib44
  article-title: Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle
  publication-title: J. Anal. At. Spectrom.
– year: 2019
  ident: bib46
  article-title: Using single particle ICP-MS to study occurrence and behavior of engineered, natural, and incidental nanoparticles in freshwater streams
– volume: 186
  start-page: 257
  year: 2014
  end-page: 271
  ident: bib4
  article-title: Impacts of metal and metal oxide nanoparticles on marine organisms
  publication-title: Environ. Pollut.
– volume: 10
  year: 1997
  ident: bib33
  article-title: Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations
  publication-title: Geochem. Cosmochim. Acta
– volume: 18
  year: 2011
  ident: bib2
  article-title: Matrix effects in inductively coupled plasma mass spectrometry: a review
  publication-title: Anal. Chim. Acta
– volume: 31
  start-page: 32
  year: 2012
  end-page: 49
  ident: bib26
  article-title: Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies
  publication-title: Environ. Toxicol. Chem.
– volume: 34
  start-page: 1768
  year: 2019
  end-page: 1772
  ident: bib42
  article-title: Opportunities for examining the natural nanogeochemical environment using recent advances in nanoparticle analysis
  publication-title: J. Anal. At. Spectrom.
– volume: 120
  year: 2021
  ident: bib14
  article-title: Particle size analysis of pristine food-grade titanium dioxide and E 171 in confectionery products: interlaboratory testing of a single-particle inductively coupled plasma mass spectrometry screening method and confirmation with transmission electron microscopy
  publication-title: Food Control
– volume: 1
  year: 2022
  ident: bib17
  article-title: Complex heatmap visualization
  publication-title: iMeta
– volume: 34
  start-page: 1900
  year: 2019
  end-page: 1909
  ident: bib21
  article-title: Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model
  publication-title: J. Anal. Atomic Spectrom.
– year: 2021
  ident: bib30
  article-title: A Permitted Discharge of Mining Waste to the Marine Environment - Critical Review Regarding Heavy Metals and Chemicals
– volume: 33
  start-page: 752
  year: 2018
  end-page: 761
  ident: bib61
  article-title: Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS
  publication-title: J. Anal. At. Spectrom.
– year: 2012
  ident: bib5
  publication-title: Nature's Nanostructures
– year: 2007
  ident: bib68
  article-title: Environmental Colloids and Particles: Behaviour, Separation and Characterisation
– year: 2001
  ident: bib58
  article-title: Inductively Coupled Plasma-Mass Spectrometry
– volume: 53
  start-page: 11214
  year: 2019
  end-page: 11222
  ident: bib47
  article-title: Characteristics and stability of incidental iron oxide nanoparticles during remediation of a mining-impacted stream
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 387
  year: 2014
  end-page: 392
  ident: bib63
  article-title: Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon
  publication-title: Environ. Sci. Technol. Lett.
– year: 2013
  ident: bib39
  article-title: Trace Metals in Aquatic Systems: Mason/Trace Metals in Aquatic Systems
– volume: 10
  start-page: 1039
  year: 2021
  ident: bib38
  article-title: An interactive Python-based data processing platform for single particle and single cell ICP-MS
  publication-title: J. Anal. At. Spectrom.
– volume: 20
  start-page: 1250
  year: 2005
  ident: bib49
  article-title: Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma
  publication-title: J. Anal. At. Spectrom.
– volume: 14
  start-page: 297
  year: 2013
  end-page: 336
  ident: bib6
  article-title: Iron, manganese and aluminium oxides and oxyhydroxides
  publication-title: Eur. Mineral Union Notes Mineral
– volume: 11
  start-page: 127
  year: 1996
  end-page: 133
  ident: bib20
  article-title: Abundant populations of iron and manganese sequestering bacteria in coastal water
  publication-title: Aquat. Microb. Ecol.
– year: 2022
  ident: bib7
  article-title: Aluminium in aquatic environments: abundance and ecotoxicological impacts
  publication-title: Aquat. Ecol.
– volume: 1
  start-page: 2242
  year: 2021
  end-page: 2250
  ident: bib48
  article-title: Quantifying nanoparticle associated Ti, Ce, Au, and Pd occurrence in 35 U.S. Surface waters
  publication-title: ACS EST Water
– volume: 54
  start-page: 3969
  year: 2020
  end-page: 3978
  ident: bib51
  article-title: Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besòs and ebro rivers
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 2176
  year: 1995
  end-page: 2184
  ident: bib9
  article-title: Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results
  publication-title: Environ. Sci. Technol.
– year: 2008
  ident: bib50
  article-title: Dyrelivet På Bunnen Av Førdefjorden Og Bunnsedimentenes Sammensetning
– volume: 5
  start-page: 144
  year: 2013
  ident: bib69
  article-title: ggmap: spatial visualization with ggplot2
  publication-title: R J.
– volume: 408
  start-page: 5053
  year: 2016
  end-page: 5074
  ident: bib41
  article-title: Single Particle ICP-MS: advances toward routine analysis of nanomaterials
  publication-title: Anal. Bioanal. Chem.
– reference: .
– year: 2022
  ident: bib8
  article-title: GitHub Repository for Distribution of Inorganic Nanoparticles and Trace Elements in a Norwegian Fjord
– volume: 33
  start-page: 725
  year: 2019
  end-page: 748
  ident: bib70
  article-title: Exposing the Distributions and Elemental Associations of Scavenged Particulate Phases in the Ocean Using Basin‐Scale Multi‐Element Data Sets
  publication-title: Global Biogeochem. Cycles
– volume: 55
  start-page: 187
  year: 2010
  end-page: 202
  ident: bib55
  article-title: Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions
  publication-title: Limnol. Oceanogr.
– volume: 200
  year: 2021
  ident: bib12
  article-title: Effects of mine tailing exposure on early life stages of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus)
  publication-title: Environ. Res.
– volume: 177
  year: 2021
  ident: bib27
  article-title: Optimization of instrumental parameters for improving sensitivity of single particle inductively-coupled plasma mass spectrometry analysis of gold
  publication-title: Spectrochim. Acta B Atom Spectrosc.
– volume: 18
  start-page: 209
  year: 1987
  end-page: 244
  ident: bib57
  article-title: Sampling and storage of natural water for trace metals
  publication-title: CRC Crit. Rev. Anal. Chem.
– volume: 687
  start-page: 1147
  year: 2019
  end-page: 1163
  ident: bib52
  article-title: Modeling key processes affecting Al speciation and transport in estuaries
  publication-title: Sci. Total Environ.
– start-page: 367
  year: 2002
  end-page: 404
  ident: bib65
  article-title: Marine colloids and trace metals
  publication-title: Biogeochemistry of Marine Dissolved Organic Matter
– volume: 169
  year: 2020
  ident: bib31
  article-title: About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry
  publication-title: Spectrochim. Acta B Atom Spectrosc.
– volume: 8
  year: 2020
  ident: bib15
  article-title: Nanomaterial fate in seawater: a rapid sink or intermittent stabilization?
  publication-title: Front. Environ. Sci.
– year: 1996
  ident: bib56
  article-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
– volume: 409
  start-page: 6027
  year: 2017
  end-page: 6039
  ident: bib37
  article-title: Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles
  publication-title: Anal. Bioanal. Chem.
– year: 2020
  ident: 10.1016/j.marenvres.2023.105975_bib18
– volume: 31
  start-page: 1430
  year: 2016
  ident: 10.1016/j.marenvres.2023.105975_bib60
  article-title: Flow injection with on-line dilution and single particle inductively coupled plasma – mass spectrometry for monitoring silver nanoparticles in seawater and in marine microorganisms
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C6JA00011H
– volume: 14
  start-page: 61
  year: 1982
  ident: 10.1016/j.marenvres.2023.105975_bib53
  article-title: Seasonal and vertical variations in the chemical composition of suspended particulate matter in an oxygen-deficient fjord
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/S0302-3524(82)80067-4
– volume: 169
  year: 2020
  ident: 10.1016/j.marenvres.2023.105975_bib31
  article-title: About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry
  publication-title: Spectrochim. Acta B Atom Spectrosc.
  doi: 10.1016/j.sab.2020.105883
– volume: 54
  start-page: 3969
  year: 2020
  ident: 10.1016/j.marenvres.2023.105975_bib51
  article-title: Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besòs and ebro rivers
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05996
– year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib46
– volume: 10
  start-page: 1039
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib38
  article-title: An interactive Python-based data processing platform for single particle and single cell ICP-MS
  publication-title: J. Anal. At. Spectrom.
– year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib30
– year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib29
– volume: 31
  start-page: 32
  year: 2012
  ident: 10.1016/j.marenvres.2023.105975_bib26
  article-title: Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.723
– start-page: 367
  year: 2002
  ident: 10.1016/j.marenvres.2023.105975_bib65
  article-title: Marine colloids and trace metals
– volume: 55
  start-page: 9836
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib3
  article-title: Quantification and characterization of Ti-, Ce-, and Ag-nanoparticles in Global surface waters and precipitation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c00488
– volume: 34
  start-page: 1768
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib42
  article-title: Opportunities for examining the natural nanogeochemical environment using recent advances in nanoparticle analysis
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C9JA00168A
– volume: 6
  start-page: 943
  year: 2022
  ident: 10.1016/j.marenvres.2023.105975_bib43
  article-title: Exploring nanogeochemical environments: new insights from single particle ICP-TOFMS and AF4-ICPMS
  publication-title: ACS Earth Space Chem
  doi: 10.1021/acsearthspacechem.1c00350
– year: 1996
  ident: 10.1016/j.marenvres.2023.105975_bib56
– volume: 29
  start-page: 2176
  year: 1995
  ident: 10.1016/j.marenvres.2023.105975_bib9
  article-title: Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00009a005
– volume: 38
  start-page: 85
  year: 1984
  ident: 10.1016/j.marenvres.2023.105975_bib36
  article-title: Simple exact analysis of the standardised mortality ratio
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech.38.1.85
– ident: 10.1016/j.marenvres.2023.105975_bib71
  doi: 10.1016/j.marenvres.2023.105975
– year: 2008
  ident: 10.1016/j.marenvres.2023.105975_bib50
– volume: 120
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib14
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2020.107550
– year: 2007
  ident: 10.1016/j.marenvres.2023.105975_bib68
– volume: 34
  start-page: 1900
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib21
  article-title: Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model
  publication-title: J. Anal. Atomic Spectrom.
  doi: 10.1039/C9JA00186G
– volume: I
  start-page: 684
  year: 1976
  ident: 10.1016/j.marenvres.2023.105975_bib32
  article-title: Accuracy in trace analysis : sampling
  publication-title: sample handling, analysis
– volume: 18
  year: 2011
  ident: 10.1016/j.marenvres.2023.105975_bib2
  article-title: Matrix effects in inductively coupled plasma mass spectrometry: a review
  publication-title: Anal. Chim. Acta
– volume: 33
  start-page: 752
  year: 2018
  ident: 10.1016/j.marenvres.2023.105975_bib61
  article-title: Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C7JA00402H
– volume: 18
  start-page: 209
  year: 1987
  ident: 10.1016/j.marenvres.2023.105975_bib57
  article-title: Sampling and storage of natural water for trace metals
  publication-title: CRC Crit. Rev. Anal. Chem.
  doi: 10.1080/10408348708085568
– volume: 408
  start-page: 5053
  year: 2016
  ident: 10.1016/j.marenvres.2023.105975_bib41
  article-title: Single Particle ICP-MS: advances toward routine analysis of nanomaterials
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-016-9676-8
– volume: 33
  start-page: 725
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib70
  article-title: Exposing the Distributions and Elemental Associations of Scavenged Particulate Phases in the Ocean Using Basin‐Scale Multi‐Element Data Sets
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2018GB006145
– volume: 27
  start-page: 1143
  year: 2012
  ident: 10.1016/j.marenvres.2023.105975_bib44
  article-title: Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/c2ja30073g
– volume: 55
  start-page: 187
  year: 2010
  ident: 10.1016/j.marenvres.2023.105975_bib55
  article-title: Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2010.55.1.0187
– volume: 412
  start-page: 5205
  year: 2020
  ident: 10.1016/j.marenvres.2023.105975_bib10
  article-title: Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS)
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-020-02783-6
– volume: 40
  start-page: 5
  year: 1992
  ident: 10.1016/j.marenvres.2023.105975_bib66
  article-title: Marine submicron particles
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(92)90045-C
– volume: 54
  start-page: 6761
  year: 2020
  ident: 10.1016/j.marenvres.2023.105975_bib34
  article-title: Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01189
– volume: 20
  start-page: 1250
  year: 2005
  ident: 10.1016/j.marenvres.2023.105975_bib49
  article-title: Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/b507886e
– year: 2022
  ident: 10.1016/j.marenvres.2023.105975_bib8
– year: 2001
  ident: 10.1016/j.marenvres.2023.105975_bib58
– volume: 1
  start-page: 2242
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib48
  article-title: Quantifying nanoparticle associated Ti, Ce, Au, and Pd occurrence in 35 U.S. Surface waters
  publication-title: ACS EST Water
  doi: 10.1021/acsestwater.1c00206
– volume: 69
  start-page: 9979
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib62
  article-title: Single-particle ICP–MS as a screening technique for the presence of potential inorganic nanoparticles in food
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c07363
– volume: 1
  year: 2022
  ident: 10.1016/j.marenvres.2023.105975_bib17
  article-title: Complex heatmap visualization
  publication-title: iMeta
  doi: 10.1002/imt2.43
– volume: 8
  year: 2020
  ident: 10.1016/j.marenvres.2023.105975_bib15
  article-title: Nanomaterial fate in seawater: a rapid sink or intermittent stabilization?
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2020.00151
– volume: 414
  start-page: 5671
  year: 2022
  ident: 10.1016/j.marenvres.2023.105975_bib16
  article-title: Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-022-04052-0
– year: 2022
  ident: 10.1016/j.marenvres.2023.105975_bib7
  article-title: Aluminium in aquatic environments: abundance and ecotoxicological impacts
  publication-title: Aquat. Ecol.
– year: 1990
  ident: 10.1016/j.marenvres.2023.105975_bib13
– volume: 226
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib59
  article-title: Current trends and challenges in analysis and characterization of engineered nanoparticles in seawater
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.122201
– volume: 304
  start-page: 435
  year: 1984
  ident: 10.1016/j.marenvres.2023.105975_bib67
  article-title: Mechanism of calcification in the marine alga Emiliania huxleyi
  publication-title: Phil. Trans. Roy. Soc. Lond. B
  doi: 10.1098/rstb.1984.0037
– volume: 5
  start-page: 144
  year: 2013
  ident: 10.1016/j.marenvres.2023.105975_bib69
  article-title: ggmap: spatial visualization with ggplot2
  publication-title: R J.
  doi: 10.32614/RJ-2013-014
– year: 2009
  ident: 10.1016/j.marenvres.2023.105975_bib35
– volume: 10
  year: 1997
  ident: 10.1016/j.marenvres.2023.105975_bib33
  article-title: Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations
  publication-title: Geochem. Cosmochim. Acta
– volume: 14
  start-page: 297
  year: 2013
  ident: 10.1016/j.marenvres.2023.105975_bib6
  article-title: Iron, manganese and aluminium oxides and oxyhydroxides
  publication-title: Eur. Mineral Union Notes Mineral
– volume: 34
  start-page: 716
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib22
  article-title: Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing
  publication-title: J. Anal. Atomic Spectrom.
  doi: 10.1039/C8JA00397A
– volume: 53
  start-page: 11214
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib47
  article-title: Characteristics and stability of incidental iron oxide nanoparticles during remediation of a mining-impacted stream
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03036
– volume: 409
  start-page: 6027
  year: 2017
  ident: 10.1016/j.marenvres.2023.105975_bib37
  article-title: Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0530-4
– volume: 83
  start-page: 9361
  year: 2011
  ident: 10.1016/j.marenvres.2023.105975_bib45
  article-title: Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac201952t
– volume: 687
  start-page: 1147
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib52
  article-title: Modeling key processes affecting Al speciation and transport in estuaries
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.318
– year: 2013
  ident: 10.1016/j.marenvres.2023.105975_bib39
– year: 2012
  ident: 10.1016/j.marenvres.2023.105975_bib5
– start-page: 1
  year: 2006
  ident: 10.1016/j.marenvres.2023.105975_bib11
– volume: 172
  start-page: 147
  year: 2017
  ident: 10.1016/j.marenvres.2023.105975_bib25
  article-title: Optimization of plasma sampling depth and aerosol gas flow rates for single particle inductively coupled plasma mass spectrometry analysis
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.05.051
– volume: 186
  start-page: 257
  year: 2014
  ident: 10.1016/j.marenvres.2023.105975_bib4
  article-title: Impacts of metal and metal oxide nanoparticles on marine organisms
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.11.014
– volume: 12
  start-page: 2677
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib64
  article-title: Estimation of the uncertainties related to the measurement of the size and quantities of individual silver nanoparticles in confectionery
  publication-title: Materials
  doi: 10.3390/ma12172677
– volume: 11
  year: 2018
  ident: 10.1016/j.marenvres.2023.105975_bib1
  article-title: Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability
  publication-title: NanoImpact
  doi: 10.1016/j.impact.2018.01.003
– volume: 11
  start-page: 127
  year: 1996
  ident: 10.1016/j.marenvres.2023.105975_bib20
  article-title: Abundant populations of iron and manganese sequestering bacteria in coastal water
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame011127
– volume: 33
  start-page: 1432
  year: 2018
  ident: 10.1016/j.marenvres.2023.105975_bib40
  article-title: ICP-MS for the analysis at the nanoscale – a tutorial review
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C8JA00037A
– volume: 200
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib12
  article-title: Effects of mine tailing exposure on early life stages of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus)
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111447
– year: 2009
  ident: 10.1016/j.marenvres.2023.105975_bib54
– volume: 1
  start-page: 387
  year: 2014
  ident: 10.1016/j.marenvres.2023.105975_bib63
  article-title: Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez500164v
– volume: 117
  start-page: 31648
  year: 2020
  ident: 10.1016/j.marenvres.2023.105975_bib19
  article-title: Enhanced trace element mobilization by Earth's ice sheets
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2014378117
– volume: 363
  year: 2019
  ident: 10.1016/j.marenvres.2023.105975_bib23
  article-title: Natural, incidental, and engineered nanomaterials and their impacts on the Earth system
  publication-title: Science
  doi: 10.1126/science.aau8299
– volume: 177
  year: 2021
  ident: 10.1016/j.marenvres.2023.105975_bib27
  article-title: Optimization of instrumental parameters for improving sensitivity of single particle inductively-coupled plasma mass spectrometry analysis of gold
  publication-title: Spectrochim. Acta B Atom Spectrosc.
  doi: 10.1016/j.sab.2021.106104
– volume: 238
  year: 2022
  ident: 10.1016/j.marenvres.2023.105975_bib24
  article-title: Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.123060
– volume: 27
  start-page: 1825
  year: 2008
  ident: 10.1016/j.marenvres.2023.105975_bib28
  article-title: Nanomaterials in the environment: behavior, fate, bioavailability, and effects
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/08-090.1
SSID ssj0005715
Score 2.375122
Snippet Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105975
SubjectTerms atomic absorption spectrometry
Coast
Colloids
detection limit
electron microscopy
energy-dispersive X-ray analysis
Fjord
marine environment
Metals
Nanoparticles
Sampling
Seawater
SP-ICP-MS
spatial distribution
surveys
Title Vertical distribution of inorganic nanoparticles in a Norwegian fjord
URI https://dx.doi.org/10.1016/j.marenvres.2023.105975
https://www.ncbi.nlm.nih.gov/pubmed/37086530
https://www.proquest.com/docview/2805025959
https://www.proquest.com/docview/2834213570
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9j4osgfk3nFxV87dY0ydr6JrIxFeaLk72VNEllQ7sxN8UX_3bv2nQ6UPfgQ6GUuxJy19xd88v9CDnXnPLUl4mrRMhcLqR2pa-EG4kEygmFuMO822ev1e3zm4EYVMhVeRYGYZV27S_W9Hy1tk-adjabk-GwibAk5EmH-J2TFWBPUM4D9PLGxzeYR0AtjJG6KL2E8XrGA1evUNc2kEUcOW8jBBz-HKF-y0DzSNTZIps2hXQui1Fuk4rJdsh6QSr5DndtZe9q7a9TbKBgP-OXHbJxp4zMbLPqXdJ-yMHVIKKxja5lwHLGqTPMCtYn5WQgPylRdPDckU5vPH0zj-BeTjqCEnaP9Dvt-6uua-kVXMUFm7kcqgXNpWf8VIUCUx8O-VjEaBJpjyaCgvm4DMMUIhZNWyo0iVBah4bCFcAraqSajTNzQJwUBBIZcKm05JoFid_CHVd4PTOcp7JOWuWUxsr2HkcKjKe4BJmN4oUtYrRFXNiiTryF4qRov7Fa5aK0WbzkSTEEidXKZ6WVY_jOcPNEZmY8B6HQE5AfRiL6S4ZxnzIReHWyX7jIYtQsgOJRMO_wP8M7wt8KnoWqHZPqbDo3J5AUzZLT3OtPydrl9W239wnT1gyK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6xIjSEhAaj0MG2TNpraBzbTbK3ChWVAd0LIN4sx3amopFW0IL477lLnCIkfjzsIZKV3EWWz_bdyZ_vA_hpBRNFrPPQyJSHQmob6tjIMJM5phOGcIdVtc9Rb3gufl_KyyU4aO7CEKzS7_31nl7t1v5N149mdzoedwmWRDzp6L8rsgLxAZapOpVswXL_6Hg4ekJ6JMwjGVlICs9gXtd05-oOU9t9IhIn2tuMMIcvO6nXgtDKGR1-gnUfRQb9uqMbsOTKTVipeSUfsDUwvtUePF1kQwW_km83Ye2Pcbr09ao_w-CiwlejiKVKup4EK5gUwbisiZ9MUKL8tAHS4ftAB6PJzb37izMsKK4wi92C88PB2cEw9AwLoRGSz0KBCYMVOnJxYVJJ0Y_AkCzjLM9sxHLJ0IJCp2mBTosVPZO6XBprU8fwSfAXbWiVk9LtQFCgQK4ToY3VwvIkj3t06Iq_506IQneg1wypMr78OLFg_FMNzuxKLWyhyBaqtkUHooXitK7A8b7Kr8Zm6tlkUugn3lf-0VhZ4VKj8xNduskchdJIYoiYyewtGS5ixmUSdWC7niKLXvME80fJoy__073v8HF4dnqiTo5Gx7uwSl9q5NoetGY3c_cVY6RZ_s2vgUf86A9B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertical+distribution+of+inorganic+nanoparticles+in+a+Norwegian+fjord&rft.jtitle=Marine+environmental+research&rft.au=Bruvold%2C+Are+S.&rft.au=Bienfait%2C+Andr%C3%A9+Marcel&rft.au=Ervik%2C+Torunn+Kringlen&rft.au=Loeschner%2C+Katrin&rft.date=2023-06-01&rft.issn=0141-1136&rft.volume=188&rft.spage=105975&rft_id=info:doi/10.1016%2Fj.marenvres.2023.105975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marenvres_2023_105975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1136&client=summon