A Fused Multidimensional EEG Classification Method Based on an Extreme Tree Feature Selection

When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 10
Main Authors Lin, Ruijing, Dong, Chaoyi, Ma, Pengfei, Ma, Shuang, Chen, Xiaoyan, Liu, Huanzi
Format Journal Article
LanguageEnglish
Published New York Hindawi 08.08.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/7609196

Cover

Loading…
Abstract When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree feature selection (FMCM-ETFS) is proposed for discerning motor imagery EEG tasks. First, the EEG signal was filtered by a Butterworth filter for preprocessing. Second, C3, C4, and CZ channels were selected to extract time-frequency domain and spatial domain features using autoregressive (AR), common spatial pattern (CSP), and discrete wavelet transform (DWT). The extracted features were fused for a further feature elimination. Then, the features were selected using three feature selection methods: recursive feature elimination (RFE), principal component analysis method (PCA), and extreme trees (ET). The selected feature vectors were classified using support vector machines (SVM). Finally, a total of twelve subjects’ EEG data from Inner Mongolia University of Technology (IMUT data), the 2nd BCI competition in 2003, and the 4th BCI competition in 2008 were employed to show the effectiveness of this proposed FMCM-ETFS method. The results show that the classification accuracy using the multidimensional fused feature extraction (AR + CSP + DWT) is 3%–20% higher than those using the aforementioned three single feature extractions (AR, CSP, and DWT). Extreme trees (ET), which is a sort of tree-based model method, outperforms RFE and PCA by 1%–9% in term of classification accuracies, when these three methods were applied to the procedure of feature extraction, respectively.
AbstractList When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree feature selection (FMCM-ETFS) is proposed for discerning motor imagery EEG tasks. First, the EEG signal was filtered by a Butterworth filter for preprocessing. Second, C3, C4, and CZ channels were selected to extract time-frequency domain and spatial domain features using autoregressive (AR), common spatial pattern (CSP), and discrete wavelet transform (DWT). The extracted features were fused for a further feature elimination. Then, the features were selected using three feature selection methods: recursive feature elimination (RFE), principal component analysis method (PCA), and extreme trees (ET). The selected feature vectors were classified using support vector machines (SVM). Finally, a total of twelve subjects’ EEG data from Inner Mongolia University of Technology (IMUT data), the 2nd BCI competition in 2003, and the 4th BCI competition in 2008 were employed to show the effectiveness of this proposed FMCM-ETFS method. The results show that the classification accuracy using the multidimensional fused feature extraction (AR + CSP + DWT) is 3%–20% higher than those using the aforementioned three single feature extractions (AR, CSP, and DWT). Extreme trees (ET), which is a sort of tree-based model method, outperforms RFE and PCA by 1%–9% in term of classification accuracies, when these three methods were applied to the procedure of feature extraction, respectively.
When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree feature selection (FMCM-ETFS) is proposed for discerning motor imagery EEG tasks. First, the EEG signal was filtered by a Butterworth filter for preprocessing. Second, C3, C4, and CZ channels were selected to extract time-frequency domain and spatial domain features using autoregressive (AR), common spatial pattern (CSP), and discrete wavelet transform (DWT). The extracted features were fused for a further feature elimination. Then, the features were selected using three feature selection methods: recursive feature elimination (RFE), principal component analysis method (PCA), and extreme trees (ET). The selected feature vectors were classified using support vector machines (SVM). Finally, a total of twelve subjects' EEG data from Inner Mongolia University of Technology (IMUT data), the 2nd BCI competition in 2003, and the 4th BCI competition in 2008 were employed to show the effectiveness of this proposed FMCM-ETFS method. The results show that the classification accuracy using the multidimensional fused feature extraction (AR + CSP + DWT) is 3%-20% higher than those using the aforementioned three single feature extractions (AR, CSP, and DWT). Extreme trees (ET), which is a sort of tree-based model method, outperforms RFE and PCA by 1%-9% in term of classification accuracies, when these three methods were applied to the procedure of feature extraction, respectively.When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree feature selection (FMCM-ETFS) is proposed for discerning motor imagery EEG tasks. First, the EEG signal was filtered by a Butterworth filter for preprocessing. Second, C3, C4, and CZ channels were selected to extract time-frequency domain and spatial domain features using autoregressive (AR), common spatial pattern (CSP), and discrete wavelet transform (DWT). The extracted features were fused for a further feature elimination. Then, the features were selected using three feature selection methods: recursive feature elimination (RFE), principal component analysis method (PCA), and extreme trees (ET). The selected feature vectors were classified using support vector machines (SVM). Finally, a total of twelve subjects' EEG data from Inner Mongolia University of Technology (IMUT data), the 2nd BCI competition in 2003, and the 4th BCI competition in 2008 were employed to show the effectiveness of this proposed FMCM-ETFS method. The results show that the classification accuracy using the multidimensional fused feature extraction (AR + CSP + DWT) is 3%-20% higher than those using the aforementioned three single feature extractions (AR, CSP, and DWT). Extreme trees (ET), which is a sort of tree-based model method, outperforms RFE and PCA by 1%-9% in term of classification accuracies, when these three methods were applied to the procedure of feature extraction, respectively.
Audience Academic
Author Ma, Shuang
Lin, Ruijing
Chen, Xiaoyan
Ma, Pengfei
Liu, Huanzi
Dong, Chaoyi
AuthorAffiliation 2 Intelligent Energy Technology and Equipment Engineering Research Centre of Colleges and Universities in Inner Mongolia Autonomous Region, Inner Mongolia, Hohhot 010051, China
1 College of Electric Power, Inner Mongolia University of Technology, Hohhot 0100801, China
AuthorAffiliation_xml – name: 1 College of Electric Power, Inner Mongolia University of Technology, Hohhot 0100801, China
– name: 2 Intelligent Energy Technology and Equipment Engineering Research Centre of Colleges and Universities in Inner Mongolia Autonomous Region, Inner Mongolia, Hohhot 010051, China
Author_xml – sequence: 1
  givenname: Ruijing
  orcidid: 0000-0002-7271-5430
  surname: Lin
  fullname: Lin, Ruijing
  organization: College of Electric PowerInner Mongolia University of TechnologyHohhot 0100801Chinaimut.edu.cn
– sequence: 2
  givenname: Chaoyi
  orcidid: 0000-0001-8433-8903
  surname: Dong
  fullname: Dong, Chaoyi
  organization: College of Electric PowerInner Mongolia University of TechnologyHohhot 0100801Chinaimut.edu.cn
– sequence: 3
  givenname: Pengfei
  orcidid: 0000-0003-1497-5100
  surname: Ma
  fullname: Ma, Pengfei
  organization: College of Electric PowerInner Mongolia University of TechnologyHohhot 0100801Chinaimut.edu.cn
– sequence: 4
  givenname: Shuang
  orcidid: 0000-0001-7976-9071
  surname: Ma
  fullname: Ma, Shuang
  organization: College of Electric PowerInner Mongolia University of TechnologyHohhot 0100801Chinaimut.edu.cn
– sequence: 5
  givenname: Xiaoyan
  orcidid: 0000-0002-6127-959X
  surname: Chen
  fullname: Chen, Xiaoyan
  organization: College of Electric PowerInner Mongolia University of TechnologyHohhot 0100801Chinaimut.edu.cn
– sequence: 6
  givenname: Huanzi
  orcidid: 0000-0002-0846-0664
  surname: Liu
  fullname: Liu, Huanzi
  organization: College of Electric PowerInner Mongolia University of TechnologyHohhot 0100801Chinaimut.edu.cn
BookMark eNp9kUtvEzEUhS1URB-w4wdYYoNEQ_0YP2aDlEZJQWrFgrJEluO507hy7GLPAP33eJqogkrgjV_fOffa5xgdxBQBodeUvKdUiDNGGDtTkrS0lc_QEZVazQRT_OBxLcUhOi7llhChBGEv0CEXrdJ1HKFvc7waC3T4agyD7_wWYvEp2oCXywu8CLYU33tnh3qIr2DYpA6f20lQ9zbi5a8hwxbwdQbAK7DDmAF_gQBuUrxEz3sbCrzazyfo62p5vfg4u_x88Wkxv5y5RvBh1rBWNFJbZjWhireau07Cmq1Vv1a0cdIqZynRnDoLWmpOpOU9ENZVvu8JP0Efdr5343oLnYM4ZBvMXfZbm-9Nst78fRP9xtykH6blSmkhq8HbvUFO30cog9n64iAEGyGNxTBFaltCt01F3zxBb9OY6489UI0SbSP-oG5sAONjn2pdN5maeX2SaDmVolKnO8rlVEqG_rFlSsyUrpnSNft0K86e4M4PD9FUcx_-JXq3E2187OxP__8SvwGCbrKm
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3540202
crossref_primary_10_1016_j_engappai_2024_108056
crossref_primary_10_3389_fnins_2024_1306283
crossref_primary_10_3390_s24010149
Cites_doi 10.1016/s1388-2457(98)00038-8
10.1109/MEMB.2009.935475
10.3390/s19224878
10.1155/2022/4496992
10.1016/j.bspc.2021.102763
10.1007/bf00994018
10.1016/j.neunet.2018.02.011
10.1016/0169-7439(87)80084-9
10.1109/tbme.2012.2204747
10.1109/tre.2000.847807
10.3390/s120201211
10.1109/tnsre.2021.3125386
10.1109/86.895946
10.1007/s10994-006-6226-1
10.1109/tifs.2015.2481870
10.1142/s0129065713500135
10.1023/a:1012487302797
10.1109/tnsre.2007.906956
10.1038/nmeth.4346
10.1016/0013-4694(92)90133-3
ContentType Journal Article
Copyright Copyright © 2022 Ruijing Lin et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Ruijing Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Ruijing Lin et al. 2022
Copyright_xml – notice: Copyright © 2022 Ruijing Lin et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Ruijing Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Ruijing Lin et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2022/7609196
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest)
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Dourado, António
Editor_xml – sequence: 1
  givenname: António
  surname: Dourado
  fullname: Dourado, António
EndPage 10
ExternalDocumentID PMC9377856
A714593165
10_1155_2022_7609196
GrantInformation_xml – fundername: Natural Science Foundation of Inner Mongolia
  grantid: 2016JQ07; 2020MS06020; 2021MS06017
– fundername: Inner Mongolia Scientific and Technological Achievements Transformation Project
  grantid: CGZH2018129
– fundername: National Natural Science Foundation of China
  grantid: 61364018; 61863029
– fundername: Science and Technology Plan Project of the Inner Mongolia Autonomous Region (Key Technology Project)
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAYXX
ACCMX
ACUHS
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c453t-4295468a2a80173983cd6eb2b7fb714c6a7ca10831cae868306a3fe02d801ff03
IEDL.DBID 8FG
ISSN 1687-5265
1687-5273
IngestDate Thu Aug 21 18:11:28 EDT 2025
Fri Jul 11 04:22:57 EDT 2025
Fri Jul 25 09:29:06 EDT 2025
Tue Jun 17 22:02:43 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 01:39:09 EDT 2025
Sun Jun 02 18:51:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-4295468a2a80173983cd6eb2b7fb714c6a7ca10831cae868306a3fe02d801ff03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: António Dourado
ORCID 0000-0003-1497-5100
0000-0002-0846-0664
0000-0002-7271-5430
0000-0001-8433-8903
0000-0002-6127-959X
0000-0001-7976-9071
OpenAccessLink https://www.proquest.com/docview/2704759454?pq-origsite=%requestingapplication%
PMID 35978888
PQID 2704759454
PQPubID 237303
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9377856
proquest_miscellaneous_2703985894
proquest_journals_2704759454
gale_infotracmisc_A714593165
crossref_primary_10_1155_2022_7609196
crossref_citationtrail_10_1155_2022_7609196
hindawi_primary_10_1155_2022_7609196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-08
PublicationDateYYYYMMDD 2022-08-08
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-08
  day: 08
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References X. Gu (13) 2021; 42
22
24
25
26
27
28
J. Wang (8) 2016; 42
L. Liu (9) 2018; 17
10
11
B. Liu (12) 2020; 51
14
16
17
18
S. Liu (23)
L. Wu (15) 2017; 36
19
J. R. Millán (3) 2010; 29
1
2
4
S. Ma (21)
6
7
R. Moein (29) 2021; 68
Y. Wang (5)
20
References_xml – ident: 19
  doi: 10.1016/s1388-2457(98)00038-8
– volume: 29
  start-page: 16
  year: 2010
  ident: 3
  article-title: Invasive or noninvasive: understanding brain-machine interface technology
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/MEMB.2009.935475
– ident: 10
  doi: 10.3390/s19224878
– ident: 18
  doi: 10.1155/2022/4496992
– ident: 4
  doi: 10.1016/j.bspc.2021.102763
– ident: 28
  doi: 10.1007/bf00994018
– ident: 11
  doi: 10.1016/j.neunet.2018.02.011
– volume: 68
  year: 2021
  ident: 29
  article-title: Feature fusion for improving performance of motor imagery brain-computer interface system
  publication-title: Biomedical Signal Processing and Control
– volume: 42
  start-page: 1215
  issue: 08
  year: 2016
  ident: 8
  article-title: Multi-channel EEG feature extraction using hierarchical vector autoregression
  publication-title: Acta Automatica Sinica
– ident: 25
  doi: 10.1016/0169-7439(87)80084-9
– ident: 26
  doi: 10.1109/tbme.2012.2204747
– ident: 1
  doi: 10.1109/tre.2000.847807
– ident: 2
  doi: 10.3390/s120201211
– ident: 14
  doi: 10.1109/tnsre.2021.3125386
– ident: 20
  doi: 10.1109/86.895946
– volume: 17
  start-page: 7
  issue: 03
  year: 2018
  ident: 9
  article-title: Feature extraction of EEG in motion imagery based on phase synchronization and AR
  publication-title: Software guide
– ident: 27
  doi: 10.1007/s10994-006-6226-1
– volume: 51
  start-page: 2855
  issue: 10
  year: 2020
  ident: 12
  article-title: A feature extraction and classification algorithm based on PSO-CSP-SVM for motor imagery EEG signals
  publication-title: Journal of Central South University (Science and Technology)
– volume: 36
  start-page: 224
  issue: 3
  year: 2017
  ident: 15
  article-title: The comparison of EEG feature extraction of motor imagery between CSP algorithm and wavelet packet analysis
  publication-title: Journal of Biomedical Engineering Research
– ident: 17
  doi: 10.1109/tifs.2015.2481870
– ident: 7
  doi: 10.1142/s0129065713500135
– ident: 22
  doi: 10.1023/a:1012487302797
– start-page: 115
  ident: 23
  article-title: Within-stimulus Emotion Recognition May Inflate the Classification Accuracies Based on EEG signals
– ident: 16
  doi: 10.1109/tnsre.2007.906956
– ident: 24
  doi: 10.1038/nmeth.4346
– ident: 6
  doi: 10.1016/0013-4694(92)90133-3
– start-page: 6291
  ident: 21
  article-title: Classifying motor-imagination signals in brain-computer interface based on feature extraction of parametric AR model
– start-page: 5059
  ident: 5
  article-title: Implementation of a brain-computer interface based on three states of motor imagery
– volume: 42
  start-page: 100
  issue: 04
  year: 2021
  ident: 13
  article-title: EEG signal classification based on typical spatial pattern and convolutional neural network
  publication-title: Laser Journal
SSID ssj0057502
Score 2.3148937
Snippet When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG)...
SourceID pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Analysis
Autoregressive processes
Brain
Butterworth filters
Classification
Competition
Computer applications
Discrete Wavelet Transform
EEG
Electroencephalography
Feature extraction
Feature selection
Frequency dependence
Human-computer interface
Imagery
Implants
Lagrange multiplier
Mental task performance
Methods
Principal components analysis
Signal to noise ratio
Support vector machines
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA4qCL6IOsXplAjqixTXNr_6OGVzCPNFhb1ISdOEDbST_UD9773LumEV0ceSS1ryJb3v0ut3hJw6p5WOQhNENtQBM00XAKnPAmeUy4AyJ8zij8K9O9F9ZLd93i9FkiY_P-GDt8PwPLqUAhxbIlbJKiwwDMq7_cULFwjHPLVQwH5BtfdFfvu3vhXPU75_1wcY-b4NK_yymh35xd10tshmyRNpaw7sNlmxxQ6ptQqIkV8-6Dn1mZv-SLxGnlq0M5vYnPq_aXPU659rbdB2-4b6speYEOQxoD1fMppeaewA17qg7fcpnhLSh7G1FDnhbGzpvS-QAz12yWOn_XDdDcqyCYFhPJ4GDD_dCUBAg_eRcaJikwsIoDPpMhkyI7Q0OsQKY0ZbJRQEDTp2thnlYO9cM94ja8WosPuEArzOQciTA2IMqFbiVBg7DbPqpAMuUCcXiylNTakpjqUtnlMfW3CeIgBpCUCdnC2tX-daGr_YNRCdFLcYjGZgwZu0BY_OkzgUvE5OS9T-GmUBaVruy0kaySYKHDLO6uRk2Yw3wFyzwo5m3gYmjasEbGRlKSzvh5rc1ZZiOPDa3MD2pOLi4H_PeEg28NInFKoGWZuOZ_YISM40O_ZL_BPP-PO5
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS9xAEB6sIvRFWq301MoK6ktJe0n2Vx6KXMudIpwveuBLCZvNLgoa9bxD_e87s5ccRqo-hsxmw36zmW-SyXwAu94bbZLYRomLTcRt10dI6ovIW-0LpMwZd_Sj8PBEHo348bk4X4BGbbRewPv_pnakJzUaX_14vHs6wA3_K2x4ISh_T34qiZEvkx9gCWOSIhGHIZ9_T0BOMqs-lLilqCF8UwL_YnQrONWP6OULSo4fLlsUtF1A-SwiDT7BSk0lWW-G_WdYcNUqrPUqTKOvn9g-C8Wd4a35GvztscH03pUs_HBbUkv_WTsO1u8fsqCMSTVDASY2DKrS7LehAXhsKtZ_nNCLRHY2do4RbZyOHTsNGjo44guMBv2zP0dRrawQWS7SScTp655EkAwGKJVmOrWlxBy7UL5QMbfSKGtiEiGzxmmpMa8wqXfdpER777vpOixWN5X7Cgw9wHvMikoElSMby7yOU29wVb3ySBc68L1Z0tzWbcdJ_eIqD-mHEDkBkNcAdGBvbn07a7fxit0WoZOTX-DVLO4Jm_fw1kWWxlJ0YLdG7b2rNJDmjefliepSD0QueAd25qdpAipHq9zNNNjgogmdoY1qucJ8Pmrb3T5TXV6E9t1ICJUWcuPtyTfhI91qqDXUW7A4GU_dN-Q_k2I7uPY_6B__uA
  priority: 102
  providerName: Scholars Portal
Title A Fused Multidimensional EEG Classification Method Based on an Extreme Tree Feature Selection
URI https://dx.doi.org/10.1155/2022/7609196
https://www.proquest.com/docview/2704759454
https://www.proquest.com/docview/2703985894
https://pubmed.ncbi.nlm.nih.gov/PMC9377856
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swED7WlsFeyrZuLG0XNOj2MkxjW7Lkp5IOJ2GQMroW_DKMLEu0sDltfrDtv--dImfNw7YXg_HZMvok3Xfy-TuAE-e00klsosTGOuJm4CIk9XXkjHI1UuacW_pReHqRTa7551KUYcNtEdIquzXRL9TNzNAe-WkiByRNxwU_u7uPqGoUfV0NJTR2YC9GT0MjXI3G3UqMTGSdc5jhRCIZ-C7xXQiK-ZNTmaG3JLn-Ry4pLMxPbygk_nm7RTy30yYf-aHRc9gPBJIN14i_gCe2fQkHwxaD5x-_2QfmUzr9XvkBfBuy0WphG-Z_s21IyH8twsGKYsx8PUzKFPLgsKmvJc3ONd2A57plxa8lbR-yq7m1jMjiam7ZV185B-94Bdej4urTJAr1FCLDRbqMOH3TyxAajW5JprlKTZNhZF1LV8uYm0xLo2MqPWa0VZnCaEKnzg6SBu2dG6SvYbedtfYNMMTdOYyFGoSSIwfLnYpTp7FXnXRIEnrwsevSygSxcap58b3yQYcQFQFQBQB68H5jfbcW2fiL3TGhU9Hcw6cZnAmmGuKrizyNM9GDk4Da_57SQVqFCbuo_gyvHrzbXKYGKAmttbOVt8FOEypHG7k1FDbtkVj39pX29saLdiMNlEpkh_9u_Aie0av6DEN1DLvL-cq-RdazrPuwI0vZ9wO8D3vnxcWXSzwblzEep1zh8XJSPgAmNgNm
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvCCiILQWM1HJBUfNy7BwqtMAuW9rtha20F2Qcx1YrtdmyD5X-qf5GZpxk6R6AU49RJrblGXu-ccbzAew4p6WOIxPENtJBakIXIKgvAmekKxAy56mli8LD42xwkn4d8_Ea3LR3YSitst0T_UZdTgydke_FIqTSdClPP1z-DIg1iv6uthQatVkc2usrDNlm-wefUb-7cdzvjT4NgoZVIDApT-ZBSn-2Mhygxs1ZJLlMTJlhfFkIV4goNZkWRkdEwGW0lZlETK0TZ8O4RHnnwgTbvQf30fGGlEIoxssAD5FPneOY4cKlsvNtoj3ndMYQ74kMvTPRA9xygY0jeHBKIfjV2QrQXU3TvOX3-o_hUQNYWbe2sCewZqunsNmtMFi_uGbvmE8h9Wfzm_C9y_qLmS2Zv9ZbEnFAXfSD9XpfmOffpMwkbwxs6Lmr2UdNH-Czrljv15yOK9loai0jcLqYWvbNM_XgF8_g5E5m-jmsV5PKvgCGduYcxl4lmk6KmC93Mkqcxll1wiEo6cD7dkqVaYqbE8fGufJBDueKFKAaBXRgdyl9WRf1-IvcNmlH0VrH1gyuPKO6OHSeJ1HGO7DTaO1_rbQqVc0GMVN_zLkDb5evqQNKeqvsZOFlcNK4zFFGrJjCsj8qDr76pjo79UXCEXYKybOtf3f-Bh4ORsMjdXRwfPgSNmjYPrtRbsP6fLqwrxBxzYvX3swZ_LjrdfUbutQ50A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXBBTEQilGarmgaDeJH8kBoW27S0tphUQr7QW5jmOrlSBb9qHSv8av64yTLN0DcOoximNbnhnPN854PoBN701mkthGiYtNxG3PRwjqi8jbzBcImXPu6KLw4ZHcO-GfRmK0Ar_buzCUVtnuiWGjLseWzsi7iepRaToueNc3aRFfdocfLn5GxCBFf1pbOo1aRQ7c1SWGb9P3-7so660kGQ6Od_aihmEgslyks4jTXy6JkzW4Uas0z1JbSow1C-ULFXMrjbImJjIua1wmM8TXJvWul5TY3vteiv3egbsqRbeJtqRGi2APUVCd7yjRiKkEfZt0LwSdNyRdJdFTE1XADXfYOIV7ZxSOX54vgd7llM0bPnD4CB424JX1a217DCuuegJr_QoD9x9X7C0L6aThnH4NvvXZcD51JQtXfEsiEagLgLDB4CMLXJyUpRQUgx0GHmu2begDfDYVG_ya0dElO544xwiozieOfQ2sPfjFUzi5lZV-BqvVuHLPgaHOeY9xWIlqxBH_5T6LU29wVb3yCFA68K5dUm2bQufEt_Fdh4BHCE0C0I0AOrC1aH1RF_j4S7t1ko4mu8feLFqh1X2cusjTWIoObDZS-18vrUh1s1lM9R_V7sCbxWsagBLgKjeehza4aCLLsY1aUoXFeFQofPlNdX4WCoYjBFWZkC_-PfhruI8WpT_vHx28hAc065DomK3D6mwyd68QfM2KjaDlDE5v26yuAYHnPgY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fused+Multidimensional+EEG+Classification+Method+Based+on+an+Extreme+Tree+Feature+Selection&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Lin%2C+Ruijing&rft.au=Dong%2C+Chaoyi&rft.au=Ma%2C+Pengfei&rft.au=Ma%2C+Shuang&rft.date=2022-08-08&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F7609196&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon