Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy
Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grai...
Saved in:
Published in | Nature communications Vol. 6; no. 1; p. 6160 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.01.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu–Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm
2
by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm
2
, approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.
High nucleation density has thus far limited the quality and grain size of CVD-grown hexagonal boron nitride. Here, by optimizing the Ni ratio in Cu–Ni substrates, the authors successfully reduce nucleation density and report single-crystal hexagonal boron nitride grains up to 7500 μm
2
. |
---|---|
AbstractList | Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm(2) by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm(2), approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications. Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm2 , approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications. Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm(2) by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm(2), approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm(2) by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm(2), approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications. Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu–Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm 2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm 2 , approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications. High nucleation density has thus far limited the quality and grain size of CVD-grown hexagonal boron nitride. Here, by optimizing the Ni ratio in Cu–Ni substrates, the authors successfully reduce nucleation density and report single-crystal hexagonal boron nitride grains up to 7500 μm 2 . |
ArticleNumber | 6160 |
Author | Wang, Huishan Wang, Haomin Yuan, Qinghong Jiang, Mianheng Wu, Tianru Lu, Guangyuan Xie, Xiaoming Ding, Feng |
Author_xml | – sequence: 1 givenname: Guangyuan surname: Lu fullname: Lu, Guangyuan organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences – sequence: 2 givenname: Tianru surname: Wu fullname: Wu, Tianru organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences – sequence: 3 givenname: Qinghong surname: Yuan fullname: Yuan, Qinghong organization: Department of Physics, East China Normal University – sequence: 4 givenname: Huishan surname: Wang fullname: Wang, Huishan organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, School of Physics and Electronics, Central South University – sequence: 5 givenname: Haomin surname: Wang fullname: Wang, Haomin organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences – sequence: 6 givenname: Feng surname: Ding fullname: Ding, Feng organization: Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon – sequence: 7 givenname: Xiaoming surname: Xie fullname: Xie, Xiaoming email: xmxie@mail.sim.ac.cn organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, School of Physical Science and Technology, Shanghai Tech University – sequence: 8 givenname: Mianheng surname: Jiang fullname: Jiang, Mianheng organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, School of Physical Science and Technology, Shanghai Tech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25606802$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c1KxDAQB_Agiq6rFx9ACl5EqSZN02aPsvgFiyLquWTTSY2kyZq04N58B9_QJzHL-oWaS-bw-w_JzCZatc4CQjsEHxFM-bGVrm1DSQq8ggYZzklKyoyu_qg30HYIjzgeOiI8z9fRRsYKXHCcDdDN7dx2DxB0SJxKjPANJEHbxkAq_Tx0wiQP8CwaZ2M1dd7ZxOrO6xqSxgttY8wm4_7t5fVKJ8IYN99Ca0qYANsf9xDdn53ejS_SyfX55fhkksqc0S6lNVakGPFcccKmwDhndcaAFYozJSkdQUkx46QGAryEWkyxUnTEGatFVkhJh2h_2Xfm3VMPoataHSQYIyy4PlSkYFmOMSc00r1f9NH1Pv5oofISswxTEtXuh-qnLdTVzOtW-Hn1OawIDpZAeheCB_VFCK4Wy6i-lxEx_oWl7kSnne3i3Mz_kcNlJMS-tgH_45l_9TtvYJwm |
CitedBy_id | crossref_primary_10_1021_acsnano_9b08221 crossref_primary_10_1038_s41598_017_14663_8 crossref_primary_10_1002_pssr_202000473 crossref_primary_10_1002_adma_201800865 crossref_primary_10_1038_s41563_019_0321_8 crossref_primary_10_1038_s41586_021_03488_1 crossref_primary_10_1021_acs_jpcc_2c01707 crossref_primary_10_1039_D2TC01004F crossref_primary_10_1039_C9NR03525G crossref_primary_10_1093_oxfmat_itac004 crossref_primary_10_9729_AM_2016_46_4_217 crossref_primary_10_1016_j_diamond_2025_112082 crossref_primary_10_1007_s11664_023_10433_7 crossref_primary_10_1016_j_carbon_2019_06_040 crossref_primary_10_3788_gzxb20245307_0753307 crossref_primary_10_1021_acs_cgd_2c01545 crossref_primary_10_1021_acs_cgd_9b00811 crossref_primary_10_1002_smll_201502049 crossref_primary_10_1016_j_porgcoat_2023_107990 crossref_primary_10_1080_09506608_2017_1322833 crossref_primary_10_3390_app11104599 crossref_primary_10_1039_D2NH00353H crossref_primary_10_1002_smll_201805188 crossref_primary_10_1021_acs_chemmater_2c03568 crossref_primary_10_1021_prechem_3c00122 crossref_primary_10_1039_C7QM00100B crossref_primary_10_1021_acs_nanolett_5b03075 crossref_primary_10_1038_s41557_019_0290_1 crossref_primary_10_1016_j_jmst_2022_04_032 crossref_primary_10_1039_C8CS00167G crossref_primary_10_1007_s40820_020_0402_x crossref_primary_10_1002_adma_202100185 crossref_primary_10_1021_acs_jpcc_1c09334 crossref_primary_10_1021_acsnano_5b06254 crossref_primary_10_1016_j_nanoen_2021_106661 crossref_primary_10_1007_s40843_019_9419_0 crossref_primary_10_1002_advs_201700076 crossref_primary_10_1002_adma_202108258 crossref_primary_10_1103_PhysRevMaterials_3_014004 crossref_primary_10_1039_D1NR04034K crossref_primary_10_1063_5_0040902 crossref_primary_10_1016_j_mattod_2017_04_027 crossref_primary_10_1021_acs_nanolett_6b01459 crossref_primary_10_1002_smll_201600053 crossref_primary_10_1039_C7TC04300G crossref_primary_10_7498_aps_68_20191036 crossref_primary_10_1016_j_cej_2021_133740 crossref_primary_10_1039_C9TA12293A crossref_primary_10_1557_jmr_2016_82 crossref_primary_10_1016_j_rinp_2022_105404 crossref_primary_10_1021_acs_nanolett_5b04874 crossref_primary_10_1038_natrevmats_2016_42 crossref_primary_10_1038_srep45584 crossref_primary_10_1103_PhysRevLett_120_106403 crossref_primary_10_1021_acsanm_9b02315 crossref_primary_10_1002_smll_201800072 crossref_primary_10_1039_D1NR06004J crossref_primary_10_1002_aelm_201800143 crossref_primary_10_1039_C7NR07058F crossref_primary_10_1039_D1TC01392K crossref_primary_10_1016_j_jallcom_2022_167303 crossref_primary_10_1016_j_jcis_2024_12_200 crossref_primary_10_1016_j_rser_2022_112910 crossref_primary_10_1016_j_nantod_2021_101338 crossref_primary_10_1016_j_pcrysgrow_2016_04_008 crossref_primary_10_1021_acsaelm_2c01083 crossref_primary_10_1021_acsami_1c22626 crossref_primary_10_1103_PhysRevB_101_075427 crossref_primary_10_1002_aelm_202000059 crossref_primary_10_1002_adma_201801600 crossref_primary_10_1016_j_corsci_2024_112501 crossref_primary_10_1016_j_pcrysgrow_2021_100522 crossref_primary_10_1021_acsanm_1c04178 crossref_primary_10_1002_anie_201907773 crossref_primary_10_1016_j_compositesa_2023_107533 crossref_primary_10_1109_TED_2022_3220483 crossref_primary_10_1016_j_porgcoat_2023_107660 crossref_primary_10_1063_1_5100495 crossref_primary_10_1016_j_compositesb_2022_109710 crossref_primary_10_1021_acs_iecr_9b05869 crossref_primary_10_1021_acsnano_0c03558 crossref_primary_10_1021_acsphotonics_9b00667 crossref_primary_10_1016_j_elecom_2019_106563 crossref_primary_10_1039_D0NR07330J crossref_primary_10_1088_1361_648X_ac8132 crossref_primary_10_3390_cryst6050055 crossref_primary_10_1038_s41699_024_00519_z crossref_primary_10_1038_srep34474 crossref_primary_10_1126_sciadv_aat2390 crossref_primary_10_1002_adma_201702206 crossref_primary_10_1002_aelm_201900979 crossref_primary_10_1364_OME_7_001463 crossref_primary_10_1021_acsnano_6b08315 crossref_primary_10_1039_C8NR10291K crossref_primary_10_1088_2053_1583_aa6562 crossref_primary_10_1021_acsami_5b10978 crossref_primary_10_1039_C8TC05345F crossref_primary_10_1016_j_nanoms_2021_03_002 crossref_primary_10_1002_admi_202200610 crossref_primary_10_1039_C6CC02868C crossref_primary_10_1016_j_mee_2016_06_015 crossref_primary_10_1039_C8TA04618B crossref_primary_10_1007_s10853_019_03437_4 crossref_primary_10_1007_s11426_019_9477_y crossref_primary_10_1039_C5NR08036C crossref_primary_10_1021_acs_cgd_2c00880 crossref_primary_10_1364_OE_26_023031 crossref_primary_10_1002_ange_201710293 crossref_primary_10_1021_acsnano_7b04841 crossref_primary_10_1103_PhysRevB_98_134108 crossref_primary_10_1002_admi_202100447 crossref_primary_10_1016_j_cap_2016_03_025 crossref_primary_10_1002_adma_201703549 crossref_primary_10_1016_j_vacuum_2023_112126 crossref_primary_10_1002_adma_202207901 crossref_primary_10_1039_C6TC04345C crossref_primary_10_1021_acs_chemmater_6b00114 crossref_primary_10_1038_s41699_017_0020_8 crossref_primary_10_1016_j_physe_2017_04_025 crossref_primary_10_1002_adma_201801583 crossref_primary_10_1002_adma_202103656 crossref_primary_10_1002_adom_201901326 crossref_primary_10_1016_j_jcrysgro_2023_127088 crossref_primary_10_1038_s41586_019_1226_z crossref_primary_10_1007_s12274_015_0816_9 crossref_primary_10_1021_acs_chemmater_4c00582 crossref_primary_10_1002_adma_202000769 crossref_primary_10_1063_1_5011120 crossref_primary_10_1002_smll_201604179 crossref_primary_10_1088_2053_1583_ab1783 crossref_primary_10_1038_s41467_022_30762_1 crossref_primary_10_1002_adfm_202003301 crossref_primary_10_1039_C5CS00869G crossref_primary_10_1088_1361_648X_aac89f crossref_primary_10_1002_eem2_12159 crossref_primary_10_1039_D1CP05957B crossref_primary_10_1016_j_carbon_2017_04_055 crossref_primary_10_1016_j_mtnano_2021_100129 crossref_primary_10_34133_2019_2763704 crossref_primary_10_7498_aps_72_20230887 crossref_primary_10_1021_acsami_7b08717 crossref_primary_10_1002_aelm_201500223 crossref_primary_10_1021_acs_nanolett_8b05034 crossref_primary_10_1039_C7CE01846K crossref_primary_10_1038_s41699_024_00486_5 crossref_primary_10_1002_ange_201907773 crossref_primary_10_1016_j_mtadv_2023_100451 crossref_primary_10_1088_2053_1583_ac2e59 crossref_primary_10_1021_acsnano_8b03055 crossref_primary_10_1002_admi_201800662 crossref_primary_10_1088_2053_1583_ada045 crossref_primary_10_1039_C6CS00424E crossref_primary_10_3390_coatings9020133 crossref_primary_10_1039_C7NR02553J crossref_primary_10_1021_acs_chemmater_7b01285 crossref_primary_10_1002_anie_201710293 crossref_primary_10_1088_1361_6528_aaff19 crossref_primary_10_1155_2019_2763704 crossref_primary_10_1021_acsnano_6b04547 crossref_primary_10_1039_D1NR06045G crossref_primary_10_1016_j_apsusc_2017_04_031 crossref_primary_10_1016_j_jallcom_2016_07_117 crossref_primary_10_1021_acs_langmuir_4c00272 crossref_primary_10_1063_5_0021093 crossref_primary_10_1088_2053_1583_aa8d8b crossref_primary_10_1016_j_carbon_2024_118836 crossref_primary_10_1142_S0218625X21400059 crossref_primary_10_1021_acs_accounts_9b00643 crossref_primary_10_3390_cryst8020070 crossref_primary_10_1016_j_physb_2024_416103 crossref_primary_10_1021_acs_chemmater_5b03607 crossref_primary_10_1021_acs_chemmater_0c03549 crossref_primary_10_1038_s41535_017_0022_y crossref_primary_10_1016_j_saa_2021_120849 crossref_primary_10_1039_C9TC05206B crossref_primary_10_1021_acs_jpclett_2c00284 crossref_primary_10_1016_j_apmt_2018_12_010 crossref_primary_10_1016_j_jcrysgro_2018_05_018 crossref_primary_10_1016_j_matchemphys_2021_125143 crossref_primary_10_1088_2632_959X_ac293b crossref_primary_10_1016_j_cplett_2019_04_009 crossref_primary_10_2139_ssrn_4156642 crossref_primary_10_1002_smll_202405404 crossref_primary_10_1016_j_mtadv_2020_100059 crossref_primary_10_1016_j_pmatsci_2023_101154 crossref_primary_10_1021_acs_jpclett_0c02289 crossref_primary_10_1039_C8NR03984D crossref_primary_10_1063_5_0002101 crossref_primary_10_1021_acs_nanolett_6b05409 crossref_primary_10_1016_j_jcrysgro_2021_126074 crossref_primary_10_1039_C6CP08903H crossref_primary_10_1088_2053_1583_aab407 crossref_primary_10_1021_acs_jpcc_3c06641 crossref_primary_10_1016_j_mtnano_2021_100135 crossref_primary_10_1002_wcms_1251 crossref_primary_10_1021_acsami_0c00449 crossref_primary_10_1063_1_5001790 crossref_primary_10_3390_surfaces3010003 crossref_primary_10_1021_acsami_7b10948 crossref_primary_10_1088_2515_7639_ab854a crossref_primary_10_1021_acsnano_1c00115 crossref_primary_10_1007_s12274_021_3731_2 crossref_primary_10_1038_s41467_019_09016_0 crossref_primary_10_1038_s41565_020_00777_0 crossref_primary_10_3390_cryst12070985 crossref_primary_10_1002_adma_202207374 crossref_primary_10_1039_D1NR03733A crossref_primary_10_1016_j_matlet_2019_03_095 crossref_primary_10_1557_adv_2018_117 crossref_primary_10_1002_pssb_201700069 crossref_primary_10_1103_PhysRevMaterials_6_104003 crossref_primary_10_1116_6_0000132 crossref_primary_10_1038_am_2016_178 crossref_primary_10_1088_2053_1583_3_3_035007 crossref_primary_10_1002_adma_202101589 crossref_primary_10_1002_lpor_202400304 crossref_primary_10_1021_acs_chemrev_0c01191 crossref_primary_10_1039_C8MH01088A crossref_primary_10_1038_am_2017_118 crossref_primary_10_1002_adfm_202106315 crossref_primary_10_1016_j_mtcomm_2019_100607 crossref_primary_10_1039_C8RA02685H crossref_primary_10_1021_acs_cgd_8b01542 crossref_primary_10_1039_D0NR00300J crossref_primary_10_1088_2053_1583_abf80f crossref_primary_10_1002_aelm_201700045 crossref_primary_10_1038_s41467_020_14596_3 crossref_primary_10_1016_j_pmatsci_2021_100884 crossref_primary_10_1002_smll_202301086 crossref_primary_10_1016_j_diamond_2023_110402 crossref_primary_10_1021_acsaelm_2c01367 crossref_primary_10_1016_j_flatc_2021_100305 crossref_primary_10_1007_s12274_022_4388_1 crossref_primary_10_1021_accountsmr_4c00122 crossref_primary_10_1016_j_materresbull_2018_02_027 crossref_primary_10_1021_acs_cgd_6b01665 crossref_primary_10_1002_smtd_202401551 crossref_primary_10_1021_acs_nanolett_5b04936 crossref_primary_10_1021_acsnano_5b05509 crossref_primary_10_1016_j_commatsci_2018_07_029 crossref_primary_10_1002_adma_201504042 crossref_primary_10_1021_jacs_5b07739 crossref_primary_10_1039_C8CP00877A crossref_primary_10_1186_s40580_023_00368_4 crossref_primary_10_1002_adfm_201504633 crossref_primary_10_1016_j_apmt_2020_100660 crossref_primary_10_1002_adom_202100342 crossref_primary_10_1088_1361_6528_aaebb4 crossref_primary_10_1088_2053_1583_ab46e6 crossref_primary_10_1088_1361_6528_ad4553 crossref_primary_10_1007_s12274_016_1393_2 crossref_primary_10_1016_j_orgel_2021_106322 crossref_primary_10_1021_accountsmr_2c00061 crossref_primary_10_1088_2053_1583_ab6269 crossref_primary_10_1039_D2NJ03735A crossref_primary_10_1088_1361_6528_ab0d3d crossref_primary_10_1007_s40097_022_00490_5 crossref_primary_10_1039_C9CP06425G crossref_primary_10_1016_j_mser_2024_100825 crossref_primary_10_1002_smtd_202301282 crossref_primary_10_1039_C6NR04734C crossref_primary_10_1016_j_ceramint_2020_05_004 crossref_primary_10_1021_acs_nanolett_6b03268 crossref_primary_10_1039_C8NR05722B crossref_primary_10_1002_admi_201801493 crossref_primary_10_1016_j_nantod_2020_101059 crossref_primary_10_1021_acs_cgd_3c00599 crossref_primary_10_1002_smll_201500210 crossref_primary_10_1038_s41467_024_47241_4 crossref_primary_10_1007_s10825_018_1159_z crossref_primary_10_1016_j_isci_2019_09_038 crossref_primary_10_1088_2053_1583_aa7129 crossref_primary_10_1088_1361_6528_aab503 crossref_primary_10_1016_j_ceramint_2020_12_236 crossref_primary_10_1088_2053_1591_ac65e0 crossref_primary_10_1016_j_desal_2024_118442 crossref_primary_10_1021_acsanm_4c05269 crossref_primary_10_1016_j_apt_2016_05_027 crossref_primary_10_1039_D0RA00734J crossref_primary_10_1039_D1RA02523F crossref_primary_10_1016_j_commatsci_2018_03_067 crossref_primary_10_1021_acs_nanolett_7b02841 crossref_primary_10_1016_j_surfrep_2018_10_001 crossref_primary_10_1039_C9GC03285A crossref_primary_10_1039_C7CP03835F crossref_primary_10_1039_C8CC01076E crossref_primary_10_1039_C7NR00933J crossref_primary_10_1016_j_nantod_2023_102011 crossref_primary_10_1016_j_mechmat_2019_03_003 crossref_primary_10_1088_2632_959X_ac0d9d crossref_primary_10_1002_admi_201900220 crossref_primary_10_1016_j_apmt_2023_101734 crossref_primary_10_1063_5_0165422 crossref_primary_10_1016_j_fmre_2021_09_014 crossref_primary_10_1088_1674_4926_38_3_031004 crossref_primary_10_1021_acs_chemrev_7b00633 crossref_primary_10_1088_1674_4926_38_3_031003 crossref_primary_10_1016_j_engfracmech_2020_107485 crossref_primary_10_1002_adfm_201604811 crossref_primary_10_1007_s12274_019_2467_8 crossref_primary_10_1021_acsnano_6b06736 crossref_primary_10_1039_C9RA00595A crossref_primary_10_1002_adma_202203373 crossref_primary_10_1002_wcms_1635 crossref_primary_10_1038_srep23547 crossref_primary_10_1016_j_matchemphys_2017_02_049 crossref_primary_10_1002_admi_201801906 crossref_primary_10_1002_smll_201501766 crossref_primary_10_1016_j_cej_2024_154716 crossref_primary_10_1016_j_matdes_2017_02_035 |
Cites_doi | 10.1126/science.1218461 10.1021/nn404331f 10.1038/ncomms2817 10.1038/ncomms3541 10.1111/j.1151-2916.2000.tb01615.x 10.1126/science.1091979 10.1002/(SICI)1099-1581(199912)10:12<702::AID-PAT931>3.0.CO;2-Q 10.1016/j.carbon.2011.07.062 10.1002/adma.201304937 10.1021/nl3011726 10.1088/0957-4484/25/14/145604 10.1016/j.tca.2004.12.002 10.1021/ic101020k 10.1021/nl404735w 10.1038/nphys1406 10.1002/smll.201001628 10.1002/pssb.201300088 10.1007/s12274-013-0310-1 10.1021/nl404207f 10.1111/j.1551-2916.2009.02941.x 10.1021/ja400637n 10.1021/la062990t 10.1021/nl203249a 10.1088/0957-4484/23/41/415605 10.1016/S0040-6031(02)00173-9 10.1016/S0040-6031(99)00365-2 10.1021/nn301940k 10.1021/nn300996t 10.1021/nl0602544 10.1021/nn4009356 10.1039/c1nr10294j 10.1021/nl061702a 10.1126/science.1144216 10.1016/j.susc.2003.08.046 10.1126/science.1184167 10.1016/0955-2219(89)90003-4 10.1039/C1RA00703C 10.1063/1.1667278 10.1116/1.572492 10.1021/cm034805s 10.1063/1.2903702 10.1039/c3tc32011a 10.1021/nl1023707 10.1021/nl1022139 10.1103/PhysRevLett.97.187401 10.1088/0957-4484/21/9/095301 10.1038/nnano.2010.172 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 Copyright Nature Publishing Group Jan 2015 |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: Copyright Nature Publishing Group Jan 2015 |
DBID | AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 |
DOI | 10.1038/ncomms7160 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | 3563669911 25606802 10_1038_ncomms7160 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c453t-3d0f16984f815be5885d25e56f85fc339e730581de1e87edab0ff39855da26cc3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Fri Jul 11 11:03:12 EDT 2025 Wed Aug 13 06:31:17 EDT 2025 Thu Apr 03 06:59:35 EDT 2025 Tue Jul 01 02:30:50 EDT 2025 Thu Apr 24 23:04:01 EDT 2025 Fri Feb 21 02:39:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-3d0f16984f815be5885d25e56f85fc339e730581de1e87edab0ff39855da26cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms7160 |
PMID | 25606802 |
PQID | 1647052031 |
PQPubID | 546298 |
ParticipantIDs | proquest_miscellaneous_1652400813 proquest_journals_1647052031 pubmed_primary_25606802 crossref_primary_10_1038_ncomms7160 crossref_citationtrail_10_1038_ncomms7160 springer_journals_10_1038_ncomms7160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150121 |
PublicationDateYYYYMMDD | 2015-01-21 |
PublicationDate_xml | – month: 1 year: 2015 text: 20150121 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Feldman, Martin, Yacoby (CR10) 2009; 5 Wang, Yamamoto, Kiyono, Shimada (CR41) 2009; 92 Tao (CR6) 2010; 21 Graf (CR49) 2007; 7 Song (CR3) 2010; 10 Han, Lee, Kwon, Yeo (CR26) 2014; 25 Lipp, Schwetz, Honold (CR5) 1989; 5 Gao (CR29) 2013; 7 Orofeo, Suzuki, Kageshima, Hibino (CR32) 2013; 6 Baumann, Baitalow, Wolf (CR39) 2005; 430 Kim (CR23) 2012; 12 Britnell (CR8) 2012; 335 Bresnehan (CR35) 2012; 6 Goriachko (CR31) 2007; 23 Hanke, Muller (CR42) 1984; 2 Chen, Zou, Campbell, Le Caer (CR2) 2004; 84 Tay (CR27) 2014; 2 Kim (CR36) 1999; 10 Kho, Moon, Kim, Kim (CR4) 2000; 83 CR46 Gibb, Alem, Zettl (CR21) 2010; 250 Auwärter, Suter, Sachdev, Greber (CR17) 2003; 16 Xu, Fujita, Chen, Hanagata (CR43) 2011; 3 Auwärter, Muntwiler, Osterwalder, Greber (CR16) 2003; 545 Tay (CR25) 2014; 14 Wolf, Baumann, Baitalow, Hoffmann (CR37) 2000; 343 Frueh (CR40) 2011; 50 Dean (CR7) 2010; 5 Garcia (CR11) 2012; 12 Arenal (CR45) 2006; 6 Pacile, Meyer, Girit, Zettl (CR12) 2008; 92 Wang (CR24) 2014; 26 Baitalow, Baumann, Wolf, Jaenicke-Rossler, Leitner (CR38) 2002; 391 Kubota, Watanabe, Tsuda, Taniguchi (CR1) 2007; 317 Kim (CR28) 2013; 13 Ferrari (CR48) 2006; 97 Gorbachev (CR13) 2011; 7 Lee (CR15) 2010; 328 Lee (CR19) 2012; 2 Ismach (CR18) 2012; 6 Britnell (CR9) 2013; 4 Tang (CR14) 2012; 50 Corso (CR30) 2004; 303 Han (CR47) 2013; 7 Liu (CR44) 2013; 4 Gibb (CR33) 2013; 135 Cretu, Lin, Suenaga (CR34) 2014; 14 Shi (CR20) 2010; 10 Guo (CR22) 2012; 23 F Baitalow (BFncomms7160_CR38) 2002; 391 JG Kho (BFncomms7160_CR4) 2000; 83 S Tang (BFncomms7160_CR14) 2012; 50 W Auwärter (BFncomms7160_CR16) 2003; 545 A Lipp (BFncomms7160_CR5) 1989; 5 AGF Garcia (BFncomms7160_CR11) 2012; 12 S Frueh (BFncomms7160_CR40) 2011; 50 L Wang (BFncomms7160_CR24) 2014; 26 RY Tay (BFncomms7160_CR27) 2014; 2 D Pacile (BFncomms7160_CR12) 2008; 92 CR Dean (BFncomms7160_CR7) 2010; 5 Y-H Lee (BFncomms7160_CR19) 2012; 2 A Gibb (BFncomms7160_CR21) 2010; 250 GH Han (BFncomms7160_CR47) 2013; 7 Y Chen (BFncomms7160_CR2) 2004; 84 R Arenal (BFncomms7160_CR45) 2006; 6 BFncomms7160_CR46 BE Feldman (BFncomms7160_CR10) 2009; 5 C Lee (BFncomms7160_CR15) 2010; 328 N Guo (BFncomms7160_CR22) 2012; 23 Y Kubota (BFncomms7160_CR1) 2007; 317 L Britnell (BFncomms7160_CR9) 2013; 4 J Baumann (BFncomms7160_CR39) 2005; 430 CM Orofeo (BFncomms7160_CR32) 2013; 6 KK Kim (BFncomms7160_CR23) 2012; 12 M Xu (BFncomms7160_CR43) 2011; 3 O Cretu (BFncomms7160_CR34) 2014; 14 J Han (BFncomms7160_CR26) 2014; 25 G Kim (BFncomms7160_CR28) 2013; 13 AL Gibb (BFncomms7160_CR33) 2013; 135 RY Tay (BFncomms7160_CR25) 2014; 14 A Ismach (BFncomms7160_CR18) 2012; 6 Y Shi (BFncomms7160_CR20) 2010; 10 MS Bresnehan (BFncomms7160_CR35) 2012; 6 G Hanke (BFncomms7160_CR42) 1984; 2 D Graf (BFncomms7160_CR49) 2007; 7 M Corso (BFncomms7160_CR30) 2004; 303 Z Liu (BFncomms7160_CR44) 2013; 4 L Britnell (BFncomms7160_CR8) 2012; 335 RV Gorbachev (BFncomms7160_CR13) 2011; 7 YT Wang (BFncomms7160_CR41) 2009; 92 Y Gao (BFncomms7160_CR29) 2013; 7 DP Kim (BFncomms7160_CR36) 1999; 10 AC Ferrari (BFncomms7160_CR48) 2006; 97 W Auwärter (BFncomms7160_CR17) 2003; 16 A Goriachko (BFncomms7160_CR31) 2007; 23 G Wolf (BFncomms7160_CR37) 2000; 343 L Song (BFncomms7160_CR3) 2010; 10 O Tao (BFncomms7160_CR6) 2010; 21 |
References_xml | – volume: 335 start-page: 947 year: 2012 end-page: 950 ident: CR8 article-title: Field-effect tunneling transistor based on vertical graphene heterostructures publication-title: Science doi: 10.1126/science.1218461 – volume: 7 start-page: 10129 year: 2013 end-page: 10138 ident: CR47 article-title: Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition publication-title: ACS Nano doi: 10.1021/nn404331f – volume: 4 start-page: 1794 year: 2013 ident: CR9 article-title: Resonant tunnelling and negative differential conductance in graphene transistors publication-title: Nat. Commun. doi: 10.1038/ncomms2817 – volume: 13 start-page: 1834 year: 2013 end-page: 1839 ident: CR28 article-title: Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil publication-title: ACS Nano – volume: 4 start-page: 2541 year: 2013 ident: CR44 article-title: Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride publication-title: Nat. Commun. doi: 10.1038/ncomms3541 – volume: 83 start-page: 2681 year: 2000 end-page: 2683 ident: CR4 article-title: Properties of boron nitride (B N ) films produced by the spin-coating process of polyborazine publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01615.x – volume: 303 start-page: 217 year: 2004 end-page: 220 ident: CR30 article-title: Boron nitride nanomesh publication-title: Science doi: 10.1126/science.1091979 – volume: 10 start-page: 702 year: 1999 end-page: 712 ident: CR36 article-title: Synthesis and characterization of poly-(aminoborane) as a new boron nitride precursor publication-title: Polym. Adv. Technol. doi: 10.1002/(SICI)1099-1581(199912)10:12<702::AID-PAT931>3.0.CO;2-Q – volume: 50 start-page: 329 year: 2012 end-page: 331 ident: CR14 article-title: Nucleation and growth of single crystal graphene on hexagonal boron nitride publication-title: Carbon. NY. doi: 10.1016/j.carbon.2011.07.062 – volume: 26 start-page: 1559 year: 2014 end-page: 1564 ident: CR24 article-title: Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors publication-title: Adv. Mater. doi: 10.1002/adma.201304937 – volume: 12 start-page: 4449 year: 2012 end-page: 4454 ident: CR11 article-title: Effective cleaning of hexagonal boron nitride for graphene devices publication-title: Nano Lett. doi: 10.1021/nl3011726 – volume: 25 start-page: 145604 year: 2014 ident: CR26 article-title: Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition publication-title: Nanotechnology doi: 10.1088/0957-4484/25/14/145604 – volume: 430 start-page: 9 year: 2005 end-page: 14 ident: CR39 article-title: Thermal decomposition of polymeric aminoborane (H BNH ) under hydrogen release publication-title: Thermochim. Acta doi: 10.1016/j.tca.2004.12.002 – volume: 50 start-page: 783 year: 2011 end-page: 792 ident: CR40 article-title: Pyrolytic decomposition of ammonia borane to boron nitride publication-title: Inorg. Chem. doi: 10.1021/ic101020k – ident: CR46 – volume: 14 start-page: 1064 year: 2014 end-page: 1068 ident: CR34 article-title: Evidence for active atomic defects in monolayer hexagonal boron nitride: a new mechanism of plasticity in two-dimensional materials publication-title: Nano Lett. doi: 10.1021/nl404735w – volume: 5 start-page: 889 year: 2009 end-page: 893 ident: CR10 article-title: Broken-symmetry states and divergent resistance in suspended bilayer graphene publication-title: Nat. Phys. doi: 10.1038/nphys1406 – volume: 7 start-page: 465 year: 2011 end-page: 468 ident: CR13 article-title: Hunting for monolayer boron nitride: optical and Raman signatures publication-title: Small doi: 10.1002/smll.201001628 – volume: 250 start-page: 2727 year: 2010 end-page: 2731 ident: CR21 article-title: Low pressure chemical vapor deposition synthesis of hexagonal boron nitride on polycrystalline metal foils publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201300088 – volume: 6 start-page: 335 year: 2013 end-page: 347 ident: CR32 article-title: Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt publication-title: Nano Res. doi: 10.1007/s12274-013-0310-1 – volume: 14 start-page: 839 year: 2014 end-page: 846 ident: CR25 article-title: Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper publication-title: Nano Lett. doi: 10.1021/nl404207f – volume: 92 start-page: 787 year: 2009 end-page: 792 ident: CR41 article-title: Effect of ambient gas and temperature on crystallization of boron nitride spheres prepared by vapor phase pyrolysis of ammonia borane publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.02941.x – volume: 135 start-page: 6758 year: 2013 end-page: 6761 ident: CR33 article-title: Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400637n – volume: 23 start-page: 2928 year: 2007 end-page: 2931 ident: CR31 article-title: Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001) publication-title: Langmuir doi: 10.1021/la062990t – volume: 12 start-page: 161 year: 2012 end-page: 166 ident: CR23 article-title: Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl203249a – volume: 23 start-page: 415605 year: 2012 ident: CR22 article-title: Controllable growth of triangular hexagonal boron nitride domains on copper foils by an improved low-pressure chemical vapor deposition method publication-title: Nanotechnology doi: 10.1088/0957-4484/23/41/415605 – volume: 391 start-page: 159 year: 2002 end-page: 168 ident: CR38 article-title: Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(02)00173-9 – volume: 343 start-page: 19 year: 2000 end-page: 25 ident: CR37 article-title: Calorimetric process monitoring of thermal decomposition of B-N-H compounds publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(99)00365-2 – volume: 6 start-page: 6378 year: 2012 end-page: 6385 ident: CR18 article-title: Toward the controlled synthesis of hexagonal boron nitride films publication-title: ACS Nano doi: 10.1021/nn301940k – volume: 6 start-page: 5234 year: 2012 end-page: 5241 ident: CR35 article-title: Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices publication-title: ACS Nano doi: 10.1021/nn300996t – volume: 6 start-page: 1812 year: 2006 end-page: 1816 ident: CR45 article-title: Raman spectroscopy of single-wall boron nitride nanotubes publication-title: Nano Lett. doi: 10.1021/nl0602544 – volume: 7 start-page: 5199 year: 2013 end-page: 5206 ident: CR29 article-title: Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils publication-title: ACS Nano doi: 10.1021/nn4009356 – volume: 3 start-page: 2854 year: 2011 end-page: 2858 ident: CR43 article-title: Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation publication-title: Nanoscale doi: 10.1039/c1nr10294j – volume: 7 start-page: 238 year: 2007 end-page: 242 ident: CR49 article-title: Spatially resolved Raman spectroscopy of single- and few-layer graphene publication-title: Nano Lett. doi: 10.1021/nl061702a – volume: 317 start-page: 932 year: 2007 end-page: 934 ident: CR1 article-title: Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure publication-title: Science doi: 10.1126/science.1144216 – volume: 545 start-page: L735 year: 2003 end-page: L740 ident: CR16 article-title: Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111) publication-title: Surf. Sci. doi: 10.1016/j.susc.2003.08.046 – volume: 328 start-page: 76 year: 2010 end-page: 80 ident: CR15 article-title: Frictional characteristics of atomically thin sheets publication-title: Science doi: 10.1126/science.1184167 – volume: 5 start-page: 3 year: 1989 end-page: 9 ident: CR5 article-title: Hexagonal boron nitride: fabrication, properties and application publication-title: J. Eur. Ceram. Soc. doi: 10.1016/0955-2219(89)90003-4 – volume: 2 start-page: 111 year: 2012 end-page: 115 ident: CR19 article-title: Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations publication-title: RSC Adv. doi: 10.1039/C1RA00703C – volume: 84 start-page: 2430 year: 2004 end-page: 2432 ident: CR2 article-title: Boron nitride nanotubes: pronounced resistance to oxidation publication-title: Appl. Phys. Lett. doi: 10.1063/1.1667278 – volume: 2 start-page: 964 year: 1984 end-page: 968 ident: CR42 article-title: Low-energy Auger transitions of boron in several boron-compounds publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.572492 – volume: 16 start-page: 343 year: 2003 end-page: 345 ident: CR17 article-title: Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH) publication-title: Chem. Mater. doi: 10.1021/cm034805s – volume: 92 start-page: 133107 year: 2008 ident: CR12 article-title: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes publication-title: Appl. Phys. Lett. doi: 10.1063/1.2903702 – volume: 2 start-page: 1650 year: 2014 end-page: 1657 ident: CR27 article-title: A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film publication-title: J. Mater. Chem. C doi: 10.1039/c3tc32011a – volume: 10 start-page: 4134 year: 2010 end-page: 4139 ident: CR20 article-title: Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl1023707 – volume: 10 start-page: 3209 year: 2010 end-page: 3215 ident: CR3 article-title: Large scale growth and characterization of atomic hexagonal boron nitride layers publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 97 start-page: 187401 year: 2006 ident: CR48 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 21 start-page: 245701 year: 2010 ident: CR6 article-title: Thermal transport in hexagonal boron nitride nanoribbons publication-title: Nanotechnology doi: 10.1088/0957-4484/21/9/095301 – volume: 5 start-page: 722 year: 2010 end-page: 726 ident: CR7 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 6 start-page: 335 year: 2013 ident: BFncomms7160_CR32 publication-title: Nano Res. doi: 10.1007/s12274-013-0310-1 – volume: 10 start-page: 3209 year: 2010 ident: BFncomms7160_CR3 publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 92 start-page: 133107 year: 2008 ident: BFncomms7160_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2903702 – volume: 135 start-page: 6758 year: 2013 ident: BFncomms7160_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400637n – volume: 343 start-page: 19 year: 2000 ident: BFncomms7160_CR37 publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(99)00365-2 – volume: 5 start-page: 722 year: 2010 ident: BFncomms7160_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 2 start-page: 111 year: 2012 ident: BFncomms7160_CR19 publication-title: RSC Adv. doi: 10.1039/C1RA00703C – volume: 391 start-page: 159 year: 2002 ident: BFncomms7160_CR38 publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(02)00173-9 – volume: 7 start-page: 465 year: 2011 ident: BFncomms7160_CR13 publication-title: Small doi: 10.1002/smll.201001628 – volume: 12 start-page: 161 year: 2012 ident: BFncomms7160_CR23 publication-title: Nano Lett. doi: 10.1021/nl203249a – volume: 26 start-page: 1559 year: 2014 ident: BFncomms7160_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.201304937 – volume: 92 start-page: 787 year: 2009 ident: BFncomms7160_CR41 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.02941.x – volume: 250 start-page: 2727 year: 2010 ident: BFncomms7160_CR21 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201300088 – volume: 50 start-page: 329 year: 2012 ident: BFncomms7160_CR14 publication-title: Carbon. NY. doi: 10.1016/j.carbon.2011.07.062 – volume: 10 start-page: 702 year: 1999 ident: BFncomms7160_CR36 publication-title: Polym. Adv. Technol. doi: 10.1002/(SICI)1099-1581(199912)10:12<702::AID-PAT931>3.0.CO;2-Q – volume: 7 start-page: 10129 year: 2013 ident: BFncomms7160_CR47 publication-title: ACS Nano doi: 10.1021/nn404331f – volume: 2 start-page: 964 year: 1984 ident: BFncomms7160_CR42 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.572492 – volume: 303 start-page: 217 year: 2004 ident: BFncomms7160_CR30 publication-title: Science doi: 10.1126/science.1091979 – volume: 5 start-page: 889 year: 2009 ident: BFncomms7160_CR10 publication-title: Nat. Phys. doi: 10.1038/nphys1406 – volume: 12 start-page: 4449 year: 2012 ident: BFncomms7160_CR11 publication-title: Nano Lett. doi: 10.1021/nl3011726 – volume: 6 start-page: 1812 year: 2006 ident: BFncomms7160_CR45 publication-title: Nano Lett. doi: 10.1021/nl0602544 – volume: 5 start-page: 3 year: 1989 ident: BFncomms7160_CR5 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/0955-2219(89)90003-4 – volume: 21 start-page: 245701 year: 2010 ident: BFncomms7160_CR6 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/9/095301 – volume: 430 start-page: 9 year: 2005 ident: BFncomms7160_CR39 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2004.12.002 – volume: 83 start-page: 2681 year: 2000 ident: BFncomms7160_CR4 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01615.x – volume: 4 start-page: 1794 year: 2013 ident: BFncomms7160_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms2817 – volume: 14 start-page: 839 year: 2014 ident: BFncomms7160_CR25 publication-title: Nano Lett. doi: 10.1021/nl404207f – volume: 6 start-page: 5234 year: 2012 ident: BFncomms7160_CR35 publication-title: ACS Nano doi: 10.1021/nn300996t – volume: 328 start-page: 76 year: 2010 ident: BFncomms7160_CR15 publication-title: Science doi: 10.1126/science.1184167 – volume: 7 start-page: 5199 year: 2013 ident: BFncomms7160_CR29 publication-title: ACS Nano doi: 10.1021/nn4009356 – volume: 7 start-page: 238 year: 2007 ident: BFncomms7160_CR49 publication-title: Nano Lett. doi: 10.1021/nl061702a – volume: 317 start-page: 932 year: 2007 ident: BFncomms7160_CR1 publication-title: Science doi: 10.1126/science.1144216 – volume: 6 start-page: 6378 year: 2012 ident: BFncomms7160_CR18 publication-title: ACS Nano doi: 10.1021/nn301940k – volume: 3 start-page: 2854 year: 2011 ident: BFncomms7160_CR43 publication-title: Nanoscale doi: 10.1039/c1nr10294j – volume: 84 start-page: 2430 year: 2004 ident: BFncomms7160_CR2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1667278 – volume: 97 start-page: 187401 year: 2006 ident: BFncomms7160_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 13 start-page: 1834 year: 2013 ident: BFncomms7160_CR28 publication-title: ACS Nano – volume: 23 start-page: 2928 year: 2007 ident: BFncomms7160_CR31 publication-title: Langmuir doi: 10.1021/la062990t – volume: 23 start-page: 415605 year: 2012 ident: BFncomms7160_CR22 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/41/415605 – volume: 25 start-page: 145604 year: 2014 ident: BFncomms7160_CR26 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/14/145604 – volume: 14 start-page: 1064 year: 2014 ident: BFncomms7160_CR34 publication-title: Nano Lett. doi: 10.1021/nl404735w – volume: 545 start-page: L735 year: 2003 ident: BFncomms7160_CR16 publication-title: Surf. Sci. doi: 10.1016/j.susc.2003.08.046 – ident: BFncomms7160_CR46 – volume: 50 start-page: 783 year: 2011 ident: BFncomms7160_CR40 publication-title: Inorg. Chem. doi: 10.1021/ic101020k – volume: 335 start-page: 947 year: 2012 ident: BFncomms7160_CR8 publication-title: Science doi: 10.1126/science.1218461 – volume: 2 start-page: 1650 year: 2014 ident: BFncomms7160_CR27 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc32011a – volume: 4 start-page: 2541 year: 2013 ident: BFncomms7160_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms3541 – volume: 10 start-page: 4134 year: 2010 ident: BFncomms7160_CR20 publication-title: Nano Lett. doi: 10.1021/nl1023707 – volume: 16 start-page: 343 year: 2003 ident: BFncomms7160_CR17 publication-title: Chem. Mater. doi: 10.1021/cm034805s |
SSID | ssj0000391844 |
Score | 2.5903482 |
Snippet | Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6160 |
SubjectTerms | 639/301/1023/1026 639/301/357/1018 639/925/927/1007 639/925/930/1032 Boron Humanities and Social Sciences multidisciplinary Nucleation Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRv51OieiLD2FNk3Tpk4g4RVAfVNhbSdurDmY31w3cf-_d1k5l4nOv6ZHL5X730TvGzgKAuCW1FGkcg9BKt0TofBCeQ98ALUbLk_Rz8v1DcPui7zqmUwbcirKssroTpxd12k8oRt6kvldUs6HkxeBD0NQoyq6WIzSW2YpES0MlXbZ9M4-xUPdzq3XVlVTZZo5LvhfoI3i_7dACuFxIjE7tTXuDrZdAkV_OJLvJliDfYquz0ZGTbfb4NMkRuxXdgvcz3qN6bk5ufw9EMpwg5OvxN_h0rwS0eUxtCjgq77CbAn-lqRD4Ws6vxuKhyyn1PtlhL-3r56tbUQ5HEIk2aiRU6mUyCK3OrDQxGGtN6hswQWZNligVAuquQTQKEmwLUhd7WaZCa0zq_CBJ1C6r5f0c9hmPUW8lBCZDy4T-nXHausSh2QpTherp19l5tVVRUnYOpwEWvWiawVY2-t7WOjud0w5m_TL-pGpUOx6VOlNE3xKus5P5YzztlMJwOfTHRGOo6NVKVWd7M0nNP0PgLbAesntWie7H4gs8HPzPwyFbQ2xEhY3Clw1WGw3HcIT4YxQfTw_ZF2ZJ2vM priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsNAEF7EIngR_61WWdGLh8VsNptujqVYSsGCVMFb2CQTLdRUmhbszXfwDX0SZ5qkKvXgMWQ22czuZL7JTL5h7NIHiJrSkyKJIhCe8poisC4Ix2JsgB6j6Uj6Ofm273cfvN6jfixpcvKyrLKgtFy8pqvqsOsMj15yBPcYnteIoh33dK3V6g16yy8qxHVuPK_iIFXmx6DfXmcFSq6kQRfepbPNtkpYyFvFRHbYGmS7bKNoFDnfY3eDeYZILR_mfJzyEVVvcwryRyDiyRwB3og_w5t9IljNIyIl4Giqk2EC_Il6QOCwjLdnn-8f_SGnVPt8nz10bu7bXVE2QxAxPuxUqMRJpR8YLzVSR6CN0YmrQfup0WmsVABoqxrRJ0gwTUhs5KSpCozWiXX9OFYHbD0bZ3DEeIR2KsHXKXoijOe09YyNLbqpIFFojm6dXVXKCuOSKZwaVozCRcZamfBbsXV2sZR9Lfgx_pRqVDoPSxvJQ2IyoyocJevsfHkadzelLGwG4xnJaCpyNVLV2WGxVsvbEFjzjYPTvawW78fFV-Zw_D-xE7aJmIgKGoUrG2x9OpnBKeKOaXRWbrgvbAnacg priority: 102 providerName: Springer Nature |
Title | Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy |
URI | https://link.springer.com/article/10.1038/ncomms7160 https://www.ncbi.nlm.nih.gov/pubmed/25606802 https://www.proquest.com/docview/1647052031 https://www.proquest.com/docview/1652400813 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9tADBddy2AvpfvO1oUb68sebvP5fPb5YYwsNCuBZmNdIG_GH3IXcJ02H1D_95X8ka2k7MUG--4spJP1E9JJACc-YhIoT8ksSVB62gtkGLsonZh8A7IYgaP4cPL5xD-beuOZme1B17-zZeDqQdeO-0lNl8Wn25vqKyn8l-bIuP1ckmyuVgT8yXU_4PW5k8F5C_PrP7IOyZHxuuqk96bct0c7IHMnQFrbndERHLaAUQwaCT-FPSyfweOmhWT1HH5cVCVhuNV8JRa5KDivW7D7X6BMlxVBv0L8wdv4kgG3SLhcgSAlXs4zFJfcHYKmlWK4kZO54BB89QKmo9PfwzPZNkmQqWf0WurMyZUfWi-3yiRorDWZa9D4uTV5qnWIpMOGUCkqtAFmceLkuQ6tMVns-mmqX8J-uSjxNYiE9Fehb3KyUOTnmdizcRqT-QozTWrq9uBjx6oobSuIcyOLIqoj2dpGf9nagw_bsddN3YwHRx13HI860Udc4Yyzc7Tqwfvta9r1HMqIS1xseIzh5FerdA9eNZLafoZBnG8dIvekE90_i-_Q8Ob_NLyFJ4SROMFRuuoY9tfLDb4jHLJO-vAomAV0taPvfTgYDMYXY7p_O538_EVPh_6wX3v4_Xoz3gHDFuR4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIcReEP9XGGDEeODBWhzbqfOAEBqUjm3lgU3aW3CSy1apS0fTasuX4jNy1zQdqIi3PefiOOfz3e985zuA7Qgx7SqjZJ6mKI02XRn7EGXgyTcgi9ENFF9OPhxE_WPz9cSerMGv9i4Mp1W2OnGuqPNxxmfkO1z3inM2tPpw8VNy1yiOrrYtNBqx2Mf6kly26v3eJ1rft2HY-3y025eLrgIyM1ZPpc6DQkWxM4VTNkXrnM1DizYqnC0yrWMkobcE41Ch62Lu06AodOyszX0YZZmmcW_BbUOU7Oy53pflmQ5XW3fGtFVQtdsp6RfOK_JJgr_t3gqYXQnEzu1b7z7cWwBT8bGRpAewhuVDuNO0qqwfwbfvdUlYsRpWYlyIEeePCz5mGKHMJjVBzJE4wyt_ysBepFwWQZCymAxzFKfchYJeK8XuTA6GgkP99WM4vhG2PYH1clziJoiU9ITCyBZkCcmftN44n3kyk3GuSR2EHXjXsirJFpXKuWHGKJlHzLVLrtnagTdL2oumPsc_qbZajieLPVol1xLVgdfLx7S7OGTiSxzPmMZykq1TugNPm5VafobBYuQCmu52u3R_DL4yh2f_n8MruNs_OjxIDvYG-89hg3AZJ1XKUG3B-nQywxeEfabpy7nACfhx0xL-G7xYF_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeBAosoBw6reL1ee31ACNpGLYVQAZV6c_2YLZGCU-JE4L_Gr2MmtlNQELeevV6vZ2dnvnnsDMB2iJhFKlCyyDKUgQ4iGac-Si8l24A0RuQpvpz8YRTuHwfvTszJBvzq7sJwWmUnE5eCupjm7CMfcN0rztnQauDatIij3eHr8--SO0hxpLVrp9GwyCHWP8h8q14d7NJev_D94d6XnX3ZdhiQeWD0XOrCcyqMbeCsMhkaa03hGzShs8blWsdIB8AQpEOFNsIizTzndGyNKVI_zHNN816BzYitoh5svt0bHX1aeXi49roNgq4mqraDkn7oW0UWive3FlyDtmth2aW2G96EGy1MFW8avroFG1jehqtN48r6Dnz8XJeEHKtxJaZOTDibXLDTYYIyn9UEOCfiK_5Mzxjmi4yLJAgSHbNxgeKMe1LQa6XYWcjRWHDgv74Lx5dCuHvQK6clPgCRkdRQGBpHepHoaNLApnlKSjMuNAkHvw8vO1IleVu3nNtnTJJl_Fzb5IKsfXi-GnveVOv456itjuJJe2Kr5IK_-vBs9ZjOGgdQ0hKnCx5jOOXWKt2H-81OrT7D0DG0Hi13u9u6PyZfW8PD_6_hKVwj7k7eH4wOH8F1AmmcYSl9tQW9-WyBjwkIzbMnLccJOL1sJv8NN2Mdhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+large+single-crystal+hexagonal+boron+nitride+grains+on+Cu-Ni+alloy&rft.jtitle=Nature+communications&rft.au=Lu%2C+Guangyuan&rft.au=Wu%2C+Tianru&rft.au=Yuan%2C+Qinghong&rft.au=Wang%2C+Huishan&rft.date=2015-01-21&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=6&rft.spage=6160&rft_id=info:doi/10.1038%2Fncomms7160&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3563669911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |