Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy

Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grai...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 6160
Main Authors Lu, Guangyuan, Wu, Tianru, Yuan, Qinghong, Wang, Huishan, Wang, Haomin, Ding, Feng, Xie, Xiaoming, Jiang, Mianheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.01.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu–Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm 2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm 2 , approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications. High nucleation density has thus far limited the quality and grain size of CVD-grown hexagonal boron nitride. Here, by optimizing the Ni ratio in Cu–Ni substrates, the authors successfully reduce nucleation density and report single-crystal hexagonal boron nitride grains up to 7500 μm 2 .
AbstractList Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm(2) by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm(2), approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.
Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm2 , approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.
Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm(2) by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm(2), approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm(2) by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm(2), approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.
Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu–Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm 2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm 2 , approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications. High nucleation density has thus far limited the quality and grain size of CVD-grown hexagonal boron nitride. Here, by optimizing the Ni ratio in Cu–Ni substrates, the authors successfully reduce nucleation density and report single-crystal hexagonal boron nitride grains up to 7500 μm 2 .
ArticleNumber 6160
Author Wang, Huishan
Wang, Haomin
Yuan, Qinghong
Jiang, Mianheng
Wu, Tianru
Lu, Guangyuan
Xie, Xiaoming
Ding, Feng
Author_xml – sequence: 1
  givenname: Guangyuan
  surname: Lu
  fullname: Lu, Guangyuan
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
– sequence: 2
  givenname: Tianru
  surname: Wu
  fullname: Wu, Tianru
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
– sequence: 3
  givenname: Qinghong
  surname: Yuan
  fullname: Yuan, Qinghong
  organization: Department of Physics, East China Normal University
– sequence: 4
  givenname: Huishan
  surname: Wang
  fullname: Wang, Huishan
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, School of Physics and Electronics, Central South University
– sequence: 5
  givenname: Haomin
  surname: Wang
  fullname: Wang, Haomin
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
– sequence: 6
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  organization: Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon
– sequence: 7
  givenname: Xiaoming
  surname: Xie
  fullname: Xie, Xiaoming
  email: xmxie@mail.sim.ac.cn
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, School of Physical Science and Technology, Shanghai Tech University
– sequence: 8
  givenname: Mianheng
  surname: Jiang
  fullname: Jiang, Mianheng
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, School of Physical Science and Technology, Shanghai Tech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25606802$$D View this record in MEDLINE/PubMed
BookMark eNpt0c1KxDAQB_Agiq6rFx9ACl5EqSZN02aPsvgFiyLquWTTSY2kyZq04N58B9_QJzHL-oWaS-bw-w_JzCZatc4CQjsEHxFM-bGVrm1DSQq8ggYZzklKyoyu_qg30HYIjzgeOiI8z9fRRsYKXHCcDdDN7dx2DxB0SJxKjPANJEHbxkAq_Tx0wiQP8CwaZ2M1dd7ZxOrO6xqSxgttY8wm4_7t5fVKJ8IYN99Ca0qYANsf9xDdn53ejS_SyfX55fhkksqc0S6lNVakGPFcccKmwDhndcaAFYozJSkdQUkx46QGAryEWkyxUnTEGatFVkhJh2h_2Xfm3VMPoataHSQYIyy4PlSkYFmOMSc00r1f9NH1Pv5oofISswxTEtXuh-qnLdTVzOtW-Hn1OawIDpZAeheCB_VFCK4Wy6i-lxEx_oWl7kSnne3i3Mz_kcNlJMS-tgH_45l_9TtvYJwm
CitedBy_id crossref_primary_10_1021_acsnano_9b08221
crossref_primary_10_1038_s41598_017_14663_8
crossref_primary_10_1002_pssr_202000473
crossref_primary_10_1002_adma_201800865
crossref_primary_10_1038_s41563_019_0321_8
crossref_primary_10_1038_s41586_021_03488_1
crossref_primary_10_1021_acs_jpcc_2c01707
crossref_primary_10_1039_D2TC01004F
crossref_primary_10_1039_C9NR03525G
crossref_primary_10_1093_oxfmat_itac004
crossref_primary_10_9729_AM_2016_46_4_217
crossref_primary_10_1016_j_diamond_2025_112082
crossref_primary_10_1007_s11664_023_10433_7
crossref_primary_10_1016_j_carbon_2019_06_040
crossref_primary_10_3788_gzxb20245307_0753307
crossref_primary_10_1021_acs_cgd_2c01545
crossref_primary_10_1021_acs_cgd_9b00811
crossref_primary_10_1002_smll_201502049
crossref_primary_10_1016_j_porgcoat_2023_107990
crossref_primary_10_1080_09506608_2017_1322833
crossref_primary_10_3390_app11104599
crossref_primary_10_1039_D2NH00353H
crossref_primary_10_1002_smll_201805188
crossref_primary_10_1021_acs_chemmater_2c03568
crossref_primary_10_1021_prechem_3c00122
crossref_primary_10_1039_C7QM00100B
crossref_primary_10_1021_acs_nanolett_5b03075
crossref_primary_10_1038_s41557_019_0290_1
crossref_primary_10_1016_j_jmst_2022_04_032
crossref_primary_10_1039_C8CS00167G
crossref_primary_10_1007_s40820_020_0402_x
crossref_primary_10_1002_adma_202100185
crossref_primary_10_1021_acs_jpcc_1c09334
crossref_primary_10_1021_acsnano_5b06254
crossref_primary_10_1016_j_nanoen_2021_106661
crossref_primary_10_1007_s40843_019_9419_0
crossref_primary_10_1002_advs_201700076
crossref_primary_10_1002_adma_202108258
crossref_primary_10_1103_PhysRevMaterials_3_014004
crossref_primary_10_1039_D1NR04034K
crossref_primary_10_1063_5_0040902
crossref_primary_10_1016_j_mattod_2017_04_027
crossref_primary_10_1021_acs_nanolett_6b01459
crossref_primary_10_1002_smll_201600053
crossref_primary_10_1039_C7TC04300G
crossref_primary_10_7498_aps_68_20191036
crossref_primary_10_1016_j_cej_2021_133740
crossref_primary_10_1039_C9TA12293A
crossref_primary_10_1557_jmr_2016_82
crossref_primary_10_1016_j_rinp_2022_105404
crossref_primary_10_1021_acs_nanolett_5b04874
crossref_primary_10_1038_natrevmats_2016_42
crossref_primary_10_1038_srep45584
crossref_primary_10_1103_PhysRevLett_120_106403
crossref_primary_10_1021_acsanm_9b02315
crossref_primary_10_1002_smll_201800072
crossref_primary_10_1039_D1NR06004J
crossref_primary_10_1002_aelm_201800143
crossref_primary_10_1039_C7NR07058F
crossref_primary_10_1039_D1TC01392K
crossref_primary_10_1016_j_jallcom_2022_167303
crossref_primary_10_1016_j_jcis_2024_12_200
crossref_primary_10_1016_j_rser_2022_112910
crossref_primary_10_1016_j_nantod_2021_101338
crossref_primary_10_1016_j_pcrysgrow_2016_04_008
crossref_primary_10_1021_acsaelm_2c01083
crossref_primary_10_1021_acsami_1c22626
crossref_primary_10_1103_PhysRevB_101_075427
crossref_primary_10_1002_aelm_202000059
crossref_primary_10_1002_adma_201801600
crossref_primary_10_1016_j_corsci_2024_112501
crossref_primary_10_1016_j_pcrysgrow_2021_100522
crossref_primary_10_1021_acsanm_1c04178
crossref_primary_10_1002_anie_201907773
crossref_primary_10_1016_j_compositesa_2023_107533
crossref_primary_10_1109_TED_2022_3220483
crossref_primary_10_1016_j_porgcoat_2023_107660
crossref_primary_10_1063_1_5100495
crossref_primary_10_1016_j_compositesb_2022_109710
crossref_primary_10_1021_acs_iecr_9b05869
crossref_primary_10_1021_acsnano_0c03558
crossref_primary_10_1021_acsphotonics_9b00667
crossref_primary_10_1016_j_elecom_2019_106563
crossref_primary_10_1039_D0NR07330J
crossref_primary_10_1088_1361_648X_ac8132
crossref_primary_10_3390_cryst6050055
crossref_primary_10_1038_s41699_024_00519_z
crossref_primary_10_1038_srep34474
crossref_primary_10_1126_sciadv_aat2390
crossref_primary_10_1002_adma_201702206
crossref_primary_10_1002_aelm_201900979
crossref_primary_10_1364_OME_7_001463
crossref_primary_10_1021_acsnano_6b08315
crossref_primary_10_1039_C8NR10291K
crossref_primary_10_1088_2053_1583_aa6562
crossref_primary_10_1021_acsami_5b10978
crossref_primary_10_1039_C8TC05345F
crossref_primary_10_1016_j_nanoms_2021_03_002
crossref_primary_10_1002_admi_202200610
crossref_primary_10_1039_C6CC02868C
crossref_primary_10_1016_j_mee_2016_06_015
crossref_primary_10_1039_C8TA04618B
crossref_primary_10_1007_s10853_019_03437_4
crossref_primary_10_1007_s11426_019_9477_y
crossref_primary_10_1039_C5NR08036C
crossref_primary_10_1021_acs_cgd_2c00880
crossref_primary_10_1364_OE_26_023031
crossref_primary_10_1002_ange_201710293
crossref_primary_10_1021_acsnano_7b04841
crossref_primary_10_1103_PhysRevB_98_134108
crossref_primary_10_1002_admi_202100447
crossref_primary_10_1016_j_cap_2016_03_025
crossref_primary_10_1002_adma_201703549
crossref_primary_10_1016_j_vacuum_2023_112126
crossref_primary_10_1002_adma_202207901
crossref_primary_10_1039_C6TC04345C
crossref_primary_10_1021_acs_chemmater_6b00114
crossref_primary_10_1038_s41699_017_0020_8
crossref_primary_10_1016_j_physe_2017_04_025
crossref_primary_10_1002_adma_201801583
crossref_primary_10_1002_adma_202103656
crossref_primary_10_1002_adom_201901326
crossref_primary_10_1016_j_jcrysgro_2023_127088
crossref_primary_10_1038_s41586_019_1226_z
crossref_primary_10_1007_s12274_015_0816_9
crossref_primary_10_1021_acs_chemmater_4c00582
crossref_primary_10_1002_adma_202000769
crossref_primary_10_1063_1_5011120
crossref_primary_10_1002_smll_201604179
crossref_primary_10_1088_2053_1583_ab1783
crossref_primary_10_1038_s41467_022_30762_1
crossref_primary_10_1002_adfm_202003301
crossref_primary_10_1039_C5CS00869G
crossref_primary_10_1088_1361_648X_aac89f
crossref_primary_10_1002_eem2_12159
crossref_primary_10_1039_D1CP05957B
crossref_primary_10_1016_j_carbon_2017_04_055
crossref_primary_10_1016_j_mtnano_2021_100129
crossref_primary_10_34133_2019_2763704
crossref_primary_10_7498_aps_72_20230887
crossref_primary_10_1021_acsami_7b08717
crossref_primary_10_1002_aelm_201500223
crossref_primary_10_1021_acs_nanolett_8b05034
crossref_primary_10_1039_C7CE01846K
crossref_primary_10_1038_s41699_024_00486_5
crossref_primary_10_1002_ange_201907773
crossref_primary_10_1016_j_mtadv_2023_100451
crossref_primary_10_1088_2053_1583_ac2e59
crossref_primary_10_1021_acsnano_8b03055
crossref_primary_10_1002_admi_201800662
crossref_primary_10_1088_2053_1583_ada045
crossref_primary_10_1039_C6CS00424E
crossref_primary_10_3390_coatings9020133
crossref_primary_10_1039_C7NR02553J
crossref_primary_10_1021_acs_chemmater_7b01285
crossref_primary_10_1002_anie_201710293
crossref_primary_10_1088_1361_6528_aaff19
crossref_primary_10_1155_2019_2763704
crossref_primary_10_1021_acsnano_6b04547
crossref_primary_10_1039_D1NR06045G
crossref_primary_10_1016_j_apsusc_2017_04_031
crossref_primary_10_1016_j_jallcom_2016_07_117
crossref_primary_10_1021_acs_langmuir_4c00272
crossref_primary_10_1063_5_0021093
crossref_primary_10_1088_2053_1583_aa8d8b
crossref_primary_10_1016_j_carbon_2024_118836
crossref_primary_10_1142_S0218625X21400059
crossref_primary_10_1021_acs_accounts_9b00643
crossref_primary_10_3390_cryst8020070
crossref_primary_10_1016_j_physb_2024_416103
crossref_primary_10_1021_acs_chemmater_5b03607
crossref_primary_10_1021_acs_chemmater_0c03549
crossref_primary_10_1038_s41535_017_0022_y
crossref_primary_10_1016_j_saa_2021_120849
crossref_primary_10_1039_C9TC05206B
crossref_primary_10_1021_acs_jpclett_2c00284
crossref_primary_10_1016_j_apmt_2018_12_010
crossref_primary_10_1016_j_jcrysgro_2018_05_018
crossref_primary_10_1016_j_matchemphys_2021_125143
crossref_primary_10_1088_2632_959X_ac293b
crossref_primary_10_1016_j_cplett_2019_04_009
crossref_primary_10_2139_ssrn_4156642
crossref_primary_10_1002_smll_202405404
crossref_primary_10_1016_j_mtadv_2020_100059
crossref_primary_10_1016_j_pmatsci_2023_101154
crossref_primary_10_1021_acs_jpclett_0c02289
crossref_primary_10_1039_C8NR03984D
crossref_primary_10_1063_5_0002101
crossref_primary_10_1021_acs_nanolett_6b05409
crossref_primary_10_1016_j_jcrysgro_2021_126074
crossref_primary_10_1039_C6CP08903H
crossref_primary_10_1088_2053_1583_aab407
crossref_primary_10_1021_acs_jpcc_3c06641
crossref_primary_10_1016_j_mtnano_2021_100135
crossref_primary_10_1002_wcms_1251
crossref_primary_10_1021_acsami_0c00449
crossref_primary_10_1063_1_5001790
crossref_primary_10_3390_surfaces3010003
crossref_primary_10_1021_acsami_7b10948
crossref_primary_10_1088_2515_7639_ab854a
crossref_primary_10_1021_acsnano_1c00115
crossref_primary_10_1007_s12274_021_3731_2
crossref_primary_10_1038_s41467_019_09016_0
crossref_primary_10_1038_s41565_020_00777_0
crossref_primary_10_3390_cryst12070985
crossref_primary_10_1002_adma_202207374
crossref_primary_10_1039_D1NR03733A
crossref_primary_10_1016_j_matlet_2019_03_095
crossref_primary_10_1557_adv_2018_117
crossref_primary_10_1002_pssb_201700069
crossref_primary_10_1103_PhysRevMaterials_6_104003
crossref_primary_10_1116_6_0000132
crossref_primary_10_1038_am_2016_178
crossref_primary_10_1088_2053_1583_3_3_035007
crossref_primary_10_1002_adma_202101589
crossref_primary_10_1002_lpor_202400304
crossref_primary_10_1021_acs_chemrev_0c01191
crossref_primary_10_1039_C8MH01088A
crossref_primary_10_1038_am_2017_118
crossref_primary_10_1002_adfm_202106315
crossref_primary_10_1016_j_mtcomm_2019_100607
crossref_primary_10_1039_C8RA02685H
crossref_primary_10_1021_acs_cgd_8b01542
crossref_primary_10_1039_D0NR00300J
crossref_primary_10_1088_2053_1583_abf80f
crossref_primary_10_1002_aelm_201700045
crossref_primary_10_1038_s41467_020_14596_3
crossref_primary_10_1016_j_pmatsci_2021_100884
crossref_primary_10_1002_smll_202301086
crossref_primary_10_1016_j_diamond_2023_110402
crossref_primary_10_1021_acsaelm_2c01367
crossref_primary_10_1016_j_flatc_2021_100305
crossref_primary_10_1007_s12274_022_4388_1
crossref_primary_10_1021_accountsmr_4c00122
crossref_primary_10_1016_j_materresbull_2018_02_027
crossref_primary_10_1021_acs_cgd_6b01665
crossref_primary_10_1002_smtd_202401551
crossref_primary_10_1021_acs_nanolett_5b04936
crossref_primary_10_1021_acsnano_5b05509
crossref_primary_10_1016_j_commatsci_2018_07_029
crossref_primary_10_1002_adma_201504042
crossref_primary_10_1021_jacs_5b07739
crossref_primary_10_1039_C8CP00877A
crossref_primary_10_1186_s40580_023_00368_4
crossref_primary_10_1002_adfm_201504633
crossref_primary_10_1016_j_apmt_2020_100660
crossref_primary_10_1002_adom_202100342
crossref_primary_10_1088_1361_6528_aaebb4
crossref_primary_10_1088_2053_1583_ab46e6
crossref_primary_10_1088_1361_6528_ad4553
crossref_primary_10_1007_s12274_016_1393_2
crossref_primary_10_1016_j_orgel_2021_106322
crossref_primary_10_1021_accountsmr_2c00061
crossref_primary_10_1088_2053_1583_ab6269
crossref_primary_10_1039_D2NJ03735A
crossref_primary_10_1088_1361_6528_ab0d3d
crossref_primary_10_1007_s40097_022_00490_5
crossref_primary_10_1039_C9CP06425G
crossref_primary_10_1016_j_mser_2024_100825
crossref_primary_10_1002_smtd_202301282
crossref_primary_10_1039_C6NR04734C
crossref_primary_10_1016_j_ceramint_2020_05_004
crossref_primary_10_1021_acs_nanolett_6b03268
crossref_primary_10_1039_C8NR05722B
crossref_primary_10_1002_admi_201801493
crossref_primary_10_1016_j_nantod_2020_101059
crossref_primary_10_1021_acs_cgd_3c00599
crossref_primary_10_1002_smll_201500210
crossref_primary_10_1038_s41467_024_47241_4
crossref_primary_10_1007_s10825_018_1159_z
crossref_primary_10_1016_j_isci_2019_09_038
crossref_primary_10_1088_2053_1583_aa7129
crossref_primary_10_1088_1361_6528_aab503
crossref_primary_10_1016_j_ceramint_2020_12_236
crossref_primary_10_1088_2053_1591_ac65e0
crossref_primary_10_1016_j_desal_2024_118442
crossref_primary_10_1021_acsanm_4c05269
crossref_primary_10_1016_j_apt_2016_05_027
crossref_primary_10_1039_D0RA00734J
crossref_primary_10_1039_D1RA02523F
crossref_primary_10_1016_j_commatsci_2018_03_067
crossref_primary_10_1021_acs_nanolett_7b02841
crossref_primary_10_1016_j_surfrep_2018_10_001
crossref_primary_10_1039_C9GC03285A
crossref_primary_10_1039_C7CP03835F
crossref_primary_10_1039_C8CC01076E
crossref_primary_10_1039_C7NR00933J
crossref_primary_10_1016_j_nantod_2023_102011
crossref_primary_10_1016_j_mechmat_2019_03_003
crossref_primary_10_1088_2632_959X_ac0d9d
crossref_primary_10_1002_admi_201900220
crossref_primary_10_1016_j_apmt_2023_101734
crossref_primary_10_1063_5_0165422
crossref_primary_10_1016_j_fmre_2021_09_014
crossref_primary_10_1088_1674_4926_38_3_031004
crossref_primary_10_1021_acs_chemrev_7b00633
crossref_primary_10_1088_1674_4926_38_3_031003
crossref_primary_10_1016_j_engfracmech_2020_107485
crossref_primary_10_1002_adfm_201604811
crossref_primary_10_1007_s12274_019_2467_8
crossref_primary_10_1021_acsnano_6b06736
crossref_primary_10_1039_C9RA00595A
crossref_primary_10_1002_adma_202203373
crossref_primary_10_1002_wcms_1635
crossref_primary_10_1038_srep23547
crossref_primary_10_1016_j_matchemphys_2017_02_049
crossref_primary_10_1002_admi_201801906
crossref_primary_10_1002_smll_201501766
crossref_primary_10_1016_j_cej_2024_154716
crossref_primary_10_1016_j_matdes_2017_02_035
Cites_doi 10.1126/science.1218461
10.1021/nn404331f
10.1038/ncomms2817
10.1038/ncomms3541
10.1111/j.1151-2916.2000.tb01615.x
10.1126/science.1091979
10.1002/(SICI)1099-1581(199912)10:12<702::AID-PAT931>3.0.CO;2-Q
10.1016/j.carbon.2011.07.062
10.1002/adma.201304937
10.1021/nl3011726
10.1088/0957-4484/25/14/145604
10.1016/j.tca.2004.12.002
10.1021/ic101020k
10.1021/nl404735w
10.1038/nphys1406
10.1002/smll.201001628
10.1002/pssb.201300088
10.1007/s12274-013-0310-1
10.1021/nl404207f
10.1111/j.1551-2916.2009.02941.x
10.1021/ja400637n
10.1021/la062990t
10.1021/nl203249a
10.1088/0957-4484/23/41/415605
10.1016/S0040-6031(02)00173-9
10.1016/S0040-6031(99)00365-2
10.1021/nn301940k
10.1021/nn300996t
10.1021/nl0602544
10.1021/nn4009356
10.1039/c1nr10294j
10.1021/nl061702a
10.1126/science.1144216
10.1016/j.susc.2003.08.046
10.1126/science.1184167
10.1016/0955-2219(89)90003-4
10.1039/C1RA00703C
10.1063/1.1667278
10.1116/1.572492
10.1021/cm034805s
10.1063/1.2903702
10.1039/c3tc32011a
10.1021/nl1023707
10.1021/nl1022139
10.1103/PhysRevLett.97.187401
10.1088/0957-4484/21/9/095301
10.1038/nnano.2010.172
ContentType Journal Article
Copyright Springer Nature Limited 2015
Copyright Nature Publishing Group Jan 2015
Copyright_xml – notice: Springer Nature Limited 2015
– notice: Copyright Nature Publishing Group Jan 2015
DBID AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOI 10.1038/ncomms7160
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
ExternalDocumentID 3563669911
25606802
10_1038_ncomms7160
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABAWZ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
ID FETCH-LOGICAL-c453t-3d0f16984f815be5885d25e56f85fc339e730581de1e87edab0ff39855da26cc3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Fri Jul 11 11:03:12 EDT 2025
Wed Aug 13 06:31:17 EDT 2025
Thu Apr 03 06:59:35 EDT 2025
Tue Jul 01 02:30:50 EDT 2025
Thu Apr 24 23:04:01 EDT 2025
Fri Feb 21 02:39:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-3d0f16984f815be5885d25e56f85fc339e730581de1e87edab0ff39855da26cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms7160
PMID 25606802
PQID 1647052031
PQPubID 546298
ParticipantIDs proquest_miscellaneous_1652400813
proquest_journals_1647052031
pubmed_primary_25606802
crossref_primary_10_1038_ncomms7160
crossref_citationtrail_10_1038_ncomms7160
springer_journals_10_1038_ncomms7160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150121
PublicationDateYYYYMMDD 2015-01-21
PublicationDate_xml – month: 1
  year: 2015
  text: 20150121
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Feldman, Martin, Yacoby (CR10) 2009; 5
Wang, Yamamoto, Kiyono, Shimada (CR41) 2009; 92
Tao (CR6) 2010; 21
Graf (CR49) 2007; 7
Song (CR3) 2010; 10
Han, Lee, Kwon, Yeo (CR26) 2014; 25
Lipp, Schwetz, Honold (CR5) 1989; 5
Gao (CR29) 2013; 7
Orofeo, Suzuki, Kageshima, Hibino (CR32) 2013; 6
Baumann, Baitalow, Wolf (CR39) 2005; 430
Kim (CR23) 2012; 12
Britnell (CR8) 2012; 335
Bresnehan (CR35) 2012; 6
Goriachko (CR31) 2007; 23
Hanke, Muller (CR42) 1984; 2
Chen, Zou, Campbell, Le Caer (CR2) 2004; 84
Tay (CR27) 2014; 2
Kim (CR36) 1999; 10
Kho, Moon, Kim, Kim (CR4) 2000; 83
CR46
Gibb, Alem, Zettl (CR21) 2010; 250
Auwärter, Suter, Sachdev, Greber (CR17) 2003; 16
Xu, Fujita, Chen, Hanagata (CR43) 2011; 3
Auwärter, Muntwiler, Osterwalder, Greber (CR16) 2003; 545
Tay (CR25) 2014; 14
Wolf, Baumann, Baitalow, Hoffmann (CR37) 2000; 343
Frueh (CR40) 2011; 50
Dean (CR7) 2010; 5
Garcia (CR11) 2012; 12
Arenal (CR45) 2006; 6
Pacile, Meyer, Girit, Zettl (CR12) 2008; 92
Wang (CR24) 2014; 26
Baitalow, Baumann, Wolf, Jaenicke-Rossler, Leitner (CR38) 2002; 391
Kubota, Watanabe, Tsuda, Taniguchi (CR1) 2007; 317
Kim (CR28) 2013; 13
Ferrari (CR48) 2006; 97
Gorbachev (CR13) 2011; 7
Lee (CR15) 2010; 328
Lee (CR19) 2012; 2
Ismach (CR18) 2012; 6
Britnell (CR9) 2013; 4
Tang (CR14) 2012; 50
Corso (CR30) 2004; 303
Han (CR47) 2013; 7
Liu (CR44) 2013; 4
Gibb (CR33) 2013; 135
Cretu, Lin, Suenaga (CR34) 2014; 14
Shi (CR20) 2010; 10
Guo (CR22) 2012; 23
F Baitalow (BFncomms7160_CR38) 2002; 391
JG Kho (BFncomms7160_CR4) 2000; 83
S Tang (BFncomms7160_CR14) 2012; 50
W Auwärter (BFncomms7160_CR16) 2003; 545
A Lipp (BFncomms7160_CR5) 1989; 5
AGF Garcia (BFncomms7160_CR11) 2012; 12
S Frueh (BFncomms7160_CR40) 2011; 50
L Wang (BFncomms7160_CR24) 2014; 26
RY Tay (BFncomms7160_CR27) 2014; 2
D Pacile (BFncomms7160_CR12) 2008; 92
CR Dean (BFncomms7160_CR7) 2010; 5
Y-H Lee (BFncomms7160_CR19) 2012; 2
A Gibb (BFncomms7160_CR21) 2010; 250
GH Han (BFncomms7160_CR47) 2013; 7
Y Chen (BFncomms7160_CR2) 2004; 84
R Arenal (BFncomms7160_CR45) 2006; 6
BFncomms7160_CR46
BE Feldman (BFncomms7160_CR10) 2009; 5
C Lee (BFncomms7160_CR15) 2010; 328
N Guo (BFncomms7160_CR22) 2012; 23
Y Kubota (BFncomms7160_CR1) 2007; 317
L Britnell (BFncomms7160_CR9) 2013; 4
J Baumann (BFncomms7160_CR39) 2005; 430
CM Orofeo (BFncomms7160_CR32) 2013; 6
KK Kim (BFncomms7160_CR23) 2012; 12
M Xu (BFncomms7160_CR43) 2011; 3
O Cretu (BFncomms7160_CR34) 2014; 14
J Han (BFncomms7160_CR26) 2014; 25
G Kim (BFncomms7160_CR28) 2013; 13
AL Gibb (BFncomms7160_CR33) 2013; 135
RY Tay (BFncomms7160_CR25) 2014; 14
A Ismach (BFncomms7160_CR18) 2012; 6
Y Shi (BFncomms7160_CR20) 2010; 10
MS Bresnehan (BFncomms7160_CR35) 2012; 6
G Hanke (BFncomms7160_CR42) 1984; 2
D Graf (BFncomms7160_CR49) 2007; 7
M Corso (BFncomms7160_CR30) 2004; 303
Z Liu (BFncomms7160_CR44) 2013; 4
L Britnell (BFncomms7160_CR8) 2012; 335
RV Gorbachev (BFncomms7160_CR13) 2011; 7
YT Wang (BFncomms7160_CR41) 2009; 92
Y Gao (BFncomms7160_CR29) 2013; 7
DP Kim (BFncomms7160_CR36) 1999; 10
AC Ferrari (BFncomms7160_CR48) 2006; 97
W Auwärter (BFncomms7160_CR17) 2003; 16
A Goriachko (BFncomms7160_CR31) 2007; 23
G Wolf (BFncomms7160_CR37) 2000; 343
L Song (BFncomms7160_CR3) 2010; 10
O Tao (BFncomms7160_CR6) 2010; 21
References_xml – volume: 335
  start-page: 947
  year: 2012
  end-page: 950
  ident: CR8
  article-title: Field-effect tunneling transistor based on vertical graphene heterostructures
  publication-title: Science
  doi: 10.1126/science.1218461
– volume: 7
  start-page: 10129
  year: 2013
  end-page: 10138
  ident: CR47
  article-title: Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition
  publication-title: ACS Nano
  doi: 10.1021/nn404331f
– volume: 4
  start-page: 1794
  year: 2013
  ident: CR9
  article-title: Resonant tunnelling and negative differential conductance in graphene transistors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2817
– volume: 13
  start-page: 1834
  year: 2013
  end-page: 1839
  ident: CR28
  article-title: Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil
  publication-title: ACS Nano
– volume: 4
  start-page: 2541
  year: 2013
  ident: CR44
  article-title: Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3541
– volume: 83
  start-page: 2681
  year: 2000
  end-page: 2683
  ident: CR4
  article-title: Properties of boron nitride (B N ) films produced by the spin-coating process of polyborazine
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2000.tb01615.x
– volume: 303
  start-page: 217
  year: 2004
  end-page: 220
  ident: CR30
  article-title: Boron nitride nanomesh
  publication-title: Science
  doi: 10.1126/science.1091979
– volume: 10
  start-page: 702
  year: 1999
  end-page: 712
  ident: CR36
  article-title: Synthesis and characterization of poly-(aminoborane) as a new boron nitride precursor
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/(SICI)1099-1581(199912)10:12<702::AID-PAT931>3.0.CO;2-Q
– volume: 50
  start-page: 329
  year: 2012
  end-page: 331
  ident: CR14
  article-title: Nucleation and growth of single crystal graphene on hexagonal boron nitride
  publication-title: Carbon. NY.
  doi: 10.1016/j.carbon.2011.07.062
– volume: 26
  start-page: 1559
  year: 2014
  end-page: 1564
  ident: CR24
  article-title: Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304937
– volume: 12
  start-page: 4449
  year: 2012
  end-page: 4454
  ident: CR11
  article-title: Effective cleaning of hexagonal boron nitride for graphene devices
  publication-title: Nano Lett.
  doi: 10.1021/nl3011726
– volume: 25
  start-page: 145604
  year: 2014
  ident: CR26
  article-title: Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/14/145604
– volume: 430
  start-page: 9
  year: 2005
  end-page: 14
  ident: CR39
  article-title: Thermal decomposition of polymeric aminoborane (H BNH ) under hydrogen release
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2004.12.002
– volume: 50
  start-page: 783
  year: 2011
  end-page: 792
  ident: CR40
  article-title: Pyrolytic decomposition of ammonia borane to boron nitride
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101020k
– ident: CR46
– volume: 14
  start-page: 1064
  year: 2014
  end-page: 1068
  ident: CR34
  article-title: Evidence for active atomic defects in monolayer hexagonal boron nitride: a new mechanism of plasticity in two-dimensional materials
  publication-title: Nano Lett.
  doi: 10.1021/nl404735w
– volume: 5
  start-page: 889
  year: 2009
  end-page: 893
  ident: CR10
  article-title: Broken-symmetry states and divergent resistance in suspended bilayer graphene
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1406
– volume: 7
  start-page: 465
  year: 2011
  end-page: 468
  ident: CR13
  article-title: Hunting for monolayer boron nitride: optical and Raman signatures
  publication-title: Small
  doi: 10.1002/smll.201001628
– volume: 250
  start-page: 2727
  year: 2010
  end-page: 2731
  ident: CR21
  article-title: Low pressure chemical vapor deposition synthesis of hexagonal boron nitride on polycrystalline metal foils
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201300088
– volume: 6
  start-page: 335
  year: 2013
  end-page: 347
  ident: CR32
  article-title: Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt
  publication-title: Nano Res.
  doi: 10.1007/s12274-013-0310-1
– volume: 14
  start-page: 839
  year: 2014
  end-page: 846
  ident: CR25
  article-title: Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper
  publication-title: Nano Lett.
  doi: 10.1021/nl404207f
– volume: 92
  start-page: 787
  year: 2009
  end-page: 792
  ident: CR41
  article-title: Effect of ambient gas and temperature on crystallization of boron nitride spheres prepared by vapor phase pyrolysis of ammonia borane
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.02941.x
– volume: 135
  start-page: 6758
  year: 2013
  end-page: 6761
  ident: CR33
  article-title: Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400637n
– volume: 23
  start-page: 2928
  year: 2007
  end-page: 2931
  ident: CR31
  article-title: Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001)
  publication-title: Langmuir
  doi: 10.1021/la062990t
– volume: 12
  start-page: 161
  year: 2012
  end-page: 166
  ident: CR23
  article-title: Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl203249a
– volume: 23
  start-page: 415605
  year: 2012
  ident: CR22
  article-title: Controllable growth of triangular hexagonal boron nitride domains on copper foils by an improved low-pressure chemical vapor deposition method
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/41/415605
– volume: 391
  start-page: 159
  year: 2002
  end-page: 168
  ident: CR38
  article-title: Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(02)00173-9
– volume: 343
  start-page: 19
  year: 2000
  end-page: 25
  ident: CR37
  article-title: Calorimetric process monitoring of thermal decomposition of B-N-H compounds
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(99)00365-2
– volume: 6
  start-page: 6378
  year: 2012
  end-page: 6385
  ident: CR18
  article-title: Toward the controlled synthesis of hexagonal boron nitride films
  publication-title: ACS Nano
  doi: 10.1021/nn301940k
– volume: 6
  start-page: 5234
  year: 2012
  end-page: 5241
  ident: CR35
  article-title: Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices
  publication-title: ACS Nano
  doi: 10.1021/nn300996t
– volume: 6
  start-page: 1812
  year: 2006
  end-page: 1816
  ident: CR45
  article-title: Raman spectroscopy of single-wall boron nitride nanotubes
  publication-title: Nano Lett.
  doi: 10.1021/nl0602544
– volume: 7
  start-page: 5199
  year: 2013
  end-page: 5206
  ident: CR29
  article-title: Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils
  publication-title: ACS Nano
  doi: 10.1021/nn4009356
– volume: 3
  start-page: 2854
  year: 2011
  end-page: 2858
  ident: CR43
  article-title: Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation
  publication-title: Nanoscale
  doi: 10.1039/c1nr10294j
– volume: 7
  start-page: 238
  year: 2007
  end-page: 242
  ident: CR49
  article-title: Spatially resolved Raman spectroscopy of single- and few-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl061702a
– volume: 317
  start-page: 932
  year: 2007
  end-page: 934
  ident: CR1
  article-title: Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure
  publication-title: Science
  doi: 10.1126/science.1144216
– volume: 545
  start-page: L735
  year: 2003
  end-page: L740
  ident: CR16
  article-title: Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111)
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2003.08.046
– volume: 328
  start-page: 76
  year: 2010
  end-page: 80
  ident: CR15
  article-title: Frictional characteristics of atomically thin sheets
  publication-title: Science
  doi: 10.1126/science.1184167
– volume: 5
  start-page: 3
  year: 1989
  end-page: 9
  ident: CR5
  article-title: Hexagonal boron nitride: fabrication, properties and application
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/0955-2219(89)90003-4
– volume: 2
  start-page: 111
  year: 2012
  end-page: 115
  ident: CR19
  article-title: Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations
  publication-title: RSC Adv.
  doi: 10.1039/C1RA00703C
– volume: 84
  start-page: 2430
  year: 2004
  end-page: 2432
  ident: CR2
  article-title: Boron nitride nanotubes: pronounced resistance to oxidation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1667278
– volume: 2
  start-page: 964
  year: 1984
  end-page: 968
  ident: CR42
  article-title: Low-energy Auger transitions of boron in several boron-compounds
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.572492
– volume: 16
  start-page: 343
  year: 2003
  end-page: 345
  ident: CR17
  article-title: Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)
  publication-title: Chem. Mater.
  doi: 10.1021/cm034805s
– volume: 92
  start-page: 133107
  year: 2008
  ident: CR12
  article-title: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2903702
– volume: 2
  start-page: 1650
  year: 2014
  end-page: 1657
  ident: CR27
  article-title: A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc32011a
– volume: 10
  start-page: 4134
  year: 2010
  end-page: 4139
  ident: CR20
  article-title: Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl1023707
– volume: 10
  start-page: 3209
  year: 2010
  end-page: 3215
  ident: CR3
  article-title: Large scale growth and characterization of atomic hexagonal boron nitride layers
  publication-title: Nano Lett.
  doi: 10.1021/nl1022139
– volume: 97
  start-page: 187401
  year: 2006
  ident: CR48
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 21
  start-page: 245701
  year: 2010
  ident: CR6
  article-title: Thermal transport in hexagonal boron nitride nanoribbons
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/9/095301
– volume: 5
  start-page: 722
  year: 2010
  end-page: 726
  ident: CR7
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 6
  start-page: 335
  year: 2013
  ident: BFncomms7160_CR32
  publication-title: Nano Res.
  doi: 10.1007/s12274-013-0310-1
– volume: 10
  start-page: 3209
  year: 2010
  ident: BFncomms7160_CR3
  publication-title: Nano Lett.
  doi: 10.1021/nl1022139
– volume: 92
  start-page: 133107
  year: 2008
  ident: BFncomms7160_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2903702
– volume: 135
  start-page: 6758
  year: 2013
  ident: BFncomms7160_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400637n
– volume: 343
  start-page: 19
  year: 2000
  ident: BFncomms7160_CR37
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(99)00365-2
– volume: 5
  start-page: 722
  year: 2010
  ident: BFncomms7160_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 2
  start-page: 111
  year: 2012
  ident: BFncomms7160_CR19
  publication-title: RSC Adv.
  doi: 10.1039/C1RA00703C
– volume: 391
  start-page: 159
  year: 2002
  ident: BFncomms7160_CR38
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(02)00173-9
– volume: 7
  start-page: 465
  year: 2011
  ident: BFncomms7160_CR13
  publication-title: Small
  doi: 10.1002/smll.201001628
– volume: 12
  start-page: 161
  year: 2012
  ident: BFncomms7160_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl203249a
– volume: 26
  start-page: 1559
  year: 2014
  ident: BFncomms7160_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304937
– volume: 92
  start-page: 787
  year: 2009
  ident: BFncomms7160_CR41
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.02941.x
– volume: 250
  start-page: 2727
  year: 2010
  ident: BFncomms7160_CR21
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201300088
– volume: 50
  start-page: 329
  year: 2012
  ident: BFncomms7160_CR14
  publication-title: Carbon. NY.
  doi: 10.1016/j.carbon.2011.07.062
– volume: 10
  start-page: 702
  year: 1999
  ident: BFncomms7160_CR36
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/(SICI)1099-1581(199912)10:12<702::AID-PAT931>3.0.CO;2-Q
– volume: 7
  start-page: 10129
  year: 2013
  ident: BFncomms7160_CR47
  publication-title: ACS Nano
  doi: 10.1021/nn404331f
– volume: 2
  start-page: 964
  year: 1984
  ident: BFncomms7160_CR42
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.572492
– volume: 303
  start-page: 217
  year: 2004
  ident: BFncomms7160_CR30
  publication-title: Science
  doi: 10.1126/science.1091979
– volume: 5
  start-page: 889
  year: 2009
  ident: BFncomms7160_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1406
– volume: 12
  start-page: 4449
  year: 2012
  ident: BFncomms7160_CR11
  publication-title: Nano Lett.
  doi: 10.1021/nl3011726
– volume: 6
  start-page: 1812
  year: 2006
  ident: BFncomms7160_CR45
  publication-title: Nano Lett.
  doi: 10.1021/nl0602544
– volume: 5
  start-page: 3
  year: 1989
  ident: BFncomms7160_CR5
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/0955-2219(89)90003-4
– volume: 21
  start-page: 245701
  year: 2010
  ident: BFncomms7160_CR6
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/9/095301
– volume: 430
  start-page: 9
  year: 2005
  ident: BFncomms7160_CR39
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2004.12.002
– volume: 83
  start-page: 2681
  year: 2000
  ident: BFncomms7160_CR4
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2000.tb01615.x
– volume: 4
  start-page: 1794
  year: 2013
  ident: BFncomms7160_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2817
– volume: 14
  start-page: 839
  year: 2014
  ident: BFncomms7160_CR25
  publication-title: Nano Lett.
  doi: 10.1021/nl404207f
– volume: 6
  start-page: 5234
  year: 2012
  ident: BFncomms7160_CR35
  publication-title: ACS Nano
  doi: 10.1021/nn300996t
– volume: 328
  start-page: 76
  year: 2010
  ident: BFncomms7160_CR15
  publication-title: Science
  doi: 10.1126/science.1184167
– volume: 7
  start-page: 5199
  year: 2013
  ident: BFncomms7160_CR29
  publication-title: ACS Nano
  doi: 10.1021/nn4009356
– volume: 7
  start-page: 238
  year: 2007
  ident: BFncomms7160_CR49
  publication-title: Nano Lett.
  doi: 10.1021/nl061702a
– volume: 317
  start-page: 932
  year: 2007
  ident: BFncomms7160_CR1
  publication-title: Science
  doi: 10.1126/science.1144216
– volume: 6
  start-page: 6378
  year: 2012
  ident: BFncomms7160_CR18
  publication-title: ACS Nano
  doi: 10.1021/nn301940k
– volume: 3
  start-page: 2854
  year: 2011
  ident: BFncomms7160_CR43
  publication-title: Nanoscale
  doi: 10.1039/c1nr10294j
– volume: 84
  start-page: 2430
  year: 2004
  ident: BFncomms7160_CR2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1667278
– volume: 97
  start-page: 187401
  year: 2006
  ident: BFncomms7160_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 13
  start-page: 1834
  year: 2013
  ident: BFncomms7160_CR28
  publication-title: ACS Nano
– volume: 23
  start-page: 2928
  year: 2007
  ident: BFncomms7160_CR31
  publication-title: Langmuir
  doi: 10.1021/la062990t
– volume: 23
  start-page: 415605
  year: 2012
  ident: BFncomms7160_CR22
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/41/415605
– volume: 25
  start-page: 145604
  year: 2014
  ident: BFncomms7160_CR26
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/14/145604
– volume: 14
  start-page: 1064
  year: 2014
  ident: BFncomms7160_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl404735w
– volume: 545
  start-page: L735
  year: 2003
  ident: BFncomms7160_CR16
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2003.08.046
– ident: BFncomms7160_CR46
– volume: 50
  start-page: 783
  year: 2011
  ident: BFncomms7160_CR40
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101020k
– volume: 335
  start-page: 947
  year: 2012
  ident: BFncomms7160_CR8
  publication-title: Science
  doi: 10.1126/science.1218461
– volume: 2
  start-page: 1650
  year: 2014
  ident: BFncomms7160_CR27
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc32011a
– volume: 4
  start-page: 2541
  year: 2013
  ident: BFncomms7160_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3541
– volume: 10
  start-page: 4134
  year: 2010
  ident: BFncomms7160_CR20
  publication-title: Nano Lett.
  doi: 10.1021/nl1023707
– volume: 16
  start-page: 343
  year: 2003
  ident: BFncomms7160_CR17
  publication-title: Chem. Mater.
  doi: 10.1021/cm034805s
SSID ssj0000391844
Score 2.5903482
Snippet Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6160
SubjectTerms 639/301/1023/1026
639/301/357/1018
639/925/927/1007
639/925/930/1032
Boron
Humanities and Social Sciences
multidisciplinary
Nucleation
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRv51OieiLD2FNk3Tpk4g4RVAfVNhbSdurDmY31w3cf-_d1k5l4nOv6ZHL5X730TvGzgKAuCW1FGkcg9BKt0TofBCeQ98ALUbLk_Rz8v1DcPui7zqmUwbcirKssroTpxd12k8oRt6kvldUs6HkxeBD0NQoyq6WIzSW2YpES0MlXbZ9M4-xUPdzq3XVlVTZZo5LvhfoI3i_7dACuFxIjE7tTXuDrZdAkV_OJLvJliDfYquz0ZGTbfb4NMkRuxXdgvcz3qN6bk5ufw9EMpwg5OvxN_h0rwS0eUxtCjgq77CbAn-lqRD4Ws6vxuKhyyn1PtlhL-3r56tbUQ5HEIk2aiRU6mUyCK3OrDQxGGtN6hswQWZNligVAuquQTQKEmwLUhd7WaZCa0zq_CBJ1C6r5f0c9hmPUW8lBCZDy4T-nXHausSh2QpTherp19l5tVVRUnYOpwEWvWiawVY2-t7WOjud0w5m_TL-pGpUOx6VOlNE3xKus5P5YzztlMJwOfTHRGOo6NVKVWd7M0nNP0PgLbAesntWie7H4gs8HPzPwyFbQ2xEhY3Clw1WGw3HcIT4YxQfTw_ZF2ZJ2vM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsNAEF7EIngR_61WWdGLh8VsNptujqVYSsGCVMFb2CQTLdRUmhbszXfwDX0SZ5qkKvXgMWQ22czuZL7JTL5h7NIHiJrSkyKJIhCe8poisC4Ix2JsgB6j6Uj6Ofm273cfvN6jfixpcvKyrLKgtFy8pqvqsOsMj15yBPcYnteIoh33dK3V6g16yy8qxHVuPK_iIFXmx6DfXmcFSq6kQRfepbPNtkpYyFvFRHbYGmS7bKNoFDnfY3eDeYZILR_mfJzyEVVvcwryRyDiyRwB3og_w5t9IljNIyIl4Giqk2EC_Il6QOCwjLdnn-8f_SGnVPt8nz10bu7bXVE2QxAxPuxUqMRJpR8YLzVSR6CN0YmrQfup0WmsVABoqxrRJ0gwTUhs5KSpCozWiXX9OFYHbD0bZ3DEeIR2KsHXKXoijOe09YyNLbqpIFFojm6dXVXKCuOSKZwaVozCRcZamfBbsXV2sZR9Lfgx_pRqVDoPSxvJQ2IyoyocJevsfHkadzelLGwG4xnJaCpyNVLV2WGxVsvbEFjzjYPTvawW78fFV-Zw_D-xE7aJmIgKGoUrG2x9OpnBKeKOaXRWbrgvbAnacg
  priority: 102
  providerName: Springer Nature
Title Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy
URI https://link.springer.com/article/10.1038/ncomms7160
https://www.ncbi.nlm.nih.gov/pubmed/25606802
https://www.proquest.com/docview/1647052031
https://www.proquest.com/docview/1652400813
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9tADBddy2AvpfvO1oUb68sebvP5fPb5YYwsNCuBZmNdIG_GH3IXcJ02H1D_95X8ka2k7MUG--4spJP1E9JJACc-YhIoT8ksSVB62gtkGLsonZh8A7IYgaP4cPL5xD-beuOZme1B17-zZeDqQdeO-0lNl8Wn25vqKyn8l-bIuP1ckmyuVgT8yXU_4PW5k8F5C_PrP7IOyZHxuuqk96bct0c7IHMnQFrbndERHLaAUQwaCT-FPSyfweOmhWT1HH5cVCVhuNV8JRa5KDivW7D7X6BMlxVBv0L8wdv4kgG3SLhcgSAlXs4zFJfcHYKmlWK4kZO54BB89QKmo9PfwzPZNkmQqWf0WurMyZUfWi-3yiRorDWZa9D4uTV5qnWIpMOGUCkqtAFmceLkuQ6tMVns-mmqX8J-uSjxNYiE9Fehb3KyUOTnmdizcRqT-QozTWrq9uBjx6oobSuIcyOLIqoj2dpGf9nagw_bsddN3YwHRx13HI860Udc4Yyzc7Tqwfvta9r1HMqIS1xseIzh5FerdA9eNZLafoZBnG8dIvekE90_i-_Q8Ob_NLyFJ4SROMFRuuoY9tfLDb4jHLJO-vAomAV0taPvfTgYDMYXY7p_O538_EVPh_6wX3v4_Xoz3gHDFuR4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIcReEP9XGGDEeODBWhzbqfOAEBqUjm3lgU3aW3CSy1apS0fTasuX4jNy1zQdqIi3PefiOOfz3e985zuA7Qgx7SqjZJ6mKI02XRn7EGXgyTcgi9ENFF9OPhxE_WPz9cSerMGv9i4Mp1W2OnGuqPNxxmfkO1z3inM2tPpw8VNy1yiOrrYtNBqx2Mf6kly26v3eJ1rft2HY-3y025eLrgIyM1ZPpc6DQkWxM4VTNkXrnM1DizYqnC0yrWMkobcE41Ch62Lu06AodOyszX0YZZmmcW_BbUOU7Oy53pflmQ5XW3fGtFVQtdsp6RfOK_JJgr_t3gqYXQnEzu1b7z7cWwBT8bGRpAewhuVDuNO0qqwfwbfvdUlYsRpWYlyIEeePCz5mGKHMJjVBzJE4wyt_ysBepFwWQZCymAxzFKfchYJeK8XuTA6GgkP99WM4vhG2PYH1clziJoiU9ITCyBZkCcmftN44n3kyk3GuSR2EHXjXsirJFpXKuWHGKJlHzLVLrtnagTdL2oumPsc_qbZajieLPVol1xLVgdfLx7S7OGTiSxzPmMZykq1TugNPm5VafobBYuQCmu52u3R_DL4yh2f_n8MruNs_OjxIDvYG-89hg3AZJ1XKUG3B-nQywxeEfabpy7nACfhx0xL-G7xYF_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeBAosoBw6reL1ee31ACNpGLYVQAZV6c_2YLZGCU-JE4L_Gr2MmtlNQELeevV6vZ2dnvnnsDMB2iJhFKlCyyDKUgQ4iGac-Si8l24A0RuQpvpz8YRTuHwfvTszJBvzq7sJwWmUnE5eCupjm7CMfcN0rztnQauDatIij3eHr8--SO0hxpLVrp9GwyCHWP8h8q14d7NJev_D94d6XnX3ZdhiQeWD0XOrCcyqMbeCsMhkaa03hGzShs8blWsdIB8AQpEOFNsIizTzndGyNKVI_zHNN816BzYitoh5svt0bHX1aeXi49roNgq4mqraDkn7oW0UWive3FlyDtmth2aW2G96EGy1MFW8avroFG1jehqtN48r6Dnz8XJeEHKtxJaZOTDibXLDTYYIyn9UEOCfiK_5Mzxjmi4yLJAgSHbNxgeKMe1LQa6XYWcjRWHDgv74Lx5dCuHvQK6clPgCRkdRQGBpHepHoaNLApnlKSjMuNAkHvw8vO1IleVu3nNtnTJJl_Fzb5IKsfXi-GnveVOv456itjuJJe2Kr5IK_-vBs9ZjOGgdQ0hKnCx5jOOXWKt2H-81OrT7D0DG0Hi13u9u6PyZfW8PD_6_hKVwj7k7eH4wOH8F1AmmcYSl9tQW9-WyBjwkIzbMnLccJOL1sJv8NN2Mdhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+large+single-crystal+hexagonal+boron+nitride+grains+on+Cu-Ni+alloy&rft.jtitle=Nature+communications&rft.au=Lu%2C+Guangyuan&rft.au=Wu%2C+Tianru&rft.au=Yuan%2C+Qinghong&rft.au=Wang%2C+Huishan&rft.date=2015-01-21&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=6&rft.spage=6160&rft_id=info:doi/10.1038%2Fncomms7160&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3563669911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon