Learning from radiation at a very high energy lepton collider

A bstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that su...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2022; no. 5; pp. 180 - 58
Main Authors Chen, Siyu, Glioti, Alfredo, Rattazzi, Riccardo, Ricci, Lorenzo, Wulzer, Andrea
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 27.05.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z ′ new physics scenarios at future muon colliders.
AbstractList A bstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z ′ new physics scenarios at future muon colliders.
Abstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z′ new physics scenarios at future muon colliders.
We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z ′ new physics scenarios at future muon colliders.
We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z′ new physics scenarios at future muon colliders.
ArticleNumber 180
Author Glioti, Alfredo
Wulzer, Andrea
Ricci, Lorenzo
Chen, Siyu
Rattazzi, Riccardo
Author_xml – sequence: 1
  givenname: Siyu
  surname: Chen
  fullname: Chen, Siyu
  organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL
– sequence: 2
  givenname: Alfredo
  surname: Glioti
  fullname: Glioti, Alfredo
  organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL
– sequence: 3
  givenname: Riccardo
  surname: Rattazzi
  fullname: Rattazzi, Riccardo
  organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL
– sequence: 4
  givenname: Lorenzo
  orcidid: 0000-0001-8704-3545
  surname: Ricci
  fullname: Ricci, Lorenzo
  email: lorenzo.ricci@epfl.ch
  organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL
– sequence: 5
  givenname: Andrea
  surname: Wulzer
  fullname: Wulzer, Andrea
  organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL, Dipartimento di Fisica e Astronomia, Università di Padova
BookMark eNp9kMFLwzAUh4Mo6NSz14IXPcy9tEmbHDzImDoZ6EHPIUlfakZtZtoJ--_trKgIesoj732_9_hGZLcJDRJyQuGCAhSTu9vZA_CzFNL0nArYIQcUUjkWrJC7P-p9MmrbJQDlVMIBuVygjo1vqsTF8JJEXXrd-dAkukt08oZxkzz76jnBBmO1SWpcdX3Thrr2JcYjsud03eLx53tInq5nj9Pb8eL-Zj69Wowt41k3zjLIsUCRQ26tyIRLjStQQ0pFIRjYPBfCONAUpDVOcGMAC2M5YxkyYJAdkvmQWwa9VKvoX3TcqKC9-vgIsVI6dt7WqFxZ5oIDddYaJo0RSE1hpJOcUwZS9lmnQ9Yqhtc1tp1ahnVs-vNVKphgeZ7xop-aDFM2hraN6L62UlBb32rwrba-Ve-7J_gvwvruw2UXta__4WDg2n5DU2H8vucv5B0UwpNN
CitedBy_id crossref_primary_10_1007_JHEP09_2023_107
crossref_primary_10_1140_epjc_s10052_023_11724_3
crossref_primary_10_1007_JHEP03_2023_033
crossref_primary_10_21468_SciPostPhys_16_3_072
crossref_primary_10_1103_PhysRevD_109_075011
crossref_primary_10_1103_PhysRevD_107_115027
crossref_primary_10_1103_PhysRevD_109_075020
crossref_primary_10_1103_PhysRevD_110_035022
crossref_primary_10_1007_JHEP10_2024_215
crossref_primary_10_1088_1748_0221_19_02_T02015
crossref_primary_10_1007_JHEP10_2023_121
crossref_primary_10_1093_ptep_ptad144
crossref_primary_10_1007_JHEP08_2022_276
crossref_primary_10_1140_epjc_s10052_023_11889_x
crossref_primary_10_1103_PhysRevD_111_053002
crossref_primary_10_1007_JHEP03_2025_171
crossref_primary_10_1103_PhysRevD_110_075009
crossref_primary_10_1007_JHEP04_2024_084
crossref_primary_10_1007_JHEP12_2022_138
crossref_primary_10_1007_JHEP07_2022_036
crossref_primary_10_1140_epjc_s10052_022_10918_5
Cites_doi 10.1016/S0550-3213(05)80021-5
10.1103/PhysRevD.105.053009
10.1007/JHEP01(2019)011
10.1016/0370-2693(84)91177-8
10.1103/PhysRevD.104.L091301
10.1140/epjc/s10052-021-09569-9
10.1007/JHEP08(2017)036
10.1103/PhysRevLett.88.102001
10.1007/s100520100721
10.1103/PhysRev.133.B1549
10.1007/JHEP10(2010)085
10.1007/JHEP11(2018)144
10.1103/PhysRevLett.100.021802
10.1007/JHEP10(2021)182
10.1103/PhysRevD.103.096024
10.1007/s100520100551
10.1103/PhysRevD.103.L031301
10.1103/PhysRevD.103.013002
10.1016/j.physletb.2017.06.043
10.1016/j.nuclphysb.2022.115827
10.1103/PhysRevD.105.015028
10.1088/1126-6708/2006/09/055
10.1007/978-3-319-22617-0_1
10.1140/epjc/s10052-021-09917-9
10.1007/JHEP05(2018)106
10.1063/1.1724268
10.1007/JHEP09(2020)098
10.1103/PhysRevD.63.034003
10.21468/SciPostPhys.8.5.078
10.1007/JHEP12(2021)162
10.1007/JHEP12(2021)047
10.21468/SciPostPhys.8.2.027
10.1016/0550-3213(85)90038-0
10.1016/j.nuclphysb.2014.05.021
10.1140/epjc/s10052-022-10176-5
10.1007/JHEP09(2020)080
10.1007/JHEP06(2021)143
10.3390/sym13060991
10.1103/PhysRevD.68.035012
10.1103/PhysRevD.103.075004
10.1007/JHEP06(2012)122
10.1007/JHEP06(2021)133
10.1007/JHEP07(2021)086
10.1007/JHEP01(2019)072
10.1007/JHEP02(2021)144
10.1103/PhysRevD.80.094013
10.1016/S0550-3213(00)00508-3
10.1016/j.physletb.2014.11.050
10.1007/JHEP04(2022)129
10.1103/PhysRevD.81.014023
10.1016/S0550-3213(01)00454-0
10.1007/JHEP10(2018)168
10.1016/j.nuclphysb.2004.10.014
10.1103/PhysRevD.104.075021
10.1007/JHEP11(2017)093
10.1016/0550-3213(88)90673-6
10.1007/JHEP07(2014)079
10.1007/JHEP04(2018)125
10.1007/JHEP08(2018)137
10.1007/JHEP04(2021)015
10.1016/j.nuclphysb.2005.04.035
10.1103/PhysRevLett.84.4810
10.1103/PhysRevD.104.055029
10.1007/JHEP03(2010)072
10.1142/S0217751X21420161
10.1007/JHEP01(2016)123
10.1103/PhysRevD.61.094002
10.1007/JHEP01(2020)139
10.1088/1126-6708/2007/06/045
10.1103/PhysRevD.103.075028
10.1007/JHEP10(2021)099
10.1016/j.nuclphysb.2006.10.014
10.1103/PhysRevD.77.053004
10.1103/PhysRevD.103.095005
10.1088/1126-6708/2005/11/022
10.1007/JHEP11(2018)030
10.1007/JHEP02(2021)043
10.1088/1748-0221/15/05/P05001
10.1007/JHEP05(2021)219
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1007/JHEP05(2022)180
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 58
ExternalDocumentID oai_doaj_org_article_fdd68501fccb49bb8e1b7b9f95514099
10_1007_JHEP05_2022_180
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c453t-3306e7e8606cc838f2bf7ea02187840c6688bf0a109cbf85bb0e7bc5443e40403
IEDL.DBID C24
ISSN 1029-8479
IngestDate Wed Aug 27 01:20:48 EDT 2025
Sat Jul 26 00:15:57 EDT 2025
Tue Jul 01 01:00:15 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Fri Feb 21 02:45:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Electroweak Precision Physics
Specific BSM Phenomenology
SMEFT
Resummation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-3306e7e8606cc838f2bf7ea02187840c6688bf0a109cbf85bb0e7bc5443e40403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8704-3545
OpenAccessLink https://link.springer.com/10.1007/JHEP05(2022)180
PQID 2848466357
PQPubID 2034718
PageCount 58
ParticipantIDs doaj_primary_oai_doaj_org_article_fdd68501fccb49bb8e1b7b9f95514099
proquest_journals_2848466357
crossref_primary_10_1007_JHEP05_2022_180
crossref_citationtrail_10_1007_JHEP05_2022_180
springer_journals_10_1007_JHEP05_2022_180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-27
PublicationDateYYYYMMDD 2022-05-27
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-27
  day: 27
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References CLICdp collaboration, Top-quark physics at the CLIC electron-positron linear collider, JHEP11 (2019) 003 [arXiv:1807.02441] [INSPIRE].
S. Dawson, The effective W approximation, Nucl. Phys. B249 (1985) 42 [INSPIRE].
BauerCWFerlandNWebberBRStandard Model parton distributions at very high energiesJHEP2017080362017JHEP...08..036B10.1007/JHEP08(2017)036[arXiv:1703.08562] [INSPIRE]
ChiesaMMaltoniFMantaniLMeleBPiccininiFZhaoXMeasuring the quartic Higgs self-coupling at a multi-TeV muon colliderJHEP2020090982020JHEP...09..098C10.1007/JHEP09(2020)098[arXiv:2003.13628] [INSPIRE]
DurieuxGMatsedonskyiOThe top-quark window on compositeness at future lepton collidersJHEP2019010722019JHEP...01..072D10.1007/JHEP01(2019)072[arXiv:1807.10273] [INSPIRE]
P. Ciafaloni and D. Comelli, The importance of weak bosons emission at LHC, JHEP09 (2006) 055 [hep-ph/0604070] [INSPIRE].
A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C18 (2001) 461 [hep-ph/0010201] [INSPIRE].
HanTPrecision test of the muon-Higgs coupling at a high-energy muon colliderJHEP2021121622021JHEP...12..162H10.1007/JHEP12(2021)162[arXiv:2108.05362] [INSPIRE]
R. Barbieri, Flavour and Higgs compositeness: present and “near” future, arXiv:1910.00371 [INSPIRE].
C. Sen, P. Bandyopadhyay, S. Dutta and A. KT, Displaced Higgs production in type-III seesaw at the LHC/FCC, MATHUSLA and muon collider, Eur. Phys. J. C82 (2022) 230 [arXiv:2107.12442] [INSPIRE].
R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, Discovering the physics of (g − 2)μat future muon colliders, Phys. Rev. D103 (2021) 075028 [arXiv:2006.16277] [INSPIRE].
J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett.100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].
ButtazzoDRedigoloDSalaFTesiAFusing vectors into scalars at high energy lepton collidersJHEP2018111442018JHEP...11..144B10.1007/JHEP11(2018)144[arXiv:1807.04743] [INSPIRE]
T. Han, Y. Ma and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D103 (2021) L031301 [arXiv:2007.14300] [INSPIRE].
CapdevillaRMeloniFSimonielloRZuritaJHunting wino and higgsino dark matter at the muon collider with disappearing tracksJHEP2021061332021JHEP...06..133C10.1007/JHEP06(2021)133[arXiv:2102.11292] [INSPIRE]
KalinowskiJRobensTSokolowskaDZarneckiAFIDM benchmarks for the LHC and future collidersSymmetry2021139912021Symm...13..991K10.3390/sym13060991[arXiv:2012.14818] [INSPIRE]
GrzadkowskiBIskrzynskiMMisiakMRosiekJDimension-six terms in the Standard Model LagrangianJHEP2010100852010JHEP...10..085G10.1007/JHEP10(2010)085[arXiv:1008.4884] [INSPIRE]
M. Melles, Subleading Sudakov logarithms in electroweak high-energy processes to all orders, Phys. Rev. D63 (2001) 034003 [hep-ph/0004056] [INSPIRE].
D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B136 (1984) 183 [INSPIRE].
N. Bartosik et al., Preliminary report on the study of beam-induced background effects at a muon collider, arXiv:1905.03725 [INSPIRE].
P. Bandyopadhyay, A. Karan and R. Mandal, Distinguishing signatures of scalar leptoquarks at hadron and muon colliders, arXiv:2108.06506 [INSPIRE].
LiTSchmidtMAYaoC-YYuanMCharged lepton flavor violation in light of the muon magnetic moment anomaly and collidersEur. Phys. J. C2021818112021EPJC...81..811L10.1140/epjc/s10052-021-09569-9[arXiv:2104.04494] [INSPIRE]
R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, No-lose theorem for discovering the new physics of (g − 2)μat muon colliders, Phys. Rev. D105 (2022) 015028 [arXiv:2101.10334] [INSPIRE].
J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B616 (2001) 286 [Erratum ibid.648 (2003) 455] [hep-ph/0106298] [INSPIRE].
H. Al Ali et al., The muon smasher’s guide, arXiv:2103.14043 [INSPIRE].
A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C21 (2001) 63 [hep-ph/0104127] [INSPIRE].
WellsJDZhangZEffective theories of universal theoriesJHEP2016011232016JHEP...01..123W347145710.1007/JHEP01(2016)123[arXiv:1510.08462] [INSPIRE]
M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett.84 (2000) 4810 [hep-ph/0001142] [INSPIRE].
LiuWXieK-PProbing electroweak phase transition with multi-TeV muon colliders and gravitational wavesJHEP2021040152021JHEP...04..015L10.1007/JHEP04(2021)015[arXiv:2101.10469] [INSPIRE]
BauerCWFerlandNWebberBRCombining initial-state resummation with fixed-order calculations of electroweak correctionsJHEP2018041252018JHEP...04..125B10.1007/JHEP04(2018)125[arXiv:1712.07147] [INSPIRE]
L.D. Landau and E.M. Lifshitz, Quantum electrodynamics, volume 4 of Course of theoretical physics, Butterworth-Heinemann, Oxford, U.K. (1982).
DermisekRHermanekKMcGinnisNDi-Higgs and tri-Higgs boson signals of muon g − 2 at a muon colliderPhys. Rev. D2021104L0913012021PhRvD.104i1301D10.1103/PhysRevD.104.L091301[arXiv:2108.10950] [INSPIRE]
M. Sahin and A. Caliskan, Excited muon production at muon colliders via contact interaction, arXiv:2105.01964 [INSPIRE].
BauerCWProvasoliDWebberBRStandard Model fragmentation functions at very high energiesJHEP2018110302018JHEP...11..030B10.1007/JHEP11(2018)030[arXiv:1806.10157] [INSPIRE]
A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE].
J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].
Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys. B296 (1988) 253 [INSPIRE].
ButtazzoDFranceschiniRWulzerATwo paths towards precision at a very high energy lepton colliderJHEP2021052192021JHEP...05..219B10.1007/JHEP05(2021)219[arXiv:2012.11555] [INSPIRE]
CiafaloniMCiafaloniPComelliDAnomalous Sudakov form factorsJHEP2010030722010JHEP...03..072C10.1007/JHEP03(2010)072[arXiv:0909.1657] [INSPIRE]
R. Franceschini, High(est) energy lepton colliders, Int. J. Mod. Phys. A36 (2021) 2142016 [INSPIRE].
CLIC collaboration, The CLIC potential for new physics, arXiv:1812.02093 [INSPIRE].
BanelliGSalvioniESerraJTheilTWeilerAThe present and future of four top operatorsJHEP2021020432021JHEP...02..043B10.1007/JHEP02(2021)043[arXiv:2010.05915] [INSPIRE]
CuomoGVecchiLWulzerAGoldstone equivalence and high energy electroweak physicsSciPost Phys.202080782020ScPP....8...78C10.21468/SciPostPhys.8.5.078[arXiv:1911.12366] [INSPIRE]
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the Standard Model effective field theory, Phys. Rev. D103 (2021) 096024 [arXiv:2008.11743] [INSPIRE].
de BlasJHiggs boson studies at future particle collidersJHEP2020011392020JHEP...01..139D10.1007/JHEP01(2020)139[arXiv:1905.03764] [INSPIRE]
W. Yin and M. Yamaguchi, Muon g − 2 at multi-TeV muon collider, arXiv:2012.03928 [INSPIRE].
PanicoGRicciLWulzerAHigh-energy EFT probes with fully differential Drell-Yan measurementsJHEP2021070862021JHEP...07..086P10.1007/JHEP07(2021)086[arXiv:2103.10532] [INSPIRE]
ManoharAShotwellBBauerCTurczykSNon-cancellation of electroweak logarithms in high-energy scatteringPhys. Lett. B20157401792015PhLB..740..179M10.1016/j.physletb.2014.11.050[arXiv:1409.1918] [INSPIRE]
J.P. Delahaye et al., Muon colliders,arXiv:1901.06150 [INSPIRE].
M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale: ‘strong’ weak interactions?, Nucl. Phys. B589 (2000) 359 [hep-ph/0004071] [INSPIRE].
M. Chiesa, B. Mele and F. Piccinini, Multi Higgs production via photon fusion at future multi-TeV muon colliders, arXiv:2109.10109 [INSPIRE].
T. Han, Z. Liu, L.-T. Wang and X. Wang, WIMPs at high energy muon colliders, Phys. Rev. D103 (2021) 075004 [arXiv:2009.11287] [INSPIRE].
J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].
Di LuzioLGröberRPanicoGProbing new electroweak states via precision measurements at the LHC and future collidersJHEP20190101110.1007/JHEP01(2019)011[arXiv:1810.10993] [INSPIRE]
BorelPFranceschiniRRattazziRWulzerAProbing the scattering of equivalent electroweak bosonsJHEP2012061222012JHEP...06..122B10.1007/JHEP06(2012)122[arXiv:1202.1904] [INSPIRE]
WulzerAAn equivalent gauge and the equivalence theoremNucl. Phys. B2014885972014NuPhB.885...97W322801810.1016/j.nuclphysb.2014.05.021[arXiv:1309.6055] [INSPIRE]
ChenJHanTTweedieBElectroweak splitting functions and high energy showeringJHEP2017110932017JHEP...11..093C10.1007/JHEP11(2017)093[arXiv:1611.00788] [INSPIRE]
BottaroSStrumiaAVignaroliNMinimal dark matter bound states at future collidersJHEP2021061432021JHEP...06..143B10.1007/JHEP06(2021)143[arXiv:2103.12766] [INSPIRE]
ManoharAVWaalewijnWJElectroweak logarithms in inclusive cross sectionsJHEP2018081372018JHEP...08..137M10.1007/JHEP08(2018)137[arXiv:1802.08687] [INSPIRE]
CapdevillaRCurtinDKahnYKrnjaicGSystematically testing singlet models for (g − 2)μJHEP2022041292022JHEP...04..129C10.1007/JHEP04(2022)129[arXiv:2112.08377] [INSPIRE]
PanicoGWulzerAThe composite Nambu-Goldstone HiggsLect. Notes Phys.2016913110.1007/978-3-319-22617-0_1[arXiv:1506.01961] [INSPIRE]
QianSSearching for heavy leptoquarks at a muon colliderJHEP2021120472021JHEP...12..047Q10.1007/JHEP12(2021)047[arXiv:2109.01265] [INSPIRE]
V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP3 (1956) 65 [Zh. Ek
18468_CR65
18468_CR66
AV Manohar (18468_CR52) 2018; 08
18468_CR64
18468_CR61
18468_CR62
G Cuomo (18468_CR75) 2020; 8
T Li (18468_CR22) 2021; 81
S Bottaro (18468_CR21) 2021; 06
J Chen (18468_CR60) 2017; 11
18468_CR59
18468_CR54
18468_CR55
18468_CR50
A Wulzer (18468_CR98) 2014; 885
G Panico (18468_CR83) 2021; 07
18468_CR49
18468_CR47
18468_CR48
18468_CR45
G Durieux (18468_CR93) 2018; 10
18468_CR46
18468_CR87
18468_CR88
M Ruhdorfer (18468_CR11) 2020; 8
J Kalinowski (18468_CR17) 2021; 13
G Durieux (18468_CR81) 2019; 01
18468_CR86
J Chen (18468_CR25) 2021; 10
B Fornal (18468_CR56) 2018; 05
T Han (18468_CR30) 2021; 12
18468_CR6
18468_CR4
18468_CR1
18468_CR2
B Grzadkowski (18468_CR78) 2010; 10
18468_CR9
18468_CR8
18468_CR79
18468_CR76
18468_CR77
18468_CR74
CW Bauer (18468_CR57) 2017; 08
18468_CR72
18468_CR73
18468_CR70
M Farina (18468_CR82) 2017; 772
CW Bauer (18468_CR53) 2018; 04
R Capdevilla (18468_CR5) 2021; 06
18468_CR69
18468_CR67
18468_CR68
S Bottaro (18468_CR27) 2022; 82
18468_CR20
D Buttazzo (18468_CR7) 2021; 05
G Banelli (18468_CR91) 2021; 02
18468_CR18
18468_CR16
18468_CR14
18468_CR15
18468_CR10
D Buttazzo (18468_CR3) 2018; 11
R Dermisek (18468_CR32) 2021; 104
18468_CR96
18468_CR97
A Costantini (18468_CR13) 2020; 09
18468_CR94
18468_CR95
18468_CR92
JD Wells (18468_CR80) 2016; 01
18468_CR89
CW Bauer (18468_CR58) 2018; 11
18468_CR43
18468_CR44
18468_CR42
18468_CR40
M Chiesa (18468_CR12) 2020; 09
P Asadi (18468_CR23) 2021; 10
R Capdevilla (18468_CR41) 2022; 04
J de Blas (18468_CR84) 2020; 01
18468_CR39
M Ciafaloni (18468_CR71) 2010; 03
18468_CR36
18468_CR37
18468_CR34
18468_CR35
18468_CR31
A Manohar (18468_CR51) 2015; 740
P Borel (18468_CR63) 2012; 06
S Qian (18468_CR33) 2021; 12
J Alwall (18468_CR85) 2014; 07
W Liu (18468_CR19) 2021; 04
18468_CR29
L Di Luzio (18468_CR38) 2019; 01
18468_CR28
18468_CR26
18468_CR24
G Panico (18468_CR90) 2016; 913
References_xml – reference: H. Al Ali et al., The muon smasher’s guide, arXiv:2103.14043 [INSPIRE].
– reference: HanTPrecision test of the muon-Higgs coupling at a high-energy muon colliderJHEP2021121622021JHEP...12..162H10.1007/JHEP12(2021)162[arXiv:2108.05362] [INSPIRE]
– reference: R. Torre, L. Ricci and A. Wulzer, On the W &Y interpretation of high-energy Drell-Yan measurements, JHEP02 (2021) 144 [arXiv:2008.12978] [INSPIRE].
– reference: R. Ruiz, A. Costantini, F. Maltoni and O. Mattelaer, The effective vector boson approximation in high-energy muon collisions, arXiv:2111.02442 [INSPIRE].
– reference: LiuWXieK-PProbing electroweak phase transition with multi-TeV muon colliders and gravitational wavesJHEP2021040152021JHEP...04..015L10.1007/JHEP04(2021)015[arXiv:2101.10469] [INSPIRE]
– reference: The international muon collider collaboration webpage,https://muoncollider.web.cern.ch.
– reference: ButtazzoDRedigoloDSalaFTesiAFusing vectors into scalars at high energy lepton collidersJHEP2018111442018JHEP...11..144B10.1007/JHEP11(2018)144[arXiv:1807.04743] [INSPIRE]
– reference: T. Han, D. Liu, I. Low and X. Wang, Electroweak couplings of the Higgs boson at a multi-TeV muon collider, Phys. Rev. D103 (2021) 013002 [arXiv:2008.12204] [INSPIRE].
– reference: M. Chiesa, B. Mele and F. Piccinini, Multi Higgs production via photon fusion at future multi-TeV muon colliders, arXiv:2109.10109 [INSPIRE].
– reference: J. Chen, T. Li, C.-T. Lu, Y. Wu and C.-Y. Yao, Measurement of Higgs boson self-couplings through 2 → 3 vector bosons scattering in future muon colliders, Phys. Rev. D105 (2022) 053009 [arXiv:2112.12507] [INSPIRE].
– reference: BauerCWFerlandNWebberBRCombining initial-state resummation with fixed-order calculations of electroweak correctionsJHEP2018041252018JHEP...04..125B10.1007/JHEP04(2018)125[arXiv:1712.07147] [INSPIRE]
– reference: ALEGRO collaboration, Towards an advanced linear international collider, arXiv:1901.10370 [INSPIRE].
– reference: N. Bartosik et al., Preliminary report on the study of beam-induced background effects at a muon collider, arXiv:1905.03725 [INSPIRE].
– reference: DurieuxGMatsedonskyiOThe top-quark window on compositeness at future lepton collidersJHEP2019010722019JHEP...01..072D10.1007/JHEP01(2019)072[arXiv:1807.10273] [INSPIRE]
– reference: PanicoGRicciLWulzerAHigh-energy EFT probes with fully differential Drell-Yan measurementsJHEP2021070862021JHEP...07..086P10.1007/JHEP07(2021)086[arXiv:2103.10532] [INSPIRE]
– reference: ChenJLuC-TWuYMeasuring Higgs boson self-couplings with 2 → 3 VBS processesJHEP2021100992021JHEP...10..099C10.1007/JHEP10(2021)099[arXiv:2105.11500] [INSPIRE]
– reference: M. Ciafaloni, P. Ciafaloni and D. Comelli, Towards collinear evolution equations in electroweak theory, Phys. Rev. Lett.88 (2002) 102001 [hep-ph/0111109] [INSPIRE].
– reference: P. Ciafaloni and D. Comelli, The importance of weak bosons emission at LHC, JHEP09 (2006) 055 [hep-ph/0604070] [INSPIRE].
– reference: FornalBManoharAVWaalewijnWJElectroweak gauge boson parton distribution functionsJHEP2018051062018JHEP...05..106F383265810.1007/JHEP05(2018)106[arXiv:1803.06347] [INSPIRE]
– reference: G. Haghighat and M. Mohammadi Najafabadi, Search for lepton-flavor-violating ALPs at a future muon collider and utilization of polarization-induced effects, Nucl. Phys. B980 (2022) 115827 [arXiv:2106.00505] [INSPIRE].
– reference: A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C21 (2001) 63 [hep-ph/0104127] [INSPIRE].
– reference: CiafaloniMCiafaloniPComelliDAnomalous Sudakov form factorsJHEP2010030722010JHEP...03..072C10.1007/JHEP03(2010)072[arXiv:0909.1657] [INSPIRE]
– reference: T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE].
– reference: D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B136 (1984) 183 [INSPIRE].
– reference: J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].
– reference: GrzadkowskiBIskrzynskiMMisiakMRosiekJDimension-six terms in the Standard Model LagrangianJHEP2010100852010JHEP...10..085G10.1007/JHEP10(2010)085[arXiv:1008.4884] [INSPIRE]
– reference: DurieuxGPerellóMVosMZhangCGlobal and optimal probes for the top-quark effective field theory at future lepton collidersJHEP2018101682018JHEP...10..168D10.1007/JHEP10(2018)168[arXiv:1807.02121] [INSPIRE]
– reference: T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev.133 (1964) B1549 [INSPIRE].
– reference: G.-Y. Huang, F.S. Queiroz and W. Rodejohann, Gauged Lμ− Lτat a muon collider, Phys. Rev. D103 (2021) 095005 [arXiv:2101.04956] [INSPIRE].
– reference: J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Soft and collinear functions for the Standard Model, Phys. Rev. D81 (2010) 014023 [arXiv:0909.0947] [INSPIRE].
– reference: CapdevillaRMeloniFSimonielloRZuritaJHunting wino and higgsino dark matter at the muon collider with disappearing tracksJHEP2021061332021JHEP...06..133C10.1007/JHEP06(2021)133[arXiv:2102.11292] [INSPIRE]
– reference: ManoharAShotwellBBauerCTurczykSNon-cancellation of electroweak logarithms in high-energy scatteringPhys. Lett. B20157401792015PhLB..740..179M10.1016/j.physletb.2014.11.050[arXiv:1409.1918] [INSPIRE]
– reference: BottaroSClosing the window on WIMP dark matterEur. Phys. J. C202282312022EPJC...82...31B10.1140/epjc/s10052-021-09917-9[arXiv:2107.09688] [INSPIRE]
– reference: G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
– reference: R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703 (2004) 127 [hep-ph/0405040] [INSPIRE].
– reference: C. Sen, P. Bandyopadhyay, S. Dutta and A. KT, Displaced Higgs production in type-III seesaw at the LHC/FCC, MATHUSLA and muon collider, Eur. Phys. J. C82 (2022) 230 [arXiv:2107.12442] [INSPIRE].
– reference: N. Bartosik et al., Detector and physics performance at a muon collider, 2020 JINST15 P05001 [arXiv:2001.04431] [INSPIRE].
– reference: ButtazzoDFranceschiniRWulzerATwo paths towards precision at a very high energy lepton colliderJHEP2021052192021JHEP...05..219B10.1007/JHEP05(2021)219[arXiv:2012.11555] [INSPIRE]
– reference: R.K. Ellis et al., Physics briefing book: input for the European strategy for particle physics update 2020, arXiv:1910.11775 [INSPIRE].
– reference: D. Buttazzo and P. Paradisi, Probing the muon g − 2 anomaly with the Higgs boson at a muon collider, Phys. Rev. D104 (2021) 075021 [arXiv:2012.02769] [INSPIRE].
– reference: R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, Discovering the physics of (g − 2)μat future muon colliders, Phys. Rev. D103 (2021) 075028 [arXiv:2006.16277] [INSPIRE].
– reference: R. Franceschini and X. Zhao, Precision WIMP searches at high energy muon colliders, to appear.
– reference: P. Bandyopadhyay, A. Karan and R. Mandal, Distinguishing signatures of scalar leptoquarks at hadron and muon colliders, arXiv:2108.06506 [INSPIRE].
– reference: M. Sahin and A. Caliskan, Excited muon production at muon colliders via contact interaction, arXiv:2105.01964 [INSPIRE].
– reference: R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, No-lose theorem for discovering the new physics of (g − 2)μat muon colliders, Phys. Rev. D105 (2022) 015028 [arXiv:2101.10334] [INSPIRE].
– reference: KalinowskiJRobensTSokolowskaDZarneckiAFIDM benchmarks for the LHC and future collidersSymmetry2021139912021Symm...13..991K10.3390/sym13060991[arXiv:2012.14818] [INSPIRE]
– reference: Di LuzioLGröberRPanicoGProbing new electroweak states via precision measurements at the LHC and future collidersJHEP20190101110.1007/JHEP01(2019)011[arXiv:1810.10993] [INSPIRE]
– reference: A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE].
– reference: M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett.84 (2000) 4810 [hep-ph/0001142] [INSPIRE].
– reference: J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].
– reference: Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys. B296 (1988) 253 [INSPIRE].
– reference: C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the Standard Model effective field theory, Phys. Rev. D103 (2021) 096024 [arXiv:2008.11743] [INSPIRE].
– reference: WellsJDZhangZEffective theories of universal theoriesJHEP2016011232016JHEP...01..123W347145710.1007/JHEP01(2016)123[arXiv:1510.08462] [INSPIRE]
– reference: WulzerAAn equivalent gauge and the equivalence theoremNucl. Phys. B2014885972014NuPhB.885...97W322801810.1016/j.nuclphysb.2014.05.021[arXiv:1309.6055] [INSPIRE]
– reference: A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C18 (2001) 461 [hep-ph/0010201] [INSPIRE].
– reference: BanelliGSalvioniESerraJTheilTWeilerAThe present and future of four top operatorsJHEP2021020432021JHEP...02..043B10.1007/JHEP02(2021)043[arXiv:2010.05915] [INSPIRE]
– reference: L.D. Landau and E.M. Lifshitz, Quantum electrodynamics, volume 4 of Course of theoretical physics, Butterworth-Heinemann, Oxford, U.K. (1982).
– reference: D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B365 (1991) 259 [INSPIRE].
– reference: V.S. Fadin, L.N. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D61 (2000) 094002 [hep-ph/9910338] [INSPIRE].
– reference: M. Melles, Subleading Sudakov logarithms in electroweak high-energy processes to all orders, Phys. Rev. D63 (2001) 034003 [hep-ph/0004056] [INSPIRE].
– reference: CostantiniAVector boson fusion at multi-TeV muon collidersJHEP2020090802020JHEP...09..080C10.1007/JHEP09(2020)080[arXiv:2005.10289] [INSPIRE]
– reference: CuomoGVecchiLWulzerAGoldstone equivalence and high energy electroweak physicsSciPost Phys.202080782020ScPP....8...78C10.21468/SciPostPhys.8.5.078[arXiv:1911.12366] [INSPIRE]
– reference: QianSSearching for heavy leptoquarks at a muon colliderJHEP2021120472021JHEP...12..047Q10.1007/JHEP12(2021)047[arXiv:2109.01265] [INSPIRE]
– reference: T. Han, S. Li, S. Su, W. Su and Y. Wu, Heavy Higgs bosons in 2HDM at a muon collider, Phys. Rev. D104 (2021) 055029 [arXiv:2102.08386] [INSPIRE].
– reference: T. Han, Z. Liu, L.-T. Wang and X. Wang, WIMPs at high energy muon colliders, Phys. Rev. D103 (2021) 075004 [arXiv:2009.11287] [INSPIRE].
– reference: T. Han, Y. Ma and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D103 (2021) L031301 [arXiv:2007.14300] [INSPIRE].
– reference: CLIC collaboration, The CLIC potential for new physics, arXiv:1812.02093 [INSPIRE].
– reference: P. Ciafaloni and D. Comelli, Electroweak evolution equations, JHEP11 (2005) 022 [hep-ph/0505047] [INSPIRE].
– reference: J.P. Delahaye et al., Muon colliders,arXiv:1901.06150 [INSPIRE].
– reference: BorelPFranceschiniRRattazziRWulzerAProbing the scattering of equivalent electroweak bosonsJHEP2012061222012JHEP...06..122B10.1007/JHEP06(2012)122[arXiv:1202.1904] [INSPIRE]
– reference: ChiesaMMaltoniFMantaniLMeleBPiccininiFZhaoXMeasuring the quartic Higgs self-coupling at a multi-TeV muon colliderJHEP2020090982020JHEP...09..098C10.1007/JHEP09(2020)098[arXiv:2003.13628] [INSPIRE]
– reference: BottaroSStrumiaAVignaroliNMinimal dark matter bound states at future collidersJHEP2021061432021JHEP...06..143B10.1007/JHEP06(2021)143[arXiv:2103.12766] [INSPIRE]
– reference: R. Barbieri, Flavour and Higgs compositeness: present and “near” future, arXiv:1910.00371 [INSPIRE].
– reference: R. Franceschini, High(est) energy lepton colliders, Int. J. Mod. Phys. A36 (2021) 2142016 [INSPIRE].
– reference: W. Liu, K.-P. Xie and Z. Yi, Testing leptogenesis at the LHC and future muon colliders: a Z′ scenario, arXiv:2109.15087 [INSPIRE].
– reference: W. Yin and M. Yamaguchi, Muon g − 2 at multi-TeV muon collider, arXiv:2012.03928 [INSPIRE].
– reference: P. Bandyopadhyay, A. Karan and C. Sen, Discerning signatures of seesaw models and complementarity of leptonic colliders, arXiv:2011.04191 [INSPIRE].
– reference: DermisekRHermanekKMcGinnisNDi-Higgs and tri-Higgs boson signals of muon g − 2 at a muon colliderPhys. Rev. D2021104L0913012021PhRvD.104i1301D10.1103/PhysRevD.104.L091301[arXiv:2108.10950] [INSPIRE]
– reference: ManoharAVWaalewijnWJElectroweak logarithms in inclusive cross sectionsJHEP2018081372018JHEP...08..137M10.1007/JHEP08(2018)137[arXiv:1802.08687] [INSPIRE]
– reference: M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale: ‘strong’ weak interactions?, Nucl. Phys. B589 (2000) 359 [hep-ph/0004071] [INSPIRE].
– reference: de BlasJHiggs boson studies at future particle collidersJHEP2020011392020JHEP...01..139D10.1007/JHEP01(2020)139[arXiv:1905.03764] [INSPIRE]
– reference: AsadiPCapdevillaRCesarottiCHomillerSSearching for leptoquarks at future muon collidersJHEP2021101822021JHEP...10..182A10.1007/JHEP10(2021)182[arXiv:2104.05720] [INSPIRE]
– reference: S. Dawson, The effective W approximation, Nucl. Phys. B249 (1985) 42 [INSPIRE].
– reference: CLICdp collaboration, Top-quark physics at the CLIC electron-positron linear collider, JHEP11 (2019) 003 [arXiv:1807.02441] [INSPIRE].
– reference: ChenJHanTTweedieBElectroweak splitting functions and high energy showeringJHEP2017110932017JHEP...11..093C10.1007/JHEP11(2017)093[arXiv:1611.00788] [INSPIRE]
– reference: PanicoGWulzerAThe composite Nambu-Goldstone HiggsLect. Notes Phys.2016913110.1007/978-3-319-22617-0_1[arXiv:1506.01961] [INSPIRE]
– reference: K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B719 (2005) 165 [hep-ph/0412089] [INSPIRE].
– reference: J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B616 (2001) 286 [Erratum ibid.648 (2003) 455] [hep-ph/0106298] [INSPIRE].
– reference: BauerCWFerlandNWebberBRStandard Model parton distributions at very high energiesJHEP2017080362017JHEP...08..036B10.1007/JHEP08(2017)036[arXiv:1703.08562] [INSPIRE]
– reference: J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett.100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].
– reference: CapdevillaRCurtinDKahnYKrnjaicGSystematically testing singlet models for (g − 2)μJHEP2022041292022JHEP...04..129C10.1007/JHEP04(2022)129[arXiv:2112.08377] [INSPIRE]
– reference: FarinaMPanicoGPappadopuloDRudermanJTTorreRWulzerAEnergy helps accuracy: electroweak precision tests at hadron collidersPhys. Lett. B20177722102017PhLB..772..210F10.1016/j.physletb.2017.06.043[arXiv:1609.08157] [INSPIRE]
– reference: BauerCWProvasoliDWebberBRStandard Model fragmentation functions at very high energiesJHEP2018110302018JHEP...11..030B10.1007/JHEP11(2018)030[arXiv:1806.10157] [INSPIRE]
– reference: V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP3 (1956) 65 [Zh. Eksp. Teor. Fiz.30 (1956) 87] [INSPIRE].
– reference: AlwallJThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A10.1007/JHEP07(2014)079[arXiv:1405.0301] [INSPIRE]
– reference: LiTSchmidtMAYaoC-YYuanMCharged lepton flavor violation in light of the muon magnetic moment anomaly and collidersEur. Phys. J. C2021818112021EPJC...81..811L10.1140/epjc/s10052-021-09569-9[arXiv:2104.04494] [INSPIRE]
– reference: T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D68 (2003) 035012 [hep-ph/0212073] [INSPIRE].
– reference: RuhdorferMSalvioniEWeilerAA global view of the off-shell Higgs portalSciPost Phys.2020802710.21468/SciPostPhys.8.2.027[arXiv:1910.04170] [INSPIRE]
– ident: 18468_CR92
  doi: 10.1016/S0550-3213(05)80021-5
– ident: 18468_CR40
  doi: 10.1103/PhysRevD.105.053009
– volume: 01
  start-page: 011
  year: 2019
  ident: 18468_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)011
– ident: 18468_CR87
– ident: 18468_CR88
  doi: 10.1016/0370-2693(84)91177-8
– volume: 104
  start-page: L091301
  year: 2021
  ident: 18468_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.L091301
– volume: 81
  start-page: 811
  year: 2021
  ident: 18468_CR22
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09569-9
– volume: 08
  start-page: 036
  year: 2017
  ident: 18468_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)036
– ident: 18468_CR54
  doi: 10.1103/PhysRevLett.88.102001
– ident: 18468_CR70
  doi: 10.1007/s100520100721
– ident: 18468_CR65
  doi: 10.1103/PhysRev.133.B1549
– volume: 10
  start-page: 085
  year: 2010
  ident: 18468_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP10(2010)085
– volume: 11
  start-page: 144
  year: 2018
  ident: 18468_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)144
– ident: 18468_CR47
  doi: 10.1103/PhysRevLett.100.021802
– volume: 10
  start-page: 182
  year: 2021
  ident: 18468_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)182
– ident: 18468_CR35
– ident: 18468_CR86
  doi: 10.1103/PhysRevD.103.096024
– ident: 18468_CR67
  doi: 10.1007/s100520100551
– ident: 18468_CR59
  doi: 10.1103/PhysRevD.103.L031301
– ident: 18468_CR8
  doi: 10.1103/PhysRevD.103.013002
– volume: 772
  start-page: 210
  year: 2017
  ident: 18468_CR82
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.06.043
– ident: 18468_CR26
  doi: 10.1016/j.nuclphysb.2022.115827
– ident: 18468_CR14
  doi: 10.1103/PhysRevD.105.015028
– ident: 18468_CR24
– ident: 18468_CR66
  doi: 10.1088/1126-6708/2006/09/055
– volume: 913
  start-page: 1
  year: 2016
  ident: 18468_CR90
  publication-title: Lect. Notes Phys.
  doi: 10.1007/978-3-319-22617-0_1
– ident: 18468_CR2
– volume: 82
  start-page: 31
  year: 2022
  ident: 18468_CR27
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09917-9
– volume: 05
  start-page: 106
  year: 2018
  ident: 18468_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)106
– ident: 18468_CR64
  doi: 10.1063/1.1724268
– volume: 09
  start-page: 098
  year: 2020
  ident: 18468_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)098
– ident: 18468_CR46
  doi: 10.1103/PhysRevD.63.034003
– volume: 8
  start-page: 078
  year: 2020
  ident: 18468_CR75
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.8.5.078
– volume: 12
  start-page: 162
  year: 2021
  ident: 18468_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)162
– volume: 12
  start-page: 047
  year: 2021
  ident: 18468_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)047
– volume: 8
  start-page: 027
  year: 2020
  ident: 18468_CR11
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.8.2.027
– ident: 18468_CR61
  doi: 10.1016/0550-3213(85)90038-0
– volume: 885
  start-page: 97
  year: 2014
  ident: 18468_CR98
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.05.021
– ident: 18468_CR69
– ident: 18468_CR29
  doi: 10.1140/epjc/s10052-022-10176-5
– volume: 09
  start-page: 080
  year: 2020
  ident: 18468_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)080
– volume: 06
  start-page: 143
  year: 2021
  ident: 18468_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)143
– volume: 13
  start-page: 991
  year: 2021
  ident: 18468_CR17
  publication-title: Symmetry
  doi: 10.3390/sym13060991
– ident: 18468_CR95
  doi: 10.1103/PhysRevD.68.035012
– ident: 18468_CR39
  doi: 10.1103/PhysRevD.103.075004
– volume: 06
  start-page: 122
  year: 2012
  ident: 18468_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP06(2012)122
– volume: 06
  start-page: 133
  year: 2021
  ident: 18468_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)133
– volume: 07
  start-page: 086
  year: 2021
  ident: 18468_CR83
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)086
– volume: 01
  start-page: 072
  year: 2019
  ident: 18468_CR81
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)072
– ident: 18468_CR74
  doi: 10.1007/JHEP02(2021)144
– ident: 18468_CR97
– ident: 18468_CR49
  doi: 10.1103/PhysRevD.80.094013
– ident: 18468_CR44
  doi: 10.1016/S0550-3213(00)00508-3
– ident: 18468_CR68
– ident: 18468_CR16
– volume: 740
  start-page: 179
  year: 2015
  ident: 18468_CR51
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.11.050
– volume: 04
  start-page: 129
  year: 2022
  ident: 18468_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP04(2022)129
– ident: 18468_CR50
  doi: 10.1103/PhysRevD.81.014023
– ident: 18468_CR73
  doi: 10.1016/S0550-3213(01)00454-0
– ident: 18468_CR36
– volume: 10
  start-page: 168
  year: 2018
  ident: 18468_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)168
– ident: 18468_CR79
  doi: 10.1016/j.nuclphysb.2004.10.014
– ident: 18468_CR94
– ident: 18468_CR37
  doi: 10.1103/PhysRevD.104.075021
– volume: 11
  start-page: 093
  year: 2017
  ident: 18468_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)093
– ident: 18468_CR62
  doi: 10.1016/0550-3213(88)90673-6
– volume: 07
  start-page: 079
  year: 2014
  ident: 18468_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)079
– ident: 18468_CR31
– volume: 04
  start-page: 125
  year: 2018
  ident: 18468_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP04(2018)125
– volume: 08
  start-page: 137
  year: 2018
  ident: 18468_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)137
– ident: 18468_CR6
– volume: 04
  start-page: 015
  year: 2021
  ident: 18468_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)015
– ident: 18468_CR89
  doi: 10.1016/j.nuclphysb.2005.04.035
– ident: 18468_CR42
– ident: 18468_CR43
  doi: 10.1103/PhysRevLett.84.4810
– ident: 18468_CR20
  doi: 10.1103/PhysRevD.104.055029
– volume: 03
  start-page: 072
  year: 2010
  ident: 18468_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP03(2010)072
– ident: 18468_CR4
  doi: 10.1142/S0217751X21420161
– volume: 01
  start-page: 123
  year: 2016
  ident: 18468_CR80
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)123
– ident: 18468_CR9
– ident: 18468_CR45
  doi: 10.1103/PhysRevD.61.094002
– volume: 01
  start-page: 139
  year: 2020
  ident: 18468_CR84
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)139
– ident: 18468_CR34
– ident: 18468_CR77
  doi: 10.1088/1126-6708/2007/06/045
– ident: 18468_CR76
– ident: 18468_CR28
– ident: 18468_CR10
  doi: 10.1103/PhysRevD.103.075028
– volume: 10
  start-page: 099
  year: 2021
  ident: 18468_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)099
– ident: 18468_CR72
  doi: 10.1016/j.nuclphysb.2006.10.014
– ident: 18468_CR48
  doi: 10.1103/PhysRevD.77.053004
– ident: 18468_CR96
– ident: 18468_CR18
  doi: 10.1103/PhysRevD.103.095005
– ident: 18468_CR55
  doi: 10.1088/1126-6708/2005/11/022
– volume: 11
  start-page: 030
  year: 2018
  ident: 18468_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)030
– ident: 18468_CR1
– volume: 02
  start-page: 043
  year: 2021
  ident: 18468_CR91
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)043
– ident: 18468_CR15
  doi: 10.1088/1748-0221/15/05/P05001
– volume: 05
  start-page: 219
  year: 2021
  ident: 18468_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)219
SSID ssj0015190
Score 2.5165915
Snippet A bstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the...
We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV...
Abstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 180
SubjectTerms Bosons
Classical and Quantum Gravitation
Electroweak Precision Physics
Elementary Particles
Emission analysis
Fermions
Field theory
High energy physics
Leptons
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Radiation
Radiation effects
Regular Article - Theoretical Physics
Relativity Theory
Resummation
Sensitivity enhancement
SMEFT
Specific BSM Phenomenology
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcIFOSBoR1CnU87AwOgVlUHxEClbpbt2CxVqdow8O-5c5JSkCoW1tiJrDs77518946QW146wDm8-o91GaZGRaEWeR7m1mlnU1co5xNkn_PxNJ3MstlWqy_MCavlgWvDDVxZ5iJjkTNGp4XWwkaa68IVCPVAb_DvC5jXBlPN_QHwEtYK-TA-mIyHLyzrQaAf9yNUgNzCIC_V_4Nf_roS9UgzOiKHDUWkD_XSjsmeXZyQfZ-qadan5L6RRH2jWBpCVygugNalqqKKws78pKhBTK2v6qNzuwR6R9HfWHF3Rqaj4evTOGyaIIQmzZIqTIDTW24FBBrGiES4WDtuFUIzh-DM5LkQ2jEVscJoJzKtmeXaoKydTeGEJueks3hf2AtCfXGgU4aVDEYLcF9SKMtcmSZGxS4KyF1rFmkahXBsVDGXrbZxbUeJdpRgx4D0Ni8sa3GM3VMf0c6baahq7R-Ar2Xja_mXrwPSbb0km6O2loCvwKFQVi8g_dZz38M71nP5H-u5Igf4PUwmiHmXdKrVh70GjlLpG78dvwA72uFy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UYuLF-IyraHrwAIeV7rt7MEYMhHAgxEjCbdN2Wy4EENaD_96ZpQtqgtdtd7OZaWe-6cx8JeQhyQ34OUz9-zJ3QyU8V_I4dmNtpNGhSYUpC2SHcX8cDibRxB64rW1ZZWUTS0OdLxSekbfBjIKrRPa05-WHi7dGYXbVXqFxSOpggjkEX_VOdzh62-YRAJ-witCHJe1BvztiURMCfr_lIRPkD19UUvb_wpl_UqOlx-mdkhMLFenLRrdn5EDPz8lRWbKp1hfkyVKjTim2iNAVkgyglKkoqKCwQr8ochFTXXb30ZleAsyjqHfsvLsk4173_bXv2ssQXBVGQeEGgO11ojkEHErxgBtfmkQLdNEJBGkqjjmXhgmPpUoaHknJdCIV0tvpEHZqcEVq88VcXxNaNgkaoVjOYDQFNQap0MzkYaCEbzyHPFZiyZRlCscLK2ZZxXG8kWOGcsxAjg5pbl9Ybkgy9k_toJy305DdunywWE0zu1kyk-cxj5hnlJJhKiXXnkxkalKEdwBpHdKotJTZLbfOdgvEIa1Kc7vhPf9z8_-nbskxzsRyAT9pkFqx-tR3gEIKeW-X2jf02tnT
  priority: 102
  providerName: ProQuest
Title Learning from radiation at a very high energy lepton collider
URI https://link.springer.com/article/10.1007/JHEP05(2022)180
https://www.proquest.com/docview/2848466357
https://doaj.org/article/fdd68501fccb49bb8e1b7b9f95514099
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60IngRn7halxw8tIeV7Dt78FBLa_EgRSx4W5Js0kuppa0H_70z6W5FxYOXEDYJLDNJ5htm5gvATV5ZtHMU-o9UFSRahoESWRZkxiprEltI6xJkn7LRJHl8TV93IGxqYVy2exOSdDd1U-z2OBqMedpBZz3qhgK99L0U-7Sp-1TgUAcOEJDwhsHn96Jvxsdx9H8Dlj9ioc7EDI_gsMaGrLdR5jHsmPkJ7LscTb06hbuaC3XKqCaELYlVgMTK5JpJhlvygxH5MDOunI_NzAJxHSNFU6ndGUyGg5f-KKhfPwh0ksbrIEYwb3Ij0MPQWsTCRsrmRpJNztEr01kmhLJchrzQyopUKW5ypYnPziR4NONzaM3f5uYCmKsKtFLziuNogXqLC2m4rZJYy8iGHtw2Yil1TQ1OL1TMyobUeCPHkuRYohw96GwXLDasGH9PvSc5b6cRnbX78LaclvXpKG1VZSLlodVaJYVSwoQqV4UtCM8hhvWg3WiprM_YqkTDiuCJ-PQ86Daa-xr-438u_zH3Cg6oS8kCUd6G1nr5bq4Rg6yVD7ti-ODD3v3gafzsuz1Ibdb3nVeP7STqfQJU2dj5
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTiMxEC2xCMFlNGwiDAM-gASHBvfuPqDRDBDCKg4gcTO2284FJSEJQvwU3zhVTndYJLhxbbetVi2u53bVK4DNvHQY5-jqP9JlkBgVBlpkWZBZp51NXKGcT5C9zFo3yeltejsBL3UtDKVV1nui36jLrqF_5Hu4jWKoJPa0P72HgLpG0e1q3UJjZBZn9vkJj2yD_ZND1O9WFDWPrg9aQdVVIDBJGg8DPMBnNrcCkbsxIhYu0i63imJdjqcdk2VCaMdVyAujnUi15jbXhnjibIImH-O6kzCdxHFBHiWax-NbC0RDvKYP4vneaevoiqfbEYbJnZB4J99EPt8g4B2q_XAR6-Nb8yf8qIAp-zuypHmYsJ0FmPEJomawCPsVEWubUUEK6xOlAemUqSFTDP3hmRHzMbO-lpDd2x6CSkZWRnV-S3DzLUJahqlOt2NXgPmSRKcMLzmOFmg0caEsd2USGxW5sAG7tVikqXjJqT3GvawZlUdylCRHiXJswPZ4Qm9EyfH5q_9IzuPXiEvbP-j227JyTenKMhMpD50xOim0FjbUuS5cQWASAXQD1motycrBB_LVHBuwU2vudfiT71n9eqkNmG1dX5zL85PLs18wR7MoUSHK12Bq2H-0vxH_DPW6NzoGd99t5f8B4aEUYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BEIhLRSmItLT1oUhwWOL9tPeAKiiJAlRRhEDiZmyvnQtK0iQI8df4dcxsdkOpRG9c12trNfPsGe_MvAH4IQqPdo5C_5EpgsTqMDAyy4LMeeNd4nPtywTZXta9Ts5v0psleKprYSitsj4Ty4O6GFn6R97CYxRNJbGntXyVFtE_7fwc_wmogxRFWut2GnOIXLjHB7y-TY_OTlHXe1HUaV_96gZVh4HAJmk8C_AynznhJHrx1spY-sh44TTZPYE3H5tlUhrPdchza7xMjeFOGEuccS5B-Me47jKsCLwV8QasnLR7_ctFDAN9I16TCXHROu-2-zzdj9BoHoTEQvmXHSzbBbzycf8Jy5bWrrMBHyo3lR3PcfURltxwE1bLdFE7_QRHFS3rgFF5CpsQwQFpmOkZ0wx3xyMjHmTmyspCdufG6GIywhxV_W3B9buIaRsaw9HQ7QArCxS9trzgOJojhOJcO-6LJLY68mETDmuxKFuxlFOzjDtV8yvP5ahIjgrl2IT9xYTxnKDj7VdPSM6L14hZu3wwmgxUtVGVL4pMpjz01pokN0a60AiT-5xcS3Snm7Bba0lV232qXsDZhINacy_Db3zP5_8v9R3WEOHq91nv4gus0yTKWojELjRmk3v3FZ2hmflWoY7B7XsD_Rl7ARny
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+radiation+at+a+very+high+energy+lepton+collider&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Chen%2C+Siyu&rft.au=Glioti%2C+Alfredo&rft.au=Rattazzi%2C+Riccardo&rft.au=Ricci%2C+Lorenzo&rft.date=2022-05-27&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2022&rft.issue=5&rft_id=info:doi/10.1007%2FJHEP05%282022%29180&rft.externalDocID=10_1007_JHEP05_2022_180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon