Learning from radiation at a very high energy lepton collider
A bstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that su...
Saved in:
Published in | The journal of high energy physics Vol. 2022; no. 5; pp. 180 - 58 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
27.05.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal
Z
′ new physics scenarios at future muon colliders. |
---|---|
AbstractList | A
bstract
We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal
Z
′ new physics scenarios at future muon colliders. Abstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z′ new physics scenarios at future muon colliders. We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z ′ new physics scenarios at future muon colliders. We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z′ new physics scenarios at future muon colliders. |
ArticleNumber | 180 |
Author | Glioti, Alfredo Wulzer, Andrea Ricci, Lorenzo Chen, Siyu Rattazzi, Riccardo |
Author_xml | – sequence: 1 givenname: Siyu surname: Chen fullname: Chen, Siyu organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL – sequence: 2 givenname: Alfredo surname: Glioti fullname: Glioti, Alfredo organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL – sequence: 3 givenname: Riccardo surname: Rattazzi fullname: Rattazzi, Riccardo organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL – sequence: 4 givenname: Lorenzo orcidid: 0000-0001-8704-3545 surname: Ricci fullname: Ricci, Lorenzo email: lorenzo.ricci@epfl.ch organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL – sequence: 5 givenname: Andrea surname: Wulzer fullname: Wulzer, Andrea organization: Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL, Dipartimento di Fisica e Astronomia, Università di Padova |
BookMark | eNp9kMFLwzAUh4Mo6NSz14IXPcy9tEmbHDzImDoZ6EHPIUlfakZtZtoJ--_trKgIesoj732_9_hGZLcJDRJyQuGCAhSTu9vZA_CzFNL0nArYIQcUUjkWrJC7P-p9MmrbJQDlVMIBuVygjo1vqsTF8JJEXXrd-dAkukt08oZxkzz76jnBBmO1SWpcdX3Thrr2JcYjsud03eLx53tInq5nj9Pb8eL-Zj69Wowt41k3zjLIsUCRQ26tyIRLjStQQ0pFIRjYPBfCONAUpDVOcGMAC2M5YxkyYJAdkvmQWwa9VKvoX3TcqKC9-vgIsVI6dt7WqFxZ5oIDddYaJo0RSE1hpJOcUwZS9lmnQ9Yqhtc1tp1ahnVs-vNVKphgeZ7xop-aDFM2hraN6L62UlBb32rwrba-Ve-7J_gvwvruw2UXta__4WDg2n5DU2H8vucv5B0UwpNN |
CitedBy_id | crossref_primary_10_1007_JHEP09_2023_107 crossref_primary_10_1140_epjc_s10052_023_11724_3 crossref_primary_10_1007_JHEP03_2023_033 crossref_primary_10_21468_SciPostPhys_16_3_072 crossref_primary_10_1103_PhysRevD_109_075011 crossref_primary_10_1103_PhysRevD_107_115027 crossref_primary_10_1103_PhysRevD_109_075020 crossref_primary_10_1103_PhysRevD_110_035022 crossref_primary_10_1007_JHEP10_2024_215 crossref_primary_10_1088_1748_0221_19_02_T02015 crossref_primary_10_1007_JHEP10_2023_121 crossref_primary_10_1093_ptep_ptad144 crossref_primary_10_1007_JHEP08_2022_276 crossref_primary_10_1140_epjc_s10052_023_11889_x crossref_primary_10_1103_PhysRevD_111_053002 crossref_primary_10_1007_JHEP03_2025_171 crossref_primary_10_1103_PhysRevD_110_075009 crossref_primary_10_1007_JHEP04_2024_084 crossref_primary_10_1007_JHEP12_2022_138 crossref_primary_10_1007_JHEP07_2022_036 crossref_primary_10_1140_epjc_s10052_022_10918_5 |
Cites_doi | 10.1016/S0550-3213(05)80021-5 10.1103/PhysRevD.105.053009 10.1007/JHEP01(2019)011 10.1016/0370-2693(84)91177-8 10.1103/PhysRevD.104.L091301 10.1140/epjc/s10052-021-09569-9 10.1007/JHEP08(2017)036 10.1103/PhysRevLett.88.102001 10.1007/s100520100721 10.1103/PhysRev.133.B1549 10.1007/JHEP10(2010)085 10.1007/JHEP11(2018)144 10.1103/PhysRevLett.100.021802 10.1007/JHEP10(2021)182 10.1103/PhysRevD.103.096024 10.1007/s100520100551 10.1103/PhysRevD.103.L031301 10.1103/PhysRevD.103.013002 10.1016/j.physletb.2017.06.043 10.1016/j.nuclphysb.2022.115827 10.1103/PhysRevD.105.015028 10.1088/1126-6708/2006/09/055 10.1007/978-3-319-22617-0_1 10.1140/epjc/s10052-021-09917-9 10.1007/JHEP05(2018)106 10.1063/1.1724268 10.1007/JHEP09(2020)098 10.1103/PhysRevD.63.034003 10.21468/SciPostPhys.8.5.078 10.1007/JHEP12(2021)162 10.1007/JHEP12(2021)047 10.21468/SciPostPhys.8.2.027 10.1016/0550-3213(85)90038-0 10.1016/j.nuclphysb.2014.05.021 10.1140/epjc/s10052-022-10176-5 10.1007/JHEP09(2020)080 10.1007/JHEP06(2021)143 10.3390/sym13060991 10.1103/PhysRevD.68.035012 10.1103/PhysRevD.103.075004 10.1007/JHEP06(2012)122 10.1007/JHEP06(2021)133 10.1007/JHEP07(2021)086 10.1007/JHEP01(2019)072 10.1007/JHEP02(2021)144 10.1103/PhysRevD.80.094013 10.1016/S0550-3213(00)00508-3 10.1016/j.physletb.2014.11.050 10.1007/JHEP04(2022)129 10.1103/PhysRevD.81.014023 10.1016/S0550-3213(01)00454-0 10.1007/JHEP10(2018)168 10.1016/j.nuclphysb.2004.10.014 10.1103/PhysRevD.104.075021 10.1007/JHEP11(2017)093 10.1016/0550-3213(88)90673-6 10.1007/JHEP07(2014)079 10.1007/JHEP04(2018)125 10.1007/JHEP08(2018)137 10.1007/JHEP04(2021)015 10.1016/j.nuclphysb.2005.04.035 10.1103/PhysRevLett.84.4810 10.1103/PhysRevD.104.055029 10.1007/JHEP03(2010)072 10.1142/S0217751X21420161 10.1007/JHEP01(2016)123 10.1103/PhysRevD.61.094002 10.1007/JHEP01(2020)139 10.1088/1126-6708/2007/06/045 10.1103/PhysRevD.103.075028 10.1007/JHEP10(2021)099 10.1016/j.nuclphysb.2006.10.014 10.1103/PhysRevD.77.053004 10.1103/PhysRevD.103.095005 10.1088/1126-6708/2005/11/022 10.1007/JHEP11(2018)030 10.1007/JHEP02(2021)043 10.1088/1748-0221/15/05/P05001 10.1007/JHEP05(2021)219 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1007/JHEP05(2022)180 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 58 |
ExternalDocumentID | oai_doaj_org_article_fdd68501fccb49bb8e1b7b9f95514099 10_1007_JHEP05_2022_180 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c453t-3306e7e8606cc838f2bf7ea02187840c6688bf0a109cbf85bb0e7bc5443e40403 |
IEDL.DBID | C24 |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:20:48 EDT 2025 Sat Jul 26 00:15:57 EDT 2025 Tue Jul 01 01:00:15 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Fri Feb 21 02:45:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Electroweak Precision Physics Specific BSM Phenomenology SMEFT Resummation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-3306e7e8606cc838f2bf7ea02187840c6688bf0a109cbf85bb0e7bc5443e40403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8704-3545 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP05(2022)180 |
PQID | 2848466357 |
PQPubID | 2034718 |
PageCount | 58 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fdd68501fccb49bb8e1b7b9f95514099 proquest_journals_2848466357 crossref_primary_10_1007_JHEP05_2022_180 crossref_citationtrail_10_1007_JHEP05_2022_180 springer_journals_10_1007_JHEP05_2022_180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-27 |
PublicationDateYYYYMMDD | 2022-05-27 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | CLICdp collaboration, Top-quark physics at the CLIC electron-positron linear collider, JHEP11 (2019) 003 [arXiv:1807.02441] [INSPIRE]. S. Dawson, The effective W approximation, Nucl. Phys. B249 (1985) 42 [INSPIRE]. BauerCWFerlandNWebberBRStandard Model parton distributions at very high energiesJHEP2017080362017JHEP...08..036B10.1007/JHEP08(2017)036[arXiv:1703.08562] [INSPIRE] ChiesaMMaltoniFMantaniLMeleBPiccininiFZhaoXMeasuring the quartic Higgs self-coupling at a multi-TeV muon colliderJHEP2020090982020JHEP...09..098C10.1007/JHEP09(2020)098[arXiv:2003.13628] [INSPIRE] DurieuxGMatsedonskyiOThe top-quark window on compositeness at future lepton collidersJHEP2019010722019JHEP...01..072D10.1007/JHEP01(2019)072[arXiv:1807.10273] [INSPIRE] P. Ciafaloni and D. Comelli, The importance of weak bosons emission at LHC, JHEP09 (2006) 055 [hep-ph/0604070] [INSPIRE]. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C18 (2001) 461 [hep-ph/0010201] [INSPIRE]. HanTPrecision test of the muon-Higgs coupling at a high-energy muon colliderJHEP2021121622021JHEP...12..162H10.1007/JHEP12(2021)162[arXiv:2108.05362] [INSPIRE] R. Barbieri, Flavour and Higgs compositeness: present and “near” future, arXiv:1910.00371 [INSPIRE]. C. Sen, P. Bandyopadhyay, S. Dutta and A. KT, Displaced Higgs production in type-III seesaw at the LHC/FCC, MATHUSLA and muon collider, Eur. Phys. J. C82 (2022) 230 [arXiv:2107.12442] [INSPIRE]. R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, Discovering the physics of (g − 2)μat future muon colliders, Phys. Rev. D103 (2021) 075028 [arXiv:2006.16277] [INSPIRE]. J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett.100 (2008) 021802 [arXiv:0709.2377] [INSPIRE]. ButtazzoDRedigoloDSalaFTesiAFusing vectors into scalars at high energy lepton collidersJHEP2018111442018JHEP...11..144B10.1007/JHEP11(2018)144[arXiv:1807.04743] [INSPIRE] T. Han, Y. Ma and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D103 (2021) L031301 [arXiv:2007.14300] [INSPIRE]. CapdevillaRMeloniFSimonielloRZuritaJHunting wino and higgsino dark matter at the muon collider with disappearing tracksJHEP2021061332021JHEP...06..133C10.1007/JHEP06(2021)133[arXiv:2102.11292] [INSPIRE] KalinowskiJRobensTSokolowskaDZarneckiAFIDM benchmarks for the LHC and future collidersSymmetry2021139912021Symm...13..991K10.3390/sym13060991[arXiv:2012.14818] [INSPIRE] GrzadkowskiBIskrzynskiMMisiakMRosiekJDimension-six terms in the Standard Model LagrangianJHEP2010100852010JHEP...10..085G10.1007/JHEP10(2010)085[arXiv:1008.4884] [INSPIRE] M. Melles, Subleading Sudakov logarithms in electroweak high-energy processes to all orders, Phys. Rev. D63 (2001) 034003 [hep-ph/0004056] [INSPIRE]. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B136 (1984) 183 [INSPIRE]. N. Bartosik et al., Preliminary report on the study of beam-induced background effects at a muon collider, arXiv:1905.03725 [INSPIRE]. P. Bandyopadhyay, A. Karan and R. Mandal, Distinguishing signatures of scalar leptoquarks at hadron and muon colliders, arXiv:2108.06506 [INSPIRE]. LiTSchmidtMAYaoC-YYuanMCharged lepton flavor violation in light of the muon magnetic moment anomaly and collidersEur. Phys. J. C2021818112021EPJC...81..811L10.1140/epjc/s10052-021-09569-9[arXiv:2104.04494] [INSPIRE] R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, No-lose theorem for discovering the new physics of (g − 2)μat muon colliders, Phys. Rev. D105 (2022) 015028 [arXiv:2101.10334] [INSPIRE]. J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B616 (2001) 286 [Erratum ibid.648 (2003) 455] [hep-ph/0106298] [INSPIRE]. H. Al Ali et al., The muon smasher’s guide, arXiv:2103.14043 [INSPIRE]. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C21 (2001) 63 [hep-ph/0104127] [INSPIRE]. WellsJDZhangZEffective theories of universal theoriesJHEP2016011232016JHEP...01..123W347145710.1007/JHEP01(2016)123[arXiv:1510.08462] [INSPIRE] M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett.84 (2000) 4810 [hep-ph/0001142] [INSPIRE]. LiuWXieK-PProbing electroweak phase transition with multi-TeV muon colliders and gravitational wavesJHEP2021040152021JHEP...04..015L10.1007/JHEP04(2021)015[arXiv:2101.10469] [INSPIRE] BauerCWFerlandNWebberBRCombining initial-state resummation with fixed-order calculations of electroweak correctionsJHEP2018041252018JHEP...04..125B10.1007/JHEP04(2018)125[arXiv:1712.07147] [INSPIRE] L.D. Landau and E.M. Lifshitz, Quantum electrodynamics, volume 4 of Course of theoretical physics, Butterworth-Heinemann, Oxford, U.K. (1982). DermisekRHermanekKMcGinnisNDi-Higgs and tri-Higgs boson signals of muon g − 2 at a muon colliderPhys. Rev. D2021104L0913012021PhRvD.104i1301D10.1103/PhysRevD.104.L091301[arXiv:2108.10950] [INSPIRE] M. Sahin and A. Caliskan, Excited muon production at muon colliders via contact interaction, arXiv:2105.01964 [INSPIRE]. BauerCWProvasoliDWebberBRStandard Model fragmentation functions at very high energiesJHEP2018110302018JHEP...11..030B10.1007/JHEP11(2018)030[arXiv:1806.10157] [INSPIRE] A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE]. J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D80 (2009) 094013 [arXiv:0909.0012] [INSPIRE]. Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys. B296 (1988) 253 [INSPIRE]. ButtazzoDFranceschiniRWulzerATwo paths towards precision at a very high energy lepton colliderJHEP2021052192021JHEP...05..219B10.1007/JHEP05(2021)219[arXiv:2012.11555] [INSPIRE] CiafaloniMCiafaloniPComelliDAnomalous Sudakov form factorsJHEP2010030722010JHEP...03..072C10.1007/JHEP03(2010)072[arXiv:0909.1657] [INSPIRE] R. Franceschini, High(est) energy lepton colliders, Int. J. Mod. Phys. A36 (2021) 2142016 [INSPIRE]. CLIC collaboration, The CLIC potential for new physics, arXiv:1812.02093 [INSPIRE]. BanelliGSalvioniESerraJTheilTWeilerAThe present and future of four top operatorsJHEP2021020432021JHEP...02..043B10.1007/JHEP02(2021)043[arXiv:2010.05915] [INSPIRE] CuomoGVecchiLWulzerAGoldstone equivalence and high energy electroweak physicsSciPost Phys.202080782020ScPP....8...78C10.21468/SciPostPhys.8.5.078[arXiv:1911.12366] [INSPIRE] G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE]. C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the Standard Model effective field theory, Phys. Rev. D103 (2021) 096024 [arXiv:2008.11743] [INSPIRE]. de BlasJHiggs boson studies at future particle collidersJHEP2020011392020JHEP...01..139D10.1007/JHEP01(2020)139[arXiv:1905.03764] [INSPIRE] W. Yin and M. Yamaguchi, Muon g − 2 at multi-TeV muon collider, arXiv:2012.03928 [INSPIRE]. PanicoGRicciLWulzerAHigh-energy EFT probes with fully differential Drell-Yan measurementsJHEP2021070862021JHEP...07..086P10.1007/JHEP07(2021)086[arXiv:2103.10532] [INSPIRE] ManoharAShotwellBBauerCTurczykSNon-cancellation of electroweak logarithms in high-energy scatteringPhys. Lett. B20157401792015PhLB..740..179M10.1016/j.physletb.2014.11.050[arXiv:1409.1918] [INSPIRE] J.P. Delahaye et al., Muon colliders,arXiv:1901.06150 [INSPIRE]. M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale: ‘strong’ weak interactions?, Nucl. Phys. B589 (2000) 359 [hep-ph/0004071] [INSPIRE]. M. Chiesa, B. Mele and F. Piccinini, Multi Higgs production via photon fusion at future multi-TeV muon colliders, arXiv:2109.10109 [INSPIRE]. T. Han, Z. Liu, L.-T. Wang and X. Wang, WIMPs at high energy muon colliders, Phys. Rev. D103 (2021) 075004 [arXiv:2009.11287] [INSPIRE]. J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D77 (2008) 053004 [arXiv:0712.0396] [INSPIRE]. Di LuzioLGröberRPanicoGProbing new electroweak states via precision measurements at the LHC and future collidersJHEP20190101110.1007/JHEP01(2019)011[arXiv:1810.10993] [INSPIRE] BorelPFranceschiniRRattazziRWulzerAProbing the scattering of equivalent electroweak bosonsJHEP2012061222012JHEP...06..122B10.1007/JHEP06(2012)122[arXiv:1202.1904] [INSPIRE] WulzerAAn equivalent gauge and the equivalence theoremNucl. Phys. B2014885972014NuPhB.885...97W322801810.1016/j.nuclphysb.2014.05.021[arXiv:1309.6055] [INSPIRE] ChenJHanTTweedieBElectroweak splitting functions and high energy showeringJHEP2017110932017JHEP...11..093C10.1007/JHEP11(2017)093[arXiv:1611.00788] [INSPIRE] BottaroSStrumiaAVignaroliNMinimal dark matter bound states at future collidersJHEP2021061432021JHEP...06..143B10.1007/JHEP06(2021)143[arXiv:2103.12766] [INSPIRE] ManoharAVWaalewijnWJElectroweak logarithms in inclusive cross sectionsJHEP2018081372018JHEP...08..137M10.1007/JHEP08(2018)137[arXiv:1802.08687] [INSPIRE] CapdevillaRCurtinDKahnYKrnjaicGSystematically testing singlet models for (g − 2)μJHEP2022041292022JHEP...04..129C10.1007/JHEP04(2022)129[arXiv:2112.08377] [INSPIRE] PanicoGWulzerAThe composite Nambu-Goldstone HiggsLect. Notes Phys.2016913110.1007/978-3-319-22617-0_1[arXiv:1506.01961] [INSPIRE] QianSSearching for heavy leptoquarks at a muon colliderJHEP2021120472021JHEP...12..047Q10.1007/JHEP12(2021)047[arXiv:2109.01265] [INSPIRE] V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP3 (1956) 65 [Zh. Ek 18468_CR65 18468_CR66 AV Manohar (18468_CR52) 2018; 08 18468_CR64 18468_CR61 18468_CR62 G Cuomo (18468_CR75) 2020; 8 T Li (18468_CR22) 2021; 81 S Bottaro (18468_CR21) 2021; 06 J Chen (18468_CR60) 2017; 11 18468_CR59 18468_CR54 18468_CR55 18468_CR50 A Wulzer (18468_CR98) 2014; 885 G Panico (18468_CR83) 2021; 07 18468_CR49 18468_CR47 18468_CR48 18468_CR45 G Durieux (18468_CR93) 2018; 10 18468_CR46 18468_CR87 18468_CR88 M Ruhdorfer (18468_CR11) 2020; 8 J Kalinowski (18468_CR17) 2021; 13 G Durieux (18468_CR81) 2019; 01 18468_CR86 J Chen (18468_CR25) 2021; 10 B Fornal (18468_CR56) 2018; 05 T Han (18468_CR30) 2021; 12 18468_CR6 18468_CR4 18468_CR1 18468_CR2 B Grzadkowski (18468_CR78) 2010; 10 18468_CR9 18468_CR8 18468_CR79 18468_CR76 18468_CR77 18468_CR74 CW Bauer (18468_CR57) 2017; 08 18468_CR72 18468_CR73 18468_CR70 M Farina (18468_CR82) 2017; 772 CW Bauer (18468_CR53) 2018; 04 R Capdevilla (18468_CR5) 2021; 06 18468_CR69 18468_CR67 18468_CR68 S Bottaro (18468_CR27) 2022; 82 18468_CR20 D Buttazzo (18468_CR7) 2021; 05 G Banelli (18468_CR91) 2021; 02 18468_CR18 18468_CR16 18468_CR14 18468_CR15 18468_CR10 D Buttazzo (18468_CR3) 2018; 11 R Dermisek (18468_CR32) 2021; 104 18468_CR96 18468_CR97 A Costantini (18468_CR13) 2020; 09 18468_CR94 18468_CR95 18468_CR92 JD Wells (18468_CR80) 2016; 01 18468_CR89 CW Bauer (18468_CR58) 2018; 11 18468_CR43 18468_CR44 18468_CR42 18468_CR40 M Chiesa (18468_CR12) 2020; 09 P Asadi (18468_CR23) 2021; 10 R Capdevilla (18468_CR41) 2022; 04 J de Blas (18468_CR84) 2020; 01 18468_CR39 M Ciafaloni (18468_CR71) 2010; 03 18468_CR36 18468_CR37 18468_CR34 18468_CR35 18468_CR31 A Manohar (18468_CR51) 2015; 740 P Borel (18468_CR63) 2012; 06 S Qian (18468_CR33) 2021; 12 J Alwall (18468_CR85) 2014; 07 W Liu (18468_CR19) 2021; 04 18468_CR29 L Di Luzio (18468_CR38) 2019; 01 18468_CR28 18468_CR26 18468_CR24 G Panico (18468_CR90) 2016; 913 |
References_xml | – reference: H. Al Ali et al., The muon smasher’s guide, arXiv:2103.14043 [INSPIRE]. – reference: HanTPrecision test of the muon-Higgs coupling at a high-energy muon colliderJHEP2021121622021JHEP...12..162H10.1007/JHEP12(2021)162[arXiv:2108.05362] [INSPIRE] – reference: R. Torre, L. Ricci and A. Wulzer, On the W &Y interpretation of high-energy Drell-Yan measurements, JHEP02 (2021) 144 [arXiv:2008.12978] [INSPIRE]. – reference: R. Ruiz, A. Costantini, F. Maltoni and O. Mattelaer, The effective vector boson approximation in high-energy muon collisions, arXiv:2111.02442 [INSPIRE]. – reference: LiuWXieK-PProbing electroweak phase transition with multi-TeV muon colliders and gravitational wavesJHEP2021040152021JHEP...04..015L10.1007/JHEP04(2021)015[arXiv:2101.10469] [INSPIRE] – reference: The international muon collider collaboration webpage,https://muoncollider.web.cern.ch. – reference: ButtazzoDRedigoloDSalaFTesiAFusing vectors into scalars at high energy lepton collidersJHEP2018111442018JHEP...11..144B10.1007/JHEP11(2018)144[arXiv:1807.04743] [INSPIRE] – reference: T. Han, D. Liu, I. Low and X. Wang, Electroweak couplings of the Higgs boson at a multi-TeV muon collider, Phys. Rev. D103 (2021) 013002 [arXiv:2008.12204] [INSPIRE]. – reference: M. Chiesa, B. Mele and F. Piccinini, Multi Higgs production via photon fusion at future multi-TeV muon colliders, arXiv:2109.10109 [INSPIRE]. – reference: J. Chen, T. Li, C.-T. Lu, Y. Wu and C.-Y. Yao, Measurement of Higgs boson self-couplings through 2 → 3 vector bosons scattering in future muon colliders, Phys. Rev. D105 (2022) 053009 [arXiv:2112.12507] [INSPIRE]. – reference: BauerCWFerlandNWebberBRCombining initial-state resummation with fixed-order calculations of electroweak correctionsJHEP2018041252018JHEP...04..125B10.1007/JHEP04(2018)125[arXiv:1712.07147] [INSPIRE] – reference: ALEGRO collaboration, Towards an advanced linear international collider, arXiv:1901.10370 [INSPIRE]. – reference: N. Bartosik et al., Preliminary report on the study of beam-induced background effects at a muon collider, arXiv:1905.03725 [INSPIRE]. – reference: DurieuxGMatsedonskyiOThe top-quark window on compositeness at future lepton collidersJHEP2019010722019JHEP...01..072D10.1007/JHEP01(2019)072[arXiv:1807.10273] [INSPIRE] – reference: PanicoGRicciLWulzerAHigh-energy EFT probes with fully differential Drell-Yan measurementsJHEP2021070862021JHEP...07..086P10.1007/JHEP07(2021)086[arXiv:2103.10532] [INSPIRE] – reference: ChenJLuC-TWuYMeasuring Higgs boson self-couplings with 2 → 3 VBS processesJHEP2021100992021JHEP...10..099C10.1007/JHEP10(2021)099[arXiv:2105.11500] [INSPIRE] – reference: M. Ciafaloni, P. Ciafaloni and D. Comelli, Towards collinear evolution equations in electroweak theory, Phys. Rev. Lett.88 (2002) 102001 [hep-ph/0111109] [INSPIRE]. – reference: P. Ciafaloni and D. Comelli, The importance of weak bosons emission at LHC, JHEP09 (2006) 055 [hep-ph/0604070] [INSPIRE]. – reference: FornalBManoharAVWaalewijnWJElectroweak gauge boson parton distribution functionsJHEP2018051062018JHEP...05..106F383265810.1007/JHEP05(2018)106[arXiv:1803.06347] [INSPIRE] – reference: G. Haghighat and M. Mohammadi Najafabadi, Search for lepton-flavor-violating ALPs at a future muon collider and utilization of polarization-induced effects, Nucl. Phys. B980 (2022) 115827 [arXiv:2106.00505] [INSPIRE]. – reference: A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C21 (2001) 63 [hep-ph/0104127] [INSPIRE]. – reference: CiafaloniMCiafaloniPComelliDAnomalous Sudakov form factorsJHEP2010030722010JHEP...03..072C10.1007/JHEP03(2010)072[arXiv:0909.1657] [INSPIRE] – reference: T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE]. – reference: D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B136 (1984) 183 [INSPIRE]. – reference: J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D80 (2009) 094013 [arXiv:0909.0012] [INSPIRE]. – reference: GrzadkowskiBIskrzynskiMMisiakMRosiekJDimension-six terms in the Standard Model LagrangianJHEP2010100852010JHEP...10..085G10.1007/JHEP10(2010)085[arXiv:1008.4884] [INSPIRE] – reference: DurieuxGPerellóMVosMZhangCGlobal and optimal probes for the top-quark effective field theory at future lepton collidersJHEP2018101682018JHEP...10..168D10.1007/JHEP10(2018)168[arXiv:1807.02121] [INSPIRE] – reference: T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev.133 (1964) B1549 [INSPIRE]. – reference: G.-Y. Huang, F.S. Queiroz and W. Rodejohann, Gauged Lμ− Lτat a muon collider, Phys. Rev. D103 (2021) 095005 [arXiv:2101.04956] [INSPIRE]. – reference: J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Soft and collinear functions for the Standard Model, Phys. Rev. D81 (2010) 014023 [arXiv:0909.0947] [INSPIRE]. – reference: CapdevillaRMeloniFSimonielloRZuritaJHunting wino and higgsino dark matter at the muon collider with disappearing tracksJHEP2021061332021JHEP...06..133C10.1007/JHEP06(2021)133[arXiv:2102.11292] [INSPIRE] – reference: ManoharAShotwellBBauerCTurczykSNon-cancellation of electroweak logarithms in high-energy scatteringPhys. Lett. B20157401792015PhLB..740..179M10.1016/j.physletb.2014.11.050[arXiv:1409.1918] [INSPIRE] – reference: BottaroSClosing the window on WIMP dark matterEur. Phys. J. C202282312022EPJC...82...31B10.1140/epjc/s10052-021-09917-9[arXiv:2107.09688] [INSPIRE] – reference: G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE]. – reference: R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703 (2004) 127 [hep-ph/0405040] [INSPIRE]. – reference: C. Sen, P. Bandyopadhyay, S. Dutta and A. KT, Displaced Higgs production in type-III seesaw at the LHC/FCC, MATHUSLA and muon collider, Eur. Phys. J. C82 (2022) 230 [arXiv:2107.12442] [INSPIRE]. – reference: N. Bartosik et al., Detector and physics performance at a muon collider, 2020 JINST15 P05001 [arXiv:2001.04431] [INSPIRE]. – reference: ButtazzoDFranceschiniRWulzerATwo paths towards precision at a very high energy lepton colliderJHEP2021052192021JHEP...05..219B10.1007/JHEP05(2021)219[arXiv:2012.11555] [INSPIRE] – reference: R.K. Ellis et al., Physics briefing book: input for the European strategy for particle physics update 2020, arXiv:1910.11775 [INSPIRE]. – reference: D. Buttazzo and P. Paradisi, Probing the muon g − 2 anomaly with the Higgs boson at a muon collider, Phys. Rev. D104 (2021) 075021 [arXiv:2012.02769] [INSPIRE]. – reference: R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, Discovering the physics of (g − 2)μat future muon colliders, Phys. Rev. D103 (2021) 075028 [arXiv:2006.16277] [INSPIRE]. – reference: R. Franceschini and X. Zhao, Precision WIMP searches at high energy muon colliders, to appear. – reference: P. Bandyopadhyay, A. Karan and R. Mandal, Distinguishing signatures of scalar leptoquarks at hadron and muon colliders, arXiv:2108.06506 [INSPIRE]. – reference: M. Sahin and A. Caliskan, Excited muon production at muon colliders via contact interaction, arXiv:2105.01964 [INSPIRE]. – reference: R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, No-lose theorem for discovering the new physics of (g − 2)μat muon colliders, Phys. Rev. D105 (2022) 015028 [arXiv:2101.10334] [INSPIRE]. – reference: KalinowskiJRobensTSokolowskaDZarneckiAFIDM benchmarks for the LHC and future collidersSymmetry2021139912021Symm...13..991K10.3390/sym13060991[arXiv:2012.14818] [INSPIRE] – reference: Di LuzioLGröberRPanicoGProbing new electroweak states via precision measurements at the LHC and future collidersJHEP20190101110.1007/JHEP01(2019)011[arXiv:1810.10993] [INSPIRE] – reference: A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE]. – reference: M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett.84 (2000) 4810 [hep-ph/0001142] [INSPIRE]. – reference: J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D77 (2008) 053004 [arXiv:0712.0396] [INSPIRE]. – reference: Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys. B296 (1988) 253 [INSPIRE]. – reference: C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the Standard Model effective field theory, Phys. Rev. D103 (2021) 096024 [arXiv:2008.11743] [INSPIRE]. – reference: WellsJDZhangZEffective theories of universal theoriesJHEP2016011232016JHEP...01..123W347145710.1007/JHEP01(2016)123[arXiv:1510.08462] [INSPIRE] – reference: WulzerAAn equivalent gauge and the equivalence theoremNucl. Phys. B2014885972014NuPhB.885...97W322801810.1016/j.nuclphysb.2014.05.021[arXiv:1309.6055] [INSPIRE] – reference: A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C18 (2001) 461 [hep-ph/0010201] [INSPIRE]. – reference: BanelliGSalvioniESerraJTheilTWeilerAThe present and future of four top operatorsJHEP2021020432021JHEP...02..043B10.1007/JHEP02(2021)043[arXiv:2010.05915] [INSPIRE] – reference: L.D. Landau and E.M. Lifshitz, Quantum electrodynamics, volume 4 of Course of theoretical physics, Butterworth-Heinemann, Oxford, U.K. (1982). – reference: D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B365 (1991) 259 [INSPIRE]. – reference: V.S. Fadin, L.N. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D61 (2000) 094002 [hep-ph/9910338] [INSPIRE]. – reference: M. Melles, Subleading Sudakov logarithms in electroweak high-energy processes to all orders, Phys. Rev. D63 (2001) 034003 [hep-ph/0004056] [INSPIRE]. – reference: CostantiniAVector boson fusion at multi-TeV muon collidersJHEP2020090802020JHEP...09..080C10.1007/JHEP09(2020)080[arXiv:2005.10289] [INSPIRE] – reference: CuomoGVecchiLWulzerAGoldstone equivalence and high energy electroweak physicsSciPost Phys.202080782020ScPP....8...78C10.21468/SciPostPhys.8.5.078[arXiv:1911.12366] [INSPIRE] – reference: QianSSearching for heavy leptoquarks at a muon colliderJHEP2021120472021JHEP...12..047Q10.1007/JHEP12(2021)047[arXiv:2109.01265] [INSPIRE] – reference: T. Han, S. Li, S. Su, W. Su and Y. Wu, Heavy Higgs bosons in 2HDM at a muon collider, Phys. Rev. D104 (2021) 055029 [arXiv:2102.08386] [INSPIRE]. – reference: T. Han, Z. Liu, L.-T. Wang and X. Wang, WIMPs at high energy muon colliders, Phys. Rev. D103 (2021) 075004 [arXiv:2009.11287] [INSPIRE]. – reference: T. Han, Y. Ma and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D103 (2021) L031301 [arXiv:2007.14300] [INSPIRE]. – reference: CLIC collaboration, The CLIC potential for new physics, arXiv:1812.02093 [INSPIRE]. – reference: P. Ciafaloni and D. Comelli, Electroweak evolution equations, JHEP11 (2005) 022 [hep-ph/0505047] [INSPIRE]. – reference: J.P. Delahaye et al., Muon colliders,arXiv:1901.06150 [INSPIRE]. – reference: BorelPFranceschiniRRattazziRWulzerAProbing the scattering of equivalent electroweak bosonsJHEP2012061222012JHEP...06..122B10.1007/JHEP06(2012)122[arXiv:1202.1904] [INSPIRE] – reference: ChiesaMMaltoniFMantaniLMeleBPiccininiFZhaoXMeasuring the quartic Higgs self-coupling at a multi-TeV muon colliderJHEP2020090982020JHEP...09..098C10.1007/JHEP09(2020)098[arXiv:2003.13628] [INSPIRE] – reference: BottaroSStrumiaAVignaroliNMinimal dark matter bound states at future collidersJHEP2021061432021JHEP...06..143B10.1007/JHEP06(2021)143[arXiv:2103.12766] [INSPIRE] – reference: R. Barbieri, Flavour and Higgs compositeness: present and “near” future, arXiv:1910.00371 [INSPIRE]. – reference: R. Franceschini, High(est) energy lepton colliders, Int. J. Mod. Phys. A36 (2021) 2142016 [INSPIRE]. – reference: W. Liu, K.-P. Xie and Z. Yi, Testing leptogenesis at the LHC and future muon colliders: a Z′ scenario, arXiv:2109.15087 [INSPIRE]. – reference: W. Yin and M. Yamaguchi, Muon g − 2 at multi-TeV muon collider, arXiv:2012.03928 [INSPIRE]. – reference: P. Bandyopadhyay, A. Karan and C. Sen, Discerning signatures of seesaw models and complementarity of leptonic colliders, arXiv:2011.04191 [INSPIRE]. – reference: DermisekRHermanekKMcGinnisNDi-Higgs and tri-Higgs boson signals of muon g − 2 at a muon colliderPhys. Rev. D2021104L0913012021PhRvD.104i1301D10.1103/PhysRevD.104.L091301[arXiv:2108.10950] [INSPIRE] – reference: ManoharAVWaalewijnWJElectroweak logarithms in inclusive cross sectionsJHEP2018081372018JHEP...08..137M10.1007/JHEP08(2018)137[arXiv:1802.08687] [INSPIRE] – reference: M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale: ‘strong’ weak interactions?, Nucl. Phys. B589 (2000) 359 [hep-ph/0004071] [INSPIRE]. – reference: de BlasJHiggs boson studies at future particle collidersJHEP2020011392020JHEP...01..139D10.1007/JHEP01(2020)139[arXiv:1905.03764] [INSPIRE] – reference: AsadiPCapdevillaRCesarottiCHomillerSSearching for leptoquarks at future muon collidersJHEP2021101822021JHEP...10..182A10.1007/JHEP10(2021)182[arXiv:2104.05720] [INSPIRE] – reference: S. Dawson, The effective W approximation, Nucl. Phys. B249 (1985) 42 [INSPIRE]. – reference: CLICdp collaboration, Top-quark physics at the CLIC electron-positron linear collider, JHEP11 (2019) 003 [arXiv:1807.02441] [INSPIRE]. – reference: ChenJHanTTweedieBElectroweak splitting functions and high energy showeringJHEP2017110932017JHEP...11..093C10.1007/JHEP11(2017)093[arXiv:1611.00788] [INSPIRE] – reference: PanicoGWulzerAThe composite Nambu-Goldstone HiggsLect. Notes Phys.2016913110.1007/978-3-319-22617-0_1[arXiv:1506.01961] [INSPIRE] – reference: K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B719 (2005) 165 [hep-ph/0412089] [INSPIRE]. – reference: J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B616 (2001) 286 [Erratum ibid.648 (2003) 455] [hep-ph/0106298] [INSPIRE]. – reference: BauerCWFerlandNWebberBRStandard Model parton distributions at very high energiesJHEP2017080362017JHEP...08..036B10.1007/JHEP08(2017)036[arXiv:1703.08562] [INSPIRE] – reference: J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett.100 (2008) 021802 [arXiv:0709.2377] [INSPIRE]. – reference: CapdevillaRCurtinDKahnYKrnjaicGSystematically testing singlet models for (g − 2)μJHEP2022041292022JHEP...04..129C10.1007/JHEP04(2022)129[arXiv:2112.08377] [INSPIRE] – reference: FarinaMPanicoGPappadopuloDRudermanJTTorreRWulzerAEnergy helps accuracy: electroweak precision tests at hadron collidersPhys. Lett. B20177722102017PhLB..772..210F10.1016/j.physletb.2017.06.043[arXiv:1609.08157] [INSPIRE] – reference: BauerCWProvasoliDWebberBRStandard Model fragmentation functions at very high energiesJHEP2018110302018JHEP...11..030B10.1007/JHEP11(2018)030[arXiv:1806.10157] [INSPIRE] – reference: V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP3 (1956) 65 [Zh. Eksp. Teor. Fiz.30 (1956) 87] [INSPIRE]. – reference: AlwallJThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A10.1007/JHEP07(2014)079[arXiv:1405.0301] [INSPIRE] – reference: LiTSchmidtMAYaoC-YYuanMCharged lepton flavor violation in light of the muon magnetic moment anomaly and collidersEur. Phys. J. C2021818112021EPJC...81..811L10.1140/epjc/s10052-021-09569-9[arXiv:2104.04494] [INSPIRE] – reference: T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D68 (2003) 035012 [hep-ph/0212073] [INSPIRE]. – reference: RuhdorferMSalvioniEWeilerAA global view of the off-shell Higgs portalSciPost Phys.2020802710.21468/SciPostPhys.8.2.027[arXiv:1910.04170] [INSPIRE] – ident: 18468_CR92 doi: 10.1016/S0550-3213(05)80021-5 – ident: 18468_CR40 doi: 10.1103/PhysRevD.105.053009 – volume: 01 start-page: 011 year: 2019 ident: 18468_CR38 publication-title: JHEP doi: 10.1007/JHEP01(2019)011 – ident: 18468_CR87 – ident: 18468_CR88 doi: 10.1016/0370-2693(84)91177-8 – volume: 104 start-page: L091301 year: 2021 ident: 18468_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.L091301 – volume: 81 start-page: 811 year: 2021 ident: 18468_CR22 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09569-9 – volume: 08 start-page: 036 year: 2017 ident: 18468_CR57 publication-title: JHEP doi: 10.1007/JHEP08(2017)036 – ident: 18468_CR54 doi: 10.1103/PhysRevLett.88.102001 – ident: 18468_CR70 doi: 10.1007/s100520100721 – ident: 18468_CR65 doi: 10.1103/PhysRev.133.B1549 – volume: 10 start-page: 085 year: 2010 ident: 18468_CR78 publication-title: JHEP doi: 10.1007/JHEP10(2010)085 – volume: 11 start-page: 144 year: 2018 ident: 18468_CR3 publication-title: JHEP doi: 10.1007/JHEP11(2018)144 – ident: 18468_CR47 doi: 10.1103/PhysRevLett.100.021802 – volume: 10 start-page: 182 year: 2021 ident: 18468_CR23 publication-title: JHEP doi: 10.1007/JHEP10(2021)182 – ident: 18468_CR35 – ident: 18468_CR86 doi: 10.1103/PhysRevD.103.096024 – ident: 18468_CR67 doi: 10.1007/s100520100551 – ident: 18468_CR59 doi: 10.1103/PhysRevD.103.L031301 – ident: 18468_CR8 doi: 10.1103/PhysRevD.103.013002 – volume: 772 start-page: 210 year: 2017 ident: 18468_CR82 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.06.043 – ident: 18468_CR26 doi: 10.1016/j.nuclphysb.2022.115827 – ident: 18468_CR14 doi: 10.1103/PhysRevD.105.015028 – ident: 18468_CR24 – ident: 18468_CR66 doi: 10.1088/1126-6708/2006/09/055 – volume: 913 start-page: 1 year: 2016 ident: 18468_CR90 publication-title: Lect. Notes Phys. doi: 10.1007/978-3-319-22617-0_1 – ident: 18468_CR2 – volume: 82 start-page: 31 year: 2022 ident: 18468_CR27 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09917-9 – volume: 05 start-page: 106 year: 2018 ident: 18468_CR56 publication-title: JHEP doi: 10.1007/JHEP05(2018)106 – ident: 18468_CR64 doi: 10.1063/1.1724268 – volume: 09 start-page: 098 year: 2020 ident: 18468_CR12 publication-title: JHEP doi: 10.1007/JHEP09(2020)098 – ident: 18468_CR46 doi: 10.1103/PhysRevD.63.034003 – volume: 8 start-page: 078 year: 2020 ident: 18468_CR75 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.8.5.078 – volume: 12 start-page: 162 year: 2021 ident: 18468_CR30 publication-title: JHEP doi: 10.1007/JHEP12(2021)162 – volume: 12 start-page: 047 year: 2021 ident: 18468_CR33 publication-title: JHEP doi: 10.1007/JHEP12(2021)047 – volume: 8 start-page: 027 year: 2020 ident: 18468_CR11 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.8.2.027 – ident: 18468_CR61 doi: 10.1016/0550-3213(85)90038-0 – volume: 885 start-page: 97 year: 2014 ident: 18468_CR98 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2014.05.021 – ident: 18468_CR69 – ident: 18468_CR29 doi: 10.1140/epjc/s10052-022-10176-5 – volume: 09 start-page: 080 year: 2020 ident: 18468_CR13 publication-title: JHEP doi: 10.1007/JHEP09(2020)080 – volume: 06 start-page: 143 year: 2021 ident: 18468_CR21 publication-title: JHEP doi: 10.1007/JHEP06(2021)143 – volume: 13 start-page: 991 year: 2021 ident: 18468_CR17 publication-title: Symmetry doi: 10.3390/sym13060991 – ident: 18468_CR95 doi: 10.1103/PhysRevD.68.035012 – ident: 18468_CR39 doi: 10.1103/PhysRevD.103.075004 – volume: 06 start-page: 122 year: 2012 ident: 18468_CR63 publication-title: JHEP doi: 10.1007/JHEP06(2012)122 – volume: 06 start-page: 133 year: 2021 ident: 18468_CR5 publication-title: JHEP doi: 10.1007/JHEP06(2021)133 – volume: 07 start-page: 086 year: 2021 ident: 18468_CR83 publication-title: JHEP doi: 10.1007/JHEP07(2021)086 – volume: 01 start-page: 072 year: 2019 ident: 18468_CR81 publication-title: JHEP doi: 10.1007/JHEP01(2019)072 – ident: 18468_CR74 doi: 10.1007/JHEP02(2021)144 – ident: 18468_CR97 – ident: 18468_CR49 doi: 10.1103/PhysRevD.80.094013 – ident: 18468_CR44 doi: 10.1016/S0550-3213(00)00508-3 – ident: 18468_CR68 – ident: 18468_CR16 – volume: 740 start-page: 179 year: 2015 ident: 18468_CR51 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.11.050 – volume: 04 start-page: 129 year: 2022 ident: 18468_CR41 publication-title: JHEP doi: 10.1007/JHEP04(2022)129 – ident: 18468_CR50 doi: 10.1103/PhysRevD.81.014023 – ident: 18468_CR73 doi: 10.1016/S0550-3213(01)00454-0 – ident: 18468_CR36 – volume: 10 start-page: 168 year: 2018 ident: 18468_CR93 publication-title: JHEP doi: 10.1007/JHEP10(2018)168 – ident: 18468_CR79 doi: 10.1016/j.nuclphysb.2004.10.014 – ident: 18468_CR94 – ident: 18468_CR37 doi: 10.1103/PhysRevD.104.075021 – volume: 11 start-page: 093 year: 2017 ident: 18468_CR60 publication-title: JHEP doi: 10.1007/JHEP11(2017)093 – ident: 18468_CR62 doi: 10.1016/0550-3213(88)90673-6 – volume: 07 start-page: 079 year: 2014 ident: 18468_CR85 publication-title: JHEP doi: 10.1007/JHEP07(2014)079 – ident: 18468_CR31 – volume: 04 start-page: 125 year: 2018 ident: 18468_CR53 publication-title: JHEP doi: 10.1007/JHEP04(2018)125 – volume: 08 start-page: 137 year: 2018 ident: 18468_CR52 publication-title: JHEP doi: 10.1007/JHEP08(2018)137 – ident: 18468_CR6 – volume: 04 start-page: 015 year: 2021 ident: 18468_CR19 publication-title: JHEP doi: 10.1007/JHEP04(2021)015 – ident: 18468_CR89 doi: 10.1016/j.nuclphysb.2005.04.035 – ident: 18468_CR42 – ident: 18468_CR43 doi: 10.1103/PhysRevLett.84.4810 – ident: 18468_CR20 doi: 10.1103/PhysRevD.104.055029 – volume: 03 start-page: 072 year: 2010 ident: 18468_CR71 publication-title: JHEP doi: 10.1007/JHEP03(2010)072 – ident: 18468_CR4 doi: 10.1142/S0217751X21420161 – volume: 01 start-page: 123 year: 2016 ident: 18468_CR80 publication-title: JHEP doi: 10.1007/JHEP01(2016)123 – ident: 18468_CR9 – ident: 18468_CR45 doi: 10.1103/PhysRevD.61.094002 – volume: 01 start-page: 139 year: 2020 ident: 18468_CR84 publication-title: JHEP doi: 10.1007/JHEP01(2020)139 – ident: 18468_CR34 – ident: 18468_CR77 doi: 10.1088/1126-6708/2007/06/045 – ident: 18468_CR76 – ident: 18468_CR28 – ident: 18468_CR10 doi: 10.1103/PhysRevD.103.075028 – volume: 10 start-page: 099 year: 2021 ident: 18468_CR25 publication-title: JHEP doi: 10.1007/JHEP10(2021)099 – ident: 18468_CR72 doi: 10.1016/j.nuclphysb.2006.10.014 – ident: 18468_CR48 doi: 10.1103/PhysRevD.77.053004 – ident: 18468_CR96 – ident: 18468_CR18 doi: 10.1103/PhysRevD.103.095005 – ident: 18468_CR55 doi: 10.1088/1126-6708/2005/11/022 – volume: 11 start-page: 030 year: 2018 ident: 18468_CR58 publication-title: JHEP doi: 10.1007/JHEP11(2018)030 – ident: 18468_CR1 – volume: 02 start-page: 043 year: 2021 ident: 18468_CR91 publication-title: JHEP doi: 10.1007/JHEP02(2021)043 – ident: 18468_CR15 doi: 10.1088/1748-0221/15/05/P05001 – volume: 05 start-page: 219 year: 2021 ident: 18468_CR7 publication-title: JHEP doi: 10.1007/JHEP05(2021)219 |
SSID | ssj0015190 |
Score | 2.5165915 |
Snippet | A
bstract
We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the... We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV... Abstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 180 |
SubjectTerms | Bosons Classical and Quantum Gravitation Electroweak Precision Physics Elementary Particles Emission analysis Fermions Field theory High energy physics Leptons Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Radiation Radiation effects Regular Article - Theoretical Physics Relativity Theory Resummation Sensitivity enhancement SMEFT Specific BSM Phenomenology String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcIFOSBoR1CnU87AwOgVlUHxEClbpbt2CxVqdow8O-5c5JSkCoW1tiJrDs77518946QW146wDm8-o91GaZGRaEWeR7m1mlnU1co5xNkn_PxNJ3MstlWqy_MCavlgWvDDVxZ5iJjkTNGp4XWwkaa68IVCPVAb_DvC5jXBlPN_QHwEtYK-TA-mIyHLyzrQaAf9yNUgNzCIC_V_4Nf_roS9UgzOiKHDUWkD_XSjsmeXZyQfZ-qadan5L6RRH2jWBpCVygugNalqqKKws78pKhBTK2v6qNzuwR6R9HfWHF3Rqaj4evTOGyaIIQmzZIqTIDTW24FBBrGiES4WDtuFUIzh-DM5LkQ2jEVscJoJzKtmeXaoKydTeGEJueks3hf2AtCfXGgU4aVDEYLcF9SKMtcmSZGxS4KyF1rFmkahXBsVDGXrbZxbUeJdpRgx4D0Ni8sa3GM3VMf0c6baahq7R-Ar2Xja_mXrwPSbb0km6O2loCvwKFQVi8g_dZz38M71nP5H-u5Igf4PUwmiHmXdKrVh70GjlLpG78dvwA72uFy priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UYuLF-IyraHrwAIeV7rt7MEYMhHAgxEjCbdN2Wy4EENaD_96ZpQtqgtdtd7OZaWe-6cx8JeQhyQ34OUz9-zJ3QyU8V_I4dmNtpNGhSYUpC2SHcX8cDibRxB64rW1ZZWUTS0OdLxSekbfBjIKrRPa05-WHi7dGYXbVXqFxSOpggjkEX_VOdzh62-YRAJ-witCHJe1BvztiURMCfr_lIRPkD19UUvb_wpl_UqOlx-mdkhMLFenLRrdn5EDPz8lRWbKp1hfkyVKjTim2iNAVkgyglKkoqKCwQr8ochFTXXb30ZleAsyjqHfsvLsk4173_bXv2ssQXBVGQeEGgO11ojkEHErxgBtfmkQLdNEJBGkqjjmXhgmPpUoaHknJdCIV0tvpEHZqcEVq88VcXxNaNgkaoVjOYDQFNQap0MzkYaCEbzyHPFZiyZRlCscLK2ZZxXG8kWOGcsxAjg5pbl9Ybkgy9k_toJy305DdunywWE0zu1kyk-cxj5hnlJJhKiXXnkxkalKEdwBpHdKotJTZLbfOdgvEIa1Kc7vhPf9z8_-nbskxzsRyAT9pkFqx-tR3gEIKeW-X2jf02tnT priority: 102 providerName: ProQuest |
Title | Learning from radiation at a very high energy lepton collider |
URI | https://link.springer.com/article/10.1007/JHEP05(2022)180 https://www.proquest.com/docview/2848466357 https://doaj.org/article/fdd68501fccb49bb8e1b7b9f95514099 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60IngRn7halxw8tIeV7Dt78FBLa_EgRSx4W5Js0kuppa0H_70z6W5FxYOXEDYJLDNJ5htm5gvATV5ZtHMU-o9UFSRahoESWRZkxiprEltI6xJkn7LRJHl8TV93IGxqYVy2exOSdDd1U-z2OBqMedpBZz3qhgK99L0U-7Sp-1TgUAcOEJDwhsHn96Jvxsdx9H8Dlj9ioc7EDI_gsMaGrLdR5jHsmPkJ7LscTb06hbuaC3XKqCaELYlVgMTK5JpJhlvygxH5MDOunI_NzAJxHSNFU6ndGUyGg5f-KKhfPwh0ksbrIEYwb3Ij0MPQWsTCRsrmRpJNztEr01kmhLJchrzQyopUKW5ypYnPziR4NONzaM3f5uYCmKsKtFLziuNogXqLC2m4rZJYy8iGHtw2Yil1TQ1OL1TMyobUeCPHkuRYohw96GwXLDasGH9PvSc5b6cRnbX78LaclvXpKG1VZSLlodVaJYVSwoQqV4UtCM8hhvWg3WiprM_YqkTDiuCJ-PQ86Daa-xr-438u_zH3Cg6oS8kCUd6G1nr5bq4Rg6yVD7ti-ODD3v3gafzsuz1Ibdb3nVeP7STqfQJU2dj5 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTiMxEC2xCMFlNGwiDAM-gASHBvfuPqDRDBDCKg4gcTO2284FJSEJQvwU3zhVTndYJLhxbbetVi2u53bVK4DNvHQY5-jqP9JlkBgVBlpkWZBZp51NXKGcT5C9zFo3yeltejsBL3UtDKVV1nui36jLrqF_5Hu4jWKoJPa0P72HgLpG0e1q3UJjZBZn9vkJj2yD_ZND1O9WFDWPrg9aQdVVIDBJGg8DPMBnNrcCkbsxIhYu0i63imJdjqcdk2VCaMdVyAujnUi15jbXhnjibIImH-O6kzCdxHFBHiWax-NbC0RDvKYP4vneaevoiqfbEYbJnZB4J99EPt8g4B2q_XAR6-Nb8yf8qIAp-zuypHmYsJ0FmPEJomawCPsVEWubUUEK6xOlAemUqSFTDP3hmRHzMbO-lpDd2x6CSkZWRnV-S3DzLUJahqlOt2NXgPmSRKcMLzmOFmg0caEsd2USGxW5sAG7tVikqXjJqT3GvawZlUdylCRHiXJswPZ4Qm9EyfH5q_9IzuPXiEvbP-j227JyTenKMhMpD50xOim0FjbUuS5cQWASAXQD1motycrBB_LVHBuwU2vudfiT71n9eqkNmG1dX5zL85PLs18wR7MoUSHK12Bq2H-0vxH_DPW6NzoGd99t5f8B4aEUYA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BEIhLRSmItLT1oUhwWOL9tPeAKiiJAlRRhEDiZmyvnQtK0iQI8df4dcxsdkOpRG9c12trNfPsGe_MvAH4IQqPdo5C_5EpgsTqMDAyy4LMeeNd4nPtywTZXta9Ts5v0psleKprYSitsj4Ty4O6GFn6R97CYxRNJbGntXyVFtE_7fwc_wmogxRFWut2GnOIXLjHB7y-TY_OTlHXe1HUaV_96gZVh4HAJmk8C_AynznhJHrx1spY-sh44TTZPYE3H5tlUhrPdchza7xMjeFOGEuccS5B-Me47jKsCLwV8QasnLR7_ctFDAN9I16TCXHROu-2-zzdj9BoHoTEQvmXHSzbBbzycf8Jy5bWrrMBHyo3lR3PcfURltxwE1bLdFE7_QRHFS3rgFF5CpsQwQFpmOkZ0wx3xyMjHmTmyspCdufG6GIywhxV_W3B9buIaRsaw9HQ7QArCxS9trzgOJojhOJcO-6LJLY68mETDmuxKFuxlFOzjDtV8yvP5ahIjgrl2IT9xYTxnKDj7VdPSM6L14hZu3wwmgxUtVGVL4pMpjz01pokN0a60AiT-5xcS3Snm7Bba0lV232qXsDZhINacy_Db3zP5_8v9R3WEOHq91nv4gus0yTKWojELjRmk3v3FZ2hmflWoY7B7XsD_Rl7ARny |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+radiation+at+a+very+high+energy+lepton+collider&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Chen%2C+Siyu&rft.au=Glioti%2C+Alfredo&rft.au=Rattazzi%2C+Riccardo&rft.au=Ricci%2C+Lorenzo&rft.date=2022-05-27&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2022&rft.issue=5&rft_id=info:doi/10.1007%2FJHEP05%282022%29180&rft.externalDocID=10_1007_JHEP05_2022_180 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |