Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos

Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in e...

Full description

Saved in:
Bibliographic Details
Published inToxicological sciences Vol. 133; no. 2; pp. 298 - 308
Main Authors Banh, Serena, Hales, Barbara F
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in embryos. HU also inactivates ribonucleotide reductase, leading to DNA replication stress and DNA damage response signaling. We hypothesize that HU exposure induces p38 MAPK activation and DNA damage response signaling during organogenesis preferentially in malformation-sensitive tissues. HU treatment (400 or 600mg/kg) induced the activation of MEK3/6, upstream MAP2K3 kinases, within 30min; phospho-MEK3/6 immunoreactivity was increased throughout the embryo. Activation of the downstream p38 MAPK peaked 3h post-HU treatment. At this time, phospho-p38 MAPK immunoreactivity was enhanced in the cytoplasm and nucleus of cells in the rostral and caudal neuroepithelium and neural tube; significant increases in p38 MAPK signaling were not observed in the somites or heart. Interestingly, the DNA damage response, as assessed by the formation of γH2AX foci, was increased at 3h in HU-exposed embryos in all tissues examined, including the somites and heart. Increases in pyknotic nuclei and cell fragmentation were observed in all tissues except the heart, an organ that is relatively resistant to HU-induced malformations. Thus, although HU induces a widespread DNA damage response, the activation of p38 MAPK is localized to the rostral and caudal neuroepithelium and neural tube, suggesting that p38 MAPK pathways may play a role in mediating the specific malformations observed after HU exposure.
AbstractList Editor’s Highlight: Hydroxyurea, a commonly used antineoplastic agent, induces teratogenesis accompanied by oxidative stress in rodent models. Banh and Hales report on the early and transient activation of p38 MAPK downstream of MEK3/6 following in utero exposure of murine embryos to hydroxyurea at gestational day 9. Hydroxyurea had a primary impact on neurological structures, where nuclear translocation of phospho-p38 and formation of γH2AX foci, accompanied by an increase in pyknotic nuclei, were observed in the malformation-sensitive caudal neuroepithelium. In contrast, the heart appeared protected despite the accumulation of γH2AX foci, the nuclear expression of phospho-p38 MAPK and the development of pyknotic nuclei were minimal in cardiac regions, suggesting that hydroxyurea may induce tissue-specific DNA repair mechanisms, such as nucleotide excision or crosslink repair. — Matthew Campen Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in embryos. HU also inactivates ribonucleotide reductase, leading to DNA replication stress and DNA damage response signaling. We hypothesize that HU exposure induces p38 MAPK activation and DNA damage response signaling during organogenesis preferentially in malformation-sensitive tissues. HU treatment (400 or 600mg/kg) induced the activation of MEK3/6, upstream MAP2K3 kinases, within 30min; phospho-MEK3/6 immunoreactivity was increased throughout the embryo. Activation of the downstream p38 MAPK peaked 3h post-HU treatment. At this time, phospho-p38 MAPK immunoreactivity was enhanced in the cytoplasm and nucleus of cells in the rostral and caudal neuroepithelium and neural tube; significant increases in p38 MAPK signaling were not observed in the somites or heart. Interestingly, the DNA damage response, as assessed by the formation of γH2AX foci, was increased at 3h in HU-exposed embryos in all tissues examined, including the somites and heart. Increases in pyknotic nuclei and cell fragmentation were observed in all tissues except the heart, an organ that is relatively resistant to HU-induced malformations. Thus, although HU induces a widespread DNA damage response, the activation of p38 MAPK is localized to the rostral and caudal neuroepithelium and neural tube, suggesting that p38 MAPK pathways may play a role in mediating the specific malformations observed after HU exposure.
Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in embryos. HU also inactivates ribonucleotide reductase, leading to DNA replication stress and DNA damage response signaling. We hypothesize that HU exposure induces p38 MAPK activation and DNA damage response signaling during organogenesis preferentially in malformation-sensitive tissues. HU treatment (400 or 600mg/kg) induced the activation of MEK3/6, upstream MAP2K3 kinases, within 30min; phospho-MEK3/6 immunoreactivity was increased throughout the embryo. Activation of the downstream p38 MAPK peaked 3h post-HU treatment. At this time, phospho-p38 MAPK immunoreactivity was enhanced in the cytoplasm and nucleus of cells in the rostral and caudal neuroepithelium and neural tube; significant increases in p38 MAPK signaling were not observed in the somites or heart. Interestingly, the DNA damage response, as assessed by the formation of γH2AX foci, was increased at 3h in HU-exposed embryos in all tissues examined, including the somites and heart. Increases in pyknotic nuclei and cell fragmentation were observed in all tissues except the heart, an organ that is relatively resistant to HU-induced malformations. Thus, although HU induces a widespread DNA damage response, the activation of p38 MAPK is localized to the rostral and caudal neuroepithelium and neural tube, suggesting that p38 MAPK pathways may play a role in mediating the specific malformations observed after HU exposure.
Author Hales, Barbara F
Banh, Serena
Author_xml – sequence: 1
  givenname: Serena
  surname: Banh
  fullname: Banh, Serena
  organization: Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
– sequence: 2
  givenname: Barbara F
  surname: Hales
  fullname: Hales, Barbara F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23492809$$D View this record in MEDLINE/PubMed
BookMark eNpVkctOwzAQRS0E4r1ki_wDATtO0niDhHhLCDawjqbOOBgaO_K4qP0mfpJULQhW87h3zizuAdv2wSNjJ1KcSaHVeQoLMu78wyZR6S22Py6rTOhcb2_6StRijx0QvQshZSX0LtvLVaHzWuh99nW_bGNYLOcRgeNiCDR2PEXXdRiJJ0c0x4wGNM46w8Ek9wnJBc-D5YOqee9S6NBnGwVbPsSQ0Hn-4TwQcnKdh5nzHQff8vSG_PrpkrfQQ4c8Ig3Bj67RH2IHfsVCcpRRWul9mI8i9tO4DHTEdizMCI839ZC93t68XN1nj893D1eXj5kpSpUylRszmdT1FG2eo2ynRqLEXAqrobIFSNWOcz3RwhYaAVVZlCValRdtKWsw6pBdrLnDfNpja9CnCLNmiK6HuGwCuOa_4t1b04XPRlWVKisxArI1wMRAFNH-3krRrFJr1qk169RG_-nfh7_un5jUNxs5nvE
CitedBy_id crossref_primary_10_1016_j_neulet_2016_10_032
crossref_primary_10_1093_bioinformatics_btx069
crossref_primary_10_1093_toxsci_kfw089
crossref_primary_10_1016_j_reprotox_2018_06_011
crossref_primary_10_3390_ijms19123986
crossref_primary_10_1093_toxsci_kfv174
crossref_primary_10_1093_toxsci_kfx270
crossref_primary_10_1371_journal_pone_0265261
crossref_primary_10_3390_ijms21010197
crossref_primary_10_3389_fphar_2016_00057
crossref_primary_10_1042_BSR20203091
crossref_primary_10_1007_s12640_017_9785_y
crossref_primary_10_1093_toxsci_kft115
crossref_primary_10_1007_s12640_016_9649_x
Cites_doi 10.1093/nar/gkn550
10.1091/mbc.E02-10-0653
10.1016/S0092-8674(00)00027-1
10.1016/0890-6238(90)90009-K
10.1073/pnas.180316397
10.1101/gad.13.11.1464
10.1074/jbc.M001020200
10.1007/s10495-005-3372-z
10.1016/0306-9877(79)90043-4
10.1242/dev.02160
10.1172/JCI42285
10.1042/BJ20100323
10.1534/g3.111.000554
10.1101/gad.14.5.574
10.1016/j.molcel.2010.09.018
10.1038/35075107
10.1038/ncb1071
10.1038/ncb1882
10.1016/S0960-9822(98)70442-7
10.1534/genetics.109.107508
10.1093/emboj/19.6.1301
10.1126/science.1069398
10.1016/j.ydbio.2004.04.015
10.1038/sj.cdd.4400390
10.1074/jbc.M402699200
10.1124/jpet.106.109850
10.1124/jpet.108.139907
ContentType Journal Article
Copyright The Author 2013. Published by Oxford University Press on behalf of the Society of Toxicology. 2013
Copyright_xml – notice: The Author 2013. Published by Oxford University Press on behalf of the Society of Toxicology. 2013
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1093/toxsci/kft069
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1096-0929
EndPage 308
ExternalDocumentID 10_1093_toxsci_kft069
23492809
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: FRN-57867
GroupedDBID ---
--K
-E4
.2P
.I3
.ZR
0R~
123
18M
1B1
1TH
1~5
29Q
2WC
4.4
48X
4G.
53G
5RE
5VS
5WA
5WD
7-5
70D
A8Z
AABZA
AACTN
AACZT
AAEDT
AAHBH
AAIMJ
AAJKP
AAJQQ
AALRI
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAQXK
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXUO
ABEUO
ABIXL
ABJNI
ABKDP
ABMAC
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACMRT
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADMUD
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEHUL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIJHB
AJEEA
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DM4
DU5
D~K
E3Z
EBD
EBS
ECM
EDH
EE~
EIF
EJD
ELUNK
EMOBN
ESTFP
F5P
F9B
FDB
FEDTE
FGOYB
FHSFR
FIRID
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HH5
HVGLF
HW0
HZ~
I-F
IHE
IOX
J21
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
LG5
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
NQ-
NTWIH
NU-
NVLIB
O-L
O0~
O9-
OAWHX
OBOKY
OCZFY
ODMLO
OHT
OJQWA
OJZSN
OK1
OPAEJ
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
Q1.
Q5Y
R2-
R44
RD5
RIG
RNI
ROL
ROX
RPZ
RUSNO
RW1
RXO
RZO
SSZ
SV3
TJX
TLC
TR2
UHS
W8F
WOQ
X7H
XPP
YAYTL
YCJ
YKOAZ
YXANX
ZGI
ZKX
ZMT
ZXP
~02
~91
AAYXX
ABEJV
ACRPL
ADNMO
AHMMS
CITATION
5PM
AASNB
ID FETCH-LOGICAL-c453t-32cc7788bef22e1dbc1e1e210f9a6f4a13de1e8790f49eae35455ef324d518ac3
ISSN 1096-6080
IngestDate Tue Sep 17 21:06:18 EDT 2024
Fri Dec 06 01:03:18 EST 2024
Tue Oct 15 23:45:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords MAP2K3
replication stress
MEK3/6
appendicular skeleton
cell death
γH2AX
hindlimb
oxidative stress
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. For permissions, please email journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-32cc7788bef22e1dbc1e1e210f9a6f4a13de1e8790f49eae35455ef324d518ac3
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3663560
PMID 23492809
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3663560
crossref_primary_10_1093_toxsci_kft069
pubmed_primary_23492809
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: US
PublicationTitle Toxicological sciences
PublicationTitleAlternate Toxicol Sci
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 16151644 - Apoptosis. 2005 Oct;10(5):1111-20
16902051 - J Pharmacol Exp Ther. 2006 Nov;319(2):613-21
11934988 - Science. 2002 May 3;296(5569):922-7
18772227 - Nucleic Acids Res. 2008 Oct;36(17):5678-94
18577701 - J Pharmacol Exp Ther. 2008 Sep;326(3):764-72
11333986 - Nature. 2001 May 3;411(6833):102-7
10200514 - Cell Death Differ. 1998 Jul;5(7):592-600
19805819 - Genetics. 2009 Dec;183(4):1249-60
9768359 - Curr Biol. 1998 Sep 24;8(19):1049-57
19465922 - Nat Cell Biol. 2009 Jun;11(6):753-60
19564926 - Int J Biol Sci. 2009;5(5):428-37
522709 - Med Hypotheses. 1979 Sep;5(9):937-51
10716930 - EMBO J. 2000 Mar 15;19(6):1301-11
10943842 - Cell. 2000 Jul 21;102(2):221-31
14634666 - Nat Cell Biol. 2003 Dec;5(12):1104-10
20551513 - J Clin Invest. 2010 Jul;120(7):2457-73
16319119 - Development. 2006 Jan;133(1):21-32
2136029 - Reprod Toxicol. 1990;4(2):145-52
20932473 - Mol Cell. 2010 Oct 8;40(1):34-49
10973481 - Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10454-9
15262976 - J Biol Chem. 2004 Sep 24;279(39):40723-8
15242789 - Dev Biol. 2004 Aug 1;272(1):39-52
12802076 - Mol Biol Cell. 2003 May;14(5):2071-87
22384343 - G3 (Bethesda). 2011 Oct;1(5):327-35
20626350 - Biochem J. 2010 Aug 1;429(3):403-17
10364162 - Genes Dev. 1999 Jun 1;13(11):1464-74
10716945 - Genes Dev. 2000 Mar 1;14(5):574-84
10781582 - J Biol Chem. 2000 Jul 7;275(27):20444-9
17292828 - Cancer Cell. 2007 Feb;11(2):175-89
5723966 - Cancer Res. 1968 Nov;28(11):2217-27
( key 20170508190538_CIT0020) (2000); 275
( key 20170508190538_CIT0012) (2011); 1
( key 20170508190538_CIT0014) (2008); 36
( key 20170508190538_CIT0028) (2008); 326
( key 20170508190538_CIT0025) (2003); 5
( key 20170508190538_CIT0013) (2010); 120
( key 20170508190538_CIT0010) (2000); 19
( key 20170508190538_CIT0027) (2006); 319
( key 20170508190538_CIT0021) (1968); 28
( key 20170508190538_CIT0029) (2004); 272
( key 20170508190538_CIT0022) (2004); 279
( key 20170508190538_CIT0004) (2002); 296
( key 20170508190538_CIT0500) (2007)
( key 20170508190538_CIT0001) (1998); 8
( key 20170508190538_CIT0015) (2005); 10
( key 20170508190538_CIT0008) (1979); 5
( key 20170508190538_CIT0005) (2009); 11
( key 20170508190538_CIT0007) (2003); 14
( key 20170508190538_CIT0017) (2000); 97
( key 20170508190538_CIT0016) (1998); 5
( key 20170508190538_CIT0018) (2000); 14
( key 20170508190538_CIT0024) (2000); 102
( key 20170508190538_CIT0011) (2009); 183
( key 20170508190538_CIT0006) (2010); 429
( key 20170508190538_CIT0009) (1990); 4
( key 20170508190538_CIT0019) (2010); 40
( key 20170508190538_CIT0002) (2006); 133
( key 20170508190538_CIT0023) (1999); 13
( key 20170508190538_CIT0026) (2009); 5
( key 20170508190538_CIT0003) (2001); 411
References_xml – volume: 36
  start-page: 5678
  year: (2008)
  ident: key 20170508190538_CIT0014
  article-title: Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn550
– start-page: 175
  volume-title: Cancer Cell
  year: (2007)
  ident: key 20170508190538_CIT0500
  article-title: p53- deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage
– volume: 14
  start-page: 2071
  year: (2003)
  ident: key 20170508190538_CIT0007
  article-title: p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E02-10-0653
– volume: 28
  start-page: 2217
  year: (1968)
  ident: key 20170508190538_CIT0021
  article-title: Effects of hydroxyurea on DNA and RNA synthesis in mouse skin, liver, and thymus and on skin tumorigenesis initiated by beta-propiolactone
  publication-title: Cancer Res
– volume: 102
  start-page: 221
  year: (2000)
  ident: key 20170508190538_CIT0024
  article-title: Requirement for p38alpha in erythropoietin expression: A role for stress kinases in erythropoiesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00027-1
– volume: 5
  start-page: 428
  year: (2009)
  ident: key 20170508190538_CIT0026
  article-title: Nuclear localization of p38 MAPK in response to DNA damage
  publication-title: Int. J. Biol. Sci
– volume: 4
  start-page: 145
  year: (1990)
  ident: key 20170508190538_CIT0009
  article-title: The nature of the embryo-protective interaction of propyl gallate with hydroxyurea
  publication-title: Reprod. Toxicol
  doi: 10.1016/0890-6238(90)90009-K
– volume: 97
  start-page: 10454
  year: (2000)
  ident: key 20170508190538_CIT0017
  article-title: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.180316397
– volume: 13
  start-page: 1464
  year: (1999)
  ident: key 20170508190538_CIT0023
  article-title: The Drosophila p38 MAPK pathway is required during oogenesis for egg asymmetric development
  publication-title: Genes Dev
  doi: 10.1101/gad.13.11.1464
– volume: 275
  start-page: 20444
  year: (2000)
  ident: key 20170508190538_CIT0020
  article-title: ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M001020200
– volume: 10
  start-page: 1111
  year: (2005)
  ident: key 20170508190538_CIT0015
  article-title: p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide
  publication-title: Apoptosis
  doi: 10.1007/s10495-005-3372-z
– volume: 5
  start-page: 937
  year: (1979)
  ident: key 20170508190538_CIT0008
  article-title: Cell death and free radicals: A mechanism for hydroxyurea teratogenesis
  publication-title: Med. Hypotheses
  doi: 10.1016/0306-9877(79)90043-4
– volume: 133
  start-page: 21
  year: (2006)
  ident: key 20170508190538_CIT0002
  article-title: p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos
  publication-title: Development
  doi: 10.1242/dev.02160
– volume: 120
  start-page: 2457
  year: (2010)
  ident: key 20170508190538_CIT0013
  article-title: The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI42285
– volume: 429
  start-page: 403
  year: (2010)
  ident: key 20170508190538_CIT0006
  article-title: Mechanisms and functions of p38 MAPK signalling
  publication-title: Biochem. J
  doi: 10.1042/BJ20100323
– volume: 1
  start-page: 327
  year: (2011)
  ident: key 20170508190538_CIT0012
  article-title: Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.111.000554
– volume: 14
  start-page: 574
  year: (2000)
  ident: key 20170508190538_CIT0018
  article-title: Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells
  publication-title: Genes Dev
  doi: 10.1101/gad.14.5.574
– volume: 40
  start-page: 34
  year: (2010)
  ident: key 20170508190538_CIT0019
  article-title: DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.09.018
– volume: 411
  start-page: 102
  year: (2001)
  ident: key 20170508190538_CIT0003
  article-title: Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase
  publication-title: Nature
  doi: 10.1038/35075107
– volume: 5
  start-page: 1104
  year: (2003)
  ident: key 20170508190538_CIT0025
  article-title: Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock
  publication-title: Nat. Cell Biol
  doi: 10.1038/ncb1071
– volume: 11
  start-page: 753
  year: (2009)
  ident: key 20170508190538_CIT0005
  article-title: Replication stress induces sister-chromatid bridging at fragile site loci in mitosis
  publication-title: Nat. Cell Biol
  doi: 10.1038/ncb1882
– volume: 8
  start-page: 1049
  year: (1998)
  ident: key 20170508190538_CIT0001
  article-title: Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(98)70442-7
– volume: 183
  start-page: 1249
  year: (2009)
  ident: key 20170508190538_CIT0011
  article-title: Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress
  publication-title: Genetics
  doi: 10.1534/genetics.109.107508
– volume: 19
  start-page: 1301
  year: (2000)
  ident: key 20170508190538_CIT0010
  article-title: Molecular determinants that mediate selective activation of p38 MAP kinase isoforms
  publication-title: EMBO J
  doi: 10.1093/emboj/19.6.1301
– volume: 296
  start-page: 922
  year: (2002)
  ident: key 20170508190538_CIT0004
  article-title: Genomic instability in mice lacking histone H2AX
  publication-title: Science
  doi: 10.1126/science.1069398
– volume: 272
  start-page: 39
  year: (2004)
  ident: key 20170508190538_CIT0029
  article-title: A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways
  publication-title: Dev. Biol
  doi: 10.1016/j.ydbio.2004.04.015
– volume: 5
  start-page: 592
  year: (1998)
  ident: key 20170508190538_CIT0016
  article-title: Teratogen-induced cell death in postimplantation mouse embryos: Differential tissue sensitivity and hallmarks of apoptosis
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400390
– volume: 279
  start-page: 40723
  year: (2004)
  ident: key 20170508190538_CIT0022
  article-title: Mutations in the R2 subunit of ribonucleotide reductase that confer resistance to hydroxyurea
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M402699200
– volume: 319
  start-page: 613
  year: (2006)
  ident: key 20170508190538_CIT0027
  article-title: Depletion of glutathione induces 4-hydroxynonenal protein adducts and hydroxyurea teratogenicity in the organogenesis stage mouse embryo
  publication-title: J. Pharmacol. Exp. Ther
  doi: 10.1124/jpet.106.109850
– volume: 326
  start-page: 764
  year: (2008)
  ident: key 20170508190538_CIT0028
  article-title: p38 and c-Jun N-terminal kinase mitogen-activated protein kinase signaling pathways play distinct roles in the response of organogenesis-stage embryos to a teratogen
  publication-title: J. Pharmacol. Exp. Ther
  doi: 10.1124/jpet.108.139907
SSID ssj0011609
Score 2.2073283
Snippet Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes...
Editor’s Highlight: Hydroxyurea, a commonly used antineoplastic agent, induces teratogenesis accompanied by oxidative stress in rodent models. Banh and Hales...
SourceID pubmedcentral
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 298
SubjectTerms Abnormalities, Drug-Induced
Animals
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cytoplasm - drug effects
Cytoplasm - metabolism
DNA - drug effects
DNA Damage
Dose-Response Relationship, Drug
Embryo Culture Techniques
Embryo, Mammalian - drug effects
Embryo, Mammalian - metabolism
Female
Hydroxyurea - toxicity
MAP Kinase Kinase 3 - metabolism
MAP Kinase Kinase 6 - metabolism
Mice
Mice, Inbred Strains
Necrosis - chemically induced
Nucleic Acid Synthesis Inhibitors - toxicity
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Pregnancy
Signal Transduction - physiology
Title Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos
URI https://www.ncbi.nlm.nih.gov/pubmed/23492809
https://pubmed.ncbi.nlm.nih.gov/PMC3663560
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7cFEqhlNa93It5KH5R5Og-Hk0O3AYH0yqQN7NarRxRLIXYhrh_qT-jf6yzhw43KbR5EbK01iJ9n3ZnRzPfEPIpsynz8ygwHSfjppcxz0y9wDIppykN_SDOZJLY9CyYnHtfLvyLXu9XJ2pps05H7MedeSX3QRWPIa4iS_Y_kG0uigdwH_HFLSKM23_CeLLNRBSKCCwXmsWV8PYZCa63FyItN5HP1JQV5vOCGWNWlzKTYc5uZEzxdcaLm_oMl3kDovylcVqUOL0Z34qFMNR1HqOwUY_OxsiUpYj0-arCa6XqiEzpFNfiq2JlogW7EMPFBk8eL9PrbbXqGsFJdVOwZtDVc3DrrqeldPWICOSStiOkLs6tP5AYJ6Ouw0IWj-g6LP6SCNkZg3FVZQaWKvA04u0xK9bOkXrgVhIamqFOdxhWla31jO5K5Yjbk4US0lpXN3ijuPNd1L2Kuy0R7aul5I4jRBwjK25nzTpSYDY9dIXVFlgPyEOhxigKOBx9Pm0-ZdmBjDNq7koLvWLnB6rrA9WxkKXWvezYSI1htBu027GCkmfkqV6-wFhx8Tnp8bJPHk11gEafDGdKCn27D0mb2bfahyHMWpH0bZ88Uf5iUGlwL8jPDpeh5jLUXIY_uAwtl6HKAbkMt7gMmsuguAwNlwG5DMhlQC6D4jLUXAZsfweXQXIZNJdfkvOT4-RwYupCIibzfHdtug5jYRhFKc8dh9tZymxuc8e28pgGuUdtN8PfURhbuRdzyl1cVvg8x7VG5tsRZe4rsldWJX9DIPdYGoYp993M8wJHyNsxGqaiCEWY5lYwIMMauvmV0ouZqzgPd67gniu4B-S1wrNpVqM_IOEO0k0DoQS_e6YsLqUivGbg23v_8x153L6q78ne-nrDP6C1vU4_Sjb_Btgz4vQ
link.rule.ids 230,314,780,784,885,27924,27925
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxyurea+Exposure+Triggers+Tissue-Specific+Activation+of+p38+Mitogen-Activated+Protein+Kinase+Signaling+and+the+DNA+Damage+Response+in+Organogenesis-Stage+Mouse+Embryos&rft.jtitle=Toxicological+sciences&rft.au=Banh%2C+Serena&rft.au=Hales%2C+Barbara+F.&rft.date=2013-06-01&rft.pub=Oxford+University+Press&rft.issn=1096-6080&rft.eissn=1096-0929&rft.volume=133&rft.issue=2&rft.spage=298&rft.epage=308&rft_id=info:doi/10.1093%2Ftoxsci%2Fkft069&rft_id=info%3Apmid%2F23492809&rft.externalDBID=PMC3663560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon