Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos
Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in e...
Saved in:
Published in | Toxicological sciences Vol. 133; no. 2; pp. 298 - 308 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in embryos. HU also inactivates ribonucleotide reductase, leading to DNA replication stress and DNA damage response signaling. We hypothesize that HU exposure induces p38 MAPK activation and DNA damage response signaling during organogenesis preferentially in malformation-sensitive tissues. HU treatment (400 or 600mg/kg) induced the activation of MEK3/6, upstream MAP2K3 kinases, within 30min; phospho-MEK3/6 immunoreactivity was increased throughout the embryo. Activation of the downstream p38 MAPK peaked 3h post-HU treatment. At this time, phospho-p38 MAPK immunoreactivity was enhanced in the cytoplasm and nucleus of cells in the rostral and caudal neuroepithelium and neural tube; significant increases in p38 MAPK signaling were not observed in the somites or heart. Interestingly, the DNA damage response, as assessed by the formation of γH2AX foci, was increased at 3h in HU-exposed embryos in all tissues examined, including the somites and heart. Increases in pyknotic nuclei and cell fragmentation were observed in all tissues except the heart, an organ that is relatively resistant to HU-induced malformations. Thus, although HU induces a widespread DNA damage response, the activation of p38 MAPK is localized to the rostral and caudal neuroepithelium and neural tube, suggesting that p38 MAPK pathways may play a role in mediating the specific malformations observed after HU exposure. |
---|---|
AbstractList | Editor’s Highlight:
Hydroxyurea, a commonly used antineoplastic agent, induces teratogenesis accompanied by oxidative stress in rodent models. Banh and Hales report on the early and transient activation of p38 MAPK downstream of MEK3/6 following in utero exposure of murine embryos to hydroxyurea at gestational day 9. Hydroxyurea had a primary impact on neurological structures, where nuclear translocation of phospho-p38 and formation of γH2AX foci, accompanied by an increase in pyknotic nuclei, were observed in the malformation-sensitive caudal neuroepithelium. In contrast, the heart appeared protected despite the accumulation of γH2AX foci, the nuclear expression of phospho-p38 MAPK and the development of pyknotic nuclei were minimal in cardiac regions, suggesting that hydroxyurea may induce tissue-specific DNA repair mechanisms, such as nucleotide excision or crosslink repair. — Matthew Campen
Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in embryos. HU also inactivates ribonucleotide reductase, leading to DNA replication stress and DNA damage response signaling. We hypothesize that HU exposure induces p38 MAPK activation and DNA damage response signaling during organogenesis preferentially in malformation-sensitive tissues. HU treatment (400 or 600mg/kg) induced the activation of MEK3/6, upstream MAP2K3 kinases, within 30min; phospho-MEK3/6 immunoreactivity was increased throughout the embryo. Activation of the downstream p38 MAPK peaked 3h post-HU treatment. At this time, phospho-p38 MAPK immunoreactivity was enhanced in the cytoplasm and nucleus of cells in the rostral and caudal neuroepithelium and neural tube; significant increases in p38 MAPK signaling were not observed in the somites or heart. Interestingly, the DNA damage response, as assessed by the formation of γH2AX foci, was increased at 3h in HU-exposed embryos in all tissues examined, including the somites and heart. Increases in pyknotic nuclei and cell fragmentation were observed in all tissues except the heart, an organ that is relatively resistant to HU-induced malformations. Thus, although HU induces a widespread DNA damage response, the activation of p38 MAPK is localized to the rostral and caudal neuroepithelium and neural tube, suggesting that p38 MAPK pathways may play a role in mediating the specific malformations observed after HU exposure. Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in embryos. HU also inactivates ribonucleotide reductase, leading to DNA replication stress and DNA damage response signaling. We hypothesize that HU exposure induces p38 MAPK activation and DNA damage response signaling during organogenesis preferentially in malformation-sensitive tissues. HU treatment (400 or 600mg/kg) induced the activation of MEK3/6, upstream MAP2K3 kinases, within 30min; phospho-MEK3/6 immunoreactivity was increased throughout the embryo. Activation of the downstream p38 MAPK peaked 3h post-HU treatment. At this time, phospho-p38 MAPK immunoreactivity was enhanced in the cytoplasm and nucleus of cells in the rostral and caudal neuroepithelium and neural tube; significant increases in p38 MAPK signaling were not observed in the somites or heart. Interestingly, the DNA damage response, as assessed by the formation of γH2AX foci, was increased at 3h in HU-exposed embryos in all tissues examined, including the somites and heart. Increases in pyknotic nuclei and cell fragmentation were observed in all tissues except the heart, an organ that is relatively resistant to HU-induced malformations. Thus, although HU induces a widespread DNA damage response, the activation of p38 MAPK is localized to the rostral and caudal neuroepithelium and neural tube, suggesting that p38 MAPK pathways may play a role in mediating the specific malformations observed after HU exposure. |
Author | Hales, Barbara F Banh, Serena |
Author_xml | – sequence: 1 givenname: Serena surname: Banh fullname: Banh, Serena organization: Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada – sequence: 2 givenname: Barbara F surname: Hales fullname: Hales, Barbara F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23492809$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkctOwzAQRS0E4r1ki_wDATtO0niDhHhLCDawjqbOOBgaO_K4qP0mfpJULQhW87h3zizuAdv2wSNjJ1KcSaHVeQoLMu78wyZR6S22Py6rTOhcb2_6StRijx0QvQshZSX0LtvLVaHzWuh99nW_bGNYLOcRgeNiCDR2PEXXdRiJJ0c0x4wGNM46w8Ek9wnJBc-D5YOqee9S6NBnGwVbPsSQ0Hn-4TwQcnKdh5nzHQff8vSG_PrpkrfQQ4c8Ig3Bj67RH2IHfsVCcpRRWul9mI8i9tO4DHTEdizMCI839ZC93t68XN1nj893D1eXj5kpSpUylRszmdT1FG2eo2ynRqLEXAqrobIFSNWOcz3RwhYaAVVZlCValRdtKWsw6pBdrLnDfNpja9CnCLNmiK6HuGwCuOa_4t1b04XPRlWVKisxArI1wMRAFNH-3krRrFJr1qk169RG_-nfh7_un5jUNxs5nvE |
CitedBy_id | crossref_primary_10_1016_j_neulet_2016_10_032 crossref_primary_10_1093_bioinformatics_btx069 crossref_primary_10_1093_toxsci_kfw089 crossref_primary_10_1016_j_reprotox_2018_06_011 crossref_primary_10_3390_ijms19123986 crossref_primary_10_1093_toxsci_kfv174 crossref_primary_10_1093_toxsci_kfx270 crossref_primary_10_1371_journal_pone_0265261 crossref_primary_10_3390_ijms21010197 crossref_primary_10_3389_fphar_2016_00057 crossref_primary_10_1042_BSR20203091 crossref_primary_10_1007_s12640_017_9785_y crossref_primary_10_1093_toxsci_kft115 crossref_primary_10_1007_s12640_016_9649_x |
Cites_doi | 10.1093/nar/gkn550 10.1091/mbc.E02-10-0653 10.1016/S0092-8674(00)00027-1 10.1016/0890-6238(90)90009-K 10.1073/pnas.180316397 10.1101/gad.13.11.1464 10.1074/jbc.M001020200 10.1007/s10495-005-3372-z 10.1016/0306-9877(79)90043-4 10.1242/dev.02160 10.1172/JCI42285 10.1042/BJ20100323 10.1534/g3.111.000554 10.1101/gad.14.5.574 10.1016/j.molcel.2010.09.018 10.1038/35075107 10.1038/ncb1071 10.1038/ncb1882 10.1016/S0960-9822(98)70442-7 10.1534/genetics.109.107508 10.1093/emboj/19.6.1301 10.1126/science.1069398 10.1016/j.ydbio.2004.04.015 10.1038/sj.cdd.4400390 10.1074/jbc.M402699200 10.1124/jpet.106.109850 10.1124/jpet.108.139907 |
ContentType | Journal Article |
Copyright | The Author 2013. Published by Oxford University Press on behalf of the Society of Toxicology. 2013 |
Copyright_xml | – notice: The Author 2013. Published by Oxford University Press on behalf of the Society of Toxicology. 2013 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
DOI | 10.1093/toxsci/kft069 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1096-0929 |
EndPage | 308 |
ExternalDocumentID | 10_1093_toxsci_kft069 23492809 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: FRN-57867 |
GroupedDBID | --- --K -E4 .2P .I3 .ZR 0R~ 123 18M 1B1 1TH 1~5 29Q 2WC 4.4 48X 4G. 53G 5RE 5VS 5WA 5WD 7-5 70D A8Z AABZA AACTN AACZT AAEDT AAHBH AAIMJ AAJKP AAJQQ AALRI AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAQXK AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAXUO ABEUO ABIXL ABJNI ABKDP ABMAC ABMNT ABNHQ ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACMRT ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADMUD ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEHUL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHXPO AIJHB AJEEA AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APWMN AQDSO ARIXL ASPBG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM CAG CDBKE CGR COF CS3 CUY CVF CZ4 DAKXR DIK DILTD DM4 DU5 D~K E3Z EBD EBS ECM EDH EE~ EIF EJD ELUNK EMOBN ESTFP F5P F9B FDB FEDTE FGOYB FHSFR FIRID FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HH5 HVGLF HW0 HZ~ I-F IHE IOX J21 KAQDR KBUDW KOP KQ8 KSI KSN LG5 M-Z M49 N9A NGC NLBLG NOMLY NOYVH NPM NQ- NTWIH NU- NVLIB O-L O0~ O9- OAWHX OBOKY OCZFY ODMLO OHT OJQWA OJZSN OK1 OPAEJ OWPYF O~Y P2P PAFKI PB- PEELM Q1. Q5Y R2- R44 RD5 RIG RNI ROL ROX RPZ RUSNO RW1 RXO RZO SSZ SV3 TJX TLC TR2 UHS W8F WOQ X7H XPP YAYTL YCJ YKOAZ YXANX ZGI ZKX ZMT ZXP ~02 ~91 AAYXX ABEJV ACRPL ADNMO AHMMS CITATION 5PM AASNB |
ID | FETCH-LOGICAL-c453t-32cc7788bef22e1dbc1e1e210f9a6f4a13de1e8790f49eae35455ef324d518ac3 |
ISSN | 1096-6080 |
IngestDate | Tue Sep 17 21:06:18 EDT 2024 Fri Dec 06 01:03:18 EST 2024 Tue Oct 15 23:45:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | MAP2K3 replication stress MEK3/6 appendicular skeleton cell death γH2AX hindlimb oxidative stress |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. For permissions, please email journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-32cc7788bef22e1dbc1e1e210f9a6f4a13de1e8790f49eae35455ef324d518ac3 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3663560 |
PMID | 23492809 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3663560 crossref_primary_10_1093_toxsci_kft069 pubmed_primary_23492809 |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: US |
PublicationTitle | Toxicological sciences |
PublicationTitleAlternate | Toxicol Sci |
PublicationYear | 2013 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 16151644 - Apoptosis. 2005 Oct;10(5):1111-20 16902051 - J Pharmacol Exp Ther. 2006 Nov;319(2):613-21 11934988 - Science. 2002 May 3;296(5569):922-7 18772227 - Nucleic Acids Res. 2008 Oct;36(17):5678-94 18577701 - J Pharmacol Exp Ther. 2008 Sep;326(3):764-72 11333986 - Nature. 2001 May 3;411(6833):102-7 10200514 - Cell Death Differ. 1998 Jul;5(7):592-600 19805819 - Genetics. 2009 Dec;183(4):1249-60 9768359 - Curr Biol. 1998 Sep 24;8(19):1049-57 19465922 - Nat Cell Biol. 2009 Jun;11(6):753-60 19564926 - Int J Biol Sci. 2009;5(5):428-37 522709 - Med Hypotheses. 1979 Sep;5(9):937-51 10716930 - EMBO J. 2000 Mar 15;19(6):1301-11 10943842 - Cell. 2000 Jul 21;102(2):221-31 14634666 - Nat Cell Biol. 2003 Dec;5(12):1104-10 20551513 - J Clin Invest. 2010 Jul;120(7):2457-73 16319119 - Development. 2006 Jan;133(1):21-32 2136029 - Reprod Toxicol. 1990;4(2):145-52 20932473 - Mol Cell. 2010 Oct 8;40(1):34-49 10973481 - Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10454-9 15262976 - J Biol Chem. 2004 Sep 24;279(39):40723-8 15242789 - Dev Biol. 2004 Aug 1;272(1):39-52 12802076 - Mol Biol Cell. 2003 May;14(5):2071-87 22384343 - G3 (Bethesda). 2011 Oct;1(5):327-35 20626350 - Biochem J. 2010 Aug 1;429(3):403-17 10364162 - Genes Dev. 1999 Jun 1;13(11):1464-74 10716945 - Genes Dev. 2000 Mar 1;14(5):574-84 10781582 - J Biol Chem. 2000 Jul 7;275(27):20444-9 17292828 - Cancer Cell. 2007 Feb;11(2):175-89 5723966 - Cancer Res. 1968 Nov;28(11):2217-27 ( key 20170508190538_CIT0020) (2000); 275 ( key 20170508190538_CIT0012) (2011); 1 ( key 20170508190538_CIT0014) (2008); 36 ( key 20170508190538_CIT0028) (2008); 326 ( key 20170508190538_CIT0025) (2003); 5 ( key 20170508190538_CIT0013) (2010); 120 ( key 20170508190538_CIT0010) (2000); 19 ( key 20170508190538_CIT0027) (2006); 319 ( key 20170508190538_CIT0021) (1968); 28 ( key 20170508190538_CIT0029) (2004); 272 ( key 20170508190538_CIT0022) (2004); 279 ( key 20170508190538_CIT0004) (2002); 296 ( key 20170508190538_CIT0500) (2007) ( key 20170508190538_CIT0001) (1998); 8 ( key 20170508190538_CIT0015) (2005); 10 ( key 20170508190538_CIT0008) (1979); 5 ( key 20170508190538_CIT0005) (2009); 11 ( key 20170508190538_CIT0007) (2003); 14 ( key 20170508190538_CIT0017) (2000); 97 ( key 20170508190538_CIT0016) (1998); 5 ( key 20170508190538_CIT0018) (2000); 14 ( key 20170508190538_CIT0024) (2000); 102 ( key 20170508190538_CIT0011) (2009); 183 ( key 20170508190538_CIT0006) (2010); 429 ( key 20170508190538_CIT0009) (1990); 4 ( key 20170508190538_CIT0019) (2010); 40 ( key 20170508190538_CIT0002) (2006); 133 ( key 20170508190538_CIT0023) (1999); 13 ( key 20170508190538_CIT0026) (2009); 5 ( key 20170508190538_CIT0003) (2001); 411 |
References_xml | – volume: 36 start-page: 5678 year: (2008) ident: key 20170508190538_CIT0014 article-title: Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn550 – start-page: 175 volume-title: Cancer Cell year: (2007) ident: key 20170508190538_CIT0500 article-title: p53- deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage – volume: 14 start-page: 2071 year: (2003) ident: key 20170508190538_CIT0007 article-title: p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E02-10-0653 – volume: 28 start-page: 2217 year: (1968) ident: key 20170508190538_CIT0021 article-title: Effects of hydroxyurea on DNA and RNA synthesis in mouse skin, liver, and thymus and on skin tumorigenesis initiated by beta-propiolactone publication-title: Cancer Res – volume: 102 start-page: 221 year: (2000) ident: key 20170508190538_CIT0024 article-title: Requirement for p38alpha in erythropoietin expression: A role for stress kinases in erythropoiesis publication-title: Cell doi: 10.1016/S0092-8674(00)00027-1 – volume: 5 start-page: 428 year: (2009) ident: key 20170508190538_CIT0026 article-title: Nuclear localization of p38 MAPK in response to DNA damage publication-title: Int. J. Biol. Sci – volume: 4 start-page: 145 year: (1990) ident: key 20170508190538_CIT0009 article-title: The nature of the embryo-protective interaction of propyl gallate with hydroxyurea publication-title: Reprod. Toxicol doi: 10.1016/0890-6238(90)90009-K – volume: 97 start-page: 10454 year: (2000) ident: key 20170508190538_CIT0017 article-title: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.180316397 – volume: 13 start-page: 1464 year: (1999) ident: key 20170508190538_CIT0023 article-title: The Drosophila p38 MAPK pathway is required during oogenesis for egg asymmetric development publication-title: Genes Dev doi: 10.1101/gad.13.11.1464 – volume: 275 start-page: 20444 year: (2000) ident: key 20170508190538_CIT0020 article-title: ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation publication-title: J. Biol. Chem doi: 10.1074/jbc.M001020200 – volume: 10 start-page: 1111 year: (2005) ident: key 20170508190538_CIT0015 article-title: p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide publication-title: Apoptosis doi: 10.1007/s10495-005-3372-z – volume: 5 start-page: 937 year: (1979) ident: key 20170508190538_CIT0008 article-title: Cell death and free radicals: A mechanism for hydroxyurea teratogenesis publication-title: Med. Hypotheses doi: 10.1016/0306-9877(79)90043-4 – volume: 133 start-page: 21 year: (2006) ident: key 20170508190538_CIT0002 article-title: p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos publication-title: Development doi: 10.1242/dev.02160 – volume: 120 start-page: 2457 year: (2010) ident: key 20170508190538_CIT0013 article-title: The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice publication-title: J. Clin. Invest doi: 10.1172/JCI42285 – volume: 429 start-page: 403 year: (2010) ident: key 20170508190538_CIT0006 article-title: Mechanisms and functions of p38 MAPK signalling publication-title: Biochem. J doi: 10.1042/BJ20100323 – volume: 1 start-page: 327 year: (2011) ident: key 20170508190538_CIT0012 article-title: Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation publication-title: G3 (Bethesda) doi: 10.1534/g3.111.000554 – volume: 14 start-page: 574 year: (2000) ident: key 20170508190538_CIT0018 article-title: Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells publication-title: Genes Dev doi: 10.1101/gad.14.5.574 – volume: 40 start-page: 34 year: (2010) ident: key 20170508190538_CIT0019 article-title: DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.09.018 – volume: 411 start-page: 102 year: (2001) ident: key 20170508190538_CIT0003 article-title: Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase publication-title: Nature doi: 10.1038/35075107 – volume: 5 start-page: 1104 year: (2003) ident: key 20170508190538_CIT0025 article-title: Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock publication-title: Nat. Cell Biol doi: 10.1038/ncb1071 – volume: 11 start-page: 753 year: (2009) ident: key 20170508190538_CIT0005 article-title: Replication stress induces sister-chromatid bridging at fragile site loci in mitosis publication-title: Nat. Cell Biol doi: 10.1038/ncb1882 – volume: 8 start-page: 1049 year: (1998) ident: key 20170508190538_CIT0001 article-title: Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2 publication-title: Curr. Biol doi: 10.1016/S0960-9822(98)70442-7 – volume: 183 start-page: 1249 year: (2009) ident: key 20170508190538_CIT0011 article-title: Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress publication-title: Genetics doi: 10.1534/genetics.109.107508 – volume: 19 start-page: 1301 year: (2000) ident: key 20170508190538_CIT0010 article-title: Molecular determinants that mediate selective activation of p38 MAP kinase isoforms publication-title: EMBO J doi: 10.1093/emboj/19.6.1301 – volume: 296 start-page: 922 year: (2002) ident: key 20170508190538_CIT0004 article-title: Genomic instability in mice lacking histone H2AX publication-title: Science doi: 10.1126/science.1069398 – volume: 272 start-page: 39 year: (2004) ident: key 20170508190538_CIT0029 article-title: A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways publication-title: Dev. Biol doi: 10.1016/j.ydbio.2004.04.015 – volume: 5 start-page: 592 year: (1998) ident: key 20170508190538_CIT0016 article-title: Teratogen-induced cell death in postimplantation mouse embryos: Differential tissue sensitivity and hallmarks of apoptosis publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400390 – volume: 279 start-page: 40723 year: (2004) ident: key 20170508190538_CIT0022 article-title: Mutations in the R2 subunit of ribonucleotide reductase that confer resistance to hydroxyurea publication-title: J. Biol. Chem doi: 10.1074/jbc.M402699200 – volume: 319 start-page: 613 year: (2006) ident: key 20170508190538_CIT0027 article-title: Depletion of glutathione induces 4-hydroxynonenal protein adducts and hydroxyurea teratogenicity in the organogenesis stage mouse embryo publication-title: J. Pharmacol. Exp. Ther doi: 10.1124/jpet.106.109850 – volume: 326 start-page: 764 year: (2008) ident: key 20170508190538_CIT0028 article-title: p38 and c-Jun N-terminal kinase mitogen-activated protein kinase signaling pathways play distinct roles in the response of organogenesis-stage embryos to a teratogen publication-title: J. Pharmacol. Exp. Ther doi: 10.1124/jpet.108.139907 |
SSID | ssj0011609 |
Score | 2.2073283 |
Snippet | Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes... Editor’s Highlight: Hydroxyurea, a commonly used antineoplastic agent, induces teratogenesis accompanied by oxidative stress in rodent models. Banh and Hales... |
SourceID | pubmedcentral crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 298 |
SubjectTerms | Abnormalities, Drug-Induced Animals Cell Nucleus - drug effects Cell Nucleus - metabolism Cytoplasm - drug effects Cytoplasm - metabolism DNA - drug effects DNA Damage Dose-Response Relationship, Drug Embryo Culture Techniques Embryo, Mammalian - drug effects Embryo, Mammalian - metabolism Female Hydroxyurea - toxicity MAP Kinase Kinase 3 - metabolism MAP Kinase Kinase 6 - metabolism Mice Mice, Inbred Strains Necrosis - chemically induced Nucleic Acid Synthesis Inhibitors - toxicity p38 Mitogen-Activated Protein Kinases - metabolism Phosphorylation Pregnancy Signal Transduction - physiology |
Title | Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23492809 https://pubmed.ncbi.nlm.nih.gov/PMC3663560 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7cFEqhlNa93It5KH5R5Og-Hk0O3AYH0yqQN7NarRxRLIXYhrh_qT-jf6yzhw43KbR5EbK01iJ9n3ZnRzPfEPIpsynz8ygwHSfjppcxz0y9wDIppykN_SDOZJLY9CyYnHtfLvyLXu9XJ2pps05H7MedeSX3QRWPIa4iS_Y_kG0uigdwH_HFLSKM23_CeLLNRBSKCCwXmsWV8PYZCa63FyItN5HP1JQV5vOCGWNWlzKTYc5uZEzxdcaLm_oMl3kDovylcVqUOL0Z34qFMNR1HqOwUY_OxsiUpYj0-arCa6XqiEzpFNfiq2JlogW7EMPFBk8eL9PrbbXqGsFJdVOwZtDVc3DrrqeldPWICOSStiOkLs6tP5AYJ6Ouw0IWj-g6LP6SCNkZg3FVZQaWKvA04u0xK9bOkXrgVhIamqFOdxhWla31jO5K5Yjbk4US0lpXN3ijuPNd1L2Kuy0R7aul5I4jRBwjK25nzTpSYDY9dIXVFlgPyEOhxigKOBx9Pm0-ZdmBjDNq7koLvWLnB6rrA9WxkKXWvezYSI1htBu027GCkmfkqV6-wFhx8Tnp8bJPHk11gEafDGdKCn27D0mb2bfahyHMWpH0bZ88Uf5iUGlwL8jPDpeh5jLUXIY_uAwtl6HKAbkMt7gMmsuguAwNlwG5DMhlQC6D4jLUXAZsfweXQXIZNJdfkvOT4-RwYupCIibzfHdtug5jYRhFKc8dh9tZymxuc8e28pgGuUdtN8PfURhbuRdzyl1cVvg8x7VG5tsRZe4rsldWJX9DIPdYGoYp993M8wJHyNsxGqaiCEWY5lYwIMMauvmV0ouZqzgPd67gniu4B-S1wrNpVqM_IOEO0k0DoQS_e6YsLqUivGbg23v_8x153L6q78ne-nrDP6C1vU4_Sjb_Btgz4vQ |
link.rule.ids | 230,314,780,784,885,27924,27925 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxyurea+Exposure+Triggers+Tissue-Specific+Activation+of+p38+Mitogen-Activated+Protein+Kinase+Signaling+and+the+DNA+Damage+Response+in+Organogenesis-Stage+Mouse+Embryos&rft.jtitle=Toxicological+sciences&rft.au=Banh%2C+Serena&rft.au=Hales%2C+Barbara+F.&rft.date=2013-06-01&rft.pub=Oxford+University+Press&rft.issn=1096-6080&rft.eissn=1096-0929&rft.volume=133&rft.issue=2&rft.spage=298&rft.epage=308&rft_id=info:doi/10.1093%2Ftoxsci%2Fkft069&rft_id=info%3Apmid%2F23492809&rft.externalDBID=PMC3663560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon |