Long-term training modifies the modular structure and organization of walking balance control
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analy...
Saved in:
Published in | Journal of neurophysiology Vol. 114; no. 6; pp. 3359 - 3373 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 1522-1598 |
DOI | 10.1152/jn.00758.2015 |
Cover
Abstract | How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. |
---|---|
AbstractList | How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior.How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. |
Author | Allen, Jessica L. Ting, Lena H. Sawers, Andrew |
Author_xml | – sequence: 1 givenname: Andrew orcidid: 0000-0002-1287-953X surname: Sawers fullname: Sawers, Andrew organization: Department of Kinesiology, University of Illinois at Chicago, Chicago, Illinois; and – sequence: 2 givenname: Jessica L. surname: Allen fullname: Allen, Jessica L. organization: Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia – sequence: 3 givenname: Lena H. surname: Ting fullname: Ting, Lena H. organization: Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26467521$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxa0KVBbosVfkYy_Z2s46di5IFSof0kq9lCOyZp3J4m1ig-20Kn89DlBUKvXk8fg3b-T3DsmeDx4J-cjZknMpPu_8kjEl9VIwLt-RRemJistW75EFY6WumVIH5DClHZtBJt6TA9GsGiUFX5CbdfDbKmMcaY7gvPNbOobO9Q4Tzbc4X6YBIk05TjZPESn4joa4Be8eILvgaejpLxh-zKMbGMBbpDb4HMNwTPZ7GBJ-eDmPyPX51-9nl9X628XV2Zd1ZVeyzpXAFhqhsN1wqYVuup4x2PAaRYccUUPXadsoAS3njep6K5XoS9GsUIK1qj4ip8-6d9NmxM5i2Q6DuYtuhPjbBHDm7Yt3t2YbfpqVbnSt2iLw6UUghvsJUzajSxaH8hsMUzK8uKW0bmtR0JO_d70u-eNpAapnwMaQUsT-FeHMzJmZnTdPmZk5s8LX__DW5Sdn50SG_0w9ArAInPg |
CitedBy_id | crossref_primary_10_1080_02640414_2017_1306090 crossref_primary_10_1016_j_gaitpost_2021_04_006 crossref_primary_10_5432_ijshs_202133 crossref_primary_10_1186_s12984_023_01190_z crossref_primary_10_1038_s41598_021_91337_6 crossref_primary_10_3389_fncom_2017_00050 crossref_primary_10_1098_rspb_2020_2432 crossref_primary_10_3389_fnagi_2021_678525 crossref_primary_10_1111_sms_13208 crossref_primary_10_1152_jn_00302_2018 crossref_primary_10_1038_s41598_022_16483_x crossref_primary_10_1016_j_neuroscience_2023_07_010 crossref_primary_10_1080_00222895_2024_2435829 crossref_primary_10_1007_s00421_022_05083_2 crossref_primary_10_1186_s12984_017_0343_x crossref_primary_10_1371_journal_pone_0236254 crossref_primary_10_1371_journal_pone_0306049 crossref_primary_10_1080_09593985_2021_1994072 crossref_primary_10_1016_j_bspc_2021_103057 crossref_primary_10_1002_eng2_12253 crossref_primary_10_5432_ijshs_201714 crossref_primary_10_1016_j_humov_2023_103116 crossref_primary_10_1038_s41598_024_68515_3 crossref_primary_10_1152_jn_00232_2021 crossref_primary_10_1080_17461391_2021_2014573 crossref_primary_10_1152_jn_00922_2017 crossref_primary_10_1088_1741_2552_ad4594 crossref_primary_10_1038_s41467_020_18210_4 crossref_primary_10_1371_journal_pone_0267340 crossref_primary_10_1152_jn_00499_2021 crossref_primary_10_1098_rstb_2023_0485 crossref_primary_10_1152_jn_00323_2022 crossref_primary_10_1016_j_clinbiomech_2023_105947 crossref_primary_10_1007_s10439_017_1802_z crossref_primary_10_1016_j_parkreldis_2022_105231 crossref_primary_10_1113_JP275532 crossref_primary_10_1016_j_jbiomech_2022_110953 crossref_primary_10_1016_j_jbiomech_2021_110358 crossref_primary_10_1371_journal_pone_0242115 crossref_primary_10_7759_cureus_54649 crossref_primary_10_1098_rsos_211721 crossref_primary_10_1177_0269215517732375 crossref_primary_10_1152_jn_00093_2021 crossref_primary_10_1016_j_humov_2022_102946 crossref_primary_10_3389_fnhum_2022_976100 crossref_primary_10_1109_TNSRE_2020_3017128 crossref_primary_10_1177_0309364619848274 crossref_primary_10_3389_fphys_2016_00530 crossref_primary_10_3390_bioengineering12030233 crossref_primary_10_1038_s41598_023_28467_6 crossref_primary_10_2478_hukin_2021_0002 crossref_primary_10_1152_jn_00625_2019 crossref_primary_10_3389_fbioe_2024_1310464 crossref_primary_10_1089_neu_2018_5900 crossref_primary_10_1152_jn_00587_2018 crossref_primary_10_1152_jn_00739_2019 crossref_primary_10_1515_revneuro_2017_0058 crossref_primary_10_3389_fnhum_2016_00455 crossref_primary_10_1186_s12984_019_0502_3 crossref_primary_10_3389_fpsyg_2019_01428 crossref_primary_10_1113_JP283291 crossref_primary_10_1186_s12984_023_01164_1 crossref_primary_10_1155_2018_6592357 crossref_primary_10_3389_fphys_2020_00632 crossref_primary_10_1016_j_jbiomech_2022_111384 crossref_primary_10_1152_jn_00161_2023 crossref_primary_10_1016_j_gaitpost_2020_09_016 crossref_primary_10_1038_s41598_020_64035_y crossref_primary_10_3390_s21103311 crossref_primary_10_1186_s12984_023_01236_2 crossref_primary_10_1016_j_jbiomech_2025_112637 crossref_primary_10_1051_sm_2017029 crossref_primary_10_1123_jpah_2019_0303 crossref_primary_10_1152_jn_00210_2017 crossref_primary_10_1152_jn_00286_2018 crossref_primary_10_52082_jssm_2024_571 crossref_primary_10_1152_jn_00699_2016 crossref_primary_10_1007_s00221_017_4926_3 crossref_primary_10_1016_j_exger_2020_111050 crossref_primary_10_1016_j_jelekin_2024_102968 crossref_primary_10_1016_j_gaitpost_2022_07_251 crossref_primary_10_1007_s00221_021_06049_0 crossref_primary_10_1109_TNSRE_2022_3206887 crossref_primary_10_1016_j_jbiomech_2017_05_010 crossref_primary_10_1123_jab_2023_0186 crossref_primary_10_1177_1545968318796333 crossref_primary_10_1002_ejsc_12085 crossref_primary_10_1016_j_jelekin_2017_08_004 crossref_primary_10_1152_jn_00813_2016 crossref_primary_10_1371_journal_pcbi_1011562 crossref_primary_10_1038_s41598_017_18142_y crossref_primary_10_1080_02640414_2023_2259268 crossref_primary_10_1016_j_jbiomech_2022_110997 crossref_primary_10_1126_scirobotics_adf5758 crossref_primary_10_1016_j_clinbiomech_2022_105702 crossref_primary_10_1109_JBHI_2023_3234960 crossref_primary_10_1152_jn_00425_2022 crossref_primary_10_1152_jn_00356_2021 crossref_primary_10_1123_mc_2023_0145 crossref_primary_10_3389_fbioe_2020_00800 crossref_primary_10_1007_s00221_022_06399_3 crossref_primary_10_1007_s00421_021_04604_9 crossref_primary_10_1016_j_bspc_2022_103697 crossref_primary_10_3902_jnns_31_20 crossref_primary_10_3389_fspor_2022_990925 crossref_primary_10_1152_jn_00513_2022 crossref_primary_10_3389_fnhum_2018_00004 crossref_primary_10_1007_s00221_023_06706_6 crossref_primary_10_3389_fnhum_2022_852530 crossref_primary_10_1152_jn_00561_2018 crossref_primary_10_3389_fneur_2024_1489143 crossref_primary_10_1007_s13311_020_00974_8 crossref_primary_10_3389_fnhum_2018_00485 crossref_primary_10_1016_j_clinbiomech_2024_106207 |
Cites_doi | 10.3389/fnhum.2013.00173 10.1016/j.conb.2009.09.002 10.3233/VES-1999-9405 10.1037/h0076770 10.1016/j.conb.2008.01.002 10.1152/jn.00810.2005 10.1016/j.neuroimage.2007.11.018 10.1098/rspb.2012.2863 10.1152/jn.00676.2012 10.1016/j.jbiomech.2009.10.009 10.1152/jn.01265.2003 10.1037/0033-295X.100.3.363 10.1523/JNEUROSCI.2073-14.2014 10.1016/j.nlm.2012.09.004 10.1016/S0926-6410(00)00028-8 10.1016/j.jelekin.2011.07.013 10.1126/science.8122113 10.1038/nn.3477 10.1126/science.2675307 10.1016/j.conb.2005.10.011 10.1111/sms.12167 10.1152/jn.00727.2010 10.1152/jn.00081.2006 10.1109/T-C.1969.222678 10.1152/jn.00038.2013 10.1038/5721 10.1113/jphysiol.1984.sp015492 10.1152/jn.00447.2012 10.3389/fnhum.2014.00335 10.1242/jeb.042572 10.3389/fnhum.2014.00594 10.1152/jn.01387.2007 10.1080/00222895.1984.10735316 10.1113/jphysiol.2003.057174 10.1016/j.neunet.2012.02.003 10.1016/j.gaitpost.2015.01.007 10.1152/jn.00825.2009 10.1007/s00422-012-0514-6 10.1016/j.gaitpost.2005.04.013 10.1016/S0304-3940(99)00930-1 10.1038/44565 10.1152/jn.1989.62.3.680 10.1016/j.jbiomech.2004.03.025 10.1016/j.gaitpost.2008.12.012 10.1016/j.gaitpost.2013.01.020 10.1523/JNEUROSCI.0122-13.2013 10.1016/j.cub.2010.09.045 10.1523/JNEUROSCI.6344-11.2012 10.1152/jn.1995.74.3.1037 10.1152/jn.00549.2010 10.1038/nn1010 10.1152/jn.01360.2006 10.1016/j.clinph.2014.02.001 10.1152/jn.90324.2008 10.3389/fnhum.2013.00157 10.1098/rstb.2000.0733 10.1152/jn.00217.2012 10.1002/ana.410340108 10.1152/jn.00776.2013 10.1073/pnas.0500199102 10.3389/fncom.2014.00020 10.1016/j.neuroscience.2008.07.028 10.1523/JNEUROSCI.23-35-11255.2003 10.1097/00001756-199302000-00002 10.3389/fnhum.2011.00050 10.3389/fncom.2013.00048 10.1177/1073858405278015 10.1093/acprof:oso/9780195395273.003.0005 10.1038/nature13665 10.1371/journal.pcbi.1002465 10.1080/00140135908930419 10.1007/BF00248275 10.1073/pnas.0910114106 10.1007/978-1-4614-5465-6_1 10.1016/j.neuron.2012.10.018 10.1152/jn.00769.2013 10.1016/0966-6362(96)82849-9 10.1126/science.270.5234.305 10.1152/jn.00842.2010 10.14814/phy2.12055 10.1016/j.neuron.2015.02.042 10.1152/jn.90274.2008 10.1371/journal.pcbi.1002434 10.1523/JNEUROSCI.4904-04.2005 10.1152/jn.00681.2004 10.1016/j.jbiomech.2009.03.009 10.1126/science.1210617 10.1152/jn.00960.2009 10.1523/JNEUROSCI.16-02-00785.1996 10.1016/j.neuron.2015.03.024 10.1016/j.gaitpost.2013.01.024 10.3389/fncom.2013.00035 10.1523/JNEUROSCI.5894-08.2010 10.1016/S0966-6362(98)00006-X 10.1523/JNEUROSCI.5626-03.2004 10.1016/j.clinph.2013.02.006 |
ContentType | Journal Article |
Copyright | Copyright © 2015 the American Physiological Society. Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
Copyright_xml | – notice: Copyright © 2015 the American Physiological Society. – notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00758.2015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 3373 |
ExternalDocumentID | PMC4868379 26467521 10_1152_jn_00758_2015 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F32 NS087775 – fundername: NICHD NIH HHS grantid: HD-46922 – fundername: NINDS NIH HHS grantid: T32 NS-007480-14 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: T32 NS007480-14 – fundername: NSF | ENG | Division of Emerging Frontiers in Research and Innovation (EFRI) grantid: EFRI-1137229 – fundername: HHS | NIH | NICHD | National Center for Medical Rehabilitation Research grantid: HD46922 |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK .GJ 0VX 1CY 1Z7 3O- 41~ 8M5 ABTAH AI. C1A CGR CUY CVF ECM EIF FRP GX1 MVM NEJ NPM OHT RHF UQL VH1 VXZ XJT XOL ZGI ZXP ZY4 7X8 5PM |
ID | FETCH-LOGICAL-c453t-2e9a627e9b158286df00ab13e2de1ee8add8c672a91167dfc572f67d64e5acc73 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 17:55:28 EDT 2025 Sun Aug 24 04:04:18 EDT 2025 Wed Feb 19 02:17:28 EST 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Jul 01 04:09:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | motor expertise motor control muscle synergy electromyography balance control |
Language | English |
License | Copyright © 2015 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-2e9a627e9b158286df00ab13e2de1ee8add8c672a91167dfc572f67d64e5acc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1287-953X |
OpenAccessLink | https://www.physiology.org/doi/pdf/10.1152/jn.00758.2015 |
PMID | 26467521 |
PQID | 1752788932 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868379 proquest_miscellaneous_1752788932 pubmed_primary_26467521 crossref_primary_10_1152_jn_00758_2015 crossref_citationtrail_10_1152_jn_00758_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2015 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 Leavitt JL (B49) 1979; 4 B30 B31 B32 B33 B35 B36 B37 B38 B39 B1 B2 Carpenter MG (B7) 1999; 9 B3 B4 B5 B6 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 McNemar Q (B56) 1933; 42 Zar JH (B101) 1999 B50 B51 B52 B53 B54 B55 B57 Grillner S (B34) 2004; 143 B58 B59 B102 B100 B60 B61 B62 B63 B65 B66 B67 B68 B69 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B12 B13 B14 B15 B16 B17 Williams LR (B99) 1973; 44 B18 B19 21660290 - Front Hum Neurosci. 2011 May 27;5:50 10978706 - Brain Res Cogn Brain Res. 2000 Sep;10(1-2):177-83 15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82 23882199 - Front Hum Neurosci. 2013 Jul 16;7:173 7569982 - Science. 1995 Oct 13;270(5234):305-7 22394689 - Neural Netw. 2012 Aug;32:96-108 15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81 20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98 14653146 - Prog Brain Res. 2004;143:3-12 23912947 - Nat Neurosci. 2013 Sep;16(9):1340-7 23616763 - Front Comput Neurosci. 2013 Apr 17;7:35 20007501 - J Neurophysiol. 2010 Feb;103(2):844-57 20107059 - J Neurosci. 2010 Jan 27;30(4):1322-36 23259944 - Neuron. 2012 Dec 20;76(6):1071-7 14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69 22773783 - J Neurophysiol. 2012 Oct;108(7):1895-906 25892304 - Neuron. 2015 May 6;86(3):800-12 25297107 - J Neurosci. 2014 Oct 8;34(41):13811-8 17055728 - Gait Posture. 2006 Dec;24(4):397-405 17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56 498401 - Can J Appl Sport Sci. 1979 Mar;4(1):46-55 19879583 - J Biomech. 2010 Feb 10;43(3):412-9 24618214 - Clin Neurophysiol. 2014 Oct;125(10):2024-35 22511857 - PLoS Comput Biol. 2012;8(4):e1002465 18721863 - Neuroscience. 2008 Oct 2;156(2):390-402 24904375 - Front Hum Neurosci. 2014 May 23;8:335 20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34 19369362 - J Neurophysiol. 2009 Jul;102(1):59-68 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8 14713663 - J Mot Behav. 1984 Jun;16(2):135-70 19091930 - J Neurophysiol. 2009 Mar;101(3):1235-57 16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46 22096202 - Science. 2011 Nov 18;334(6058):997-9 21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015 15519333 - J Biomech. 2005 Jan;38(1):1-8 23637655 - Front Hum Neurosci. 2013 Apr 26;7:157 22570602 - PLoS Comput Biol. 2012;8(5):e1002434 24372591 - Scand J Med Sci Sports. 2015 Feb;25(1):89-97 14973321 - J Neurophysiol. 2004 Jul;92(1):523-35 23474055 - Clin Neurophysiol. 2013 Jul;124(7):1390-7 2924840 - Exp Brain Res. 1989;74(1):3-10 2675307 - Science. 1989 Sep 15;245(4923):1209-10 19828310 - Curr Opin Neurobiol. 2009 Dec;19(6):601-7 4533528 - Res Q. 1973 Mar;44(1):109-12 15342720 - J Neurophysiol. 2005 Jan;93(1):609-13 24963035 - Physiol Rep. 2014 Jun 24;2(6):null 24431402 - J Neurophysiol. 2014 Apr;111(8):1686-702 6512687 - J Physiol. 1984 Dec;357:109-25 18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8 8551360 - J Neurosci. 1996 Jan 15;16(2):785-807 10653025 - Neurosci Lett. 2000 Jan 14;278(3):189-93 16275056 - Curr Opin Neurobiol. 2005 Dec;15(6):660-6 25856485 - Neuron. 2015 Apr 8;86(1):38-54 24634652 - Front Comput Neurosci. 2014 Mar 05;8:20 10200386 - Gait Posture. 1998 May 1;7(3):207-213 8517678 - Ann Neurol. 1993 Jul;34(1):33-7 19394023 - J Biomech. 2009 Jun 19;42(9):1282-7 25589591 - J Neurophysiol. 2015 Apr 1;113(7):2102-13 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8 16151047 - Neuroscientist. 2005 Oct;11(5):471-83 23653605 - Front Comput Neurosci. 2013 May 02;7:48 22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50 23884944 - J Neurosci. 2013 Jul 24;33(30):12384-94 8453047 - Neuroreport. 1993 Feb;4(2):125-7 23010138 - Neurobiol Learn Mem. 2012 Oct;98(3):291-302 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82 25648493 - Gait Posture. 2015 Feb;41(2):619-23 18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71 20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74 2769353 - J Neurophysiol. 1989 Sep;62(3):680-93 23100136 - J Neurophysiol. 2013 Jan;109(2):591-602 23481866 - Gait Posture. 2013 Sep;38(4):570-5 25164754 - Nature. 2014 Aug 28;512(7515):423-6 23489952 - Gait Posture. 2013 Jul;38(3):511-7 21653716 - J Neurophysiol. 2011 Sep;106(3):1363-78 7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45 10472040 - J Vestib Res. 1999;9(4):277-86 22895830 - Biol Cybern. 2012 Dec;106(11-12):757-65 21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40 23761702 - J Neurophysiol. 2013 Sep;110(6):1415-25 21511705 - J Neurophysiol. 2011 Jul;106(1):202-10 23296478 - Adv Exp Med Biol. 2013;782:1-21 10548103 - Nature. 1999 Oct 21;401(6755):788-91 10195201 - Nat Neurosci. 1999 Feb;2(2):162-7 11205339 - Philos Trans R Soc Lond B Biol Sci. 2000 Dec 29;355(1404):1755-69 23363632 - Proc Biol Sci. 2013 Mar 22;280(1755):20122863 23803327 - J Neurophysiol. 2013 Sep;110(6):1301-10 16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37 18329289 - Neuroimage. 2008 May 1;40(4):1748-54 25136312 - Front Hum Neurosci. 2014 Aug 01;8:594 8122113 - Science. 1994 Mar 4;263(5151):1287-9 19196513 - Gait Posture. 2009 Jun;29(4):565-70 |
References_xml | – ident: B27 doi: 10.3389/fnhum.2013.00173 – ident: B93 doi: 10.1016/j.conb.2009.09.002 – volume: 44 start-page: 109 year: 1973 ident: B99 publication-title: Res Q – volume: 9 start-page: 277 year: 1999 ident: B7 publication-title: J Vestib Res doi: 10.3233/VES-1999-9405 – ident: B82 doi: 10.1037/h0076770 – ident: B89 doi: 10.1016/j.conb.2008.01.002 – ident: B90 doi: 10.1152/jn.00810.2005 – ident: B57 doi: 10.1016/j.neuroimage.2007.11.018 – ident: B16 doi: 10.1098/rspb.2012.2863 – ident: B26 doi: 10.1152/jn.00676.2012 – ident: B53 doi: 10.1016/j.jbiomech.2009.10.009 – ident: B98 doi: 10.1152/jn.01265.2003 – ident: B24 doi: 10.1037/0033-295X.100.3.363 – ident: B1 doi: 10.1523/JNEUROSCI.2073-14.2014 – ident: B85 doi: 10.1016/j.nlm.2012.09.004 – ident: B42 doi: 10.1016/S0926-6410(00)00028-8 – ident: B95 doi: 10.1016/j.jelekin.2011.07.013 – ident: B71 doi: 10.1126/science.8122113 – ident: B74 doi: 10.1038/nn.3477 – ident: B32 doi: 10.1126/science.2675307 – ident: B25 doi: 10.1016/j.conb.2005.10.011 – ident: B46 doi: 10.1111/sms.12167 – ident: B33 doi: 10.1152/jn.00727.2010 – ident: B6 doi: 10.1152/jn.00081.2006 – ident: B80 doi: 10.1109/T-C.1969.222678 – ident: B11 doi: 10.1152/jn.00038.2013 – ident: B94 doi: 10.1038/5721 – ident: B3 doi: 10.1113/jphysiol.1984.sp015492 – ident: B55 doi: 10.1152/jn.00447.2012 – ident: B66 doi: 10.3389/fnhum.2014.00335 – ident: B40 doi: 10.1242/jeb.042572 – ident: B62 doi: 10.3389/fnhum.2014.00594 – ident: B8 doi: 10.1152/jn.01387.2007 – ident: B51 doi: 10.1080/00222895.1984.10735316 – ident: B41 doi: 10.1113/jphysiol.2003.057174 – volume: 42 start-page: 70 year: 1933 ident: B56 publication-title: Ped Sem J Gen Pscy – ident: B5 doi: 10.1016/j.neunet.2012.02.003 – volume: 143 start-page: 3 year: 2004 ident: B34 publication-title: Prog Brain Res – ident: B81 doi: 10.1016/j.gaitpost.2015.01.007 – ident: B15 doi: 10.1152/jn.00825.2009 – ident: B52 doi: 10.1007/s00422-012-0514-6 – ident: B4 doi: 10.1016/j.gaitpost.2005.04.013 – ident: B45 doi: 10.1016/S0304-3940(99)00930-1 – ident: B50 doi: 10.1038/44565 – ident: B21 doi: 10.1152/jn.1989.62.3.680 – ident: B39 doi: 10.1016/j.jbiomech.2004.03.025 – ident: B60 doi: 10.1016/j.gaitpost.2008.12.012 – ident: B77 doi: 10.1016/j.gaitpost.2013.01.020 – ident: B2 doi: 10.1523/JNEUROSCI.0122-13.2013 – ident: B31 doi: 10.1016/j.cub.2010.09.045 – ident: B13 doi: 10.1523/JNEUROSCI.6344-11.2012 – ident: B72 doi: 10.1152/jn.1995.74.3.1037 – ident: B14 doi: 10.1152/jn.00549.2010 – ident: B19 doi: 10.1038/nn1010 – ident: B91 doi: 10.1152/jn.01360.2006 – ident: B38 doi: 10.1016/j.clinph.2014.02.001 – ident: B96 doi: 10.1152/jn.90324.2008 – ident: B97 doi: 10.3389/fnhum.2013.00157 – ident: B61 doi: 10.1098/rstb.2000.0733 – ident: B67 doi: 10.1152/jn.00217.2012 – ident: B70 doi: 10.1002/ana.410340108 – ident: B102 doi: 10.1152/jn.00776.2013 – volume-title: Biostatistical Analysis year: 1999 ident: B101 – ident: B18 doi: 10.1073/pnas.0500199102 – ident: B69 doi: 10.3389/fncom.2014.00020 – ident: B29 doi: 10.1016/j.neuroscience.2008.07.028 – ident: B43 doi: 10.1523/JNEUROSCI.23-35-11255.2003 – ident: B59 doi: 10.1097/00001756-199302000-00002 – ident: B28 doi: 10.3389/fnhum.2011.00050 – ident: B12 doi: 10.3389/fncom.2013.00048 – ident: B58 doi: 10.1177/1073858405278015 – volume: 4 start-page: 46 year: 1979 ident: B49 publication-title: Can J Appl Sport Sci – ident: B87 doi: 10.1093/acprof:oso/9780195395273.003.0005 – ident: B79 doi: 10.1038/nature13665 – ident: B54 doi: 10.1371/journal.pcbi.1002465 – ident: B17 doi: 10.1080/00140135908930419 – ident: B73 doi: 10.1007/BF00248275 – ident: B10 doi: 10.1073/pnas.0910114106 – ident: B35 doi: 10.1007/978-1-4614-5465-6_1 – ident: B68 doi: 10.1016/j.neuron.2012.10.018 – ident: B84 doi: 10.1152/jn.00769.2013 – ident: B100 doi: 10.1016/0966-6362(96)82849-9 – ident: B23 doi: 10.1126/science.270.5234.305 – ident: B76 doi: 10.1152/jn.00842.2010 – ident: B78 doi: 10.14814/phy2.12055 – ident: B86 doi: 10.1016/j.neuron.2015.02.042 – ident: B47 doi: 10.1152/jn.90274.2008 – ident: B48 doi: 10.1371/journal.pcbi.1002434 – ident: B9 doi: 10.1523/JNEUROSCI.4904-04.2005 – ident: B88 doi: 10.1152/jn.00681.2004 – ident: B63 doi: 10.1016/j.jbiomech.2009.03.009 – ident: B22 doi: 10.1126/science.1210617 – ident: B92 doi: 10.1152/jn.00960.2009 – ident: B65 doi: 10.1523/JNEUROSCI.16-02-00785.1996 – ident: B44 doi: 10.1016/j.neuron.2015.03.024 – ident: B30 doi: 10.1016/j.gaitpost.2013.01.024 – ident: B20 doi: 10.3389/fncom.2013.00035 – ident: B37 doi: 10.1523/JNEUROSCI.5894-08.2010 – ident: B83 doi: 10.1016/S0966-6362(98)00006-X – ident: B36 doi: 10.1523/JNEUROSCI.5626-03.2004 – ident: B75 doi: 10.1016/j.clinph.2013.02.006 – reference: 25589591 - J Neurophysiol. 2015 Apr 1;113(7):2102-13 – reference: 16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46 – reference: 23489952 - Gait Posture. 2013 Jul;38(3):511-7 – reference: 22511857 - PLoS Comput Biol. 2012;8(4):e1002465 – reference: 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82 – reference: 23761702 - J Neurophysiol. 2013 Sep;110(6):1415-25 – reference: 23010138 - Neurobiol Learn Mem. 2012 Oct;98(3):291-302 – reference: 6512687 - J Physiol. 1984 Dec;357:109-25 – reference: 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8 – reference: 23481866 - Gait Posture. 2013 Sep;38(4):570-5 – reference: 19091930 - J Neurophysiol. 2009 Mar;101(3):1235-57 – reference: 23884944 - J Neurosci. 2013 Jul 24;33(30):12384-94 – reference: 25648493 - Gait Posture. 2015 Feb;41(2):619-23 – reference: 2769353 - J Neurophysiol. 1989 Sep;62(3):680-93 – reference: 11205339 - Philos Trans R Soc Lond B Biol Sci. 2000 Dec 29;355(1404):1755-69 – reference: 24634652 - Front Comput Neurosci. 2014 Mar 05;8:20 – reference: 14653146 - Prog Brain Res. 2004;143:3-12 – reference: 16275056 - Curr Opin Neurobiol. 2005 Dec;15(6):660-6 – reference: 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8 – reference: 21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015 – reference: 7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45 – reference: 19369362 - J Neurophysiol. 2009 Jul;102(1):59-68 – reference: 23616763 - Front Comput Neurosci. 2013 Apr 17;7:35 – reference: 23653605 - Front Comput Neurosci. 2013 May 02;7:48 – reference: 22570602 - PLoS Comput Biol. 2012;8(5):e1002434 – reference: 18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8 – reference: 24372591 - Scand J Med Sci Sports. 2015 Feb;25(1):89-97 – reference: 25136312 - Front Hum Neurosci. 2014 Aug 01;8:594 – reference: 21653716 - J Neurophysiol. 2011 Sep;106(3):1363-78 – reference: 14973321 - J Neurophysiol. 2004 Jul;92(1):523-35 – reference: 24618214 - Clin Neurophysiol. 2014 Oct;125(10):2024-35 – reference: 18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71 – reference: 15342720 - J Neurophysiol. 2005 Jan;93(1):609-13 – reference: 23637655 - Front Hum Neurosci. 2013 Apr 26;7:157 – reference: 14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69 – reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91 – reference: 19828310 - Curr Opin Neurobiol. 2009 Dec;19(6):601-7 – reference: 2675307 - Science. 1989 Sep 15;245(4923):1209-10 – reference: 23363632 - Proc Biol Sci. 2013 Mar 22;280(1755):20122863 – reference: 25164754 - Nature. 2014 Aug 28;512(7515):423-6 – reference: 18721863 - Neuroscience. 2008 Oct 2;156(2):390-402 – reference: 20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64 – reference: 19394023 - J Biomech. 2009 Jun 19;42(9):1282-7 – reference: 20007501 - J Neurophysiol. 2010 Feb;103(2):844-57 – reference: 498401 - Can J Appl Sport Sci. 1979 Mar;4(1):46-55 – reference: 25856485 - Neuron. 2015 Apr 8;86(1):38-54 – reference: 7569982 - Science. 1995 Oct 13;270(5234):305-7 – reference: 18329289 - Neuroimage. 2008 May 1;40(4):1748-54 – reference: 22394689 - Neural Netw. 2012 Aug;32:96-108 – reference: 23912947 - Nat Neurosci. 2013 Sep;16(9):1340-7 – reference: 21660290 - Front Hum Neurosci. 2011 May 27;5:50 – reference: 20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74 – reference: 19196513 - Gait Posture. 2009 Jun;29(4):565-70 – reference: 8551360 - J Neurosci. 1996 Jan 15;16(2):785-807 – reference: 23259944 - Neuron. 2012 Dec 20;76(6):1071-7 – reference: 25297107 - J Neurosci. 2014 Oct 8;34(41):13811-8 – reference: 10978706 - Brain Res Cogn Brain Res. 2000 Sep;10(1-2):177-83 – reference: 10472040 - J Vestib Res. 1999;9(4):277-86 – reference: 23296478 - Adv Exp Med Biol. 2013;782:1-21 – reference: 16151047 - Neuroscientist. 2005 Oct;11(5):471-83 – reference: 17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56 – reference: 10195201 - Nat Neurosci. 1999 Feb;2(2):162-7 – reference: 15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82 – reference: 24904375 - Front Hum Neurosci. 2014 May 23;8:335 – reference: 25892304 - Neuron. 2015 May 6;86(3):800-12 – reference: 22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50 – reference: 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34 – reference: 8453047 - Neuroreport. 1993 Feb;4(2):125-7 – reference: 24963035 - Physiol Rep. 2014 Jun 24;2(6):null – reference: 10653025 - Neurosci Lett. 2000 Jan 14;278(3):189-93 – reference: 23100136 - J Neurophysiol. 2013 Jan;109(2):591-602 – reference: 22773783 - J Neurophysiol. 2012 Oct;108(7):1895-906 – reference: 16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37 – reference: 23882199 - Front Hum Neurosci. 2013 Jul 16;7:173 – reference: 2924840 - Exp Brain Res. 1989;74(1):3-10 – reference: 23803327 - J Neurophysiol. 2013 Sep;110(6):1301-10 – reference: 15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81 – reference: 15519333 - J Biomech. 2005 Jan;38(1):1-8 – reference: 8517678 - Ann Neurol. 1993 Jul;34(1):33-7 – reference: 17055728 - Gait Posture. 2006 Dec;24(4):397-405 – reference: 23474055 - Clin Neurophysiol. 2013 Jul;124(7):1390-7 – reference: 4533528 - Res Q. 1973 Mar;44(1):109-12 – reference: 22895830 - Biol Cybern. 2012 Dec;106(11-12):757-65 – reference: 22096202 - Science. 2011 Nov 18;334(6058):997-9 – reference: 14713663 - J Mot Behav. 1984 Jun;16(2):135-70 – reference: 20107059 - J Neurosci. 2010 Jan 27;30(4):1322-36 – reference: 21511705 - J Neurophysiol. 2011 Jul;106(1):202-10 – reference: 10200386 - Gait Posture. 1998 May 1;7(3):207-213 – reference: 21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40 – reference: 24431402 - J Neurophysiol. 2014 Apr;111(8):1686-702 – reference: 8122113 - Science. 1994 Mar 4;263(5151):1287-9 – reference: 19879583 - J Biomech. 2010 Feb 10;43(3):412-9 – reference: 20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98 |
SSID | ssj0007502 |
Score | 2.525357 |
Snippet | How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3359 |
SubjectTerms | Adult Biomechanical Phenomena Control of Movement Dancing - physiology Generalization (Psychology) Humans Postural Balance Walking - physiology |
Title | Long-term training modifies the modular structure and organization of walking balance control |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26467521 https://www.proquest.com/docview/1752788932 https://pubmed.ncbi.nlm.nih.gov/PMC4868379 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCgOVRXjIS2ktJaZw4j-MKgSqoEIhdaS8ospMJdLU4SFu0gl_PjOO4zj6khUuUuHk0_b6Ox57xN4y9TLVoYqHbSJDubAoJRIWsUxzzZKBaEghRNtviY7Y8TN8fyaPJ5CxcXbLR8_rPpetK_gdVbENcaZXsPyDrb4oNuI_44hYRxu21MF515ltEttVXeqDKNut2TboNiD8e2CzTXiR2CBV0wfJL8hXP1AnNl880ZTnWPnv9CrfVCmDa-ZDRhPwXNVRbC1IkiUhUqqVPozklQsxWcz9Z4MqprMCo2XIezj_EMsjlCNYDLFwxFnBmFNvQUSpGdrZfLeoIFVrNJHGq4OAO--omF627JLXYY0N659Lm5cltNzaE7s_1bj7n0I52pKiOTWUvr-jyG-ymyHMb3__weSszj27UVmYeX20QZ5Xi9ejpY2fmwgjlfKJt4Lkc3GG3HXZ8v-fPXTYBc4_t7hu16X785nv8kwdzl331lOIDpfhAKY6U4o5S3FOKI6V4SCnetdxRijtKcUep--zw3duDN8vIVeCI6lQmm0hAqTKRQ6ljCq9mTbtYKB0nIBqIAQrsHIs6y4UqKZzXtLXMRYs7WQpS1XWePGA7pjPwiHGl0FFfgGhbUKmGrNClILHDRjRJVgo5Za-Gn7KqnTw9vehJdSlwU7bnT__Z67JcdeKLAZcKLSeFw5SB7tdphY6zyAv018WUPexx8rfCYQKOpEU8ZfkIQX8CqbKPPzHr71adPS2yIsnLx9f9gk_Yre3f6inbQfjgGTq6G_3ckvIvLYarjg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+training+modifies+the+modular+structure+and+organization+of+walking+balance+control&rft.jtitle=Journal+of+neurophysiology&rft.au=Sawers%2C+Andrew&rft.au=Allen%2C+Jessica+L.&rft.au=Ting%2C+Lena+H.&rft.date=2015-12-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=114&rft.issue=6&rft.spage=3359&rft.epage=3373&rft_id=info:doi/10.1152%2Fjn.00758.2015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00758_2015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |