Long-term training modifies the modular structure and organization of walking balance control

How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analy...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 114; no. 6; pp. 3359 - 3373
Main Authors Sawers, Andrew, Allen, Jessica L., Ting, Lena H.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.12.2015
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
1522-1598
DOI10.1152/jn.00758.2015

Cover

Abstract How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior.
AbstractList How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior.
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior.How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior.
Author Allen, Jessica L.
Ting, Lena H.
Sawers, Andrew
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-1287-953X
  surname: Sawers
  fullname: Sawers, Andrew
  organization: Department of Kinesiology, University of Illinois at Chicago, Chicago, Illinois; and
– sequence: 2
  givenname: Jessica L.
  surname: Allen
  fullname: Allen, Jessica L.
  organization: Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
– sequence: 3
  givenname: Lena H.
  surname: Ting
  fullname: Ting, Lena H.
  organization: Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26467521$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxa0KVBbosVfkYy_Z2s46di5IFSof0kq9lCOyZp3J4m1ig-20Kn89DlBUKvXk8fg3b-T3DsmeDx4J-cjZknMpPu_8kjEl9VIwLt-RRemJistW75EFY6WumVIH5DClHZtBJt6TA9GsGiUFX5CbdfDbKmMcaY7gvPNbOobO9Q4Tzbc4X6YBIk05TjZPESn4joa4Be8eILvgaejpLxh-zKMbGMBbpDb4HMNwTPZ7GBJ-eDmPyPX51-9nl9X628XV2Zd1ZVeyzpXAFhqhsN1wqYVuup4x2PAaRYccUUPXadsoAS3njep6K5XoS9GsUIK1qj4ip8-6d9NmxM5i2Q6DuYtuhPjbBHDm7Yt3t2YbfpqVbnSt2iLw6UUghvsJUzajSxaH8hsMUzK8uKW0bmtR0JO_d70u-eNpAapnwMaQUsT-FeHMzJmZnTdPmZk5s8LX__DW5Sdn50SG_0w9ArAInPg
CitedBy_id crossref_primary_10_1080_02640414_2017_1306090
crossref_primary_10_1016_j_gaitpost_2021_04_006
crossref_primary_10_5432_ijshs_202133
crossref_primary_10_1186_s12984_023_01190_z
crossref_primary_10_1038_s41598_021_91337_6
crossref_primary_10_3389_fncom_2017_00050
crossref_primary_10_1098_rspb_2020_2432
crossref_primary_10_3389_fnagi_2021_678525
crossref_primary_10_1111_sms_13208
crossref_primary_10_1152_jn_00302_2018
crossref_primary_10_1038_s41598_022_16483_x
crossref_primary_10_1016_j_neuroscience_2023_07_010
crossref_primary_10_1080_00222895_2024_2435829
crossref_primary_10_1007_s00421_022_05083_2
crossref_primary_10_1186_s12984_017_0343_x
crossref_primary_10_1371_journal_pone_0236254
crossref_primary_10_1371_journal_pone_0306049
crossref_primary_10_1080_09593985_2021_1994072
crossref_primary_10_1016_j_bspc_2021_103057
crossref_primary_10_1002_eng2_12253
crossref_primary_10_5432_ijshs_201714
crossref_primary_10_1016_j_humov_2023_103116
crossref_primary_10_1038_s41598_024_68515_3
crossref_primary_10_1152_jn_00232_2021
crossref_primary_10_1080_17461391_2021_2014573
crossref_primary_10_1152_jn_00922_2017
crossref_primary_10_1088_1741_2552_ad4594
crossref_primary_10_1038_s41467_020_18210_4
crossref_primary_10_1371_journal_pone_0267340
crossref_primary_10_1152_jn_00499_2021
crossref_primary_10_1098_rstb_2023_0485
crossref_primary_10_1152_jn_00323_2022
crossref_primary_10_1016_j_clinbiomech_2023_105947
crossref_primary_10_1007_s10439_017_1802_z
crossref_primary_10_1016_j_parkreldis_2022_105231
crossref_primary_10_1113_JP275532
crossref_primary_10_1016_j_jbiomech_2022_110953
crossref_primary_10_1016_j_jbiomech_2021_110358
crossref_primary_10_1371_journal_pone_0242115
crossref_primary_10_7759_cureus_54649
crossref_primary_10_1098_rsos_211721
crossref_primary_10_1177_0269215517732375
crossref_primary_10_1152_jn_00093_2021
crossref_primary_10_1016_j_humov_2022_102946
crossref_primary_10_3389_fnhum_2022_976100
crossref_primary_10_1109_TNSRE_2020_3017128
crossref_primary_10_1177_0309364619848274
crossref_primary_10_3389_fphys_2016_00530
crossref_primary_10_3390_bioengineering12030233
crossref_primary_10_1038_s41598_023_28467_6
crossref_primary_10_2478_hukin_2021_0002
crossref_primary_10_1152_jn_00625_2019
crossref_primary_10_3389_fbioe_2024_1310464
crossref_primary_10_1089_neu_2018_5900
crossref_primary_10_1152_jn_00587_2018
crossref_primary_10_1152_jn_00739_2019
crossref_primary_10_1515_revneuro_2017_0058
crossref_primary_10_3389_fnhum_2016_00455
crossref_primary_10_1186_s12984_019_0502_3
crossref_primary_10_3389_fpsyg_2019_01428
crossref_primary_10_1113_JP283291
crossref_primary_10_1186_s12984_023_01164_1
crossref_primary_10_1155_2018_6592357
crossref_primary_10_3389_fphys_2020_00632
crossref_primary_10_1016_j_jbiomech_2022_111384
crossref_primary_10_1152_jn_00161_2023
crossref_primary_10_1016_j_gaitpost_2020_09_016
crossref_primary_10_1038_s41598_020_64035_y
crossref_primary_10_3390_s21103311
crossref_primary_10_1186_s12984_023_01236_2
crossref_primary_10_1016_j_jbiomech_2025_112637
crossref_primary_10_1051_sm_2017029
crossref_primary_10_1123_jpah_2019_0303
crossref_primary_10_1152_jn_00210_2017
crossref_primary_10_1152_jn_00286_2018
crossref_primary_10_52082_jssm_2024_571
crossref_primary_10_1152_jn_00699_2016
crossref_primary_10_1007_s00221_017_4926_3
crossref_primary_10_1016_j_exger_2020_111050
crossref_primary_10_1016_j_jelekin_2024_102968
crossref_primary_10_1016_j_gaitpost_2022_07_251
crossref_primary_10_1007_s00221_021_06049_0
crossref_primary_10_1109_TNSRE_2022_3206887
crossref_primary_10_1016_j_jbiomech_2017_05_010
crossref_primary_10_1123_jab_2023_0186
crossref_primary_10_1177_1545968318796333
crossref_primary_10_1002_ejsc_12085
crossref_primary_10_1016_j_jelekin_2017_08_004
crossref_primary_10_1152_jn_00813_2016
crossref_primary_10_1371_journal_pcbi_1011562
crossref_primary_10_1038_s41598_017_18142_y
crossref_primary_10_1080_02640414_2023_2259268
crossref_primary_10_1016_j_jbiomech_2022_110997
crossref_primary_10_1126_scirobotics_adf5758
crossref_primary_10_1016_j_clinbiomech_2022_105702
crossref_primary_10_1109_JBHI_2023_3234960
crossref_primary_10_1152_jn_00425_2022
crossref_primary_10_1152_jn_00356_2021
crossref_primary_10_1123_mc_2023_0145
crossref_primary_10_3389_fbioe_2020_00800
crossref_primary_10_1007_s00221_022_06399_3
crossref_primary_10_1007_s00421_021_04604_9
crossref_primary_10_1016_j_bspc_2022_103697
crossref_primary_10_3902_jnns_31_20
crossref_primary_10_3389_fspor_2022_990925
crossref_primary_10_1152_jn_00513_2022
crossref_primary_10_3389_fnhum_2018_00004
crossref_primary_10_1007_s00221_023_06706_6
crossref_primary_10_3389_fnhum_2022_852530
crossref_primary_10_1152_jn_00561_2018
crossref_primary_10_3389_fneur_2024_1489143
crossref_primary_10_1007_s13311_020_00974_8
crossref_primary_10_3389_fnhum_2018_00485
crossref_primary_10_1016_j_clinbiomech_2024_106207
Cites_doi 10.3389/fnhum.2013.00173
10.1016/j.conb.2009.09.002
10.3233/VES-1999-9405
10.1037/h0076770
10.1016/j.conb.2008.01.002
10.1152/jn.00810.2005
10.1016/j.neuroimage.2007.11.018
10.1098/rspb.2012.2863
10.1152/jn.00676.2012
10.1016/j.jbiomech.2009.10.009
10.1152/jn.01265.2003
10.1037/0033-295X.100.3.363
10.1523/JNEUROSCI.2073-14.2014
10.1016/j.nlm.2012.09.004
10.1016/S0926-6410(00)00028-8
10.1016/j.jelekin.2011.07.013
10.1126/science.8122113
10.1038/nn.3477
10.1126/science.2675307
10.1016/j.conb.2005.10.011
10.1111/sms.12167
10.1152/jn.00727.2010
10.1152/jn.00081.2006
10.1109/T-C.1969.222678
10.1152/jn.00038.2013
10.1038/5721
10.1113/jphysiol.1984.sp015492
10.1152/jn.00447.2012
10.3389/fnhum.2014.00335
10.1242/jeb.042572
10.3389/fnhum.2014.00594
10.1152/jn.01387.2007
10.1080/00222895.1984.10735316
10.1113/jphysiol.2003.057174
10.1016/j.neunet.2012.02.003
10.1016/j.gaitpost.2015.01.007
10.1152/jn.00825.2009
10.1007/s00422-012-0514-6
10.1016/j.gaitpost.2005.04.013
10.1016/S0304-3940(99)00930-1
10.1038/44565
10.1152/jn.1989.62.3.680
10.1016/j.jbiomech.2004.03.025
10.1016/j.gaitpost.2008.12.012
10.1016/j.gaitpost.2013.01.020
10.1523/JNEUROSCI.0122-13.2013
10.1016/j.cub.2010.09.045
10.1523/JNEUROSCI.6344-11.2012
10.1152/jn.1995.74.3.1037
10.1152/jn.00549.2010
10.1038/nn1010
10.1152/jn.01360.2006
10.1016/j.clinph.2014.02.001
10.1152/jn.90324.2008
10.3389/fnhum.2013.00157
10.1098/rstb.2000.0733
10.1152/jn.00217.2012
10.1002/ana.410340108
10.1152/jn.00776.2013
10.1073/pnas.0500199102
10.3389/fncom.2014.00020
10.1016/j.neuroscience.2008.07.028
10.1523/JNEUROSCI.23-35-11255.2003
10.1097/00001756-199302000-00002
10.3389/fnhum.2011.00050
10.3389/fncom.2013.00048
10.1177/1073858405278015
10.1093/acprof:oso/9780195395273.003.0005
10.1038/nature13665
10.1371/journal.pcbi.1002465
10.1080/00140135908930419
10.1007/BF00248275
10.1073/pnas.0910114106
10.1007/978-1-4614-5465-6_1
10.1016/j.neuron.2012.10.018
10.1152/jn.00769.2013
10.1016/0966-6362(96)82849-9
10.1126/science.270.5234.305
10.1152/jn.00842.2010
10.14814/phy2.12055
10.1016/j.neuron.2015.02.042
10.1152/jn.90274.2008
10.1371/journal.pcbi.1002434
10.1523/JNEUROSCI.4904-04.2005
10.1152/jn.00681.2004
10.1016/j.jbiomech.2009.03.009
10.1126/science.1210617
10.1152/jn.00960.2009
10.1523/JNEUROSCI.16-02-00785.1996
10.1016/j.neuron.2015.03.024
10.1016/j.gaitpost.2013.01.024
10.3389/fncom.2013.00035
10.1523/JNEUROSCI.5894-08.2010
10.1016/S0966-6362(98)00006-X
10.1523/JNEUROSCI.5626-03.2004
10.1016/j.clinph.2013.02.006
ContentType Journal Article
Copyright Copyright © 2015 the American Physiological Society.
Copyright © 2015 the American Physiological Society 2015 American Physiological Society
Copyright_xml – notice: Copyright © 2015 the American Physiological Society.
– notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00758.2015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 3373
ExternalDocumentID PMC4868379
26467521
10_1152_jn_00758_2015
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: F32 NS087775
– fundername: NICHD NIH HHS
  grantid: HD-46922
– fundername: NINDS NIH HHS
  grantid: T32 NS-007480-14
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: T32 NS007480-14
– fundername: NSF | ENG | Division of Emerging Frontiers in Research and Innovation (EFRI)
  grantid: EFRI-1137229
– fundername: HHS | NIH | NICHD | National Center for Medical Rehabilitation Research
  grantid: HD46922
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
.GJ
0VX
1CY
1Z7
3O-
41~
8M5
ABTAH
AI.
C1A
CGR
CUY
CVF
ECM
EIF
FRP
GX1
MVM
NEJ
NPM
OHT
RHF
UQL
VH1
VXZ
XJT
XOL
ZGI
ZXP
ZY4
7X8
5PM
ID FETCH-LOGICAL-c453t-2e9a627e9b158286df00ab13e2de1ee8add8c672a91167dfc572f67d64e5acc73
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 17:55:28 EDT 2025
Sun Aug 24 04:04:18 EDT 2025
Wed Feb 19 02:17:28 EST 2025
Thu Apr 24 22:52:14 EDT 2025
Tue Jul 01 04:09:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords motor expertise
motor control
muscle synergy
electromyography
balance control
Language English
License Copyright © 2015 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-2e9a627e9b158286df00ab13e2de1ee8add8c672a91167dfc572f67d64e5acc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1287-953X
OpenAccessLink https://www.physiology.org/doi/pdf/10.1152/jn.00758.2015
PMID 26467521
PQID 1752788932
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868379
proquest_miscellaneous_1752788932
pubmed_primary_26467521
crossref_primary_10_1152_jn_00758_2015
crossref_citationtrail_10_1152_jn_00758_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2015
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
Leavitt JL (B49) 1979; 4
B30
B31
B32
B33
B35
B36
B37
B38
B39
B1
B2
Carpenter MG (B7) 1999; 9
B3
B4
B5
B6
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
McNemar Q (B56) 1933; 42
Zar JH (B101) 1999
B50
B51
B52
B53
B54
B55
B57
Grillner S (B34) 2004; 143
B58
B59
B102
B100
B60
B61
B62
B63
B65
B66
B67
B68
B69
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B12
B13
B14
B15
B16
B17
Williams LR (B99) 1973; 44
B18
B19
21660290 - Front Hum Neurosci. 2011 May 27;5:50
10978706 - Brain Res Cogn Brain Res. 2000 Sep;10(1-2):177-83
15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82
23882199 - Front Hum Neurosci. 2013 Jul 16;7:173
7569982 - Science. 1995 Oct 13;270(5234):305-7
22394689 - Neural Netw. 2012 Aug;32:96-108
15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81
20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98
14653146 - Prog Brain Res. 2004;143:3-12
23912947 - Nat Neurosci. 2013 Sep;16(9):1340-7
23616763 - Front Comput Neurosci. 2013 Apr 17;7:35
20007501 - J Neurophysiol. 2010 Feb;103(2):844-57
20107059 - J Neurosci. 2010 Jan 27;30(4):1322-36
23259944 - Neuron. 2012 Dec 20;76(6):1071-7
14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69
22773783 - J Neurophysiol. 2012 Oct;108(7):1895-906
25892304 - Neuron. 2015 May 6;86(3):800-12
25297107 - J Neurosci. 2014 Oct 8;34(41):13811-8
17055728 - Gait Posture. 2006 Dec;24(4):397-405
17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56
498401 - Can J Appl Sport Sci. 1979 Mar;4(1):46-55
19879583 - J Biomech. 2010 Feb 10;43(3):412-9
24618214 - Clin Neurophysiol. 2014 Oct;125(10):2024-35
22511857 - PLoS Comput Biol. 2012;8(4):e1002465
18721863 - Neuroscience. 2008 Oct 2;156(2):390-402
24904375 - Front Hum Neurosci. 2014 May 23;8:335
20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64
16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34
19369362 - J Neurophysiol. 2009 Jul;102(1):59-68
19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
14713663 - J Mot Behav. 1984 Jun;16(2):135-70
19091930 - J Neurophysiol. 2009 Mar;101(3):1235-57
16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46
22096202 - Science. 2011 Nov 18;334(6058):997-9
21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015
15519333 - J Biomech. 2005 Jan;38(1):1-8
23637655 - Front Hum Neurosci. 2013 Apr 26;7:157
22570602 - PLoS Comput Biol. 2012;8(5):e1002434
24372591 - Scand J Med Sci Sports. 2015 Feb;25(1):89-97
14973321 - J Neurophysiol. 2004 Jul;92(1):523-35
23474055 - Clin Neurophysiol. 2013 Jul;124(7):1390-7
2924840 - Exp Brain Res. 1989;74(1):3-10
2675307 - Science. 1989 Sep 15;245(4923):1209-10
19828310 - Curr Opin Neurobiol. 2009 Dec;19(6):601-7
4533528 - Res Q. 1973 Mar;44(1):109-12
15342720 - J Neurophysiol. 2005 Jan;93(1):609-13
24963035 - Physiol Rep. 2014 Jun 24;2(6):null
24431402 - J Neurophysiol. 2014 Apr;111(8):1686-702
6512687 - J Physiol. 1984 Dec;357:109-25
18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8
8551360 - J Neurosci. 1996 Jan 15;16(2):785-807
10653025 - Neurosci Lett. 2000 Jan 14;278(3):189-93
16275056 - Curr Opin Neurobiol. 2005 Dec;15(6):660-6
25856485 - Neuron. 2015 Apr 8;86(1):38-54
24634652 - Front Comput Neurosci. 2014 Mar 05;8:20
10200386 - Gait Posture. 1998 May 1;7(3):207-213
8517678 - Ann Neurol. 1993 Jul;34(1):33-7
19394023 - J Biomech. 2009 Jun 19;42(9):1282-7
25589591 - J Neurophysiol. 2015 Apr 1;113(7):2102-13
12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
16151047 - Neuroscientist. 2005 Oct;11(5):471-83
23653605 - Front Comput Neurosci. 2013 May 02;7:48
22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50
23884944 - J Neurosci. 2013 Jul 24;33(30):12384-94
8453047 - Neuroreport. 1993 Feb;4(2):125-7
23010138 - Neurobiol Learn Mem. 2012 Oct;98(3):291-302
14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
25648493 - Gait Posture. 2015 Feb;41(2):619-23
18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71
20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74
2769353 - J Neurophysiol. 1989 Sep;62(3):680-93
23100136 - J Neurophysiol. 2013 Jan;109(2):591-602
23481866 - Gait Posture. 2013 Sep;38(4):570-5
25164754 - Nature. 2014 Aug 28;512(7515):423-6
23489952 - Gait Posture. 2013 Jul;38(3):511-7
21653716 - J Neurophysiol. 2011 Sep;106(3):1363-78
7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45
10472040 - J Vestib Res. 1999;9(4):277-86
22895830 - Biol Cybern. 2012 Dec;106(11-12):757-65
21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40
23761702 - J Neurophysiol. 2013 Sep;110(6):1415-25
21511705 - J Neurophysiol. 2011 Jul;106(1):202-10
23296478 - Adv Exp Med Biol. 2013;782:1-21
10548103 - Nature. 1999 Oct 21;401(6755):788-91
10195201 - Nat Neurosci. 1999 Feb;2(2):162-7
11205339 - Philos Trans R Soc Lond B Biol Sci. 2000 Dec 29;355(1404):1755-69
23363632 - Proc Biol Sci. 2013 Mar 22;280(1755):20122863
23803327 - J Neurophysiol. 2013 Sep;110(6):1301-10
16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37
18329289 - Neuroimage. 2008 May 1;40(4):1748-54
25136312 - Front Hum Neurosci. 2014 Aug 01;8:594
8122113 - Science. 1994 Mar 4;263(5151):1287-9
19196513 - Gait Posture. 2009 Jun;29(4):565-70
References_xml – ident: B27
  doi: 10.3389/fnhum.2013.00173
– ident: B93
  doi: 10.1016/j.conb.2009.09.002
– volume: 44
  start-page: 109
  year: 1973
  ident: B99
  publication-title: Res Q
– volume: 9
  start-page: 277
  year: 1999
  ident: B7
  publication-title: J Vestib Res
  doi: 10.3233/VES-1999-9405
– ident: B82
  doi: 10.1037/h0076770
– ident: B89
  doi: 10.1016/j.conb.2008.01.002
– ident: B90
  doi: 10.1152/jn.00810.2005
– ident: B57
  doi: 10.1016/j.neuroimage.2007.11.018
– ident: B16
  doi: 10.1098/rspb.2012.2863
– ident: B26
  doi: 10.1152/jn.00676.2012
– ident: B53
  doi: 10.1016/j.jbiomech.2009.10.009
– ident: B98
  doi: 10.1152/jn.01265.2003
– ident: B24
  doi: 10.1037/0033-295X.100.3.363
– ident: B1
  doi: 10.1523/JNEUROSCI.2073-14.2014
– ident: B85
  doi: 10.1016/j.nlm.2012.09.004
– ident: B42
  doi: 10.1016/S0926-6410(00)00028-8
– ident: B95
  doi: 10.1016/j.jelekin.2011.07.013
– ident: B71
  doi: 10.1126/science.8122113
– ident: B74
  doi: 10.1038/nn.3477
– ident: B32
  doi: 10.1126/science.2675307
– ident: B25
  doi: 10.1016/j.conb.2005.10.011
– ident: B46
  doi: 10.1111/sms.12167
– ident: B33
  doi: 10.1152/jn.00727.2010
– ident: B6
  doi: 10.1152/jn.00081.2006
– ident: B80
  doi: 10.1109/T-C.1969.222678
– ident: B11
  doi: 10.1152/jn.00038.2013
– ident: B94
  doi: 10.1038/5721
– ident: B3
  doi: 10.1113/jphysiol.1984.sp015492
– ident: B55
  doi: 10.1152/jn.00447.2012
– ident: B66
  doi: 10.3389/fnhum.2014.00335
– ident: B40
  doi: 10.1242/jeb.042572
– ident: B62
  doi: 10.3389/fnhum.2014.00594
– ident: B8
  doi: 10.1152/jn.01387.2007
– ident: B51
  doi: 10.1080/00222895.1984.10735316
– ident: B41
  doi: 10.1113/jphysiol.2003.057174
– volume: 42
  start-page: 70
  year: 1933
  ident: B56
  publication-title: Ped Sem J Gen Pscy
– ident: B5
  doi: 10.1016/j.neunet.2012.02.003
– volume: 143
  start-page: 3
  year: 2004
  ident: B34
  publication-title: Prog Brain Res
– ident: B81
  doi: 10.1016/j.gaitpost.2015.01.007
– ident: B15
  doi: 10.1152/jn.00825.2009
– ident: B52
  doi: 10.1007/s00422-012-0514-6
– ident: B4
  doi: 10.1016/j.gaitpost.2005.04.013
– ident: B45
  doi: 10.1016/S0304-3940(99)00930-1
– ident: B50
  doi: 10.1038/44565
– ident: B21
  doi: 10.1152/jn.1989.62.3.680
– ident: B39
  doi: 10.1016/j.jbiomech.2004.03.025
– ident: B60
  doi: 10.1016/j.gaitpost.2008.12.012
– ident: B77
  doi: 10.1016/j.gaitpost.2013.01.020
– ident: B2
  doi: 10.1523/JNEUROSCI.0122-13.2013
– ident: B31
  doi: 10.1016/j.cub.2010.09.045
– ident: B13
  doi: 10.1523/JNEUROSCI.6344-11.2012
– ident: B72
  doi: 10.1152/jn.1995.74.3.1037
– ident: B14
  doi: 10.1152/jn.00549.2010
– ident: B19
  doi: 10.1038/nn1010
– ident: B91
  doi: 10.1152/jn.01360.2006
– ident: B38
  doi: 10.1016/j.clinph.2014.02.001
– ident: B96
  doi: 10.1152/jn.90324.2008
– ident: B97
  doi: 10.3389/fnhum.2013.00157
– ident: B61
  doi: 10.1098/rstb.2000.0733
– ident: B67
  doi: 10.1152/jn.00217.2012
– ident: B70
  doi: 10.1002/ana.410340108
– ident: B102
  doi: 10.1152/jn.00776.2013
– volume-title: Biostatistical Analysis
  year: 1999
  ident: B101
– ident: B18
  doi: 10.1073/pnas.0500199102
– ident: B69
  doi: 10.3389/fncom.2014.00020
– ident: B29
  doi: 10.1016/j.neuroscience.2008.07.028
– ident: B43
  doi: 10.1523/JNEUROSCI.23-35-11255.2003
– ident: B59
  doi: 10.1097/00001756-199302000-00002
– ident: B28
  doi: 10.3389/fnhum.2011.00050
– ident: B12
  doi: 10.3389/fncom.2013.00048
– ident: B58
  doi: 10.1177/1073858405278015
– volume: 4
  start-page: 46
  year: 1979
  ident: B49
  publication-title: Can J Appl Sport Sci
– ident: B87
  doi: 10.1093/acprof:oso/9780195395273.003.0005
– ident: B79
  doi: 10.1038/nature13665
– ident: B54
  doi: 10.1371/journal.pcbi.1002465
– ident: B17
  doi: 10.1080/00140135908930419
– ident: B73
  doi: 10.1007/BF00248275
– ident: B10
  doi: 10.1073/pnas.0910114106
– ident: B35
  doi: 10.1007/978-1-4614-5465-6_1
– ident: B68
  doi: 10.1016/j.neuron.2012.10.018
– ident: B84
  doi: 10.1152/jn.00769.2013
– ident: B100
  doi: 10.1016/0966-6362(96)82849-9
– ident: B23
  doi: 10.1126/science.270.5234.305
– ident: B76
  doi: 10.1152/jn.00842.2010
– ident: B78
  doi: 10.14814/phy2.12055
– ident: B86
  doi: 10.1016/j.neuron.2015.02.042
– ident: B47
  doi: 10.1152/jn.90274.2008
– ident: B48
  doi: 10.1371/journal.pcbi.1002434
– ident: B9
  doi: 10.1523/JNEUROSCI.4904-04.2005
– ident: B88
  doi: 10.1152/jn.00681.2004
– ident: B63
  doi: 10.1016/j.jbiomech.2009.03.009
– ident: B22
  doi: 10.1126/science.1210617
– ident: B92
  doi: 10.1152/jn.00960.2009
– ident: B65
  doi: 10.1523/JNEUROSCI.16-02-00785.1996
– ident: B44
  doi: 10.1016/j.neuron.2015.03.024
– ident: B30
  doi: 10.1016/j.gaitpost.2013.01.024
– ident: B20
  doi: 10.3389/fncom.2013.00035
– ident: B37
  doi: 10.1523/JNEUROSCI.5894-08.2010
– ident: B83
  doi: 10.1016/S0966-6362(98)00006-X
– ident: B36
  doi: 10.1523/JNEUROSCI.5626-03.2004
– ident: B75
  doi: 10.1016/j.clinph.2013.02.006
– reference: 25589591 - J Neurophysiol. 2015 Apr 1;113(7):2102-13
– reference: 16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46
– reference: 23489952 - Gait Posture. 2013 Jul;38(3):511-7
– reference: 22511857 - PLoS Comput Biol. 2012;8(4):e1002465
– reference: 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
– reference: 23761702 - J Neurophysiol. 2013 Sep;110(6):1415-25
– reference: 23010138 - Neurobiol Learn Mem. 2012 Oct;98(3):291-302
– reference: 6512687 - J Physiol. 1984 Dec;357:109-25
– reference: 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
– reference: 23481866 - Gait Posture. 2013 Sep;38(4):570-5
– reference: 19091930 - J Neurophysiol. 2009 Mar;101(3):1235-57
– reference: 23884944 - J Neurosci. 2013 Jul 24;33(30):12384-94
– reference: 25648493 - Gait Posture. 2015 Feb;41(2):619-23
– reference: 2769353 - J Neurophysiol. 1989 Sep;62(3):680-93
– reference: 11205339 - Philos Trans R Soc Lond B Biol Sci. 2000 Dec 29;355(1404):1755-69
– reference: 24634652 - Front Comput Neurosci. 2014 Mar 05;8:20
– reference: 14653146 - Prog Brain Res. 2004;143:3-12
– reference: 16275056 - Curr Opin Neurobiol. 2005 Dec;15(6):660-6
– reference: 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
– reference: 21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015
– reference: 7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45
– reference: 19369362 - J Neurophysiol. 2009 Jul;102(1):59-68
– reference: 23616763 - Front Comput Neurosci. 2013 Apr 17;7:35
– reference: 23653605 - Front Comput Neurosci. 2013 May 02;7:48
– reference: 22570602 - PLoS Comput Biol. 2012;8(5):e1002434
– reference: 18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8
– reference: 24372591 - Scand J Med Sci Sports. 2015 Feb;25(1):89-97
– reference: 25136312 - Front Hum Neurosci. 2014 Aug 01;8:594
– reference: 21653716 - J Neurophysiol. 2011 Sep;106(3):1363-78
– reference: 14973321 - J Neurophysiol. 2004 Jul;92(1):523-35
– reference: 24618214 - Clin Neurophysiol. 2014 Oct;125(10):2024-35
– reference: 18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71
– reference: 15342720 - J Neurophysiol. 2005 Jan;93(1):609-13
– reference: 23637655 - Front Hum Neurosci. 2013 Apr 26;7:157
– reference: 14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69
– reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91
– reference: 19828310 - Curr Opin Neurobiol. 2009 Dec;19(6):601-7
– reference: 2675307 - Science. 1989 Sep 15;245(4923):1209-10
– reference: 23363632 - Proc Biol Sci. 2013 Mar 22;280(1755):20122863
– reference: 25164754 - Nature. 2014 Aug 28;512(7515):423-6
– reference: 18721863 - Neuroscience. 2008 Oct 2;156(2):390-402
– reference: 20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64
– reference: 19394023 - J Biomech. 2009 Jun 19;42(9):1282-7
– reference: 20007501 - J Neurophysiol. 2010 Feb;103(2):844-57
– reference: 498401 - Can J Appl Sport Sci. 1979 Mar;4(1):46-55
– reference: 25856485 - Neuron. 2015 Apr 8;86(1):38-54
– reference: 7569982 - Science. 1995 Oct 13;270(5234):305-7
– reference: 18329289 - Neuroimage. 2008 May 1;40(4):1748-54
– reference: 22394689 - Neural Netw. 2012 Aug;32:96-108
– reference: 23912947 - Nat Neurosci. 2013 Sep;16(9):1340-7
– reference: 21660290 - Front Hum Neurosci. 2011 May 27;5:50
– reference: 20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74
– reference: 19196513 - Gait Posture. 2009 Jun;29(4):565-70
– reference: 8551360 - J Neurosci. 1996 Jan 15;16(2):785-807
– reference: 23259944 - Neuron. 2012 Dec 20;76(6):1071-7
– reference: 25297107 - J Neurosci. 2014 Oct 8;34(41):13811-8
– reference: 10978706 - Brain Res Cogn Brain Res. 2000 Sep;10(1-2):177-83
– reference: 10472040 - J Vestib Res. 1999;9(4):277-86
– reference: 23296478 - Adv Exp Med Biol. 2013;782:1-21
– reference: 16151047 - Neuroscientist. 2005 Oct;11(5):471-83
– reference: 17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56
– reference: 10195201 - Nat Neurosci. 1999 Feb;2(2):162-7
– reference: 15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82
– reference: 24904375 - Front Hum Neurosci. 2014 May 23;8:335
– reference: 25892304 - Neuron. 2015 May 6;86(3):800-12
– reference: 22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50
– reference: 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34
– reference: 8453047 - Neuroreport. 1993 Feb;4(2):125-7
– reference: 24963035 - Physiol Rep. 2014 Jun 24;2(6):null
– reference: 10653025 - Neurosci Lett. 2000 Jan 14;278(3):189-93
– reference: 23100136 - J Neurophysiol. 2013 Jan;109(2):591-602
– reference: 22773783 - J Neurophysiol. 2012 Oct;108(7):1895-906
– reference: 16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37
– reference: 23882199 - Front Hum Neurosci. 2013 Jul 16;7:173
– reference: 2924840 - Exp Brain Res. 1989;74(1):3-10
– reference: 23803327 - J Neurophysiol. 2013 Sep;110(6):1301-10
– reference: 15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81
– reference: 15519333 - J Biomech. 2005 Jan;38(1):1-8
– reference: 8517678 - Ann Neurol. 1993 Jul;34(1):33-7
– reference: 17055728 - Gait Posture. 2006 Dec;24(4):397-405
– reference: 23474055 - Clin Neurophysiol. 2013 Jul;124(7):1390-7
– reference: 4533528 - Res Q. 1973 Mar;44(1):109-12
– reference: 22895830 - Biol Cybern. 2012 Dec;106(11-12):757-65
– reference: 22096202 - Science. 2011 Nov 18;334(6058):997-9
– reference: 14713663 - J Mot Behav. 1984 Jun;16(2):135-70
– reference: 20107059 - J Neurosci. 2010 Jan 27;30(4):1322-36
– reference: 21511705 - J Neurophysiol. 2011 Jul;106(1):202-10
– reference: 10200386 - Gait Posture. 1998 May 1;7(3):207-213
– reference: 21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40
– reference: 24431402 - J Neurophysiol. 2014 Apr;111(8):1686-702
– reference: 8122113 - Science. 1994 Mar 4;263(5151):1287-9
– reference: 19879583 - J Biomech. 2010 Feb 10;43(3):412-9
– reference: 20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98
SSID ssj0007502
Score 2.525357
Snippet How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3359
SubjectTerms Adult
Biomechanical Phenomena
Control of Movement
Dancing - physiology
Generalization (Psychology)
Humans
Postural Balance
Walking - physiology
Title Long-term training modifies the modular structure and organization of walking balance control
URI https://www.ncbi.nlm.nih.gov/pubmed/26467521
https://www.proquest.com/docview/1752788932
https://pubmed.ncbi.nlm.nih.gov/PMC4868379
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCgOVRXjIS2ktJaZw4j-MKgSqoEIhdaS8ospMJdLU4SFu0gl_PjOO4zj6khUuUuHk0_b6Ox57xN4y9TLVoYqHbSJDubAoJRIWsUxzzZKBaEghRNtviY7Y8TN8fyaPJ5CxcXbLR8_rPpetK_gdVbENcaZXsPyDrb4oNuI_44hYRxu21MF515ltEttVXeqDKNut2TboNiD8e2CzTXiR2CBV0wfJL8hXP1AnNl880ZTnWPnv9CrfVCmDa-ZDRhPwXNVRbC1IkiUhUqqVPozklQsxWcz9Z4MqprMCo2XIezj_EMsjlCNYDLFwxFnBmFNvQUSpGdrZfLeoIFVrNJHGq4OAO--omF627JLXYY0N659Lm5cltNzaE7s_1bj7n0I52pKiOTWUvr-jyG-ymyHMb3__weSszj27UVmYeX20QZ5Xi9ejpY2fmwgjlfKJt4Lkc3GG3HXZ8v-fPXTYBc4_t7hu16X785nv8kwdzl331lOIDpfhAKY6U4o5S3FOKI6V4SCnetdxRijtKcUep--zw3duDN8vIVeCI6lQmm0hAqTKRQ6ljCq9mTbtYKB0nIBqIAQrsHIs6y4UqKZzXtLXMRYs7WQpS1XWePGA7pjPwiHGl0FFfgGhbUKmGrNClILHDRjRJVgo5Za-Gn7KqnTw9vehJdSlwU7bnT__Z67JcdeKLAZcKLSeFw5SB7tdphY6zyAv018WUPexx8rfCYQKOpEU8ZfkIQX8CqbKPPzHr71adPS2yIsnLx9f9gk_Yre3f6inbQfjgGTq6G_3ckvIvLYarjg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+training+modifies+the+modular+structure+and+organization+of+walking+balance+control&rft.jtitle=Journal+of+neurophysiology&rft.au=Sawers%2C+Andrew&rft.au=Allen%2C+Jessica+L.&rft.au=Ting%2C+Lena+H.&rft.date=2015-12-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=114&rft.issue=6&rft.spage=3359&rft.epage=3373&rft_id=info:doi/10.1152%2Fjn.00758.2015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00758_2015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon