Direct and selective hydrogenolysis of arenols and aryl methyl ethers
For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon–oxygen bonds still remains a great challenge. Herein we re...
Saved in:
Published in | Nature communications Vol. 6; no. 1; p. 6296 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.02.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon–oxygen bonds still remains a great challenge. Herein we report direct and selective hydrogenolysis of sp
2
C–OH bonds in substituted phenols and naphthols catalysed by hydroxycyclopentadienyl iridium complexes. The corresponding arenes were obtained in up to 99% yields, indicating the possible production of arenes from lignin-derived bio-oils. Furthermore, the same catalysts were applied to the unprecedented selective hydrogenolysis of the sp
3
C–O bonds in aryl methyl ethers. Thus, the hydrodeoxygenation of vanillylacetone, a lignin model compound, afforded alkylbenzenes as the major products via triple deoxygenation.
Deoxygenating phenols is a difficult task, made more complex by the tendency of hydrogenation techniques to also reduce the aromatic ring. Here, the authors show an iridium catalyst that can selectively cleave the C–O bond in phenols and related compounds, as well as cleaving aryl methyl ethers. |
---|---|
AbstractList | For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon-oxygen bonds still remains a great challenge. Herein we report direct and selective hydrogenolysis of sp(2) C-OH bonds in substituted phenols and naphthols catalysed by hydroxycyclopentadienyl iridium complexes. The corresponding arenes were obtained in up to 99% yields, indicating the possible production of arenes from lignin-derived bio-oils. Furthermore, the same catalysts were applied to the unprecedented selective hydrogenolysis of the sp(3) C-O bonds in aryl methyl ethers. Thus, the hydrodeoxygenation of vanillylacetone, a lignin model compound, afforded alkylbenzenes as the major products via triple deoxygenation.For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon-oxygen bonds still remains a great challenge. Herein we report direct and selective hydrogenolysis of sp(2) C-OH bonds in substituted phenols and naphthols catalysed by hydroxycyclopentadienyl iridium complexes. The corresponding arenes were obtained in up to 99% yields, indicating the possible production of arenes from lignin-derived bio-oils. Furthermore, the same catalysts were applied to the unprecedented selective hydrogenolysis of the sp(3) C-O bonds in aryl methyl ethers. Thus, the hydrodeoxygenation of vanillylacetone, a lignin model compound, afforded alkylbenzenes as the major products via triple deoxygenation. For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon–oxygen bonds still remains a great challenge. Herein we report direct and selective hydrogenolysis of sp 2 C–OH bonds in substituted phenols and naphthols catalysed by hydroxycyclopentadienyl iridium complexes. The corresponding arenes were obtained in up to 99% yields, indicating the possible production of arenes from lignin-derived bio-oils. Furthermore, the same catalysts were applied to the unprecedented selective hydrogenolysis of the sp 3 C–O bonds in aryl methyl ethers. Thus, the hydrodeoxygenation of vanillylacetone, a lignin model compound, afforded alkylbenzenes as the major products via triple deoxygenation. Deoxygenating phenols is a difficult task, made more complex by the tendency of hydrogenation techniques to also reduce the aromatic ring. Here, the authors show an iridium catalyst that can selectively cleave the C–O bond in phenols and related compounds, as well as cleaving aryl methyl ethers. For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon-oxygen bonds still remains a great challenge. Herein we report direct and selective hydrogenolysis of sp(2) C-OH bonds in substituted phenols and naphthols catalysed by hydroxycyclopentadienyl iridium complexes. The corresponding arenes were obtained in up to 99% yields, indicating the possible production of arenes from lignin-derived bio-oils. Furthermore, the same catalysts were applied to the unprecedented selective hydrogenolysis of the sp(3) C-O bonds in aryl methyl ethers. Thus, the hydrodeoxygenation of vanillylacetone, a lignin model compound, afforded alkylbenzenes as the major products via triple deoxygenation. For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon-oxygen bonds still remains a great challenge. Herein we report direct and selective hydrogenolysis of sp2 C-OH bonds in substituted phenols and naphthols catalysed by hydroxycyclopentadienyl iridium complexes. The corresponding arenes were obtained in up to 99% yields, indicating the possible production of arenes from lignin-derived bio-oils. Furthermore, the same catalysts were applied to the unprecedented selective hydrogenolysis of the sp3 C-O bonds in aryl methyl ethers. Thus, the hydrodeoxygenation of vanillylacetone, a lignin model compound, afforded alkylbenzenes as the major products via triple deoxygenation. |
ArticleNumber | 6296 |
Author | Kusumoto, Shuhei Nozaki, Kyoko |
Author_xml | – sequence: 1 givenname: Shuhei surname: Kusumoto fullname: Kusumoto, Shuhei organization: Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo – sequence: 2 givenname: Kyoko surname: Nozaki fullname: Nozaki, Kyoko email: nozaki@chembio.t.u-tokyo.ac.jp organization: Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25704229$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1Lw0AQhhep2Fp78QdIwIso0f1KNjlKrR9Q8KD3sEkm7ZZkt-4mhf57t7Zqqc5hPuCZ4Z33FPW00YDQOcG3BLPkThemaZygaXyEBhRzEhJBWW-v76ORcwvsg6Uk4fwE9WkkMKc0HaDJg7JQtIHUZeCg9q1aQTBfl9bMQJt67ZQLTBVIu5ncFyftug4aaOe--AzWnaHjStYORrs6RG-Pk_fxczh9fXoZ30_DgkesDb1IEdOqxFhWnOQJobhkleBeCo5FCgRonkNUkorGJE0YiRKIGI9pnJcAbIiutleX1nx04NqsUa6AupYaTOcyEkcJp5gQ4dHLA3RhOqu9tg3l3aJcYE9d7Kgub6DMllY1_rns2x4PXG-BwhrnLFQ_CMHZxv7s134P4wO4UK1sldGtlar-f-Vmu-L8XT0DuyfzL_0JOcqV2A |
CitedBy_id | crossref_primary_10_1002_anie_201503620 crossref_primary_10_1021_acs_organomet_4c00462 crossref_primary_10_1246_cl_200037 crossref_primary_10_1021_jacs_1c09797 crossref_primary_10_1246_cl_150807 crossref_primary_10_1002_ange_201809333 crossref_primary_10_1002_anie_201702940 crossref_primary_10_3390_catal12060664 crossref_primary_10_1021_acsomega_2c04314 crossref_primary_10_1021_acs_organomet_3c00135 crossref_primary_10_1021_acs_organomet_6b00602 crossref_primary_10_1002_anie_201509133 crossref_primary_10_1016_j_cattod_2017_05_050 crossref_primary_10_1021_jacs_3c09290 crossref_primary_10_1038_ncomms16104 crossref_primary_10_1039_C9CC07710C crossref_primary_10_1038_s41929_021_00598_x crossref_primary_10_1002_slct_201601107 crossref_primary_10_1021_acscatal_1c03980 crossref_primary_10_1002_ange_201702940 crossref_primary_10_1016_j_cej_2023_142225 crossref_primary_10_1021_acs_organomet_7b00245 crossref_primary_10_1039_C7CC08387D crossref_primary_10_1038_s41428_023_00867_5 crossref_primary_10_1002_chem_202301758 crossref_primary_10_1021_acscatal_8b02589 crossref_primary_10_1021_acs_organomet_3c00266 crossref_primary_10_1021_acs_chemrev_0c00088 crossref_primary_10_1039_C8GC02659A crossref_primary_10_1021_acscatal_9b02460 crossref_primary_10_1021_acscatal_1c03539 crossref_primary_10_1039_D0DT02505D crossref_primary_10_1039_D2GC01714H crossref_primary_10_1002_ange_201902216 crossref_primary_10_1016_j_fuproc_2024_108045 crossref_primary_10_1016_j_biortech_2018_08_125 crossref_primary_10_1002_chem_201902668 crossref_primary_10_1016_j_apcatb_2021_120499 crossref_primary_10_1002_cjoc_201900506 crossref_primary_10_1039_D3CS00570D crossref_primary_10_1021_acscatal_6b00239 crossref_primary_10_1021_acs_organomet_2c00085 crossref_primary_10_1246_cl_170239 crossref_primary_10_1021_acs_organomet_8b00285 crossref_primary_10_1039_C6CC00537C crossref_primary_10_1002_anie_202011322 crossref_primary_10_1021_acscatal_7b01316 crossref_primary_10_1016_j_biombioe_2019_04_014 crossref_primary_10_1021_acs_inorgchem_2c03557 crossref_primary_10_1016_j_isci_2019_100814 crossref_primary_10_1039_D1CC00528F crossref_primary_10_1295_kobunshi_73_5_201 crossref_primary_10_1021_acs_jpca_7b00602 crossref_primary_10_1021_jacs_8b13829 crossref_primary_10_1039_D2QO00483F crossref_primary_10_1039_C5QO00395D crossref_primary_10_1002_anie_201902216 crossref_primary_10_1002_anie_201809333 crossref_primary_10_1002_chem_201803451 crossref_primary_10_1007_s00044_024_03331_y crossref_primary_10_1021_acscatal_4c06061 crossref_primary_10_1021_jacs_1c03038 crossref_primary_10_1039_C8GC02073F crossref_primary_10_1002_ange_201503620 crossref_primary_10_1039_D0CC03695A crossref_primary_10_1002_ange_201508513 crossref_primary_10_1021_acscatal_8b02009 crossref_primary_10_1038_srep46172 crossref_primary_10_5059_yukigoseikyokaishi_80_459 crossref_primary_10_1002_ange_202011322 crossref_primary_10_1039_C7CC05487D crossref_primary_10_1002_cjoc_201700664 crossref_primary_10_1021_acsenergylett_0c00411 crossref_primary_10_1039_D4GC05498A crossref_primary_10_1016_j_ijbiomac_2024_135169 crossref_primary_10_1039_C8GC04017F crossref_primary_10_1021_acs_joc_2c00221 crossref_primary_10_1021_jacs_3c09061 crossref_primary_10_1021_acs_joc_4c00437 crossref_primary_10_1038_s41467_023_38305_y crossref_primary_10_1002_ange_201509133 crossref_primary_10_1007_s12649_019_00647_4 crossref_primary_10_1002_anie_201508513 crossref_primary_10_1039_D4CC01711K crossref_primary_10_1039_C5OB02212F crossref_primary_10_1039_C5QO00229J crossref_primary_10_20517_microstructures_2024_49 |
Cites_doi | 10.1021/ja106943q 10.1021/om00127a027 10.1246/cl.2006.780 10.1021/ja9738889 10.1126/science.1218930 10.1016/S0926-860X(99)00555-4 10.1002/anie.200900404 10.1039/C3EE43081B 10.1039/c3sc22256j 10.1002/bbb.1422 10.1021/ja311940s 10.1021/ja409672w 10.1246/bcsj.57.2557 10.1039/c0cc05169a 10.1002/bbb.43 10.1002/ejoc.201300657 10.1021/ja906930u 10.1002/0470053488 10.1002/anie.201305342 10.1126/science.1200437 10.1002/9783527619191 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 Copyright Nature Publishing Group Feb 2015 |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: Copyright Nature Publishing Group Feb 2015 |
DBID | AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 |
DOI | 10.1038/ncomms7296 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | 3601443901 25704229 10_1038_ncomms7296 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c453t-296762fd00af41b8120d3f744220679e1e2bbe5d1f261983158e534626bdee3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Fri Jul 11 00:41:25 EDT 2025 Wed Aug 13 04:08:51 EDT 2025 Thu Apr 03 07:08:53 EDT 2025 Tue Jul 01 02:30:52 EDT 2025 Thu Apr 24 23:07:15 EDT 2025 Fri Feb 21 02:39:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-296762fd00af41b8120d3f744220679e1e2bbe5d1f261983158e534626bdee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms7296 |
PMID | 25704229 |
PQID | 1657292470 |
PQPubID | 546298 |
ParticipantIDs | proquest_miscellaneous_1658420117 proquest_journals_1657292470 pubmed_primary_25704229 crossref_primary_10_1038_ncomms7296 crossref_citationtrail_10_1038_ncomms7296 springer_journals_10_1038_ncomms7296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150223 |
PublicationDateYYYYMMDD | 2015-02-23 |
PublicationDate_xml | – month: 2 year: 2015 text: 20150223 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | NishimuraSOhbuchiSIkenoKOkadaYHydrogenation and hydrogenolysis. XVII. The selectivities of platinum group metals in catalytic hydrogenation of 2-naphthol and tetrahydro-2-naphtholsBull. Chem. Soc. Jpn198457255725641:CAS:528:DyaL2cXlvFSqs7s%3D10.1246/bcsj.57.2557 TobisuMYamakawaKShimasakiTChataniNNickel-catalyzed reductive cleavage of aryl–oxygen bonds in alkoxy- and pivaloxyarenes using hydrosilanes as a mild reducing agentChem. Commun.201147294629481:CAS:528:DC%2BC3MXit1ejtrw%3D10.1039/c0cc05169a LaskarDDYangBWangHLeeJPathways for biomass-derived lignin to hydrocarbon fuelsBiofuels Bioprod. Bioref.201376026261:CAS:528:DC%2BC3sXhtFCkur7M10.1002/bbb.1422 ZhaoCKouYLemonidouAALiXBLercherJAHighly selective catalytic conversion of phenolic bio-oil to alkanesAngew. Chem. Int. Ed.200948398739901:CAS:528:DC%2BD1MXmtVKmsL8%3D10.1002/anie.200900404 SergeevAGHartwigJFSelective, nickel-catalyzed hydrogenolysis of aryl ethersScience20113324394431:CAS:528:DC%2BC3MXkvVamu7k%3D2011Sci...332..439S10.1126/science.1200437 KusumotoSAkiyamaMNozakiKAcceptorless dehydrogenation of C–C single bonds adjacent to functional groups by metal-ligand cooperationJ. Am. Chem. Soc.201313518726187291:CAS:528:DC%2BC3sXhvFegs73N10.1021/ja409672w FurimskyECatalytic hydrodeoxygenationAppl. Catal. A General20001991471901:CAS:528:DC%2BD3cXivVCisbg%3D10.1016/S0926-860X(99)00555-4 van der BoomMELiouS-YDavidYBShimonLJWMilsteinDAlkyl− and aryl−oxygen bond activation in solution by rhodium(I), palladium(II), and nickel(II). transition-metal-based selectivityJ. Am. Chem. Soc.1998120653165411:CAS:528:DyaK1cXktlWgsr8%3D10.1021/ja9738889 ChoiJCleavage of sp3 C–O bonds via oxidative addition of C–H bondsJ. Am. Chem. Soc.200913115627156291:CAS:528:DC%2BD1MXht1Kjtb7J10.1021/ja906930u BlumYCzarkieDRahaminYShvoY(Cyclopentadienone)rutheniuim carbonyl complexes—a new class of homogeneous hydrogenation catalystsOrganometallics19854145914611:CAS:528:DyaL2MXksFCht78%3D10.1021/om00127a027 MineEHiyoshiNSatoOChandrashekharRVShiraiMSelective hydrogenation of naphthols to tetralones over supported palladium catalysts in supercritical carbon dioxide solventChem. Lett.2006357807811:CAS:528:DC%2BD28XnsVyhsrk%3D10.1246/cl.2006.780 TuckCOPérezEHorváthITSheldonRAPoliakoffMValorization of biomass: deriving more value from wasteScience20123376956991:CAS:528:DC%2BC38XhtFCktb%2FF2012Sci...337..695T10.1126/science.1218930 SaidiMUpgrading of lignin-derived bio-oils by catalytic hydrodeoxygenationEnergy Environ. Sci.201471031291:CAS:528:DC%2BC3sXhvFKhtrvN10.1039/C3EE43081B RenYYanMWangJZhangZCYaoKSelective reductive cleavage of inert aryl C–O bonds by an iron catalystAngew. Chem. Int. Ed.20135212674126781:CAS:528:DC%2BC3sXhs1WmsbnN10.1002/anie.201305342 Weissermel K., Arpe H. J. Eds Industrial Organic Chemistry 4th edn Wiley VCH (2003). FedorovAToutovAASwisherNAGrubbsRHLewis-base silane activation: from reductive cleavage of aryl ethers to selective ortho-silylationChem. Sci.20134164016451:CAS:528:DC%2BC3sXjtlyms7w%3D10.1039/c3sc22256j Álvarez-BercedoPMartinRNi-catalyzed reduction of inert C–O bonds: a new strategy for using aryl ethers as easily removable directing groupsJ. Am. Chem. Soc.2010132173521735310.1021/ja106943q CornellaJGómez-BengoaEMartinRCombined experimental and theoretical study on the reductive cleavage of inert C–O bonds with silanes: ruling out a classical Ni(0)/Ni(II) catalytic couple and evidence for Ni(I) intermediatesJ. Am. Chem. Soc.2013135199720091:CAS:528:DC%2BC3sXntVeksw%3D%3D10.1021/ja311940s Wuts, P. G. M. & Greene, T. W. in Greene's Protective Groups in Organic Synthesis 3rd edn 367–430Wiley (2006). van HaverenJScottELSandersJBulk chemicals from biomassBiofuels Bioprod. Bioref.2008241571:CAS:528:DC%2BD1cXisVarur0%3D10.1002/bbb.43 HerrmannJMKönigBReductive deoxygenation of alcohols: catalytic methods beyond Barton–McCombie deoxygenationEur. J. Org. Chem.20132013701770271:CAS:528:DC%2BC3sXhtFOrsL3F10.1002/ejoc.201300657 Y Blum (BFncomms7296_CR15) 1985; 4 M Saidi (BFncomms7296_CR5) 2014; 7 AG Sergeev (BFncomms7296_CR9) 2011; 332 E Mine (BFncomms7296_CR17) 2006; 35 BFncomms7296_CR1 ME van der Boom (BFncomms7296_CR20) 1998; 120 J Cornella (BFncomms7296_CR12) 2013; 135 P Álvarez-Bercedo (BFncomms7296_CR10) 2010; 132 S Kusumoto (BFncomms7296_CR16) 2013; 135 DD Laskar (BFncomms7296_CR6) 2013; 7 E Furimsky (BFncomms7296_CR4) 2000; 199 CO Tuck (BFncomms7296_CR2) 2012; 337 S Nishimura (BFncomms7296_CR18) 1984; 57 M Tobisu (BFncomms7296_CR11) 2011; 47 Y Ren (BFncomms7296_CR13) 2013; 52 J van Haveren (BFncomms7296_CR3) 2008; 2 J Choi (BFncomms7296_CR21) 2009; 131 JM Herrmann (BFncomms7296_CR8) 2013; 2013 BFncomms7296_CR19 C Zhao (BFncomms7296_CR7) 2009; 48 A Fedorov (BFncomms7296_CR14) 2013; 4 |
References_xml | – reference: ChoiJCleavage of sp3 C–O bonds via oxidative addition of C–H bondsJ. Am. Chem. Soc.200913115627156291:CAS:528:DC%2BD1MXht1Kjtb7J10.1021/ja906930u – reference: SergeevAGHartwigJFSelective, nickel-catalyzed hydrogenolysis of aryl ethersScience20113324394431:CAS:528:DC%2BC3MXkvVamu7k%3D2011Sci...332..439S10.1126/science.1200437 – reference: BlumYCzarkieDRahaminYShvoY(Cyclopentadienone)rutheniuim carbonyl complexes—a new class of homogeneous hydrogenation catalystsOrganometallics19854145914611:CAS:528:DyaL2MXksFCht78%3D10.1021/om00127a027 – reference: van der BoomMELiouS-YDavidYBShimonLJWMilsteinDAlkyl− and aryl−oxygen bond activation in solution by rhodium(I), palladium(II), and nickel(II). transition-metal-based selectivityJ. Am. Chem. Soc.1998120653165411:CAS:528:DyaK1cXktlWgsr8%3D10.1021/ja9738889 – reference: Weissermel K., Arpe H. J. Eds Industrial Organic Chemistry 4th edn Wiley VCH (2003). – reference: CornellaJGómez-BengoaEMartinRCombined experimental and theoretical study on the reductive cleavage of inert C–O bonds with silanes: ruling out a classical Ni(0)/Ni(II) catalytic couple and evidence for Ni(I) intermediatesJ. Am. Chem. Soc.2013135199720091:CAS:528:DC%2BC3sXntVeksw%3D%3D10.1021/ja311940s – reference: FedorovAToutovAASwisherNAGrubbsRHLewis-base silane activation: from reductive cleavage of aryl ethers to selective ortho-silylationChem. Sci.20134164016451:CAS:528:DC%2BC3sXjtlyms7w%3D10.1039/c3sc22256j – reference: LaskarDDYangBWangHLeeJPathways for biomass-derived lignin to hydrocarbon fuelsBiofuels Bioprod. Bioref.201376026261:CAS:528:DC%2BC3sXhtFCkur7M10.1002/bbb.1422 – reference: HerrmannJMKönigBReductive deoxygenation of alcohols: catalytic methods beyond Barton–McCombie deoxygenationEur. J. Org. Chem.20132013701770271:CAS:528:DC%2BC3sXhtFOrsL3F10.1002/ejoc.201300657 – reference: TobisuMYamakawaKShimasakiTChataniNNickel-catalyzed reductive cleavage of aryl–oxygen bonds in alkoxy- and pivaloxyarenes using hydrosilanes as a mild reducing agentChem. Commun.201147294629481:CAS:528:DC%2BC3MXit1ejtrw%3D10.1039/c0cc05169a – reference: MineEHiyoshiNSatoOChandrashekharRVShiraiMSelective hydrogenation of naphthols to tetralones over supported palladium catalysts in supercritical carbon dioxide solventChem. Lett.2006357807811:CAS:528:DC%2BD28XnsVyhsrk%3D10.1246/cl.2006.780 – reference: Álvarez-BercedoPMartinRNi-catalyzed reduction of inert C–O bonds: a new strategy for using aryl ethers as easily removable directing groupsJ. Am. Chem. Soc.2010132173521735310.1021/ja106943q – reference: TuckCOPérezEHorváthITSheldonRAPoliakoffMValorization of biomass: deriving more value from wasteScience20123376956991:CAS:528:DC%2BC38XhtFCktb%2FF2012Sci...337..695T10.1126/science.1218930 – reference: Wuts, P. G. M. & Greene, T. W. in Greene's Protective Groups in Organic Synthesis 3rd edn 367–430Wiley (2006). – reference: NishimuraSOhbuchiSIkenoKOkadaYHydrogenation and hydrogenolysis. XVII. The selectivities of platinum group metals in catalytic hydrogenation of 2-naphthol and tetrahydro-2-naphtholsBull. Chem. Soc. Jpn198457255725641:CAS:528:DyaL2cXlvFSqs7s%3D10.1246/bcsj.57.2557 – reference: RenYYanMWangJZhangZCYaoKSelective reductive cleavage of inert aryl C–O bonds by an iron catalystAngew. Chem. Int. Ed.20135212674126781:CAS:528:DC%2BC3sXhs1WmsbnN10.1002/anie.201305342 – reference: KusumotoSAkiyamaMNozakiKAcceptorless dehydrogenation of C–C single bonds adjacent to functional groups by metal-ligand cooperationJ. Am. Chem. Soc.201313518726187291:CAS:528:DC%2BC3sXhvFegs73N10.1021/ja409672w – reference: ZhaoCKouYLemonidouAALiXBLercherJAHighly selective catalytic conversion of phenolic bio-oil to alkanesAngew. Chem. Int. Ed.200948398739901:CAS:528:DC%2BD1MXmtVKmsL8%3D10.1002/anie.200900404 – reference: van HaverenJScottELSandersJBulk chemicals from biomassBiofuels Bioprod. Bioref.2008241571:CAS:528:DC%2BD1cXisVarur0%3D10.1002/bbb.43 – reference: FurimskyECatalytic hydrodeoxygenationAppl. Catal. A General20001991471901:CAS:528:DC%2BD3cXivVCisbg%3D10.1016/S0926-860X(99)00555-4 – reference: SaidiMUpgrading of lignin-derived bio-oils by catalytic hydrodeoxygenationEnergy Environ. Sci.201471031291:CAS:528:DC%2BC3sXhvFKhtrvN10.1039/C3EE43081B – volume: 132 start-page: 17352 year: 2010 ident: BFncomms7296_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106943q – volume: 4 start-page: 1459 year: 1985 ident: BFncomms7296_CR15 publication-title: Organometallics doi: 10.1021/om00127a027 – volume: 35 start-page: 780 year: 2006 ident: BFncomms7296_CR17 publication-title: Chem. Lett. doi: 10.1246/cl.2006.780 – volume: 120 start-page: 6531 year: 1998 ident: BFncomms7296_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9738889 – volume: 337 start-page: 695 year: 2012 ident: BFncomms7296_CR2 publication-title: Science doi: 10.1126/science.1218930 – volume: 199 start-page: 147 year: 2000 ident: BFncomms7296_CR4 publication-title: Appl. Catal. A General doi: 10.1016/S0926-860X(99)00555-4 – volume: 48 start-page: 3987 year: 2009 ident: BFncomms7296_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900404 – volume: 7 start-page: 103 year: 2014 ident: BFncomms7296_CR5 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43081B – volume: 4 start-page: 1640 year: 2013 ident: BFncomms7296_CR14 publication-title: Chem. Sci. doi: 10.1039/c3sc22256j – volume: 7 start-page: 602 year: 2013 ident: BFncomms7296_CR6 publication-title: Biofuels Bioprod. Bioref. doi: 10.1002/bbb.1422 – volume: 135 start-page: 1997 year: 2013 ident: BFncomms7296_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311940s – volume: 135 start-page: 18726 year: 2013 ident: BFncomms7296_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409672w – volume: 57 start-page: 2557 year: 1984 ident: BFncomms7296_CR18 publication-title: Bull. Chem. Soc. Jpn doi: 10.1246/bcsj.57.2557 – volume: 47 start-page: 2946 year: 2011 ident: BFncomms7296_CR11 publication-title: Chem. Commun. doi: 10.1039/c0cc05169a – volume: 2 start-page: 41 year: 2008 ident: BFncomms7296_CR3 publication-title: Biofuels Bioprod. Bioref. doi: 10.1002/bbb.43 – volume: 2013 start-page: 7017 year: 2013 ident: BFncomms7296_CR8 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201300657 – volume: 131 start-page: 15627 year: 2009 ident: BFncomms7296_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906930u – ident: BFncomms7296_CR19 doi: 10.1002/0470053488 – volume: 52 start-page: 12674 year: 2013 ident: BFncomms7296_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305342 – volume: 332 start-page: 439 year: 2011 ident: BFncomms7296_CR9 publication-title: Science doi: 10.1126/science.1200437 – ident: BFncomms7296_CR1 doi: 10.1002/9783527619191 |
SSID | ssj0000391844 |
Score | 2.4453225 |
Snippet | For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6296 |
SubjectTerms | 639/638/403/934 639/638/77 Aromatic compounds Ethers Humanities and Social Sciences Iridium multidisciplinary Phenols Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BERIL4k2gICO6MESNY-fRCSFEqZBgAaRuURzbYihJadqh_56z8yioiClDTrbjc-7OPt_3AfRSLxKRZAOXZly4XLHMTYUK3Uj5XPqpxCDEFAo_v4Sjd_40Dsb1gVtZX6tsbKI11LLIzBl5n4YBxoE-j7zb6ZdrWKNMdrWm0NiELYqexlzpioeP7RmLQT-POW9QSVncz7HJzxIbCn_7obXgci0xav3NcA9260CR3FWa3YcNlR_AdkUduTyEh8pWkTSXpLRcNmi2yMdSzgoDu2qBRkihian1KiallUtnywkxlNH4sHW-5RG8Dh_e7kduTYngZjxgcxcHjtZLS89LNacCvbMnmY449w0M-0BR5QuhAkm12RnFjAaxChjHXYuQSrFj6ORFrk6BaC38SFMpZYAOPuZChj5GWqnGDQT6NerATTM9SVajhRvSiklis9YsTlZT6cB1KzutMDL-lOo2s5zU_0mZrLTqwFX7Gle4SVukuSoWVibmJk6JHDiptNN2Yzj48NsHDvQadf1ofG0MZ_-P4Rx2sJ-qYp11oTOfLdQFxhxzcWkX1jeG19fP priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BKyQWxJtAQUZ0YYiIY-fRsUKtqkqwFKRuURzbYigJatqh_56z86CoDExR5Ev8zN13se87gH7qRSKSbODSjAuXK5a5qVChGymfSz-VCEJMoPDLazh559N5MK9pcsr6WGVFaWnVdHM67CnHu88SkWC4D11D0Y5rujscTmfT9o-K4TqPOW84SFm89dBvq7MDJXe2Qa11GR_DUQ0LybBqyAnsqfwUDqpEkZszGFWaiaDbT0qbuQaVFPnYyGVhSFYtrQgpNDGRXcWitHLpcrMgJkE0XmxUb3kOs_Ho7Xni1gkQ3Aw7uHKx4airtPS8VHMq0BZ7kumIc9-Qrg8UVb4QKpBUGz8oZjSIVcA4-ihCKsUuoJMXuboCorXwI02llAGa85gLGfqIq1KN7gJaMerAYzM8SVZzg5sUFYvE7lGzOPkZSgceWtmvihHjT6leM8pJ_VWUCQ0DLPN55Dlw3xbjejabFGmuirWViblBJZEDl9XstNWYjHvY94ED_Wa6tl6-04br_4ndwCHWV8Wpsx50Vsu1ukWksRJ39RL7Bu5F1Xw priority: 102 providerName: Springer Nature |
Title | Direct and selective hydrogenolysis of arenols and aryl methyl ethers |
URI | https://link.springer.com/article/10.1038/ncomms7296 https://www.ncbi.nlm.nih.gov/pubmed/25704229 https://www.proquest.com/docview/1657292470 https://www.proquest.com/docview/1658420117 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58IHgR38ZHiejFQzSb3WTTg0gtrVJQxAf0FrLdXTzURJsW7L93dpNUpR68ZCE7yW5mNvNgmPkATlOfCy5p0yMDJjym6MBLhYo8rgImg1SiE2IKhe_uo9sX1uuH_QWo8TsrBhZ_hnYGT-plNDz__Jhe4Q9_WZaMxxcZyuatQC8xWoRltEjcIBncVW6-1ci0iYGMSTAHPiMeEtC6U-mvx3_bpjmHcy5Zam1Qdx3WKufRbZXS3oAFlW3CSgknOd2CTqm_3DSTbmHxbVCVua9TOcpNK1bbfMTNtWvqv_JhYenS0XToGhhpHGztb7ENT93Oc_vWq2ASvAEL6djDjaNG09L3U82IQIvtS6o5Y4Fpzd5URAVCqFASbaKlmJIwViFlGMkIqRTdgaUsz9QeuFqLgGsipQzR6MdMyChA7yvVGFSgrSMOnNXsSQZVB3EDZDFMbCabxsk3Kx04mdG-l30z_qQ6rLmc1KJPSBTiXMC478DxbBpPvUllpJnKJ5YmZsZ34Q7sltKZLWNw-fDbmw6c1uL68fK5Pez_Y5EDWMWxLGWnh7A0Hk3UETojY9GARd7neI27Nw1YbrV6Tz0crzv3D494tx21GzbMb9gT-QWOeOUj |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xEIIF8SY8jYCBISKxnUcHhBBQynMBJCaiOLbFUBJoilD_Ez-Ss9MUUBEbU4ZYtnM-33325e4D2Em9SESSNVw_48LlimVuKlToRopySVOJIMQkCl_fhK17fvEQPIzAR50LY36rrG2iNdSyyMwd-b4fBogDKY-8w5dX17BGmehqTaFRqcWl6r3jka08OD_B9d2ltHl6d9xy-6wCbsYD1nVpI0QDoKXnpZr7Ah2cJ5mOOKemknlD-YoKoQLpa3O4iJkfxCpgHIG_kEox7HUUxjlDP27y0ptngxsdU2s95ryugcri_Rw_4LnEaYc_vd4QlB0Kw1rv1pyB6T4sJUeVHs3CiMrnYKIiquzNw2llGUmaS1Ja5hw0kuSpJzuFKfJqy5qQQhOTWVa0S9su7fTaxBBU48NmFZcLcPsPolqEsbzI1TIQrQWNtC-lDBBOxFzIkCKuSzUeV9CL-g7s1eJJsn5tckOR0U5sjJzFyZcoHdgetH2pKnL82mqtlnLS35Vl8qVDDmwNXuN-MkGSNFfFm20Tc4OKIgeWqtUZDGMY__DbGw7s1Mv1rfOhOaz8PYdNmGzdXV8lV-c3l6swhWNWufJsDca6nTe1jminKzaskhF4_F-d_gQvBxHO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-MwFH6CIhAXBMMWtjECDnOImtjO0gNCLK3YpkIzg8SJKI5tcShJaYpQ_xk_j-csBdQRN045xPLy_PwWP7_3AezHTiACyVq2m3Bhc8USOxbKtwNFuaSxRCPEJAr_7vrnt_zyzrubgtc6F8Y8q6xlYiGoZZaYO_Km63toB1IeOE1dPYu4Oesc9Z9sgyBlIq01nEbJIldq9ILuW354cYZ7fUBpp_3v9NyuEAbshHtsaNOWj8JAS8eJNXcFKjtHMh1wTk1V85ZyFRVCedLVxtEImeuFymMcnQAhlWLY6zTMBMYnasDMSbt782d8v2Mqr4ec1xVRWdhMcTmPOS7C_6wDJwzbiaBsoes6i7BQGankuOSqJZhS6Q-YLWErR8vQLuUkiVNJ8gJHB0UmeRjJQWZKvhZFTkimickzy3p50S4ejHrEwFXjp8gxzlfg7zcQaxUaaZaqdSBaCxpoV0rpoXERciF9ilZerNF5QZ3qWvCrJk-UVJXKDWBGLyoi5iyM3klpwd64bb-sz_HfVls1laPqjObRO0dZsDv-jafLhEziVGXPRZuQGxspsGCt3J3xMAb_D9fesmC_3q4PnU_MYePrOfyEOeTn6Pqie7UJ8zhkmTjPtqAxHDyrbTR9hmKn4jIC99_L1m9aeRdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+and+selective+hydrogenolysis+of+arenols+and+aryl+methyl+ethers&rft.jtitle=Nature+communications&rft.au=Kusumoto%2C+Shuhei&rft.au=Nozaki%2C+Kyoko&rft.date=2015-02-23&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=6&rft.spage=6296&rft_id=info:doi/10.1038%2Fncomms7296&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |