Role of karyopherin nuclear transport receptors in nuclear transport by nuclear trafficking peptide
Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear or...
Saved in:
Published in | Experimental cell research Vol. 409; no. 1; p. 112893 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear orientation. In the present study, we identified importin subunit β1 (IMB1) and transportin 1 (TNPO1) as cellular proteins underlying the activity of NTP. These karyopherin nuclear transport receptors were identified as candidate molecules by liquid chromatography/mass spectrometry analysis, and downregulation of each protein by small interfering RNA significantly reduced NTP activity (P < 0.01). Biochemical analyses revealed that NTP bound directly to both molecules, and the forced expression of an IMB1 fragment (296–516 aa) or TNPO1 fragment (1–297 aa), which both contain binding sites to NTP, reduced nuclear NTP-green fluorescent protein (GFP) levels when it was added to cell culture medium. NTP is derived from viral protein R (Vpr) of human immunodeficiency virus-1, and Vpr enters the nucleus and exerts pleiotropic functions. Notably, Vpr bound directly to IMB1 and TNPO1, and its function was significantly impaired by the forced expression of the 296–516-aa fragment of IMB1 and 1–297-aa fragment of TNPO1. Interestingly, NTP completely blocked the physical association of Vpr with IMB1 and TNPO1. Although the nuclear localization mechanism of Vpr remains unknown, our data suggest that NTP functions as a novel nuclear localization signal of Vpr. |
---|---|
AbstractList | Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear orientation. In the present study, we identified importin subunit β1 (IMB1) and transportin 1 (TNPO1) as cellular proteins underlying the activity of NTP. These karyopherin nuclear transport receptors were identified as candidate molecules by liquid chromatography/mass spectrometry analysis, and downregulation of each protein by small interfering RNA significantly reduced NTP activity (P < 0.01). Biochemical analyses revealed that NTP bound directly to both molecules, and the forced expression of an IMB1 fragment (296-516 aa) or TNPO1 fragment (1-297 aa), which both contain binding sites to NTP, reduced nuclear NTP-green fluorescent protein (GFP) levels when it was added to cell culture medium. NTP is derived from viral protein R (Vpr) of human immunodeficiency virus-1, and Vpr enters the nucleus and exerts pleiotropic functions. Notably, Vpr bound directly to IMB1 and TNPO1, and its function was significantly impaired by the forced expression of the 296-516-aa fragment of IMB1 and 1-297-aa fragment of TNPO1. Interestingly, NTP completely blocked the physical association of Vpr with IMB1 and TNPO1. Although the nuclear localization mechanism of Vpr remains unknown, our data suggest that NTP functions as a novel nuclear localization signal of Vpr.Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear orientation. In the present study, we identified importin subunit β1 (IMB1) and transportin 1 (TNPO1) as cellular proteins underlying the activity of NTP. These karyopherin nuclear transport receptors were identified as candidate molecules by liquid chromatography/mass spectrometry analysis, and downregulation of each protein by small interfering RNA significantly reduced NTP activity (P < 0.01). Biochemical analyses revealed that NTP bound directly to both molecules, and the forced expression of an IMB1 fragment (296-516 aa) or TNPO1 fragment (1-297 aa), which both contain binding sites to NTP, reduced nuclear NTP-green fluorescent protein (GFP) levels when it was added to cell culture medium. NTP is derived from viral protein R (Vpr) of human immunodeficiency virus-1, and Vpr enters the nucleus and exerts pleiotropic functions. Notably, Vpr bound directly to IMB1 and TNPO1, and its function was significantly impaired by the forced expression of the 296-516-aa fragment of IMB1 and 1-297-aa fragment of TNPO1. Interestingly, NTP completely blocked the physical association of Vpr with IMB1 and TNPO1. Although the nuclear localization mechanism of Vpr remains unknown, our data suggest that NTP functions as a novel nuclear localization signal of Vpr. Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear orientation. In the present study, we identified importin subunit β1 (IMB1) and transportin 1 (TNPO1) as cellular proteins underlying the activity of NTP. These karyopherin nuclear transport receptors were identified as candidate molecules by liquid chromatography/mass spectrometry analysis, and downregulation of each protein by small interfering RNA significantly reduced NTP activity (P < 0.01). Biochemical analyses revealed that NTP bound directly to both molecules, and the forced expression of an IMB1 fragment (296-516 aa) or TNPO1 fragment (1-297 aa), which both contain binding sites to NTP, reduced nuclear NTP-green fluorescent protein (GFP) levels when it was added to cell culture medium. NTP is derived from viral protein R (Vpr) of human immunodeficiency virus-1, and Vpr enters the nucleus and exerts pleiotropic functions. Notably, Vpr bound directly to IMB1 and TNPO1, and its function was significantly impaired by the forced expression of the 296-516-aa fragment of IMB1 and 1-297-aa fragment of TNPO1. Interestingly, NTP completely blocked the physical association of Vpr with IMB1 and TNPO1. Although the nuclear localization mechanism of Vpr remains unknown, our data suggest that NTP functions as a novel nuclear localization signal of Vpr. Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear orientation. In the present study, we identified importin subunit β1 (IMB1) and transportin 1 (TNPO1) as cellular proteins underlying the activity of NTP. These karyopherin nuclear transport receptors were identified as candidate molecules by liquid chromatography/mass spectrometry analysis, and downregulation of each protein by small interfering RNA significantly reduced NTP activity (P < 0.01). Biochemical analyses revealed that NTP bound directly to both molecules, and the forced expression of an IMB1 fragment (296–516 aa) or TNPO1 fragment (1–297 aa), which both contain binding sites to NTP, reduced nuclear NTP-green fluorescent protein (GFP) levels when it was added to cell culture medium. NTP is derived from viral protein R (Vpr) of human immunodeficiency virus-1, and Vpr enters the nucleus and exerts pleiotropic functions. Notably, Vpr bound directly to IMB1 and TNPO1, and its function was significantly impaired by the forced expression of the 296–516-aa fragment of IMB1 and 1–297-aa fragment of TNPO1. Interestingly, NTP completely blocked the physical association of Vpr with IMB1 and TNPO1. Although the nuclear localization mechanism of Vpr remains unknown, our data suggest that NTP functions as a novel nuclear localization signal of Vpr. |
ArticleNumber | 112893 |
Author | Ishizaka, Yukihito Teratake, Yoichi Kimura, Yayoi |
Author_xml | – sequence: 1 givenname: Yoichi surname: Teratake fullname: Teratake, Yoichi organization: Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan – sequence: 2 givenname: Yayoi surname: Kimura fullname: Kimura, Yayoi organization: Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Knazawa-ku, Yokohama, Kanagawa, 236-0004, Japan – sequence: 3 givenname: Yukihito surname: Ishizaka fullname: Ishizaka, Yukihito email: zakay@ri.ncgm.go.jp organization: Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34695436$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/23195441$$D View this record in Osti.gov |
BookMark | eNqFkV1rFDEUhoO02G31Fwgy4I03s558TMxceCFFq1AQSnsdspkTm-1sMibZ4v57M50qIqJXgeR5kpz3PSVHIQYk5AWFNQUq32zXB_xu05oBo2tKmer5E7Ki0EPLBGNHZAVARSsUe3tCTnPeAoBSVD4lJ1zIvhNcroi9iiM20TV3Jh3idIvJhybs7YgmNSWZkKeYSpPQ4lRiys1fjzeH3zed8_bOh6_NVB0_4DNy7MyY8fnjekZuPn64Pv_UXn65-Hz-_rK1ouOlZWAoOtgYJYWxEgYFTnVDxynlMIAywvTCQu-cEdBRVGgkNxI6LpWznPIz8mq5N-bidba-oL21MQS0RTNO68hipl4v1JTitz3monc-WxxHEzDus2ZdfV_0TMiKvnxE95sdDnpKfldj0j_jqwBfAJtizgndL4SCnkvSW_1Qkp5L0ktJ1er_sOpXTfEx1PD8-B_33eJiDfLeY5rnxGBx8Gkec4j-n_4P4i-uyQ |
CitedBy_id | crossref_primary_10_1016_j_phrs_2023_107051 |
Cites_doi | 10.1097/QAD.0b013e32833088a0 10.1371/journal.ppat.1001080 10.1101/gad.285604 10.1128/jvi.69.11.6705-6711.1995 10.1091/mbc.8.6.945 10.1128/JVI.01928-06 10.1128/mBio.01433-16 10.1016/j.jmb.2015.10.023 10.1016/j.cell.2006.05.049 10.1007/978-1-4615-5371-7_2 10.1038/20367 10.1083/jcb.145.6.1145 10.1186/gb-2001-2-6-reviews3008 10.1093/emboj/16.6.1153 10.4161/cc.6.2.3732 10.1016/j.pbi.2020.10.006 10.1091/mbc.e03-11-0839 10.1186/1743-422X-4-57 10.1074/jbc.M209037200 10.1016/S0092-8674(00)00014-3 10.1016/j.molcel.2007.08.006 10.1016/S0014-5793(97)00542-5 10.1084/jem.191.1.33 10.33549/physiolres.933975 10.1074/jbc.M512630200 10.1371/journal.ppat.0030085 10.1128/jvi.71.7.5579-5592.1997 10.7554/eLife.60821 10.1038/sj.onc.1209831 10.1016/j.virol.2003.10.007 10.1038/s41416-019-0708-y 10.1186/s12977-018-0391-8 10.1038/nm0198-065 10.1093/emboj/19.20.5502 10.1128/mBio.00940-20 10.1016/j.biomaterials.2018.04.040 10.1016/j.bbamcr.2010.10.012 10.1038/nprot.2007.261 10.1128/JVI.79.6.3557-3564.2005 10.1002/prp2.334 10.1042/BJ20150368 10.1128/JVI.79.24.15443-15451.2005 10.1016/j.jmb.2016.05.003 10.1016/S0092-8674(00)80774-6 10.1016/j.tips.2017.01.003 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
DOI | 10.1016/j.yexcr.2021.112893 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1090-2422 |
ExternalDocumentID | 23195441 34695436 10_1016_j_yexcr_2021_112893 S001448272100447X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABOCM ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACPRK ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TEORI TWZ VQA WH7 Y6R YZZ ZA5 ZCA ZMT ZU3 ~G- ~KM .55 .GJ 29G 3O- 53G 9M8 AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FA8 FEDTE FGOYB G-2 HLW HVGLF HZ~ LPU MVM NEJ OHT R2- RIG SBG SEW SSH VH1 WUQ X7L X7M XOL XPP YYP ZGI ZKB CGR CUY CVF ECM EIF NPM 7X8 AALMO AAPBV ABPIF ABPTK ABQIS EFJIC OTOTI PQEST |
ID | FETCH-LOGICAL-c453t-20a1ef0ba864ac60d80f85d531130d08a4a94c09ffa4051e8ea63a605368fc313 |
IEDL.DBID | .~1 |
ISSN | 0014-4827 1090-2422 |
IngestDate | Mon Jun 19 03:48:47 EDT 2023 Thu Jul 10 18:24:12 EDT 2025 Thu Apr 03 06:58:14 EDT 2025 Tue Jul 01 02:48:59 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Fri Feb 23 02:40:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | HIV-1 Vpr Importin b1 Nuclear trafficking peptide Transportin 1 Nuclear cargo |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-20a1ef0ba864ac60d80f85d531130d08a4a94c09ffa4051e8ea63a605368fc313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34695436 |
PQID | 2586449246 |
PQPubID | 23479 |
ParticipantIDs | osti_scitechconnect_23195441 proquest_miscellaneous_2586449246 pubmed_primary_34695436 crossref_primary_10_1016_j_yexcr_2021_112893 crossref_citationtrail_10_1016_j_yexcr_2021_112893 elsevier_sciencedirect_doi_10_1016_j_yexcr_2021_112893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Experimental cell research |
PublicationTitleAlternate | Exp Cell Res |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cingolani, Petosa, Weis, Müller (bib33) 1999; 399 Li, Gu (bib21) 2020; 58 Guidotti, Brambilla, Rossi (bib44) 2017; 38 Ström, Weis (bib22) 2001; 2 DeHart, Zimmerman, Ardon, Monteiro-Filho, Arganaraz, Planelles (bib14) 2007; 4 Teratake, Takashina, Iijima, Sakuma, Yamamoto, Ishizaka (bib2) 2020; 122 Macreadie, Thorburn, Kirby, Castelli, de Rozario, Azad (bib12) 1997; 410 Iijima, Kobayashi, Ishizaka (bib19) 2018; 15 Freedman, Yamamoto (bib24) 2004; 15 Nitahara-Kasahara, Kamata, Yamamoto, Zhang, Miyamoto, Muneta, Iijima, Yoneda, Tsunetsugu-Yokota, Aida (bib37) 2007; 81 Kutay, Izaurralde, Bischoff, Mattaj, Görlich (bib31) 1997; 16 Bayliss, Littlewood, Strawn, Wente, Stewart (bib28) 2002; 277 Chi, Adam (bib32) 1997; 8 Khan, Sumner, Rasaiyaah, Tan, Rodriguez-Plata, Van Tulleken, Fink, Zuliani-Alvarez, Thorne, Stirling, Milne, Towers (bib35) 2020; 9 Nakai-Murakami, Shimura, Kinomoto, Takizawa, Tokunaga, Taguchi, Hoshino, Miyagawa, Sata, Kurumizaka, Yuo, Ishizaka (bib18) 2007; 26 Rappsilber, Mann, Ishihama (bib38) 2007; 2 Lai, Zimmerman, Planelles, Chen (bib17) 2005; 79 Kim, Lee (bib27) 2006; 281 Li, Xu, Cui, Huang, Sun (bib45) 2017; 5 Imasaki, Shimizu, Hashimoto, Hidaka, Kose, Imamoto, Yamada, Sato (bib30) 2007; 28 Christie, Chang, Róna, Smith, Stewart, Takeda, Fontes, Stewart, Vértessy, Forwood, Kobe (bib39) 2016; 428 Le Rouzic, Belaïdouni, Estrabaud, Morel, Rain, Transy, Margottin-Goguet (bib15) 2007; 6 Belzile, Abrahamyan, Gérard, Rougeau, Cohen (bib16) 2010; 6 Kataoka, Bachorik, Dreyfuss (bib23) 1999; 145 Lee, Cansizoglu, Süel, Louis, Zhang, Chook (bib43) 2006; 126 Soniat, Chook (bib41) 2015; 468 Belzile, Duisit, Rougeau, Mercier, Finzi, Cohen (bib13) 2007; 3 Re, Luban (bib4) 1997; 3 Rosenstiel, Chan, Snyder, Planelles, D'Agati, Klotman, Klotman (bib9) 2009; 23 Böhmová, Machová, Pechar, Pola, Venclíková, Janoušková, Etrych (bib42) 2018; 67 Stewart, Poon, Jowett, Chen (bib10) 1997; 71 Kamata, Nitahara-Kasahara, Miyamoto, Yoneda, Aida (bib34) 2005; 79 Li, Lopez, Sandoval, Nichols Doyle, Fregoso (bib7) 2020; 11 Jacotot, Ravagnan, Loeffler, Ferri, Vieira, Zamzami, Costantini, Druillennec, Hoebeke, Briand, Irinopoulou, Daugas, Susin, Cointe, Xie, Reed, Roques, Kroemer (bib11) 2000; 191 Oeffinger, Dlakic, Tollervey (bib29) 2004; 18 He, Choe, Walker, Di Marzio, Morgan, Landau (bib3) 1995; 69 Goh, Manel, Emerman (bib6) 2004; 318 Goh, Rogel, Kinsey, Michael, Fultz, Nowak, Hahn, Emerman (bib5) 1998; 4 Bayliss, Littlewood, Stewart (bib20) 2000; 102 Vetter, Arndt, Kutay, Görlich, Wittinghofer (bib40) 1999; 97 Takashina, Koyama, Nohara, Hasegawa, Ishiguro, Iijima, Lu, Shimura, Okamura, Sakuma, Yamamoto, Ishizaka (bib1) 2018; 173 Fregoso, Emerman (bib8) 2016; 7 Plafker, Macara (bib25) 2000; 19 Lott, Cingolani (bib26) 2011; 1813 Miyatake, Sanjoh, Murakami, Murakami, Matsuda, Hagiwara, Yokoyama, Sato, Miyamoto, Dohmae, Aida (bib36) 2016; 428 Rosenstiel (10.1016/j.yexcr.2021.112893_bib9) 2009; 23 Iijima (10.1016/j.yexcr.2021.112893_bib19) 2018; 15 Freedman (10.1016/j.yexcr.2021.112893_bib24) 2004; 15 Goh (10.1016/j.yexcr.2021.112893_bib5) 1998; 4 Le Rouzic (10.1016/j.yexcr.2021.112893_bib15) 2007; 6 Ström (10.1016/j.yexcr.2021.112893_bib22) 2001; 2 Belzile (10.1016/j.yexcr.2021.112893_bib13) 2007; 3 Bayliss (10.1016/j.yexcr.2021.112893_bib28) 2002; 277 Nitahara-Kasahara (10.1016/j.yexcr.2021.112893_bib37) 2007; 81 Rappsilber (10.1016/j.yexcr.2021.112893_bib38) 2007; 2 Kataoka (10.1016/j.yexcr.2021.112893_bib23) 1999; 145 Böhmová (10.1016/j.yexcr.2021.112893_bib42) 2018; 67 Kutay (10.1016/j.yexcr.2021.112893_bib31) 1997; 16 Stewart (10.1016/j.yexcr.2021.112893_bib10) 1997; 71 Vetter (10.1016/j.yexcr.2021.112893_bib40) 1999; 97 Chi (10.1016/j.yexcr.2021.112893_bib32) 1997; 8 Nakai-Murakami (10.1016/j.yexcr.2021.112893_bib18) 2007; 26 Guidotti (10.1016/j.yexcr.2021.112893_bib44) 2017; 38 Macreadie (10.1016/j.yexcr.2021.112893_bib12) 1997; 410 Goh (10.1016/j.yexcr.2021.112893_bib6) 2004; 318 Lai (10.1016/j.yexcr.2021.112893_bib17) 2005; 79 Plafker (10.1016/j.yexcr.2021.112893_bib25) 2000; 19 Miyatake (10.1016/j.yexcr.2021.112893_bib36) 2016; 428 Re (10.1016/j.yexcr.2021.112893_bib4) 1997; 3 Li (10.1016/j.yexcr.2021.112893_bib7) 2020; 11 Khan (10.1016/j.yexcr.2021.112893_bib35) 2020; 9 Soniat (10.1016/j.yexcr.2021.112893_bib41) 2015; 468 Christie (10.1016/j.yexcr.2021.112893_bib39) 2016; 428 Takashina (10.1016/j.yexcr.2021.112893_bib1) 2018; 173 Bayliss (10.1016/j.yexcr.2021.112893_bib20) 2000; 102 Lott (10.1016/j.yexcr.2021.112893_bib26) 2011; 1813 Li (10.1016/j.yexcr.2021.112893_bib21) 2020; 58 Lee (10.1016/j.yexcr.2021.112893_bib43) 2006; 126 Kim (10.1016/j.yexcr.2021.112893_bib27) 2006; 281 Oeffinger (10.1016/j.yexcr.2021.112893_bib29) 2004; 18 He (10.1016/j.yexcr.2021.112893_bib3) 1995; 69 DeHart (10.1016/j.yexcr.2021.112893_bib14) 2007; 4 Imasaki (10.1016/j.yexcr.2021.112893_bib30) 2007; 28 Teratake (10.1016/j.yexcr.2021.112893_bib2) 2020; 122 Belzile (10.1016/j.yexcr.2021.112893_bib16) 2010; 6 Cingolani (10.1016/j.yexcr.2021.112893_bib33) 1999; 399 Fregoso (10.1016/j.yexcr.2021.112893_bib8) 2016; 7 Jacotot (10.1016/j.yexcr.2021.112893_bib11) 2000; 191 Li (10.1016/j.yexcr.2021.112893_bib45) 2017; 5 Kamata (10.1016/j.yexcr.2021.112893_bib34) 2005; 79 |
References_xml | – volume: 399 start-page: 221 year: 1999 end-page: 229 ident: bib33 article-title: Structure of importin-beta bound to the IBB domain of importin-alpha publication-title: Nature – volume: 318 start-page: 337 year: 2004 end-page: 349 ident: bib6 article-title: The human immunodeficiency virus Vpr protein binds Cdc25C: implications for G2 arrest publication-title: Virology – volume: 2 year: 2001 ident: bib22 article-title: Importin-beta-like nuclear transport receptors publication-title: Genome Biol. – volume: 122 start-page: 823 year: 2020 end-page: 834 ident: bib2 article-title: Development of a protein-based system for transient epigenetic repression of immune checkpoint molecule and enhancement of antitumour activity of natural killer cells publication-title: Br. J. Cancer – volume: 58 start-page: 60 year: 2020 end-page: 68 ident: bib21 article-title: Structural and functional insight into the nuclear pore complex and nuclear transport receptors in plant stress signaling publication-title: Curr. Opin. Plant Biol. – volume: 15 start-page: 2276 year: 2004 end-page: 2286 ident: bib24 article-title: Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor publication-title: Mol. Biol. Cell – volume: 126 start-page: 543 year: 2006 end-page: 558 ident: bib43 article-title: Rules for nuclear localization sequence recognition by karyopherin beta 2 publication-title: Cell – volume: 6 year: 2010 ident: bib16 article-title: Formation of mobile chromatin-associated nuclear foci containing HIV-1 Vpr and VPRBP is critical for the induction of G2 cell cycle arrest publication-title: PLoS Pathog. – volume: 428 start-page: 2744 year: 2016 end-page: 2757 ident: bib36 article-title: Molecular mechanism of HIV-1 Vpr for binding to importin-α publication-title: J. Mol. Biol. – volume: 5 year: 2017 ident: bib45 article-title: Arginine-rich membrane-permeable peptides are seriously toxic publication-title: Pharmacol Res Perspect – volume: 19 start-page: 5502 year: 2000 end-page: 5513 ident: bib25 article-title: Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2 publication-title: EMBO J. – volume: 2 start-page: 1896 year: 2007 end-page: 1906 ident: bib38 article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips publication-title: Nat. Protoc. – volume: 81 start-page: 5284 year: 2007 end-page: 5293 ident: bib37 article-title: Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages publication-title: J. Virol. – volume: 1813 start-page: 1578 year: 2011 end-page: 1592 ident: bib26 article-title: The importin beta binding domain as a master regulator of nucleocytoplasmic transport publication-title: Biochim. Biophys. Acta – volume: 38 start-page: 406 year: 2017 end-page: 424 ident: bib44 article-title: Cell-penetrating peptides: from basic research to clinics publication-title: Trends Pharmacol. Sci. – volume: 69 start-page: 6705 year: 1995 end-page: 6711 ident: bib3 article-title: Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity publication-title: J. Virol. – volume: 11 year: 2020 ident: bib7 article-title: HIV Vpr modulates the host DNA damage response at two independent steps to damage DNA and repress double-strand DNA break repair publication-title: mBio – volume: 23 start-page: 2054 year: 2009 end-page: 2056 ident: bib9 article-title: HIV-1 Vpr activates the DNA damage response in renal tubule epithelial cells publication-title: Aids – volume: 28 start-page: 57 year: 2007 end-page: 67 ident: bib30 article-title: Structural basis for substrate recognition and dissociation by human transportin 1 publication-title: Mol. Cell – volume: 428 start-page: 2060 year: 2016 end-page: 2090 ident: bib39 article-title: Structural biology and regulation of protein import into the nucleus publication-title: J. Mol. Biol. – volume: 410 start-page: 145 year: 1997 end-page: 149 ident: bib12 article-title: HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast Saccharomyces cerevisiae publication-title: FEBS Lett. – volume: 6 start-page: 182 year: 2007 end-page: 188 ident: bib15 article-title: HIV1 Vpr arrests the cell cycle by recruiting DCAF1/VprBP, a receptor of the Cul4-DDB1 ubiquitin ligase publication-title: Cell Cycle – volume: 97 start-page: 635 year: 1999 end-page: 646 ident: bib40 article-title: Structural view of the Ran-Importin beta interaction at 2.3 A resolution publication-title: Cell – volume: 191 start-page: 33 year: 2000 end-page: 46 ident: bib11 article-title: The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore publication-title: J. Exp. Med. – volume: 277 start-page: 50597 year: 2002 end-page: 50606 ident: bib28 article-title: GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta publication-title: J. Biol. Chem. – volume: 9 year: 2020 ident: bib35 article-title: HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF-kappaB/IRF3 nuclear transport publication-title: Elife – volume: 79 start-page: 3557 year: 2005 end-page: 3564 ident: bib34 article-title: Importin-alpha promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr publication-title: J. Virol. – volume: 26 start-page: 477 year: 2007 end-page: 486 ident: bib18 article-title: HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination publication-title: Oncogene – volume: 71 start-page: 5579 year: 1997 end-page: 5592 ident: bib10 article-title: Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest publication-title: J. Virol. – volume: 173 start-page: 11 year: 2018 end-page: 21 ident: bib1 article-title: Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering publication-title: Biomaterials – volume: 7 year: 2016 ident: bib8 article-title: Activation of the DNA damage response is a conserved function of HIV-1 and HIV-2 Vpr that is independent of SLX4 recruitment publication-title: mBio – volume: 102 start-page: 99 year: 2000 end-page: 108 ident: bib20 article-title: Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking publication-title: Cell – volume: 4 start-page: 57 year: 2007 ident: bib14 article-title: HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system publication-title: Virol. J. – volume: 281 start-page: 12041 year: 2006 end-page: 12049 ident: bib27 article-title: Importin-beta mediates Cdc7 nuclear import by binding to the kinase insert II domain, which can be antagonized by importin-alpha publication-title: J. Biol. Chem. – volume: 145 start-page: 1145 year: 1999 end-page: 1152 ident: bib23 article-title: Transportin-SR, a nuclear import receptor for SR proteins publication-title: J. Cell Biol. – volume: 3 start-page: 21 year: 1997 end-page: 27 ident: bib4 article-title: HIV-1 Vpr: G2 cell cycle arrest, macrophages and nuclear transport publication-title: Prog. Cell Cycle Res. – volume: 4 start-page: 65 year: 1998 end-page: 71 ident: bib5 article-title: HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo publication-title: Nat. Med. – volume: 16 start-page: 1153 year: 1997 end-page: 1163 ident: bib31 article-title: Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex publication-title: EMBO J. – volume: 8 start-page: 945 year: 1997 end-page: 956 ident: bib32 article-title: Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore publication-title: Mol. Biol. Cell – volume: 79 start-page: 15443 year: 2005 end-page: 15451 ident: bib17 article-title: Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo publication-title: J. Virol. – volume: 18 start-page: 196 year: 2004 end-page: 209 ident: bib29 article-title: A pre-ribosome-associated HEAT-repeat protein is required for export of both ribosomal subunits publication-title: Genes Dev. – volume: 3 start-page: e85 year: 2007 ident: bib13 article-title: HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase publication-title: PLoS Pathog. – volume: 15 start-page: 8 year: 2018 ident: bib19 article-title: Structural alteration of DNA induced by viral protein R of HIV-1 triggers the DNA damage response publication-title: Retrovirology – volume: 67 start-page: S267 year: 2018 end-page: s279 ident: bib42 article-title: Cell-penetrating peptides: a useful tool for the delivery of various cargoes into cells publication-title: Physiol. Res. – volume: 468 start-page: 353 year: 2015 end-page: 362 ident: bib41 article-title: Nuclear localization signals for four distinct karyopherin-β nuclear import systems publication-title: Biochem. J. – volume: 23 start-page: 2054 year: 2009 ident: 10.1016/j.yexcr.2021.112893_bib9 article-title: HIV-1 Vpr activates the DNA damage response in renal tubule epithelial cells publication-title: Aids doi: 10.1097/QAD.0b013e32833088a0 – volume: 6 year: 2010 ident: 10.1016/j.yexcr.2021.112893_bib16 article-title: Formation of mobile chromatin-associated nuclear foci containing HIV-1 Vpr and VPRBP is critical for the induction of G2 cell cycle arrest publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001080 – volume: 18 start-page: 196 year: 2004 ident: 10.1016/j.yexcr.2021.112893_bib29 article-title: A pre-ribosome-associated HEAT-repeat protein is required for export of both ribosomal subunits publication-title: Genes Dev. doi: 10.1101/gad.285604 – volume: 69 start-page: 6705 year: 1995 ident: 10.1016/j.yexcr.2021.112893_bib3 article-title: Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity publication-title: J. Virol. doi: 10.1128/jvi.69.11.6705-6711.1995 – volume: 8 start-page: 945 year: 1997 ident: 10.1016/j.yexcr.2021.112893_bib32 article-title: Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore publication-title: Mol. Biol. Cell doi: 10.1091/mbc.8.6.945 – volume: 81 start-page: 5284 year: 2007 ident: 10.1016/j.yexcr.2021.112893_bib37 article-title: Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages publication-title: J. Virol. doi: 10.1128/JVI.01928-06 – volume: 7 year: 2016 ident: 10.1016/j.yexcr.2021.112893_bib8 article-title: Activation of the DNA damage response is a conserved function of HIV-1 and HIV-2 Vpr that is independent of SLX4 recruitment publication-title: mBio doi: 10.1128/mBio.01433-16 – volume: 428 start-page: 2060 year: 2016 ident: 10.1016/j.yexcr.2021.112893_bib39 article-title: Structural biology and regulation of protein import into the nucleus publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.10.023 – volume: 126 start-page: 543 year: 2006 ident: 10.1016/j.yexcr.2021.112893_bib43 article-title: Rules for nuclear localization sequence recognition by karyopherin beta 2 publication-title: Cell doi: 10.1016/j.cell.2006.05.049 – volume: 3 start-page: 21 year: 1997 ident: 10.1016/j.yexcr.2021.112893_bib4 article-title: HIV-1 Vpr: G2 cell cycle arrest, macrophages and nuclear transport publication-title: Prog. Cell Cycle Res. doi: 10.1007/978-1-4615-5371-7_2 – volume: 399 start-page: 221 year: 1999 ident: 10.1016/j.yexcr.2021.112893_bib33 article-title: Structure of importin-beta bound to the IBB domain of importin-alpha publication-title: Nature doi: 10.1038/20367 – volume: 145 start-page: 1145 year: 1999 ident: 10.1016/j.yexcr.2021.112893_bib23 article-title: Transportin-SR, a nuclear import receptor for SR proteins publication-title: J. Cell Biol. doi: 10.1083/jcb.145.6.1145 – volume: 2 year: 2001 ident: 10.1016/j.yexcr.2021.112893_bib22 article-title: Importin-beta-like nuclear transport receptors publication-title: Genome Biol. doi: 10.1186/gb-2001-2-6-reviews3008 – volume: 16 start-page: 1153 year: 1997 ident: 10.1016/j.yexcr.2021.112893_bib31 article-title: Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex publication-title: EMBO J. doi: 10.1093/emboj/16.6.1153 – volume: 6 start-page: 182 year: 2007 ident: 10.1016/j.yexcr.2021.112893_bib15 article-title: HIV1 Vpr arrests the cell cycle by recruiting DCAF1/VprBP, a receptor of the Cul4-DDB1 ubiquitin ligase publication-title: Cell Cycle doi: 10.4161/cc.6.2.3732 – volume: 58 start-page: 60 year: 2020 ident: 10.1016/j.yexcr.2021.112893_bib21 article-title: Structural and functional insight into the nuclear pore complex and nuclear transport receptors in plant stress signaling publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2020.10.006 – volume: 15 start-page: 2276 year: 2004 ident: 10.1016/j.yexcr.2021.112893_bib24 article-title: Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-11-0839 – volume: 4 start-page: 57 year: 2007 ident: 10.1016/j.yexcr.2021.112893_bib14 article-title: HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system publication-title: Virol. J. doi: 10.1186/1743-422X-4-57 – volume: 277 start-page: 50597 year: 2002 ident: 10.1016/j.yexcr.2021.112893_bib28 article-title: GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209037200 – volume: 102 start-page: 99 year: 2000 ident: 10.1016/j.yexcr.2021.112893_bib20 article-title: Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking publication-title: Cell doi: 10.1016/S0092-8674(00)00014-3 – volume: 28 start-page: 57 year: 2007 ident: 10.1016/j.yexcr.2021.112893_bib30 article-title: Structural basis for substrate recognition and dissociation by human transportin 1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.08.006 – volume: 410 start-page: 145 year: 1997 ident: 10.1016/j.yexcr.2021.112893_bib12 article-title: HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast Saccharomyces cerevisiae publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)00542-5 – volume: 191 start-page: 33 year: 2000 ident: 10.1016/j.yexcr.2021.112893_bib11 article-title: The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore publication-title: J. Exp. Med. doi: 10.1084/jem.191.1.33 – volume: 67 start-page: S267 year: 2018 ident: 10.1016/j.yexcr.2021.112893_bib42 article-title: Cell-penetrating peptides: a useful tool for the delivery of various cargoes into cells publication-title: Physiol. Res. doi: 10.33549/physiolres.933975 – volume: 281 start-page: 12041 year: 2006 ident: 10.1016/j.yexcr.2021.112893_bib27 article-title: Importin-beta mediates Cdc7 nuclear import by binding to the kinase insert II domain, which can be antagonized by importin-alpha publication-title: J. Biol. Chem. doi: 10.1074/jbc.M512630200 – volume: 3 start-page: e85 year: 2007 ident: 10.1016/j.yexcr.2021.112893_bib13 article-title: HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0030085 – volume: 71 start-page: 5579 year: 1997 ident: 10.1016/j.yexcr.2021.112893_bib10 article-title: Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest publication-title: J. Virol. doi: 10.1128/jvi.71.7.5579-5592.1997 – volume: 9 year: 2020 ident: 10.1016/j.yexcr.2021.112893_bib35 article-title: HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF-kappaB/IRF3 nuclear transport publication-title: Elife doi: 10.7554/eLife.60821 – volume: 26 start-page: 477 year: 2007 ident: 10.1016/j.yexcr.2021.112893_bib18 article-title: HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination publication-title: Oncogene doi: 10.1038/sj.onc.1209831 – volume: 318 start-page: 337 year: 2004 ident: 10.1016/j.yexcr.2021.112893_bib6 article-title: The human immunodeficiency virus Vpr protein binds Cdc25C: implications for G2 arrest publication-title: Virology doi: 10.1016/j.virol.2003.10.007 – volume: 122 start-page: 823 year: 2020 ident: 10.1016/j.yexcr.2021.112893_bib2 article-title: Development of a protein-based system for transient epigenetic repression of immune checkpoint molecule and enhancement of antitumour activity of natural killer cells publication-title: Br. J. Cancer doi: 10.1038/s41416-019-0708-y – volume: 15 start-page: 8 year: 2018 ident: 10.1016/j.yexcr.2021.112893_bib19 article-title: Structural alteration of DNA induced by viral protein R of HIV-1 triggers the DNA damage response publication-title: Retrovirology doi: 10.1186/s12977-018-0391-8 – volume: 4 start-page: 65 year: 1998 ident: 10.1016/j.yexcr.2021.112893_bib5 article-title: HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo publication-title: Nat. Med. doi: 10.1038/nm0198-065 – volume: 19 start-page: 5502 year: 2000 ident: 10.1016/j.yexcr.2021.112893_bib25 article-title: Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2 publication-title: EMBO J. doi: 10.1093/emboj/19.20.5502 – volume: 11 year: 2020 ident: 10.1016/j.yexcr.2021.112893_bib7 article-title: HIV Vpr modulates the host DNA damage response at two independent steps to damage DNA and repress double-strand DNA break repair publication-title: mBio doi: 10.1128/mBio.00940-20 – volume: 173 start-page: 11 year: 2018 ident: 10.1016/j.yexcr.2021.112893_bib1 article-title: Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.04.040 – volume: 1813 start-page: 1578 year: 2011 ident: 10.1016/j.yexcr.2021.112893_bib26 article-title: The importin beta binding domain as a master regulator of nucleocytoplasmic transport publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2010.10.012 – volume: 2 start-page: 1896 year: 2007 ident: 10.1016/j.yexcr.2021.112893_bib38 article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.261 – volume: 79 start-page: 3557 year: 2005 ident: 10.1016/j.yexcr.2021.112893_bib34 article-title: Importin-alpha promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr publication-title: J. Virol. doi: 10.1128/JVI.79.6.3557-3564.2005 – volume: 5 year: 2017 ident: 10.1016/j.yexcr.2021.112893_bib45 article-title: Arginine-rich membrane-permeable peptides are seriously toxic publication-title: Pharmacol Res Perspect doi: 10.1002/prp2.334 – volume: 468 start-page: 353 year: 2015 ident: 10.1016/j.yexcr.2021.112893_bib41 article-title: Nuclear localization signals for four distinct karyopherin-β nuclear import systems publication-title: Biochem. J. doi: 10.1042/BJ20150368 – volume: 79 start-page: 15443 year: 2005 ident: 10.1016/j.yexcr.2021.112893_bib17 article-title: Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo publication-title: J. Virol. doi: 10.1128/JVI.79.24.15443-15451.2005 – volume: 428 start-page: 2744 year: 2016 ident: 10.1016/j.yexcr.2021.112893_bib36 article-title: Molecular mechanism of HIV-1 Vpr for binding to importin-α publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.05.003 – volume: 97 start-page: 635 year: 1999 ident: 10.1016/j.yexcr.2021.112893_bib40 article-title: Structural view of the Ran-Importin beta interaction at 2.3 A resolution publication-title: Cell doi: 10.1016/S0092-8674(00)80774-6 – volume: 38 start-page: 406 year: 2017 ident: 10.1016/j.yexcr.2021.112893_bib44 article-title: Cell-penetrating peptides: from basic research to clinics publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.01.003 |
SSID | ssj0008816 |
Score | 2.3854985 |
Snippet | Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity.... |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112893 |
SubjectTerms | 60 APPLIED LIFE SCIENCES ABSORPTION SPECTROSCOPY Active Transport, Cell Nucleus - physiology AIDS VIRUS AMINO ACIDS beta Karyopherins - metabolism CELL CULTURES Cell Line, Tumor Cell Nucleus - metabolism CULTURE MEDIA Cytoplasm - metabolism FLUORESCENCE Green Fluorescent Proteins - metabolism HeLa Cells HIV-1 HUMAN POPULATIONS Humans Importin b1 Karyopherins - metabolism LIQUID COLUMN CHROMATOGRAPHY MASS SPECTROSCOPY Nuclear cargo Nuclear Localization Signals - metabolism Nuclear trafficking peptide PEPTIDES RECEPTORS Receptors, Cytoplasmic and Nuclear - metabolism RNA Transportin 1 Vpr vpr Gene Products, Human Immunodeficiency Virus - metabolism |
Title | Role of karyopherin nuclear transport receptors in nuclear transport by nuclear trafficking peptide |
URI | https://dx.doi.org/10.1016/j.yexcr.2021.112893 https://www.ncbi.nlm.nih.gov/pubmed/34695436 https://www.proquest.com/docview/2586449246 https://www.osti.gov/biblio/23195441 |
Volume | 409 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRfAivl1fRPBotW3SbPYoi7IqehCFvYU0TWBV2mXdBffib3emDx-ge_DYNAPp5DHfNDPfABx3wsQ6RBJBKGN0UJSPAxMRkFOpiUMlUllWb7i9k_1HcT1IBgvQa3JhKKyyPvurM708reuWs1qbZ6PhkHJ80RlQMbowdCvZGVAGu-jQKj99_wrzUKosf0qdA-rdMA-VMV4z92aJFDSOKJVGdflf1qlV4Ib7G4SWxuhyFVZqFMnOq4GuwYLL12Gpqis52wB7X7w4Vnj2bMazkjhgmLOcmIvNmE0aOnOGH-5GVG2H_fo6nX1vJKoJ-q3ORhQHk7lNeLy8eOj1g7qaQmBFwie4HUzkfJgaJYWxMsxU6FWS4R5EM5aFygjTFTbsem8QxEVOOSO5QW-HS-Utj_gWtPIidzvArM8QmvmoY2JHN8ppRrBPuMRxkxpp2xA3WtS2phqnihcvuokpe9Kl6jWpXleqb8PJp9CoYtqY310206N_LBiNtmC-4D5NJgkRTa6leCKUQpzbpXpsbThqJlnjTqPrE5O7Yvqq4wQ1J9BflW3Yrmb_c6BcSJTmcve_o9qDZXqqAmX2oTUZT90Bwp1Jeliu50NYPL-66d99AA9j_h8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRYheKiivLQu4UntraGI7Xu-BAwJW2-cBtdLejOPY0kKVrLZblVz4U_xBZvJoi0R7QOo1yVjWN358E4-_AdgaxqnzyCSiWHEMUHTgkU2IyOnM8ljLTNXVG46O1eRU7k_T6Qr87u7CUFplu_Y3a3q9WrdPdls0d-ezGd3xxWBAcwxh6FRyOG0zKw98dYlx2_mHvc_o5G3Ox19OPk2itrRA5GQqljg2bOJDnFmtpHUqznUcdJrjgMQ1PY-1lXYkXTwKwSKjSbz2VgmL1F8oHZxIBLb7AB5iW5rKJrz_dZ1XonVdb5V6F1H3OqmjOqms8j8dqZDyhO7u6JG4bTvslTjDb2e99e43fgJrLW1lHxtknsKKL9bhUVPIsnoG7mt55lkZ2A-7qGqlglnBCpJKtgu27PTTGSLt51Teh_3zdVbdfEjaFvQfn80p8Sb3z-H0XjB-Ab2iLPwrYC7kyAVDMrTc0xF2lhPPlD71wmZWuT7wDkXjWm1zKrFxZroktu-mht4Q9KaBvg87V0bzRtrj7s9V5x7z1wg1uPncbTggZ5IR6fI6SmBCKyTWIyoA14fNzskGpzad19jClxfnhqeInMQAWfXhZeP9q44KqdBaqI3_7dU7eDw5OTo0h3vHB69hld40WToD6C0XF_4Ncq1l9rYe2wy-3fdk-gMA4jj2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+karyopherin+nuclear+transport+receptors+in+nuclear+transport+by+nuclear+trafficking+peptide&rft.jtitle=Experimental+cell+research&rft.au=Teratake%2C+Yoichi&rft.au=Kimura%2C+Yayoi&rft.au=Ishizaka%2C+Yukihito&rft.date=2021-12-01&rft.eissn=1090-2422&rft.volume=409&rft.issue=1&rft.spage=112893&rft_id=info:doi/10.1016%2Fj.yexcr.2021.112893&rft_id=info%3Apmid%2F34695436&rft.externalDocID=34695436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4827&client=summon |