Multisensory control of human upright stance
The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platf...
Saved in:
Published in | Experimental brain research Vol. 171; no. 2; pp. 231 - 250 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Springer
01.05.2006
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested. |
---|---|
AbstractList | The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested.The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested. The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested. |
Author | Maurer, C. Peterka, R.J. Mergner, T. |
Author_xml | – sequence: 1 givenname: C. surname: Maurer fullname: Maurer, C. – sequence: 2 givenname: T. surname: Mergner fullname: Mergner, T. – sequence: 3 givenname: R.J. surname: Peterka fullname: Peterka, R.J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17771771$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16307252$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYNU7EN_gBsZBF05epNMJpOlFF9QcaPrkEkTO2U6qcnMov_ejK0KBXFxCRe-c8M5Z4wGjWsMQqcYrjEAvwkAhOAUgKVAWJ5uDtAIZ5SkGEM-QCMAnKVZgcUQjUNY9ivlcISGOKfACSMjdPXc1W0VTBOc3yTaNa13deJssuhWqkm6ta_eF20SWtVoc4wOraqDOdm9E_R2f_c6fUxnLw9P09tZqjNG2xQrRqgFaktM54r0X6nMGm4sM2xeaCGUBWO5KbVithTFXJRFmREOKtopOJ2gy-3dtXcfnQmtXFVBm7pWjXFdkDkXIHJC_wUJ5BmBL_B8D1y6zjfRhCSYYcqZEBE620FduTJzGb2vlN_I77QicLEDVNCqtj6GUoVfjnMeB0eObzntXQjeWKmrVrVVn66qaolB9v3JbX8y9if7_uQmKvGe8uf4n5pPXJ2bDA |
CODEN | EXBRAP |
CitedBy_id | crossref_primary_10_1016_j_humov_2014_07_004 crossref_primary_10_1152_jn_01145_2015 crossref_primary_10_1371_journal_pone_0167557 crossref_primary_10_3389_fnbot_2017_00049 crossref_primary_10_3389_fnbot_2018_00021 crossref_primary_10_1016_j_orthtr_2016_10_008 crossref_primary_10_1515_sjpain_2019_0121 crossref_primary_10_1055_a_1729_3231 crossref_primary_10_1115_1_4049159 crossref_primary_10_1016_j_humov_2020_102658 crossref_primary_10_1111_j_1749_6632_2008_03722_x crossref_primary_10_1016_j_jbiomech_2014_11_030 crossref_primary_10_1038_s41598_019_50793_x crossref_primary_10_1152_jn_00551_2015 crossref_primary_10_3389_fncom_2018_00013 crossref_primary_10_1007_s00221_018_5229_z crossref_primary_10_1002_mds_25684 crossref_primary_10_1016_j_chb_2014_12_017 crossref_primary_10_1016_j_humov_2019_102526 crossref_primary_10_1016_j_jbiomech_2016_06_023 crossref_primary_10_1016_j_jelekin_2014_07_003 crossref_primary_10_3389_fnint_2022_856207 crossref_primary_10_1589_jpts_34_393 crossref_primary_10_1007_s00221_012_3244_z crossref_primary_10_1007_s00221_009_1715_7 crossref_primary_10_3109_08990220_2014_958217 crossref_primary_10_1038_srep37040 crossref_primary_10_1051_sm_2011118 crossref_primary_10_1097_AUD_0000000000001156 crossref_primary_10_1080_10447318_2023_2250611 crossref_primary_10_1177_21925682221076417 crossref_primary_10_3390_children9030353 crossref_primary_10_1007_s00221_023_06727_1 crossref_primary_10_3389_fnins_2023_1197733 crossref_primary_10_1016_j_bbe_2020_12_008 crossref_primary_10_1016_j_neuroscience_2010_05_072 crossref_primary_10_14802_jmd_16062 crossref_primary_10_1038_srep39345 crossref_primary_10_3390_s19245554 crossref_primary_10_1007_s00221_006_0683_4 crossref_primary_10_1080_10790268_2017_1389676 crossref_primary_10_1016_j_gaitpost_2016_12_009 crossref_primary_10_1515_med_2016_0061 crossref_primary_10_3233_THC_174760 crossref_primary_10_1007_s10803_015_2621_4 crossref_primary_10_1016_j_humov_2007_01_014 crossref_primary_10_1007_s00221_020_05723_z crossref_primary_10_1152_jn_91040_2008 crossref_primary_10_1016_j_jphysparis_2009_08_001 crossref_primary_10_1016_j_jphysparis_2009_08_003 crossref_primary_10_1016_j_medengphy_2015_11_019 crossref_primary_10_1016_j_jphysparis_2009_08_002 crossref_primary_10_1016_j_neulet_2011_01_024 crossref_primary_10_1055_a_2013_9439 crossref_primary_10_1007_s42600_024_00361_8 crossref_primary_10_4028_www_scientific_net_AMM_494_495_1072 crossref_primary_10_1186_s12891_019_2497_0 crossref_primary_10_3389_fspor_2024_1343888 crossref_primary_10_1155_2015_621845 crossref_primary_10_3389_fnins_2017_00357 crossref_primary_10_7224_1537_2073_2019_004 crossref_primary_10_1186_s12891_025_08362_z crossref_primary_10_3389_fphys_2018_01620 crossref_primary_10_1002_acn3_51426 crossref_primary_10_1007_s00221_006_0677_2 crossref_primary_10_1007_s00221_011_2728_6 crossref_primary_10_1007_s00221_014_4185_5 crossref_primary_10_1016_j_heliyon_2020_e04541 crossref_primary_10_1152_jn_00057_2016 crossref_primary_10_1152_jn_00075_2024 crossref_primary_10_1007_s00421_013_2768_7 crossref_primary_10_1007_BF03033502 crossref_primary_10_1098_rsif_2024_0664 crossref_primary_10_1016_j_expneurol_2009_03_010 crossref_primary_10_1007_s00422_017_0733_y crossref_primary_10_1371_journal_pone_0244993 crossref_primary_10_3390_jfmk7030053 crossref_primary_10_1007_s00421_008_0856_x crossref_primary_10_1007_s00221_009_2054_4 crossref_primary_10_3390_app13063485 crossref_primary_10_1007_s00221_014_4066_y crossref_primary_10_3389_fneur_2022_876165 crossref_primary_10_1155_2020_2451291 crossref_primary_10_26693_jmbs04_06_293 crossref_primary_10_1016_j_humov_2007_11_005 crossref_primary_10_1016_j_jbiomech_2017_09_036 crossref_primary_10_17780_ksujes_1338361 crossref_primary_10_3389_fnsys_2015_00115 crossref_primary_10_1016_j_gaitpost_2024_04_028 crossref_primary_10_14814_phy2_15050 crossref_primary_10_1007_s00221_007_0990_4 crossref_primary_10_4085_1062_6050_52_3_11 crossref_primary_10_1007_s12662_009_0076_5 crossref_primary_10_4236_jbbs_2013_36048 crossref_primary_10_1016_j_gaitpost_2023_02_013 crossref_primary_10_1016_j_ramd_2015_09_004 crossref_primary_10_1115_1_4031486 crossref_primary_10_1371_journal_pone_0260863 crossref_primary_10_1016_j_shaw_2019_06_002 crossref_primary_10_1016_j_compbiomed_2024_108492 crossref_primary_10_1016_j_humov_2024_103236 crossref_primary_10_1371_journal_pone_0115303 crossref_primary_10_1038_s41598_017_01265_7 crossref_primary_10_1080_00222895_2017_1367642 crossref_primary_10_1097_PHM_0b013e3182a39019 crossref_primary_10_3389_fspor_2019_00025 crossref_primary_10_1055_a_2354_7967 crossref_primary_10_1515_hukin_2017_0088 crossref_primary_10_1016_j_gaitpost_2011_11_001 crossref_primary_10_1111_ejn_70021 crossref_primary_10_5005_jp_journals_10057_0012 crossref_primary_10_1038_s41598_024_79736_x crossref_primary_10_1038_s41598_022_24731_3 crossref_primary_10_1109_RBME_2021_3057673 crossref_primary_10_1080_00222895_2019_1694486 crossref_primary_10_3389_fneur_2018_00899 crossref_primary_10_3233_VES_200040 crossref_primary_10_1152_jn_00350_2019 crossref_primary_10_1186_s12883_019_1589_7 crossref_primary_10_1371_journal_pone_0113897 crossref_primary_10_1016_j_displa_2016_07_002 crossref_primary_10_29038_2617_4723_2018_381_102_107 crossref_primary_10_1016_j_jbiomech_2017_06_018 crossref_primary_10_1111_j_1748_1716_2008_01850_x crossref_primary_10_1007_s10694_021_01140_y crossref_primary_10_1007_s00221_007_1189_4 crossref_primary_10_1038_s41598_023_44566_w crossref_primary_10_3389_fnhum_2021_615200 crossref_primary_10_1108_IJBPA_05_2017_0025 crossref_primary_10_1007_s00221_013_3561_x crossref_primary_10_7759_cureus_69052 crossref_primary_10_1152_jn_01142_2006 crossref_primary_10_1134_S0362119713030171 crossref_primary_10_1007_s11517_007_0269_8 crossref_primary_10_1080_08869634_2016_1159384 crossref_primary_10_1109_MRA_2015_2507098 crossref_primary_10_1007_s00221_017_4985_5 crossref_primary_10_3390_su122410552 crossref_primary_10_1016_j_clinph_2018_03_002 crossref_primary_10_1016_j_brat_2009_01_011 crossref_primary_10_1016_j_neures_2015_12_002 crossref_primary_10_1152_jn_00916_2009 crossref_primary_10_1142_S0219843612500119 crossref_primary_10_2522_ptj_20150580 crossref_primary_10_3389_fneur_2017_00444 crossref_primary_10_1159_000541841 crossref_primary_10_25307_jssr_901186 crossref_primary_10_1152_jn_00434_2015 crossref_primary_10_3389_fnins_2017_00531 crossref_primary_10_1002_mds_22201 crossref_primary_10_1371_journal_pone_0226216 crossref_primary_10_3389_fnetp_2024_1393171 crossref_primary_10_1111_ejn_14606 crossref_primary_10_1134_S0362119714010204 crossref_primary_10_1055_a_1891_8609 crossref_primary_10_1152_jn_00046_2023 crossref_primary_10_1016_j_gaitpost_2012_06_019 crossref_primary_10_1523_JNEUROSCI_2116_17_2018 crossref_primary_10_1519_JSC_0000000000002246 crossref_primary_10_1152_jn_01064_2009 crossref_primary_10_1152_jn_00118_2009 crossref_primary_10_7600_jpfsm_4_299 crossref_primary_10_1016_j_gaitpost_2012_06_011 crossref_primary_10_3390_s24041046 crossref_primary_10_3233_VES_190652 crossref_primary_10_1177_00315125211036418 crossref_primary_10_1016_j_clinph_2007_05_060 crossref_primary_10_1016_j_neuroscience_2013_09_041 crossref_primary_10_1152_jn_00131_2009 crossref_primary_10_1016_j_gaitpost_2022_04_011 crossref_primary_10_1016_j_gaitpost_2017_08_038 crossref_primary_10_1589_jpts_29_1154 crossref_primary_10_1016_j_humov_2006_12_002 crossref_primary_10_1152_jn_00670_2010 crossref_primary_10_1080_01691864_2016_1252690 crossref_primary_10_1589_jpts_36_492 crossref_primary_10_1080_00222895_2023_2220665 crossref_primary_10_1177_0020294019900285 crossref_primary_10_1152_jn_00345_2010 crossref_primary_10_3390_s22083085 crossref_primary_10_1016_j_jneumeth_2017_12_015 crossref_primary_10_1080_10790268_2017_1369217 crossref_primary_10_1007_s00520_019_04680_w crossref_primary_10_1152_jn_00256_2011 crossref_primary_10_1186_1743_0003_9_39 crossref_primary_10_1371_journal_pone_0100418 crossref_primary_10_15421_021944 crossref_primary_10_1016_j_arcontrol_2010_08_001 crossref_primary_10_1152_jn_00669_2013 crossref_primary_10_1016_j_jphysparis_2009_08_013 crossref_primary_10_1007_s00221_013_3750_7 crossref_primary_10_1007_s00221_021_06260_z crossref_primary_10_1007_s00221_008_1308_x crossref_primary_10_21020_husbfd_1433318 crossref_primary_10_1152_jn_00490_2013 crossref_primary_10_1371_journal_pone_0227119 crossref_primary_10_3109_09593985_2014_971923 crossref_primary_10_1016_j_ridd_2011_01_047 crossref_primary_10_3389_fneur_2020_609928 crossref_primary_10_1007_s11517_009_0477_5 crossref_primary_10_1007_s10072_008_0988_0 crossref_primary_10_3389_fnagi_2017_00273 crossref_primary_10_1007_s00221_012_3000_4 crossref_primary_10_1016_j_humov_2010_06_002 crossref_primary_10_3390_app15010486 crossref_primary_10_3182_20100913_3_US_2015_00053 crossref_primary_10_1007_s12559_012_9160_5 crossref_primary_10_3390_children10081339 crossref_primary_10_1007_s00221_018_5239_x crossref_primary_10_1016_j_gaitpost_2015_01_030 crossref_primary_10_1016_j_expneurol_2009_06_013 crossref_primary_10_1589_rika_28_669 crossref_primary_10_1016_j_nbas_2021_100013 crossref_primary_10_1007_s00221_009_1995_y crossref_primary_10_1111_j_1748_1716_2006_01642_x crossref_primary_10_1134_S0022093021060284 crossref_primary_10_3389_fneur_2020_603814 crossref_primary_10_1016_j_jbiomech_2018_03_029 crossref_primary_10_1016_j_medengphy_2024_104197 crossref_primary_10_1371_journal_pone_0285098 crossref_primary_10_3928_19425864_20180313_02 crossref_primary_10_1016_j_jbiomech_2013_10_018 crossref_primary_10_1371_journal_pone_0062475 crossref_primary_10_1007_s00221_012_3210_9 crossref_primary_10_1016_j_neuropsychologia_2019_01_023 crossref_primary_10_1080_10255842_2012_751983 crossref_primary_10_1007_s00221_013_3795_7 crossref_primary_10_1016_j_humov_2012_12_002 crossref_primary_10_1016_j_ergon_2014_06_005 crossref_primary_10_1007_s00421_022_05043_w crossref_primary_10_1016_j_humov_2015_02_010 crossref_primary_10_3389_fneur_2023_1243445 crossref_primary_10_1186_s12984_023_01235_3 crossref_primary_10_1152_jn_01008_2011 crossref_primary_10_3109_09593985_2011_577887 crossref_primary_10_1016_j_gaitpost_2009_05_023 crossref_primary_10_1177_0391398820967367 crossref_primary_10_3389_fnsys_2014_00190 crossref_primary_10_1007_s00221_020_06003_6 crossref_primary_10_1016_j_neuroscience_2008_12_007 crossref_primary_10_1109_TNSRE_2019_2943206 crossref_primary_10_1007_s00221_006_0384_z |
Cites_doi | 10.1007/s00221-004-1921-2 10.1152/jn.00516.2003 10.1016/S0957-4271(96)00176-0 10.1007/s004220050587 10.1016/0361-9230(96)00138-4 10.1152/jn.00221.2004 10.1007/s002210100826 10.1111/j.1469-7793.2001.0869e.x 10.1016/S0079-6123(08)61209-1 10.1137/S1052623496303470 10.1007/BF00228559 10.1007/s004220000196 10.1007/BF00292236 10.1152/jn.1998.80.3.1211 10.1007/BF00243226 10.1007/s004220050527 10.1109/MEMB.2003.1195698 10.1126/science.1188373 10.1007/s002210000412 10.1016/S0165-0173(98)00032-0 10.1007/BF00229416 10.1111/j.1749-6632.1999.tb09211.x 10.1016/j.jneumeth.2005.01.003 10.1016/0301-0511(95)05146-5 10.1016/S0304-3940(00)00814-4 10.1152/jn.2002.88.3.1097 10.1007/BF00230848 10.3109/00016489009122535 10.1016/S0079-6123(03)42014-1 10.1007/PL00005616 10.1016/S0079-6123(08)62276-1 10.1016/S0304-3940(01)01655-X 10.1007/s00221-005-0065-3 10.1007/s00422-001-0290-1 10.1152/physrev.2000.80.1.83 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Springer-Verlag 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Springer-Verlag 2006 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 0-V 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 88J 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M M2R NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U RC3 7X8 |
DOI | 10.1007/s00221-005-0256-y |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Social Science Database ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts Sociology & Social Sciences Collection ProQuest Central China Health Research Premium Collection Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Social Sciences ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1432-1106 |
EndPage | 250 |
ExternalDocumentID | 1029635611 16307252 17771771 10_1007_s00221_005_0256_y |
Genre | Journal Article Comparative Study |
GroupedDBID | --- -DZ -XW -Y2 -~C -~X .55 .86 .GJ .VR 0-V 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ INH INR IPY ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M2M M2R M4Y MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P19 P2P PF- PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW X7M YLTOR Z45 ZGI ZMTXR ZOVNA ZXP ~EX ~KM ABRTQ IQODW PJZUB PPXIY PRQQA CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TK 7TM 7XB 8FD 8FK FR3 K9. P64 PKEHL POGQB PQEST PQUKI PRINS PUEGO Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c453t-1a523f03fb13da23072a4fe7ef5e5d8c99af0ef7ebca5fb98d9b8b4270a221873 |
IEDL.DBID | 7X7 |
ISSN | 0014-4819 |
IngestDate | Thu Jul 10 18:58:37 EDT 2025 Fri Jul 11 04:53:25 EDT 2025 Sat Aug 23 14:45:46 EDT 2025 Thu Jul 24 07:32:22 EDT 2025 Mon Jul 21 09:17:30 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Tue Jul 01 03:27:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human Force Proprioception Set point principle Sensor fusion Multisensory integration Sensory receptor Perturbation Joint Orientation Inner ear Organ of hearing Posture Osteoarticular system Ankle Eye Visual system Simulation Postural control Center of mass Body movement Tilt Vestibular system Dynamic model |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-1a523f03fb13da23072a4fe7ef5e5d8c99af0ef7ebca5fb98d9b8b4270a221873 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 16307252 |
PQID | 215137599 |
PQPubID | 47176 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_67909623 proquest_miscellaneous_20642023 proquest_journals_215137599 pubmed_primary_16307252 pascalfrancis_primary_17771771 crossref_citationtrail_10_1007_s00221_005_0256_y crossref_primary_10_1007_s00221_005_0256_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-05-01 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: 2006-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Germany – name: Heidelberg |
PublicationTitle | Experimental brain research |
PublicationTitleAlternate | Exp Brain Res |
PublicationYear | 2006 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
References | RJ Peterka (256_CR32) 2000; 82 256_CR28 T Mergner (256_CR27) 2001; 141 256_CR29 H Kooij van der (256_CR12) 1999; 80 V Diekmann (256_CR2) 2004; 158 FB Horak (256_CR6) 1996 RJ Peterka (256_CR33) 2002; 88 RJ Peterka (256_CR35) 2004; 91 J Jeka (256_CR9) 2000; 134 T Mergner (256_CR26) 1997; 7 DM Merfeld (256_CR20) 1995; 106 LM Nashner (256_CR31) 1972; 10 C Maurer (256_CR17) 2005; 93 T Mergner (256_CR22) 1999; 871 H Mittelstaedt (256_CR30) 1996; 42 J Duysens (256_CR4) 2000; 80 F Hlavacka (256_CR5) 1996; 40 T Mergner (256_CR25) 1993; 3 P Thoumie (256_CR36) 1996; 110 JT Inglis (256_CR8) 1994; 101 C Maurer (256_CR18) 2000; 281 L Zupan (256_CR41) 2002; 86 RJ Peterka (256_CR34) 2003; 22 FB Horak (256_CR7) 1990; 82 H Kooij van der (256_CR14) 2005; 145 C Maurer (256_CR19) 2001; 302 H Kooij van der (256_CR13) 2001; 84 DA Winter (256_CR37) 1990 DA Winter (256_CR38) 1998; 80 T Mergner (256_CR23) 1998; 28 T Mergner (256_CR24) 1991; 85 S Yasui (256_CR40) 1975; 190 JS Bendat (256_CR1) 2000 T Mergner (256_CR21) 2004; 142 G Wu (256_CR39) 1997; 114 JC Lagarias (256_CR15) 1998; 9 M Magnusson (256_CR16) 1990; 110 R Johansson (256_CR10) 1991; 18 A Kavounoudias (256_CR11) 2001; 5532 V Dietz (256_CR3) 1993; 97 8542968 - Exp Brain Res. 1995;106(1):123-34 15331614 - J Neurophysiol. 2005 Jan;93(1):189-200 10372098 - Ann N Y Acad Sci. 1999 May 28;871:430-4 4537349 - Kybernetik. 1972 Feb;10(2):106-10 7843295 - Exp Brain Res. 1994;101(1):159-64 8275243 - J Vestib Res. 1993 Spring;3(1):41-57 12733461 - IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):63-8 9125462 - Exp Brain Res. 1997 Mar;114(1):163-9 12068787 - Biol Cybern. 2002 Mar;86(3):209-30 10804065 - Biol Cybern. 2000 Apr;82(4):335-43 12693262 - Prog Brain Res. 2003;142:189-201 10704752 - Neurosci Lett. 2000 Mar 10;281(2-3):99-102 9744933 - J Neurophysiol. 1998 Sep;80(3):1211-21 11205347 - Biol Cybern. 2001 Feb;84(2):103-15 10617766 - Physiol Rev. 2000 Jan;80(1):83-133 1188373 - Science. 1975 Nov 28;190(4217):906-8 8886370 - Brain Res Bull. 1996;40(5-6):431-4; discussion 434-5 8770370 - Biol Psychol. 1996 Jan 5;42(1-2):53-74 9795180 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):118-35 9218246 - J Vestib Res. 1997 Jul-Aug;7(4):347-67 11685409 - Exp Brain Res. 2001 Nov;141(1):33-51 15260376 - Arch Ital Biol. 2004 May;142(3):175-98 1855384 - Crit Rev Biomed Eng. 1991;18(6):413-37 11278108 - Neurosci Lett. 2001 Apr 13;302(1):45-8 11026732 - Exp Brain Res. 2000 Sep;134(1):107-25 15300346 - Exp Brain Res. 2004 Oct;158(4):504-18 1893987 - Exp Brain Res. 1991;85(2):389-404 12205132 - J Neurophysiol. 2002 Sep;88(3):1097-118 2239205 - Acta Otolaryngol. 1990 Sep-Oct;110(3-4):182-8 11313452 - J Physiol. 2001 May 1;532(Pt 3):869-78 16132969 - Exp Brain Res. 2005 Dec;167(4):535-56 8836692 - Exp Brain Res. 1996 Jul;110(2):289-97 8234744 - Prog Brain Res. 1993;97:181-8 2257901 - Exp Brain Res. 1990;82(1):167-77 15922036 - J Neurosci Methods. 2005 Jun 30;145(1-2):175-203 13679407 - J Neurophysiol. 2004 Jan;91(1):410-23 10365423 - Biol Cybern. 1999 May;80(5):299-308 |
References_xml | – volume-title: Random data: analysis and measurement procedures year: 2000 ident: 256_CR1 – volume: 158 start-page: 504 year: 2004 ident: 256_CR2 publication-title: Exp Brain Res doi: 10.1007/s00221-004-1921-2 – volume: 91 start-page: 410 year: 2004 ident: 256_CR35 publication-title: J Neurophysiol doi: 10.1152/jn.00516.2003 – volume: 7 start-page: 119 year: 1997 ident: 256_CR26 publication-title: J Vestib Res doi: 10.1016/S0957-4271(96)00176-0 – volume: 82 start-page: 335 year: 2000 ident: 256_CR32 publication-title: Biol Cybern doi: 10.1007/s004220050587 – volume: 40 start-page: 431 year: 1996 ident: 256_CR5 publication-title: Brain Res Bull doi: 10.1016/0361-9230(96)00138-4 – volume: 93 start-page: 189 year: 2005 ident: 256_CR17 publication-title: J Neurophysiol doi: 10.1152/jn.00221.2004 – volume: 141 start-page: 33 year: 2001 ident: 256_CR27 publication-title: Exp Brain Res doi: 10.1007/s002210100826 – volume-title: Biomechanics and motor control of human movement year: 1990 ident: 256_CR37 – volume: 5532 start-page: 869 year: 2001 ident: 256_CR11 publication-title: J Physiol (Lond) doi: 10.1111/j.1469-7793.2001.0869e.x – volume: 106 start-page: 123 year: 1995 ident: 256_CR20 publication-title: Exp Brain Res doi: 10.1016/S0079-6123(08)61209-1 – volume: 9 start-page: 112 year: 1998 ident: 256_CR15 publication-title: SIAM J Optim doi: 10.1137/S1052623496303470 – volume: 110 start-page: 289 year: 1996 ident: 256_CR36 publication-title: Exp Brain Res doi: 10.1007/BF00228559 – volume: 84 start-page: 103 year: 2001 ident: 256_CR13 publication-title: Biol Cybern doi: 10.1007/s004220000196 – volume: 142 start-page: 175 year: 2004 ident: 256_CR21 publication-title: Arch Ital Biol – volume: 10 start-page: 106 year: 1972 ident: 256_CR31 publication-title: Kybernetik doi: 10.1007/BF00292236 – volume: 80 start-page: 1211 year: 1998 ident: 256_CR38 publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.3.1211 – volume: 18 start-page: 413 year: 1991 ident: 256_CR10 publication-title: Biomed Eng – volume: 101 start-page: 159 year: 1994 ident: 256_CR8 publication-title: Exp Brain Res doi: 10.1007/BF00243226 – volume: 80 start-page: 299 year: 1999 ident: 256_CR12 publication-title: Biol Cybern doi: 10.1007/s004220050527 – volume: 22 start-page: 63 year: 2003 ident: 256_CR34 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2003.1195698 – volume: 190 start-page: 906 year: 1975 ident: 256_CR40 publication-title: Science doi: 10.1126/science.1188373 – volume: 134 start-page: 107 year: 2000 ident: 256_CR9 publication-title: Exp Brain Res doi: 10.1007/s002210000412 – volume: 28 start-page: 118 year: 1998 ident: 256_CR23 publication-title: Brain Res Rev doi: 10.1016/S0165-0173(98)00032-0 – volume: 85 start-page: 389 year: 1991 ident: 256_CR24 publication-title: Exp Brain Res doi: 10.1007/BF00229416 – volume: 871 start-page: 430 year: 1999 ident: 256_CR22 publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.1999.tb09211.x – volume: 145 start-page: 175 year: 2005 ident: 256_CR14 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2005.01.003 – volume: 42 start-page: 53 year: 1996 ident: 256_CR30 publication-title: Biol Psychol doi: 10.1016/0301-0511(95)05146-5 – volume: 281 start-page: 99 year: 2000 ident: 256_CR18 publication-title: Neurosci Lett doi: 10.1016/S0304-3940(00)00814-4 – volume: 88 start-page: 1097 year: 2002 ident: 256_CR33 publication-title: J Neurophysiol doi: 10.1152/jn.2002.88.3.1097 – volume: 82 start-page: 167 year: 1990 ident: 256_CR7 publication-title: Exp Brain Res doi: 10.1007/BF00230848 – volume: 110 start-page: 182 year: 1990 ident: 256_CR16 publication-title: Acta Otolaryngol (Stockholm) doi: 10.3109/00016489009122535 – ident: 256_CR28 doi: 10.1016/S0079-6123(03)42014-1 – volume: 114 start-page: 163 year: 1997 ident: 256_CR39 publication-title: Exp Brain Res doi: 10.1007/PL00005616 – volume: 97 start-page: 181 year: 1993 ident: 256_CR3 publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)62276-1 – volume: 302 start-page: 45 year: 2001 ident: 256_CR19 publication-title: Neurosci Lett doi: 10.1016/S0304-3940(01)01655-X – ident: 256_CR29 doi: 10.1007/s00221-005-0065-3 – volume: 86 start-page: 209 year: 2002 ident: 256_CR41 publication-title: Biol Cybern doi: 10.1007/s00422-001-0290-1 – start-page: 255 volume-title: Handbook of physiology, 1, exercise: regulation and integration of multiple systems year: 1996 ident: 256_CR6 – volume: 80 start-page: 83 year: 2000 ident: 256_CR4 publication-title: Physiol Rev doi: 10.1152/physrev.2000.80.1.83 – volume: 3 start-page: 41 year: 1993 ident: 256_CR25 publication-title: J Vestib Res – reference: 15922036 - J Neurosci Methods. 2005 Jun 30;145(1-2):175-203 – reference: 2257901 - Exp Brain Res. 1990;82(1):167-77 – reference: 12733461 - IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):63-8 – reference: 8886370 - Brain Res Bull. 1996;40(5-6):431-4; discussion 434-5 – reference: 8836692 - Exp Brain Res. 1996 Jul;110(2):289-97 – reference: 10804065 - Biol Cybern. 2000 Apr;82(4):335-43 – reference: 10372098 - Ann N Y Acad Sci. 1999 May 28;871:430-4 – reference: 1188373 - Science. 1975 Nov 28;190(4217):906-8 – reference: 11313452 - J Physiol. 2001 May 1;532(Pt 3):869-78 – reference: 10365423 - Biol Cybern. 1999 May;80(5):299-308 – reference: 13679407 - J Neurophysiol. 2004 Jan;91(1):410-23 – reference: 12693262 - Prog Brain Res. 2003;142:189-201 – reference: 11205347 - Biol Cybern. 2001 Feb;84(2):103-15 – reference: 11685409 - Exp Brain Res. 2001 Nov;141(1):33-51 – reference: 12205132 - J Neurophysiol. 2002 Sep;88(3):1097-118 – reference: 15331614 - J Neurophysiol. 2005 Jan;93(1):189-200 – reference: 2239205 - Acta Otolaryngol. 1990 Sep-Oct;110(3-4):182-8 – reference: 8542968 - Exp Brain Res. 1995;106(1):123-34 – reference: 8275243 - J Vestib Res. 1993 Spring;3(1):41-57 – reference: 15300346 - Exp Brain Res. 2004 Oct;158(4):504-18 – reference: 11278108 - Neurosci Lett. 2001 Apr 13;302(1):45-8 – reference: 16132969 - Exp Brain Res. 2005 Dec;167(4):535-56 – reference: 11026732 - Exp Brain Res. 2000 Sep;134(1):107-25 – reference: 12068787 - Biol Cybern. 2002 Mar;86(3):209-30 – reference: 1855384 - Crit Rev Biomed Eng. 1991;18(6):413-37 – reference: 15260376 - Arch Ital Biol. 2004 May;142(3):175-98 – reference: 9125462 - Exp Brain Res. 1997 Mar;114(1):163-9 – reference: 1893987 - Exp Brain Res. 1991;85(2):389-404 – reference: 9795180 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):118-35 – reference: 9744933 - J Neurophysiol. 1998 Sep;80(3):1211-21 – reference: 4537349 - Kybernetik. 1972 Feb;10(2):106-10 – reference: 10704752 - Neurosci Lett. 2000 Mar 10;281(2-3):99-102 – reference: 7843295 - Exp Brain Res. 1994;101(1):159-64 – reference: 9218246 - J Vestib Res. 1997 Jul-Aug;7(4):347-67 – reference: 8770370 - Biol Psychol. 1996 Jan 5;42(1-2):53-74 – reference: 10617766 - Physiol Rev. 2000 Jan;80(1):83-133 – reference: 8234744 - Prog Brain Res. 1993;97:181-8 |
SSID | ssj0014370 |
Score | 2.3496845 |
Snippet | The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 231 |
SubjectTerms | Adult Biological and medical sciences Electromyography Electronystagmography - methods Eye and associated structures. Visual pathways and centers. Vision Feedback - physiology Female Fundamental and applied biological sciences. Psychology Humans Male Middle Aged Models, Biological Motion Perception Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Postural Balance - physiology Posture - physiology Retrospective Studies Sensation - physiology Torque Vertebrates: nervous system and sense organs Vestibular Diseases - physiopathology |
Title | Multisensory control of human upright stance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16307252 https://www.proquest.com/docview/215137599 https://www.proquest.com/docview/20642023 https://www.proquest.com/docview/67909623 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BckFCVVmgbBcWH6oeEFbz4djxCQECoR5WVVWkvUV2Yp_aZGF3D_n3nXGyQRzgHFuOnu2ZefbzDMC31OeyFKbkqassF4k13EoT8cpSdGDQINogkJ3Lxyfxc5Etem3OqpdVbm1iMNRVU9IZ-Q9yTanKtL5ePnMqGkWXq30FjV3Yo8xltKjVYuBbGAmo7gVKLLhAz7e91IxCDtEkQR5NyjV0-rx945YOlmaFCPmutMX7sWfwQQ-f4VMfPLKbbrYPYcfVYzi6qZE4_2vZdxbknOGcfAz7g2lrj-AqvLNdIWVtXlrWy9NZ41ko0cc2y8DRGUWKpTuGp4f7P3ePvK-TwEuRpWseG2STPkq9jdPKkLI7McI75XzmsiovtTY-cl6R7inzVueVtrkViYoMgpCr9ARGdVO7U2Cx1EnukaXIyghprJU-ppzrZWUTpXQ8gWgLU1H2ScSplsXfYkh_HJAtENmCkC3aCVwOXZZdBo2PGs_eYP_aQykkngp_YLqdjKLfbatiWBsTuBi-4jahuw9Tu2aDTYhoYXzyfgupNNI5avGlm-PXsSVBmiVfPxx7Cvvd8QyJIc9gtH7ZuHMMWNZ2FpblDPZu7-e_fv8HrUzpEg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9UwDLfGODBpQmMD9hjbcgAOiIg2TZvmgKZpML2xsdMmvVtJ2uQE7WPvPaF-KL4jdvpn2mG77VynrWzH9s9xbIB3ic-zUpqSJ66yXApruM1MxCtL0YFBg2hDgexlNr2W32fpbA3-DXdhqKxysInBUFdNSTnyz-SaEpVqfTT_w2loFB2uDhM0Oq04d-1fRGyLL2dfUbzvhTj9dnUy5f1QAV7KNFny2CD08lHibZxUhsqghZHeKedTl1Z5qbXxkfOKioRSb3VeaZtbKVRkBLpDleB7n8BT9LsRYT01G_EdRh6qu_ESSy7R0w6HqFHoWYqrObX9pCCDt3fc4ObcLFAivhulcX-sG3ze6RY874NVdtxp1wtYc_U27BzXCNR_t-wDC-WjIS-_DRujKW134FO417tAiNzctKwvh2eNZ2EkIFvNQ06AUWRaupdw_SgsfAXrdVO7XWBxpkXuERVllZGZsTbzMfV4LysrlNLxBKKBTUXZNy2n2Rm_irHdcuBsgZwtiLNFO4GP45J517HjIeKDO7y_XaEUAl2FP7A3CKPod_eiGHVxAofjU9yWdNZiateskISAHcZD91NkSiN8JIrXnYxvv50RS1Px5sFvH8Kz6dWPi-Li7PJ8Dza61BAVYr6F9eXNyu1jsLS0B0FFGfx87D3xH8D5JaI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaqQUNVCC1tePrQ9VLXIw4njA6qgsIJSrVBVJG6pndinNtmyu6ry0_rvOuM8EAe4cY6dRDNjz3yezzMA72KXpYXQBY9tabiIjOYm1QEvDUUHGjdE4wmy0_T8Wny9SW5W4F9_F4Zolf2e6Dfqsi7ojPyQXFMsE6UOXceKuDqdfJ794dRAihKtfTeN1kIubfMX0dv86OIUVf0-iiZnP76c867BAC9EEi94qBGGuSB2JoxLTZToSAtnpXWJTcqsUEq7wDpJhKHEGZWVymRGRDLQEbpGGeN7n8GqJFA0gtWTs-nV9yGFIWLZ3n8JBRfod_uUauArmOJ8TkVAKeTgzT2nuD7Tc9SPaxtrPBz5eg84eQkvutCVHbe29gpWbLUBm8cVwvbfDfvAPJnUn9JvwNqwsTab8Mnf8p0jYK5vG9aR41ntmG8QyJYzf0LAKE4t7Gu4fhIhvoFRVVd2G1iYqihziJHSUotUG5O6kCq-F6WJpFThGIJeTHnRlTCnThq_8qH4spdsjpLNSbJ5M4aPw5RZW7_jscH792R_N0NKhL0Sf2CnV0berfV5PljmGA6Gp7hIKfOiK1svcQjBPIyOHh6RSoVgkkZstTq--3ZKIk2it49--wCe43rIv11ML3dgrT0nIlbmLowWt0u7h5HTwux3Nsrg51Mvi_92Ois9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisensory+control+of+human+upright+stance&rft.jtitle=Experimental+brain+research&rft.au=MAURER%2C+C&rft.au=MERGNER%2C+T&rft.au=PETERKA%2C+R.+J&rft.date=2006-05-01&rft.pub=Springer&rft.issn=0014-4819&rft.volume=171&rft.issue=2&rft.spage=231&rft.epage=250&rft_id=info:doi/10.1007%2Fs00221-005-0256-y&rft.externalDBID=n%2Fa&rft.externalDocID=17771771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |