Multisensory control of human upright stance

The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platf...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 171; no. 2; pp. 231 - 250
Main Authors Maurer, C., Mergner, T., Peterka, R.J.
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.05.2006
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested.
AbstractList The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested.The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested.
The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured the postural responses of normal subjects and vestibular loss patients during perturbation of their stance. Subjects stood on a motion platform with their eyes closed and auditory cues masked. The perturbing stimuli consisted of either platform tilts or external torque produced by force-controlled pull of the subjects' body on a stationary platform. Furthermore, we presented trials in which these two stimuli were applied when the platform was body-sway referenced (i.e., coupled 1:1 to body position, by which ankle joint proprioceptive feedback is essentially removed). We analyzed subjects' postural responses, i.e., the excursions of their center of mass (COM) and center of pressure (COP), using a systems analysis approach. We found gain and phase of the responses to vary as a function of stimulus frequency and in relation to the absence versus presence of vestibular and proprioceptive cues. In addition, gain depended on stimulus amplitude, reflecting a non-linearity in the control. The experimental results were compared to simulation results obtained from an 'inverted pendulum' model of posture control. In the model, sensor fusion mechanisms yield internal estimates of the external stimuli, i.e., of the external torque (pull), the platform tilt and gravity. These estimates are derived from three sensor systems: ankle proprioceptors, vestibular sensors and plantar pressure sensors (somatosensory graviceptors). They are fed as global set point signals into a local control loop of the ankle joints, which is based on proprioceptive negative feedback. This local loop stabilizes the body-on-foot support, while the set point signals upgrade the loop into a body-in-space control. Amplitude non-linearity was implemented in the model in the form of central threshold mechanisms. In model simulations that combined sensor fusion and thresholds, an automatic context-specific sensory re-weighting across stimulus conditions occurred. Model parameters were identified using an optimization procedure. Results suggested that in the sway-referenced condition normal subjects altered their postural strategy by strongly weighting feedback from plantar somatosensory force sensors. Taking this strategy change into account, the model's simulation results well paralleled all experimental results across all conditions tested.
Author Maurer, C.
Peterka, R.J.
Mergner, T.
Author_xml – sequence: 1
  givenname: C.
  surname: Maurer
  fullname: Maurer, C.
– sequence: 2
  givenname: T.
  surname: Mergner
  fullname: Mergner, T.
– sequence: 3
  givenname: R.J.
  surname: Peterka
  fullname: Peterka, R.J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17771771$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16307252$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYNU7EN_gBsZBF05epNMJpOlFF9QcaPrkEkTO2U6qcnMov_ejK0KBXFxCRe-c8M5Z4wGjWsMQqcYrjEAvwkAhOAUgKVAWJ5uDtAIZ5SkGEM-QCMAnKVZgcUQjUNY9ivlcISGOKfACSMjdPXc1W0VTBOc3yTaNa13deJssuhWqkm6ta_eF20SWtVoc4wOraqDOdm9E_R2f_c6fUxnLw9P09tZqjNG2xQrRqgFaktM54r0X6nMGm4sM2xeaCGUBWO5KbVithTFXJRFmREOKtopOJ2gy-3dtXcfnQmtXFVBm7pWjXFdkDkXIHJC_wUJ5BmBL_B8D1y6zjfRhCSYYcqZEBE620FduTJzGb2vlN_I77QicLEDVNCqtj6GUoVfjnMeB0eObzntXQjeWKmrVrVVn66qaolB9v3JbX8y9if7_uQmKvGe8uf4n5pPXJ2bDA
CODEN EXBRAP
CitedBy_id crossref_primary_10_1016_j_humov_2014_07_004
crossref_primary_10_1152_jn_01145_2015
crossref_primary_10_1371_journal_pone_0167557
crossref_primary_10_3389_fnbot_2017_00049
crossref_primary_10_3389_fnbot_2018_00021
crossref_primary_10_1016_j_orthtr_2016_10_008
crossref_primary_10_1515_sjpain_2019_0121
crossref_primary_10_1055_a_1729_3231
crossref_primary_10_1115_1_4049159
crossref_primary_10_1016_j_humov_2020_102658
crossref_primary_10_1111_j_1749_6632_2008_03722_x
crossref_primary_10_1016_j_jbiomech_2014_11_030
crossref_primary_10_1038_s41598_019_50793_x
crossref_primary_10_1152_jn_00551_2015
crossref_primary_10_3389_fncom_2018_00013
crossref_primary_10_1007_s00221_018_5229_z
crossref_primary_10_1002_mds_25684
crossref_primary_10_1016_j_chb_2014_12_017
crossref_primary_10_1016_j_humov_2019_102526
crossref_primary_10_1016_j_jbiomech_2016_06_023
crossref_primary_10_1016_j_jelekin_2014_07_003
crossref_primary_10_3389_fnint_2022_856207
crossref_primary_10_1589_jpts_34_393
crossref_primary_10_1007_s00221_012_3244_z
crossref_primary_10_1007_s00221_009_1715_7
crossref_primary_10_3109_08990220_2014_958217
crossref_primary_10_1038_srep37040
crossref_primary_10_1051_sm_2011118
crossref_primary_10_1097_AUD_0000000000001156
crossref_primary_10_1080_10447318_2023_2250611
crossref_primary_10_1177_21925682221076417
crossref_primary_10_3390_children9030353
crossref_primary_10_1007_s00221_023_06727_1
crossref_primary_10_3389_fnins_2023_1197733
crossref_primary_10_1016_j_bbe_2020_12_008
crossref_primary_10_1016_j_neuroscience_2010_05_072
crossref_primary_10_14802_jmd_16062
crossref_primary_10_1038_srep39345
crossref_primary_10_3390_s19245554
crossref_primary_10_1007_s00221_006_0683_4
crossref_primary_10_1080_10790268_2017_1389676
crossref_primary_10_1016_j_gaitpost_2016_12_009
crossref_primary_10_1515_med_2016_0061
crossref_primary_10_3233_THC_174760
crossref_primary_10_1007_s10803_015_2621_4
crossref_primary_10_1016_j_humov_2007_01_014
crossref_primary_10_1007_s00221_020_05723_z
crossref_primary_10_1152_jn_91040_2008
crossref_primary_10_1016_j_jphysparis_2009_08_001
crossref_primary_10_1016_j_jphysparis_2009_08_003
crossref_primary_10_1016_j_medengphy_2015_11_019
crossref_primary_10_1016_j_jphysparis_2009_08_002
crossref_primary_10_1016_j_neulet_2011_01_024
crossref_primary_10_1055_a_2013_9439
crossref_primary_10_1007_s42600_024_00361_8
crossref_primary_10_4028_www_scientific_net_AMM_494_495_1072
crossref_primary_10_1186_s12891_019_2497_0
crossref_primary_10_3389_fspor_2024_1343888
crossref_primary_10_1155_2015_621845
crossref_primary_10_3389_fnins_2017_00357
crossref_primary_10_7224_1537_2073_2019_004
crossref_primary_10_1186_s12891_025_08362_z
crossref_primary_10_3389_fphys_2018_01620
crossref_primary_10_1002_acn3_51426
crossref_primary_10_1007_s00221_006_0677_2
crossref_primary_10_1007_s00221_011_2728_6
crossref_primary_10_1007_s00221_014_4185_5
crossref_primary_10_1016_j_heliyon_2020_e04541
crossref_primary_10_1152_jn_00057_2016
crossref_primary_10_1152_jn_00075_2024
crossref_primary_10_1007_s00421_013_2768_7
crossref_primary_10_1007_BF03033502
crossref_primary_10_1098_rsif_2024_0664
crossref_primary_10_1016_j_expneurol_2009_03_010
crossref_primary_10_1007_s00422_017_0733_y
crossref_primary_10_1371_journal_pone_0244993
crossref_primary_10_3390_jfmk7030053
crossref_primary_10_1007_s00421_008_0856_x
crossref_primary_10_1007_s00221_009_2054_4
crossref_primary_10_3390_app13063485
crossref_primary_10_1007_s00221_014_4066_y
crossref_primary_10_3389_fneur_2022_876165
crossref_primary_10_1155_2020_2451291
crossref_primary_10_26693_jmbs04_06_293
crossref_primary_10_1016_j_humov_2007_11_005
crossref_primary_10_1016_j_jbiomech_2017_09_036
crossref_primary_10_17780_ksujes_1338361
crossref_primary_10_3389_fnsys_2015_00115
crossref_primary_10_1016_j_gaitpost_2024_04_028
crossref_primary_10_14814_phy2_15050
crossref_primary_10_1007_s00221_007_0990_4
crossref_primary_10_4085_1062_6050_52_3_11
crossref_primary_10_1007_s12662_009_0076_5
crossref_primary_10_4236_jbbs_2013_36048
crossref_primary_10_1016_j_gaitpost_2023_02_013
crossref_primary_10_1016_j_ramd_2015_09_004
crossref_primary_10_1115_1_4031486
crossref_primary_10_1371_journal_pone_0260863
crossref_primary_10_1016_j_shaw_2019_06_002
crossref_primary_10_1016_j_compbiomed_2024_108492
crossref_primary_10_1016_j_humov_2024_103236
crossref_primary_10_1371_journal_pone_0115303
crossref_primary_10_1038_s41598_017_01265_7
crossref_primary_10_1080_00222895_2017_1367642
crossref_primary_10_1097_PHM_0b013e3182a39019
crossref_primary_10_3389_fspor_2019_00025
crossref_primary_10_1055_a_2354_7967
crossref_primary_10_1515_hukin_2017_0088
crossref_primary_10_1016_j_gaitpost_2011_11_001
crossref_primary_10_1111_ejn_70021
crossref_primary_10_5005_jp_journals_10057_0012
crossref_primary_10_1038_s41598_024_79736_x
crossref_primary_10_1038_s41598_022_24731_3
crossref_primary_10_1109_RBME_2021_3057673
crossref_primary_10_1080_00222895_2019_1694486
crossref_primary_10_3389_fneur_2018_00899
crossref_primary_10_3233_VES_200040
crossref_primary_10_1152_jn_00350_2019
crossref_primary_10_1186_s12883_019_1589_7
crossref_primary_10_1371_journal_pone_0113897
crossref_primary_10_1016_j_displa_2016_07_002
crossref_primary_10_29038_2617_4723_2018_381_102_107
crossref_primary_10_1016_j_jbiomech_2017_06_018
crossref_primary_10_1111_j_1748_1716_2008_01850_x
crossref_primary_10_1007_s10694_021_01140_y
crossref_primary_10_1007_s00221_007_1189_4
crossref_primary_10_1038_s41598_023_44566_w
crossref_primary_10_3389_fnhum_2021_615200
crossref_primary_10_1108_IJBPA_05_2017_0025
crossref_primary_10_1007_s00221_013_3561_x
crossref_primary_10_7759_cureus_69052
crossref_primary_10_1152_jn_01142_2006
crossref_primary_10_1134_S0362119713030171
crossref_primary_10_1007_s11517_007_0269_8
crossref_primary_10_1080_08869634_2016_1159384
crossref_primary_10_1109_MRA_2015_2507098
crossref_primary_10_1007_s00221_017_4985_5
crossref_primary_10_3390_su122410552
crossref_primary_10_1016_j_clinph_2018_03_002
crossref_primary_10_1016_j_brat_2009_01_011
crossref_primary_10_1016_j_neures_2015_12_002
crossref_primary_10_1152_jn_00916_2009
crossref_primary_10_1142_S0219843612500119
crossref_primary_10_2522_ptj_20150580
crossref_primary_10_3389_fneur_2017_00444
crossref_primary_10_1159_000541841
crossref_primary_10_25307_jssr_901186
crossref_primary_10_1152_jn_00434_2015
crossref_primary_10_3389_fnins_2017_00531
crossref_primary_10_1002_mds_22201
crossref_primary_10_1371_journal_pone_0226216
crossref_primary_10_3389_fnetp_2024_1393171
crossref_primary_10_1111_ejn_14606
crossref_primary_10_1134_S0362119714010204
crossref_primary_10_1055_a_1891_8609
crossref_primary_10_1152_jn_00046_2023
crossref_primary_10_1016_j_gaitpost_2012_06_019
crossref_primary_10_1523_JNEUROSCI_2116_17_2018
crossref_primary_10_1519_JSC_0000000000002246
crossref_primary_10_1152_jn_01064_2009
crossref_primary_10_1152_jn_00118_2009
crossref_primary_10_7600_jpfsm_4_299
crossref_primary_10_1016_j_gaitpost_2012_06_011
crossref_primary_10_3390_s24041046
crossref_primary_10_3233_VES_190652
crossref_primary_10_1177_00315125211036418
crossref_primary_10_1016_j_clinph_2007_05_060
crossref_primary_10_1016_j_neuroscience_2013_09_041
crossref_primary_10_1152_jn_00131_2009
crossref_primary_10_1016_j_gaitpost_2022_04_011
crossref_primary_10_1016_j_gaitpost_2017_08_038
crossref_primary_10_1589_jpts_29_1154
crossref_primary_10_1016_j_humov_2006_12_002
crossref_primary_10_1152_jn_00670_2010
crossref_primary_10_1080_01691864_2016_1252690
crossref_primary_10_1589_jpts_36_492
crossref_primary_10_1080_00222895_2023_2220665
crossref_primary_10_1177_0020294019900285
crossref_primary_10_1152_jn_00345_2010
crossref_primary_10_3390_s22083085
crossref_primary_10_1016_j_jneumeth_2017_12_015
crossref_primary_10_1080_10790268_2017_1369217
crossref_primary_10_1007_s00520_019_04680_w
crossref_primary_10_1152_jn_00256_2011
crossref_primary_10_1186_1743_0003_9_39
crossref_primary_10_1371_journal_pone_0100418
crossref_primary_10_15421_021944
crossref_primary_10_1016_j_arcontrol_2010_08_001
crossref_primary_10_1152_jn_00669_2013
crossref_primary_10_1016_j_jphysparis_2009_08_013
crossref_primary_10_1007_s00221_013_3750_7
crossref_primary_10_1007_s00221_021_06260_z
crossref_primary_10_1007_s00221_008_1308_x
crossref_primary_10_21020_husbfd_1433318
crossref_primary_10_1152_jn_00490_2013
crossref_primary_10_1371_journal_pone_0227119
crossref_primary_10_3109_09593985_2014_971923
crossref_primary_10_1016_j_ridd_2011_01_047
crossref_primary_10_3389_fneur_2020_609928
crossref_primary_10_1007_s11517_009_0477_5
crossref_primary_10_1007_s10072_008_0988_0
crossref_primary_10_3389_fnagi_2017_00273
crossref_primary_10_1007_s00221_012_3000_4
crossref_primary_10_1016_j_humov_2010_06_002
crossref_primary_10_3390_app15010486
crossref_primary_10_3182_20100913_3_US_2015_00053
crossref_primary_10_1007_s12559_012_9160_5
crossref_primary_10_3390_children10081339
crossref_primary_10_1007_s00221_018_5239_x
crossref_primary_10_1016_j_gaitpost_2015_01_030
crossref_primary_10_1016_j_expneurol_2009_06_013
crossref_primary_10_1589_rika_28_669
crossref_primary_10_1016_j_nbas_2021_100013
crossref_primary_10_1007_s00221_009_1995_y
crossref_primary_10_1111_j_1748_1716_2006_01642_x
crossref_primary_10_1134_S0022093021060284
crossref_primary_10_3389_fneur_2020_603814
crossref_primary_10_1016_j_jbiomech_2018_03_029
crossref_primary_10_1016_j_medengphy_2024_104197
crossref_primary_10_1371_journal_pone_0285098
crossref_primary_10_3928_19425864_20180313_02
crossref_primary_10_1016_j_jbiomech_2013_10_018
crossref_primary_10_1371_journal_pone_0062475
crossref_primary_10_1007_s00221_012_3210_9
crossref_primary_10_1016_j_neuropsychologia_2019_01_023
crossref_primary_10_1080_10255842_2012_751983
crossref_primary_10_1007_s00221_013_3795_7
crossref_primary_10_1016_j_humov_2012_12_002
crossref_primary_10_1016_j_ergon_2014_06_005
crossref_primary_10_1007_s00421_022_05043_w
crossref_primary_10_1016_j_humov_2015_02_010
crossref_primary_10_3389_fneur_2023_1243445
crossref_primary_10_1186_s12984_023_01235_3
crossref_primary_10_1152_jn_01008_2011
crossref_primary_10_3109_09593985_2011_577887
crossref_primary_10_1016_j_gaitpost_2009_05_023
crossref_primary_10_1177_0391398820967367
crossref_primary_10_3389_fnsys_2014_00190
crossref_primary_10_1007_s00221_020_06003_6
crossref_primary_10_1016_j_neuroscience_2008_12_007
crossref_primary_10_1109_TNSRE_2019_2943206
crossref_primary_10_1007_s00221_006_0384_z
Cites_doi 10.1007/s00221-004-1921-2
10.1152/jn.00516.2003
10.1016/S0957-4271(96)00176-0
10.1007/s004220050587
10.1016/0361-9230(96)00138-4
10.1152/jn.00221.2004
10.1007/s002210100826
10.1111/j.1469-7793.2001.0869e.x
10.1016/S0079-6123(08)61209-1
10.1137/S1052623496303470
10.1007/BF00228559
10.1007/s004220000196
10.1007/BF00292236
10.1152/jn.1998.80.3.1211
10.1007/BF00243226
10.1007/s004220050527
10.1109/MEMB.2003.1195698
10.1126/science.1188373
10.1007/s002210000412
10.1016/S0165-0173(98)00032-0
10.1007/BF00229416
10.1111/j.1749-6632.1999.tb09211.x
10.1016/j.jneumeth.2005.01.003
10.1016/0301-0511(95)05146-5
10.1016/S0304-3940(00)00814-4
10.1152/jn.2002.88.3.1097
10.1007/BF00230848
10.3109/00016489009122535
10.1016/S0079-6123(03)42014-1
10.1007/PL00005616
10.1016/S0079-6123(08)62276-1
10.1016/S0304-3940(01)01655-X
10.1007/s00221-005-0065-3
10.1007/s00422-001-0290-1
10.1152/physrev.2000.80.1.83
ContentType Journal Article
Copyright 2006 INIST-CNRS
Springer-Verlag 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Springer-Verlag 2006
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
88J
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
M2R
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
RC3
7X8
DOI 10.1007/s00221-005-0256-y
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Social Science Database
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
Sociology & Social Sciences Collection
ProQuest Central China
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1432-1106
EndPage 250
ExternalDocumentID 1029635611
16307252
17771771
10_1007_s00221_005_0256_y
Genre Journal Article
Comparative Study
GroupedDBID ---
-DZ
-XW
-Y2
-~C
-~X
.55
.86
.GJ
.VR
0-V
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
FA8
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IHW
IJ-
IKXTQ
INH
INR
IPY
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P19
P2P
PF-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
X7M
YLTOR
Z45
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
ABRTQ
IQODW
PJZUB
PPXIY
PRQQA
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TK
7TM
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
POGQB
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
7X8
ID FETCH-LOGICAL-c453t-1a523f03fb13da23072a4fe7ef5e5d8c99af0ef7ebca5fb98d9b8b4270a221873
IEDL.DBID 7X7
ISSN 0014-4819
IngestDate Thu Jul 10 18:58:37 EDT 2025
Fri Jul 11 04:53:25 EDT 2025
Sat Aug 23 14:45:46 EDT 2025
Thu Jul 24 07:32:22 EDT 2025
Mon Jul 21 09:17:30 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Tue Jul 01 03:27:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human
Force
Proprioception
Set point principle
Sensor fusion
Multisensory integration
Sensory receptor
Perturbation
Joint
Orientation
Inner ear
Organ of hearing
Posture
Osteoarticular system
Ankle
Eye
Visual system
Simulation
Postural control
Center of mass
Body movement
Tilt
Vestibular system
Dynamic model
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-1a523f03fb13da23072a4fe7ef5e5d8c99af0ef7ebca5fb98d9b8b4270a221873
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 16307252
PQID 215137599
PQPubID 47176
PageCount 20
ParticipantIDs proquest_miscellaneous_67909623
proquest_miscellaneous_20642023
proquest_journals_215137599
pubmed_primary_16307252
pascalfrancis_primary_17771771
crossref_citationtrail_10_1007_s00221_005_0256_y
crossref_primary_10_1007_s00221_005_0256_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Germany
– name: Heidelberg
PublicationTitle Experimental brain research
PublicationTitleAlternate Exp Brain Res
PublicationYear 2006
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References RJ Peterka (256_CR32) 2000; 82
256_CR28
T Mergner (256_CR27) 2001; 141
256_CR29
H Kooij van der (256_CR12) 1999; 80
V Diekmann (256_CR2) 2004; 158
FB Horak (256_CR6) 1996
RJ Peterka (256_CR33) 2002; 88
RJ Peterka (256_CR35) 2004; 91
J Jeka (256_CR9) 2000; 134
T Mergner (256_CR26) 1997; 7
DM Merfeld (256_CR20) 1995; 106
LM Nashner (256_CR31) 1972; 10
C Maurer (256_CR17) 2005; 93
T Mergner (256_CR22) 1999; 871
H Mittelstaedt (256_CR30) 1996; 42
J Duysens (256_CR4) 2000; 80
F Hlavacka (256_CR5) 1996; 40
T Mergner (256_CR25) 1993; 3
P Thoumie (256_CR36) 1996; 110
JT Inglis (256_CR8) 1994; 101
C Maurer (256_CR18) 2000; 281
L Zupan (256_CR41) 2002; 86
RJ Peterka (256_CR34) 2003; 22
FB Horak (256_CR7) 1990; 82
H Kooij van der (256_CR14) 2005; 145
C Maurer (256_CR19) 2001; 302
H Kooij van der (256_CR13) 2001; 84
DA Winter (256_CR37) 1990
DA Winter (256_CR38) 1998; 80
T Mergner (256_CR23) 1998; 28
T Mergner (256_CR24) 1991; 85
S Yasui (256_CR40) 1975; 190
JS Bendat (256_CR1) 2000
T Mergner (256_CR21) 2004; 142
G Wu (256_CR39) 1997; 114
JC Lagarias (256_CR15) 1998; 9
M Magnusson (256_CR16) 1990; 110
R Johansson (256_CR10) 1991; 18
A Kavounoudias (256_CR11) 2001; 5532
V Dietz (256_CR3) 1993; 97
8542968 - Exp Brain Res. 1995;106(1):123-34
15331614 - J Neurophysiol. 2005 Jan;93(1):189-200
10372098 - Ann N Y Acad Sci. 1999 May 28;871:430-4
4537349 - Kybernetik. 1972 Feb;10(2):106-10
7843295 - Exp Brain Res. 1994;101(1):159-64
8275243 - J Vestib Res. 1993 Spring;3(1):41-57
12733461 - IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):63-8
9125462 - Exp Brain Res. 1997 Mar;114(1):163-9
12068787 - Biol Cybern. 2002 Mar;86(3):209-30
10804065 - Biol Cybern. 2000 Apr;82(4):335-43
12693262 - Prog Brain Res. 2003;142:189-201
10704752 - Neurosci Lett. 2000 Mar 10;281(2-3):99-102
9744933 - J Neurophysiol. 1998 Sep;80(3):1211-21
11205347 - Biol Cybern. 2001 Feb;84(2):103-15
10617766 - Physiol Rev. 2000 Jan;80(1):83-133
1188373 - Science. 1975 Nov 28;190(4217):906-8
8886370 - Brain Res Bull. 1996;40(5-6):431-4; discussion 434-5
8770370 - Biol Psychol. 1996 Jan 5;42(1-2):53-74
9795180 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):118-35
9218246 - J Vestib Res. 1997 Jul-Aug;7(4):347-67
11685409 - Exp Brain Res. 2001 Nov;141(1):33-51
15260376 - Arch Ital Biol. 2004 May;142(3):175-98
1855384 - Crit Rev Biomed Eng. 1991;18(6):413-37
11278108 - Neurosci Lett. 2001 Apr 13;302(1):45-8
11026732 - Exp Brain Res. 2000 Sep;134(1):107-25
15300346 - Exp Brain Res. 2004 Oct;158(4):504-18
1893987 - Exp Brain Res. 1991;85(2):389-404
12205132 - J Neurophysiol. 2002 Sep;88(3):1097-118
2239205 - Acta Otolaryngol. 1990 Sep-Oct;110(3-4):182-8
11313452 - J Physiol. 2001 May 1;532(Pt 3):869-78
16132969 - Exp Brain Res. 2005 Dec;167(4):535-56
8836692 - Exp Brain Res. 1996 Jul;110(2):289-97
8234744 - Prog Brain Res. 1993;97:181-8
2257901 - Exp Brain Res. 1990;82(1):167-77
15922036 - J Neurosci Methods. 2005 Jun 30;145(1-2):175-203
13679407 - J Neurophysiol. 2004 Jan;91(1):410-23
10365423 - Biol Cybern. 1999 May;80(5):299-308
References_xml – volume-title: Random data: analysis and measurement procedures
  year: 2000
  ident: 256_CR1
– volume: 158
  start-page: 504
  year: 2004
  ident: 256_CR2
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-1921-2
– volume: 91
  start-page: 410
  year: 2004
  ident: 256_CR35
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00516.2003
– volume: 7
  start-page: 119
  year: 1997
  ident: 256_CR26
  publication-title: J Vestib Res
  doi: 10.1016/S0957-4271(96)00176-0
– volume: 82
  start-page: 335
  year: 2000
  ident: 256_CR32
  publication-title: Biol Cybern
  doi: 10.1007/s004220050587
– volume: 40
  start-page: 431
  year: 1996
  ident: 256_CR5
  publication-title: Brain Res Bull
  doi: 10.1016/0361-9230(96)00138-4
– volume: 93
  start-page: 189
  year: 2005
  ident: 256_CR17
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00221.2004
– volume: 141
  start-page: 33
  year: 2001
  ident: 256_CR27
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100826
– volume-title: Biomechanics and motor control of human movement
  year: 1990
  ident: 256_CR37
– volume: 5532
  start-page: 869
  year: 2001
  ident: 256_CR11
  publication-title: J Physiol (Lond)
  doi: 10.1111/j.1469-7793.2001.0869e.x
– volume: 106
  start-page: 123
  year: 1995
  ident: 256_CR20
  publication-title: Exp Brain Res
  doi: 10.1016/S0079-6123(08)61209-1
– volume: 9
  start-page: 112
  year: 1998
  ident: 256_CR15
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623496303470
– volume: 110
  start-page: 289
  year: 1996
  ident: 256_CR36
  publication-title: Exp Brain Res
  doi: 10.1007/BF00228559
– volume: 84
  start-page: 103
  year: 2001
  ident: 256_CR13
  publication-title: Biol Cybern
  doi: 10.1007/s004220000196
– volume: 142
  start-page: 175
  year: 2004
  ident: 256_CR21
  publication-title: Arch Ital Biol
– volume: 10
  start-page: 106
  year: 1972
  ident: 256_CR31
  publication-title: Kybernetik
  doi: 10.1007/BF00292236
– volume: 80
  start-page: 1211
  year: 1998
  ident: 256_CR38
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1998.80.3.1211
– volume: 18
  start-page: 413
  year: 1991
  ident: 256_CR10
  publication-title: Biomed Eng
– volume: 101
  start-page: 159
  year: 1994
  ident: 256_CR8
  publication-title: Exp Brain Res
  doi: 10.1007/BF00243226
– volume: 80
  start-page: 299
  year: 1999
  ident: 256_CR12
  publication-title: Biol Cybern
  doi: 10.1007/s004220050527
– volume: 22
  start-page: 63
  year: 2003
  ident: 256_CR34
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2003.1195698
– volume: 190
  start-page: 906
  year: 1975
  ident: 256_CR40
  publication-title: Science
  doi: 10.1126/science.1188373
– volume: 134
  start-page: 107
  year: 2000
  ident: 256_CR9
  publication-title: Exp Brain Res
  doi: 10.1007/s002210000412
– volume: 28
  start-page: 118
  year: 1998
  ident: 256_CR23
  publication-title: Brain Res Rev
  doi: 10.1016/S0165-0173(98)00032-0
– volume: 85
  start-page: 389
  year: 1991
  ident: 256_CR24
  publication-title: Exp Brain Res
  doi: 10.1007/BF00229416
– volume: 871
  start-page: 430
  year: 1999
  ident: 256_CR22
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.1999.tb09211.x
– volume: 145
  start-page: 175
  year: 2005
  ident: 256_CR14
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2005.01.003
– volume: 42
  start-page: 53
  year: 1996
  ident: 256_CR30
  publication-title: Biol Psychol
  doi: 10.1016/0301-0511(95)05146-5
– volume: 281
  start-page: 99
  year: 2000
  ident: 256_CR18
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(00)00814-4
– volume: 88
  start-page: 1097
  year: 2002
  ident: 256_CR33
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2002.88.3.1097
– volume: 82
  start-page: 167
  year: 1990
  ident: 256_CR7
  publication-title: Exp Brain Res
  doi: 10.1007/BF00230848
– volume: 110
  start-page: 182
  year: 1990
  ident: 256_CR16
  publication-title: Acta Otolaryngol (Stockholm)
  doi: 10.3109/00016489009122535
– ident: 256_CR28
  doi: 10.1016/S0079-6123(03)42014-1
– volume: 114
  start-page: 163
  year: 1997
  ident: 256_CR39
  publication-title: Exp Brain Res
  doi: 10.1007/PL00005616
– volume: 97
  start-page: 181
  year: 1993
  ident: 256_CR3
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)62276-1
– volume: 302
  start-page: 45
  year: 2001
  ident: 256_CR19
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(01)01655-X
– ident: 256_CR29
  doi: 10.1007/s00221-005-0065-3
– volume: 86
  start-page: 209
  year: 2002
  ident: 256_CR41
  publication-title: Biol Cybern
  doi: 10.1007/s00422-001-0290-1
– start-page: 255
  volume-title: Handbook of physiology, 1, exercise: regulation and integration of multiple systems
  year: 1996
  ident: 256_CR6
– volume: 80
  start-page: 83
  year: 2000
  ident: 256_CR4
  publication-title: Physiol Rev
  doi: 10.1152/physrev.2000.80.1.83
– volume: 3
  start-page: 41
  year: 1993
  ident: 256_CR25
  publication-title: J Vestib Res
– reference: 15922036 - J Neurosci Methods. 2005 Jun 30;145(1-2):175-203
– reference: 2257901 - Exp Brain Res. 1990;82(1):167-77
– reference: 12733461 - IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):63-8
– reference: 8886370 - Brain Res Bull. 1996;40(5-6):431-4; discussion 434-5
– reference: 8836692 - Exp Brain Res. 1996 Jul;110(2):289-97
– reference: 10804065 - Biol Cybern. 2000 Apr;82(4):335-43
– reference: 10372098 - Ann N Y Acad Sci. 1999 May 28;871:430-4
– reference: 1188373 - Science. 1975 Nov 28;190(4217):906-8
– reference: 11313452 - J Physiol. 2001 May 1;532(Pt 3):869-78
– reference: 10365423 - Biol Cybern. 1999 May;80(5):299-308
– reference: 13679407 - J Neurophysiol. 2004 Jan;91(1):410-23
– reference: 12693262 - Prog Brain Res. 2003;142:189-201
– reference: 11205347 - Biol Cybern. 2001 Feb;84(2):103-15
– reference: 11685409 - Exp Brain Res. 2001 Nov;141(1):33-51
– reference: 12205132 - J Neurophysiol. 2002 Sep;88(3):1097-118
– reference: 15331614 - J Neurophysiol. 2005 Jan;93(1):189-200
– reference: 2239205 - Acta Otolaryngol. 1990 Sep-Oct;110(3-4):182-8
– reference: 8542968 - Exp Brain Res. 1995;106(1):123-34
– reference: 8275243 - J Vestib Res. 1993 Spring;3(1):41-57
– reference: 15300346 - Exp Brain Res. 2004 Oct;158(4):504-18
– reference: 11278108 - Neurosci Lett. 2001 Apr 13;302(1):45-8
– reference: 16132969 - Exp Brain Res. 2005 Dec;167(4):535-56
– reference: 11026732 - Exp Brain Res. 2000 Sep;134(1):107-25
– reference: 12068787 - Biol Cybern. 2002 Mar;86(3):209-30
– reference: 1855384 - Crit Rev Biomed Eng. 1991;18(6):413-37
– reference: 15260376 - Arch Ital Biol. 2004 May;142(3):175-98
– reference: 9125462 - Exp Brain Res. 1997 Mar;114(1):163-9
– reference: 1893987 - Exp Brain Res. 1991;85(2):389-404
– reference: 9795180 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):118-35
– reference: 9744933 - J Neurophysiol. 1998 Sep;80(3):1211-21
– reference: 4537349 - Kybernetik. 1972 Feb;10(2):106-10
– reference: 10704752 - Neurosci Lett. 2000 Mar 10;281(2-3):99-102
– reference: 7843295 - Exp Brain Res. 1994;101(1):159-64
– reference: 9218246 - J Vestib Res. 1997 Jul-Aug;7(4):347-67
– reference: 8770370 - Biol Psychol. 1996 Jan 5;42(1-2):53-74
– reference: 10617766 - Physiol Rev. 2000 Jan;80(1):83-133
– reference: 8234744 - Prog Brain Res. 1993;97:181-8
SSID ssj0014370
Score 2.3496845
Snippet The interaction of different orientation senses contributing to posture control is not well understood. We therefore performed experiments in which we measured...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 231
SubjectTerms Adult
Biological and medical sciences
Electromyography
Electronystagmography - methods
Eye and associated structures. Visual pathways and centers. Vision
Feedback - physiology
Female
Fundamental and applied biological sciences. Psychology
Humans
Male
Middle Aged
Models, Biological
Motion Perception
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Postural Balance - physiology
Posture - physiology
Retrospective Studies
Sensation - physiology
Torque
Vertebrates: nervous system and sense organs
Vestibular Diseases - physiopathology
Title Multisensory control of human upright stance
URI https://www.ncbi.nlm.nih.gov/pubmed/16307252
https://www.proquest.com/docview/215137599
https://www.proquest.com/docview/20642023
https://www.proquest.com/docview/67909623
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BckFCVVmgbBcWH6oeEFbz4djxCQECoR5WVVWkvUV2Yp_aZGF3D_n3nXGyQRzgHFuOnu2ZefbzDMC31OeyFKbkqassF4k13EoT8cpSdGDQINogkJ3Lxyfxc5Etem3OqpdVbm1iMNRVU9IZ-Q9yTanKtL5ePnMqGkWXq30FjV3Yo8xltKjVYuBbGAmo7gVKLLhAz7e91IxCDtEkQR5NyjV0-rx945YOlmaFCPmutMX7sWfwQQ-f4VMfPLKbbrYPYcfVYzi6qZE4_2vZdxbknOGcfAz7g2lrj-AqvLNdIWVtXlrWy9NZ41ko0cc2y8DRGUWKpTuGp4f7P3ePvK-TwEuRpWseG2STPkq9jdPKkLI7McI75XzmsiovtTY-cl6R7inzVueVtrkViYoMgpCr9ARGdVO7U2Cx1EnukaXIyghprJU-ppzrZWUTpXQ8gWgLU1H2ScSplsXfYkh_HJAtENmCkC3aCVwOXZZdBo2PGs_eYP_aQykkngp_YLqdjKLfbatiWBsTuBi-4jahuw9Tu2aDTYhoYXzyfgupNNI5avGlm-PXsSVBmiVfPxx7Cvvd8QyJIc9gtH7ZuHMMWNZ2FpblDPZu7-e_fv8HrUzpEg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9UwDLfGODBpQmMD9hjbcgAOiIg2TZvmgKZpML2xsdMmvVtJ2uQE7WPvPaF-KL4jdvpn2mG77VynrWzH9s9xbIB3ic-zUpqSJ66yXApruM1MxCtL0YFBg2hDgexlNr2W32fpbA3-DXdhqKxysInBUFdNSTnyz-SaEpVqfTT_w2loFB2uDhM0Oq04d-1fRGyLL2dfUbzvhTj9dnUy5f1QAV7KNFny2CD08lHibZxUhsqghZHeKedTl1Z5qbXxkfOKioRSb3VeaZtbKVRkBLpDleB7n8BT9LsRYT01G_EdRh6qu_ESSy7R0w6HqFHoWYqrObX9pCCDt3fc4ObcLFAivhulcX-sG3ze6RY874NVdtxp1wtYc_U27BzXCNR_t-wDC-WjIS-_DRujKW134FO417tAiNzctKwvh2eNZ2EkIFvNQ06AUWRaupdw_SgsfAXrdVO7XWBxpkXuERVllZGZsTbzMfV4LysrlNLxBKKBTUXZNy2n2Rm_irHdcuBsgZwtiLNFO4GP45J517HjIeKDO7y_XaEUAl2FP7A3CKPod_eiGHVxAofjU9yWdNZiateskISAHcZD91NkSiN8JIrXnYxvv50RS1Px5sFvH8Kz6dWPi-Li7PJ8Dza61BAVYr6F9eXNyu1jsLS0B0FFGfx87D3xH8D5JaI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaqQUNVCC1tePrQ9VLXIw4njA6qgsIJSrVBVJG6pndinNtmyu6ry0_rvOuM8EAe4cY6dRDNjz3yezzMA72KXpYXQBY9tabiIjOYm1QEvDUUHGjdE4wmy0_T8Wny9SW5W4F9_F4Zolf2e6Dfqsi7ojPyQXFMsE6UOXceKuDqdfJ794dRAihKtfTeN1kIubfMX0dv86OIUVf0-iiZnP76c867BAC9EEi94qBGGuSB2JoxLTZToSAtnpXWJTcqsUEq7wDpJhKHEGZWVymRGRDLQEbpGGeN7n8GqJFA0gtWTs-nV9yGFIWLZ3n8JBRfod_uUauArmOJ8TkVAKeTgzT2nuD7Tc9SPaxtrPBz5eg84eQkvutCVHbe29gpWbLUBm8cVwvbfDfvAPJnUn9JvwNqwsTab8Mnf8p0jYK5vG9aR41ntmG8QyJYzf0LAKE4t7Gu4fhIhvoFRVVd2G1iYqihziJHSUotUG5O6kCq-F6WJpFThGIJeTHnRlTCnThq_8qH4spdsjpLNSbJ5M4aPw5RZW7_jscH792R_N0NKhL0Sf2CnV0berfV5PljmGA6Gp7hIKfOiK1svcQjBPIyOHh6RSoVgkkZstTq--3ZKIk2it49--wCe43rIv11ML3dgrT0nIlbmLowWt0u7h5HTwux3Nsrg51Mvi_92Ois9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisensory+control+of+human+upright+stance&rft.jtitle=Experimental+brain+research&rft.au=MAURER%2C+C&rft.au=MERGNER%2C+T&rft.au=PETERKA%2C+R.+J&rft.date=2006-05-01&rft.pub=Springer&rft.issn=0014-4819&rft.volume=171&rft.issue=2&rft.spage=231&rft.epage=250&rft_id=info:doi/10.1007%2Fs00221-005-0256-y&rft.externalDBID=n%2Fa&rft.externalDocID=17771771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon