The central limit theorem under random truncation
Under left truncation, data (X(i), Y(i)) are observed only when Y(i) ≤ X(i). Usually, the distribution function F of the X(i) is the target of interest. In this paper, we study linear functionals ∫ φ dF(n) of the nonparametric maximum likelihood estimator (MLE) of F, the Lynden-Bell estimator F(n)....
Saved in:
Published in | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 14; no. 3; p. 604 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.08.2008
|
Online Access | Get more information |
ISSN | 1350-7265 |
DOI | 10.3150/07-BEJ116 |
Cover
Loading…
Abstract | Under left truncation, data (X(i), Y(i)) are observed only when Y(i) ≤ X(i). Usually, the distribution function F of the X(i) is the target of interest. In this paper, we study linear functionals ∫ φ dF(n) of the nonparametric maximum likelihood estimator (MLE) of F, the Lynden-Bell estimator F(n). A useful representation of ∫ φ dF(n) is derived which yields asymptotic normality under optimal moment conditions on the score function φ. No continuity assumption on F is required. As a by-product, we obtain the distributional convergence of the Lynden-Bell empirical process on the whole real line. |
---|---|
AbstractList | Under left truncation, data (X(i), Y(i)) are observed only when Y(i) ≤ X(i). Usually, the distribution function F of the X(i) is the target of interest. In this paper, we study linear functionals ∫ φ dF(n) of the nonparametric maximum likelihood estimator (MLE) of F, the Lynden-Bell estimator F(n). A useful representation of ∫ φ dF(n) is derived which yields asymptotic normality under optimal moment conditions on the score function φ. No continuity assumption on F is required. As a by-product, we obtain the distributional convergence of the Lynden-Bell empirical process on the whole real line. |
Author | Wang, Jane-Ling Stute, Winfried |
Author_xml | – sequence: 1 givenname: Winfried surname: Stute fullname: Stute, Winfried email: winfried.stute@math.uni-giessen.de organization: Mathematical Institute, University of Giessen, Arndtstr. 2, D-35392 Giessen, Germany. winfried.stute@math.uni-giessen.de – sequence: 2 givenname: Jane-Ling surname: Wang fullname: Wang, Jane-Ling |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22844204$$D View this record in MEDLINE/PubMed |
BookMark | eNo1zrtOwzAUgGEPRfQCAy-A_AKBc3yLM0JVbqrEUubqEB-rQYlTOc7A2zMA0799-tdikcbEQtwg3Gm0cA919bh7Q3QLsUJtoaqVs0uxnqYvADTOwaVYKuWNUWBWAg8nli2nkqmXfTd0RZYTj5kHOafAWWZKYRxkyXNqqXRjuhIXkfqJr_-6ER9Pu8P2pdq_P79uH_ZVa6wuFbqoGoAQqGbPdQTW6D16jpGMIVsTKA3BojZkGh-5bTVo8gF8E512aiNuf93z_DlwOJ5zN1D-Pv6_qx_Hp0Pg |
CitedBy_id | crossref_primary_10_1007_s11749_024_00948_4 crossref_primary_10_1007_s11749_014_0403_5 crossref_primary_10_1007_s00362_023_01498_x crossref_primary_10_1080_02331888_2011_648638 crossref_primary_10_54021_seesv5n3_126 crossref_primary_10_1016_j_csda_2010_05_022 crossref_primary_10_1080_10485250902971740 crossref_primary_10_1007_s10687_016_0241_9 crossref_primary_10_1007_s00362_016_0867_3 crossref_primary_10_1016_j_spl_2008_10_038 crossref_primary_10_1111_biom_12874 crossref_primary_10_1016_j_jspi_2009_12_017 crossref_primary_10_1007_s00362_014_0613_7 crossref_primary_10_1007_s11424_022_1118_4 crossref_primary_10_1097_MPG_0b013e31822a033e crossref_primary_10_1214_21_AOS2087 crossref_primary_10_1007_s10182_018_0319_6 crossref_primary_10_1016_j_spl_2012_06_016 crossref_primary_10_1016_j_spl_2015_11_011 crossref_primary_10_1007_s10463_016_0587_4 crossref_primary_10_1080_03610926_2018_1498895 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.3150/07-BEJ116 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Mathematics |
ExternalDocumentID | 22844204 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG025218 |
GroupedDBID | 23N 2AX 2WC 5GY 6J9 AAFWJ AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ACDIW ACHJO ACMTB ACTMH ADNWM ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG CS3 DQDLB DSRWC DU5 E3Z EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 IPSME JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 PUASD RBU RNS RPE SA0 TN5 WS9 |
ID | FETCH-LOGICAL-c453t-16f2900dda7e8e7f0e318818effa44a57a0230d5134a498fecc303a8d089f6362 |
ISSN | 1350-7265 |
IngestDate | Thu Apr 03 07:08:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-16f2900dda7e8e7f0e318818effa44a57a0230d5134a498fecc303a8d089f6362 |
OpenAccessLink | https://projecteuclid.org/journals/bernoulli/volume-14/issue-3/The-central-limit-theorem-under-random-truncation/10.3150/07-BEJ116.pdf |
PMID | 22844204 |
ParticipantIDs | pubmed_primary_22844204 |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
PublicationTitleAlternate | Bernoulli (Andover) |
PublicationYear | 2008 |
SSID | ssj0014660 |
Score | 1.94288 |
Snippet | Under left truncation, data (X(i), Y(i)) are observed only when Y(i) ≤ X(i). Usually, the distribution function F of the X(i) is the target of interest. In... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 604 |
Title | The central limit theorem under random truncation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22844204 |
Volume | 14 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9OL_MgOt8vevA2on3k0R5VJmM4Edxgt5E16cl1o86Lf71f0rSZYwP1UkpTQtPfly_f-0PoJqUpSBmKY5kIbbphIZ4wnuIw5KA0Z75SXGcj919Yd0h6IzpyHnyTXbKY3KZfa_NK_oMqPANcdZbsH5CtJ4UHcA_4whUQhuuvMbbRle13nalk8xKnprtt0YZzSOrskeIzTx0ClQtXFflMu4I2lpIwsQP1W8vxnf262KsuJqK9-a7c82sBLMKE3NbW-jcdjWCi-WDVoJtLZ8a3AcEiV_i5OkUrI0Rch8BVfDOiPuZh2fahZqxkiYCiJS7Jyo7Dq9w7AuFUO5M4fuj0gjIFcwnF-dTAGMKBSsKfM6wfXSmkXQ01UANUCt0jVRt2rMOJMJtQbtdRFqHSX3RXf48uHG3nWFFCjDAy2Ed7Vovw7kuSOEBbKm-hXYfKRws1HSyHKABK8SyleIZSPEspnqEUr6QUz1HKERo-dQaPXWybZeCU0GiBA5aFie9LKbiKFYddBtwapDGVZYIQQbnQ2qakQUQESeIMti5ILyKWfpxkDMSYY7Sdz3J1ijwZgRDIRBTLBFYbpAnlGez1gIGYE0gqz9BJufjxvKyIMq5-y_nGkQvUdHRziXYy2ILqCuS5xeTaIPENkwBJ5g |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+central+limit+theorem+under+random+truncation&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=Stute%2C+Winfried&rft.au=Wang%2C+Jane-Ling&rft.date=2008-08-01&rft.issn=1350-7265&rft.volume=14&rft.issue=3&rft.spage=604&rft_id=info:doi/10.3150%2F07-BEJ116&rft_id=info%3Apmid%2F22844204&rft_id=info%3Apmid%2F22844204&rft.externalDocID=22844204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon |