Classification of fault location and performance degradation of a roller bearing
► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature extraction and eliminate redundancy. ► We use PSO-SVM for the intelligent pattern classification. ► We compare the identification ability of several...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 46; no. 3; pp. 1178 - 1189 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature extraction and eliminate redundancy. ► We use PSO-SVM for the intelligent pattern classification. ► We compare the identification ability of several methods.
Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which can reduce costs and the nonscheduled down time. In this paper, a new fault diagnosis method based on multiple features, kernel principal component analysis (KPCA) and particle swarm optimization-support vector machine (PSO-SVM) is put forward. First, traditional features of the vibration signals in time-domain and frequency-domain are calculated, and then two types of features referred to as singular values and AR model parameters based on ensemble empirical mode decomposition (EEMD) are introduced. After that, the original feature vectors are mapped into higher dimensional space and the kernel principal components are extracted as new feature vectors, which are used as inputs to PSO-SVM. The experimental results show that the new diagnosis approach proposed in this paper can identify not only the fault locations but also the performance degradation of the roller bearing. |
---|---|
AbstractList | ► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature extraction and eliminate redundancy. ► We use PSO-SVM for the intelligent pattern classification. ► We compare the identification ability of several methods.
Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which can reduce costs and the nonscheduled down time. In this paper, a new fault diagnosis method based on multiple features, kernel principal component analysis (KPCA) and particle swarm optimization-support vector machine (PSO-SVM) is put forward. First, traditional features of the vibration signals in time-domain and frequency-domain are calculated, and then two types of features referred to as singular values and AR model parameters based on ensemble empirical mode decomposition (EEMD) are introduced. After that, the original feature vectors are mapped into higher dimensional space and the kernel principal components are extracted as new feature vectors, which are used as inputs to PSO-SVM. The experimental results show that the new diagnosis approach proposed in this paper can identify not only the fault locations but also the performance degradation of the roller bearing. Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which can reduce costs and the nonscheduled down time. In this paper, a new fault diagnosis method based on multiple features, kernel principal component analysis (KPCA) and particle swarm optimization-support vector machine (PSO-SVM) is put forward. First, traditional features of the vibration signals in time-domain and frequency-domain are calculated, and then two types of features referred to as singular values and AR model parameters based on ensemble empirical mode decomposition (EEMD) are introduced. After that, the original feature vectors are mapped into higher dimensional space and the kernel principal components are extracted as new feature vectors, which are used as inputs to PSO-SVM. The experimental results show that the new diagnosis approach proposed in this paper can identify not only the fault locations but also the performance degradation of the roller bearing. |
Author | Zuo, Hongfu Bai, Fang Zhang, Ying |
Author_xml | – sequence: 1 givenname: Ying surname: Zhang fullname: Zhang, Ying email: zhangyingrms@163.com – sequence: 2 givenname: Hongfu surname: Zuo fullname: Zuo, Hongfu – sequence: 3 givenname: Fang surname: Bai fullname: Bai, Fang |
BookMark | eNqNkU1r3DAQhkVJoZu0_8G99WJHI8nS-lTK0o9AoD20kJsYS6OgRba2krfQf18nG0rpJXsSiOd9pZnnkl3MeSbG3gLvgIO-3ncTYT0WmmheOsFBdAAdF_0LtoGtka0CcXfBNlxo2Qqh4BW7rHXPOddy0Bv2bZew1hiiwyXmucmhCXhMS5Py0w3OvjlQCblMODtqPN0X9H9pbEpOiUozEpY4379mLwOmSm-eziv249PH77sv7e3Xzze7D7etU71cWtA4jkM_IoEEqcFr4gMa6YTxauAEbp1B9z0OXuswckNh64PvtwFgfUnKK_bu1Hso-eeR6mKnWB2lhDPlY7VglJagjYLnUW1AGb4mnkd7kMoMSp7xAakGZYQQfEXfn1BXcq2FgnVxedzgUjAmC9w-yLR7-49M-yDTAth1EWvD8F_DocQJy--zsrtTllYdvyIVW12kVaWPhdxifY5ntPwBXtHDdw |
CitedBy_id | crossref_primary_10_1002_acs_2952 crossref_primary_10_1016_j_aej_2020_03_034 crossref_primary_10_1016_j_heliyon_2022_e12053 crossref_primary_10_1155_2017_2623081 crossref_primary_10_1155_2017_7257603 crossref_primary_10_1080_10402004_2016_1213343 crossref_primary_10_17531_ein_2020_4_17 crossref_primary_10_1155_2016_8623530 crossref_primary_10_4304_jcp_8_11_2916_2924 crossref_primary_10_1051_meca_2014058 crossref_primary_10_1016_j_measurement_2014_09_045 crossref_primary_10_1016_j_jsv_2014_03_014 crossref_primary_10_1016_j_isatra_2021_08_040 crossref_primary_10_1016_j_measurement_2016_04_025 crossref_primary_10_1016_j_measurement_2016_04_069 crossref_primary_10_1088_1361_6501_abb551 crossref_primary_10_1016_j_isatra_2016_08_022 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1155_2020_6216903 crossref_primary_10_1016_j_measurement_2021_110571 crossref_primary_10_1155_2016_5341970 crossref_primary_10_1155_2020_7247195 crossref_primary_10_1016_j_jsv_2021_116493 crossref_primary_10_1016_j_measurement_2019_05_039 crossref_primary_10_1177_0954406216648985 crossref_primary_10_3390_machines6030034 crossref_primary_10_1016_j_jsv_2014_09_026 crossref_primary_10_21595_vp_2020_21315 crossref_primary_10_1007_s40430_016_0540_8 crossref_primary_10_1109_JSEN_2021_3139844 crossref_primary_10_1155_2019_3740586 crossref_primary_10_1016_j_cie_2019_106031 crossref_primary_10_1016_j_measurement_2014_04_016 crossref_primary_10_1016_j_promfg_2020_10_038 crossref_primary_10_1016_j_pes_2024_100030 crossref_primary_10_1007_s10845_014_0987_3 crossref_primary_10_1007_s10921_018_0543_8 crossref_primary_10_21595_jve_2017_18755 crossref_primary_10_1109_TIM_2018_2890329 crossref_primary_10_1115_1_4045010 crossref_primary_10_21595_jve_2016_17332 crossref_primary_10_3390_e16105400 crossref_primary_10_1080_10255842_2024_2374949 crossref_primary_10_1007_s00170_024_13325_0 crossref_primary_10_1016_j_measurement_2023_112908 crossref_primary_10_1177_1687814016661087 crossref_primary_10_1007_s11265_020_01571_w crossref_primary_10_1088_1361_6501_abe286 crossref_primary_10_1177_1464419318778253 crossref_primary_10_1007_s40313_015_0173_7 crossref_primary_10_17531_ein_2021_2_20 crossref_primary_10_1007_s10845_017_1375_6 crossref_primary_10_2118_217425_PA crossref_primary_10_3390_e19030086 crossref_primary_10_1007_s42417_022_00548_2 crossref_primary_10_1016_j_ymssp_2020_106956 crossref_primary_10_1177_1461348417744302 crossref_primary_10_1177_0954406214563235 crossref_primary_10_1016_j_ymssp_2013_07_006 crossref_primary_10_1109_TIM_2020_2971288 crossref_primary_10_1155_2016_3086454 crossref_primary_10_1007_s40799_020_00387_4 crossref_primary_10_1177_1350650117727976 crossref_primary_10_1016_j_engappai_2016_08_011 crossref_primary_10_1109_ACCESS_2021_3071796 crossref_primary_10_1016_j_measurement_2020_108723 crossref_primary_10_1016_j_ymssp_2017_06_012 crossref_primary_10_1016_j_jsv_2018_06_015 crossref_primary_10_1007_s10921_024_01131_3 crossref_primary_10_3390_s140815022 crossref_primary_10_3390_s21030849 |
Cites_doi | 10.1098/rspa.1998.0193 10.1098/rspa.2003.1221 10.1007/s00170-003-1899-0 10.1016/j.measurement.2010.10.004 10.1016/j.measurement.2006.10.010 10.1016/j.patcog.2008.03.018 10.1016/j.ymssp.2004.11.002 10.1016/j.ymssp.2008.11.005 10.1146/annurev.fluid.31.1.417 10.1162/089976698300017467 10.1006/mssp.2001.1462 10.1115/1.3269082 10.1007/s00170-006-0887-6 10.1016/j.measurement.2011.02.017 10.1007/s00170-009-2283-5 10.1142/S1793536909000047 10.1088/0957-0233/20/12/125701 10.1016/j.ymssp.2011.11.015 10.1016/j.ces.2008.10.012 10.1016/j.eswa.2011.02.043 10.1016/S0963-8695(01)00044-5 10.1243/09544062JMES1447 10.1016/j.ymssp.2007.07.013 10.1016/j.cor.2006.12.013 10.1016/j.eswa.2011.09.150 10.1016/S0031-3203(03)00062-1 10.1109/TPAMI.2005.181 10.1016/j.jsv.2007.01.001 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M KR7 7S9 L.6 |
DOI | 10.1016/j.measurement.2012.11.025 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts AGRICOLA Civil Engineering Abstracts Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
EndPage | 1189 |
ExternalDocumentID | 10_1016_j_measurement_2012_11_025 S0263224112004460 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 7U5 8FD EFKBS FR3 L7M KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c453t-16abb95bae131361d6e09a73c27d490e1c025655a9d66fb07ef8dfd58f11bea33 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Jul 30 11:06:01 EDT 2025 Tue Aug 05 10:32:47 EDT 2025 Fri Jul 11 08:17:45 EDT 2025 Mon Aug 18 11:01:30 EDT 2025 Tue Jul 01 04:36:57 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Fri Feb 23 02:27:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fault diagnosis Feature extraction Ensemble empirical mode decomposition Support vector machine Kernel principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-16abb95bae131361d6e09a73c27d490e1c025655a9d66fb07ef8dfd58f11bea33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1349472220 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1746316741 proquest_miscellaneous_1671470174 proquest_miscellaneous_1513479433 proquest_miscellaneous_1349472220 crossref_citationtrail_10_1016_j_measurement_2012_11_025 crossref_primary_10_1016_j_measurement_2012_11_025 elsevier_sciencedirect_doi_10_1016_j_measurement_2012_11_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pan, Chen, Dong (b0030) 2009; 223 Wu, Huang (b0060) 2004; 460A Wu, Huang (b0100) 2009; 1 K.A. Loparo, Bearings Vibration Data Set, Case Western Reserve University [EB/OL] <http://www.eecs.case.edu/laboratory/bearing/welcome_over view.htm>. Lei, Zuo (b0070) 2009; 20 Kwak, Ha (b0080) 2004; 23 Zhao, Sun, Sun, Ting (b0150) 2011; 38 Saman ta, Al-Balushi (b0075) 2003; 17 Liu, Wang, Jin (b0135) 2008; 35 Yaguo, Zhengjia, Yanyang (b0065) 2009; 23 Gersh, Brotherton, Braun (b0110) 1983; 105 Nikolaou, Antoniadis (b0010) 2002; 35 Lia, Lib, Taoc (b0120) 2008; 41 Heisele, Serre, Prentice, Poggio (b0130) 2003; 36 Cheng, Guang-Hua, Qing (b0025) 2012; 39 Jiang, Youren (b0085) 2011; 44 Yang, Yu, Cheng (b0035) 2006; 294 Cheng, Yu, Yang (b0055) 2006; 20 Ocak, Loparo, Discenzo (b0005) 2007; 302 Yu, Dejie, Junsheng (b0040) 2007; 40 Zhang (b0145) 2009; 64 Xu, Xie, Zhang, Li (b0015) 2008; 36 Huang, Shen, Long (b0045) 1998; 454 Yujing Wang, Shouqiang Kang, Yicheng Jiang, Guangxue Yang, Lixin Song, V.I. Mikulovich, Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine, Mech. Syst. Signal Process doi:10.1016/j.ymssp.2011.11.015. Jian, Hu, Fan (b0090) 2011; 44 Yu, Li, Sun (b0020) 2010; 48 Lei, He, Zi, Chen (b0105) 2008; 22 Huang, Shen, Long (b0095) 1999; 3 Scholkopf, Smola, Muller (b0115) 1998; 10 Kwang, in: Kim Iterative kernel principal component analysis for image modeling, IEEE Trans. Pattern Anal. Mach. Intell 2005; 27(9): 1351–1366. Lei (10.1016/j.measurement.2012.11.025_b0070) 2009; 20 10.1016/j.measurement.2012.11.025_b0050 Yang (10.1016/j.measurement.2012.11.025_b0035) 2006; 294 Zhao (10.1016/j.measurement.2012.11.025_b0150) 2011; 38 Yu (10.1016/j.measurement.2012.11.025_b0040) 2007; 40 Wu (10.1016/j.measurement.2012.11.025_b0060) 2004; 460A Nikolaou (10.1016/j.measurement.2012.11.025_b0010) 2002; 35 Heisele (10.1016/j.measurement.2012.11.025_b0130) 2003; 36 Liu (10.1016/j.measurement.2012.11.025_b0135) 2008; 35 Kwak (10.1016/j.measurement.2012.11.025_b0080) 2004; 23 Ocak (10.1016/j.measurement.2012.11.025_b0005) 2007; 302 Huang (10.1016/j.measurement.2012.11.025_b0045) 1998; 454 Cheng (10.1016/j.measurement.2012.11.025_b0025) 2012; 39 Scholkopf (10.1016/j.measurement.2012.11.025_b0115) 1998; 10 Wu (10.1016/j.measurement.2012.11.025_b0100) 2009; 1 Cheng (10.1016/j.measurement.2012.11.025_b0055) 2006; 20 Lia (10.1016/j.measurement.2012.11.025_b0120) 2008; 41 Yaguo (10.1016/j.measurement.2012.11.025_b0065) 2009; 23 Lei (10.1016/j.measurement.2012.11.025_b0105) 2008; 22 Saman ta (10.1016/j.measurement.2012.11.025_b0075) 2003; 17 10.1016/j.measurement.2012.11.025_b0140 Jiang (10.1016/j.measurement.2012.11.025_b0085) 2011; 44 10.1016/j.measurement.2012.11.025_b0125 Xu (10.1016/j.measurement.2012.11.025_b0015) 2008; 36 Huang (10.1016/j.measurement.2012.11.025_b0095) 1999; 3 Zhang (10.1016/j.measurement.2012.11.025_b0145) 2009; 64 Gersh (10.1016/j.measurement.2012.11.025_b0110) 1983; 105 Jian (10.1016/j.measurement.2012.11.025_b0090) 2011; 44 Pan (10.1016/j.measurement.2012.11.025_b0030) 2009; 223 Yu (10.1016/j.measurement.2012.11.025_b0020) 2010; 48 |
References_xml | – volume: 44 start-page: 1018 year: 2011 end-page: 1027 ident: b0090 article-title: Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker publication-title: Measurement – volume: 44 start-page: 281 year: 2011 end-page: 289 ident: b0085 article-title: A novel approach of analog circuit fault diagnosis using support vector machines classifier publication-title: Measurement – volume: 23 start-page: 436 year: 2004 end-page: 443 ident: b0080 article-title: Intelligent diagnostic technique of machining state for grinding publication-title: Int. J. Adv. Manuf. Technol. – volume: 38 start-page: 9908 year: 2011 end-page: 9912 ident: b0150 article-title: Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine publication-title: Exp. Syst. Appl. – volume: 35 start-page: 2791 year: 2008 end-page: 2806 ident: b0135 article-title: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers publication-title: Comput. Operat. Res. – volume: 64 start-page: 801 year: 2009 end-page: 811 ident: b0145 article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM publication-title: Chem. Eng. Sci. – volume: 20 start-page: 125701 year: 2009 ident: b0070 article-title: Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs publication-title: Meas. Sci. Technol. – volume: 39 start-page: 4410 year: 2012 end-page: 4417 ident: b0025 article-title: Long-term potential performance degradation analysis method based on dynamical probability model publication-title: Expert Sys. Appl. – volume: 41 start-page: 3244 year: 2008 end-page: 3250 ident: b0120 article-title: KPCA for semantic object extraction in images publication-title: Pattern Recog. – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: b0115 article-title: Nonlinear component analysis as a Kernel eigenvalue problem publication-title: Neural Comput. – volume: 35 start-page: 197 year: 2002 end-page: 205 ident: b0010 article-title: Rolling element bearing fault diagnosis using wavelet packets publication-title: NDT Int. – volume: 294 start-page: 69 year: 2006 end-page: 277 ident: b0035 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. – volume: 223 start-page: 2687 year: 2009 end-page: 2695 ident: b0030 article-title: A hybrid model for bearing performance degradation assessment based on support vector data description and fuzzy c-means publication-title: Proc. Inst. Mech. Eng. Part C – J. Mech. Eng. Sci. – volume: 17 start-page: 317 year: 2003 end-page: 328 ident: b0075 article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features publication-title: Mech. Syst. Signal Process. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0045 article-title: The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. London – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b0100 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv. Adaptive Data Anal. – volume: 460A start-page: 1597 year: 2004 end-page: 1611 ident: b0060 article-title: A study of the characteristics of white noise using the empirical mode decomposition method publication-title: Proc. R. Soc. London – volume: 22 start-page: 419 year: 2008 end-page: 435 ident: b0105 article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique publication-title: Mech. Syst. Signal Process. – volume: 20 start-page: 350 year: 2006 end-page: 362 ident: b0055 article-title: A fault diagnosis approach for roller bearings based on EMD method and AR model publication-title: Mech. Sys. Sig. Process. – volume: 40 start-page: 943 year: 2007 end-page: 950 ident: b0040 article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM publication-title: Measurement – volume: 23 start-page: 1327 year: 2009 end-page: 1338 ident: b0065 article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery publication-title: Mech. Sys. Signal Process. – reference: K.A. Loparo, Bearings Vibration Data Set, Case Western Reserve University [EB/OL] <http://www.eecs.case.edu/laboratory/bearing/welcome_over view.htm>. – reference: Yujing Wang, Shouqiang Kang, Yicheng Jiang, Guangxue Yang, Lixin Song, V.I. Mikulovich, Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine, Mech. Syst. Signal Process doi:10.1016/j.ymssp.2011.11.015. – volume: 36 start-page: 2007 year: 2003 end-page: 2017 ident: b0130 article-title: Hierarchical classification and feature reduction for fast face detection with support vector machines publication-title: Pattern Recog. – reference: Kwang, in: Kim Iterative kernel principal component analysis for image modeling, IEEE Trans. Pattern Anal. Mach. Intell 2005; 27(9): 1351–1366. – volume: 3 start-page: 417 year: 1999 end-page: 457 ident: b0095 article-title: A new view of nonlinear water waves: the Hilbert spectrum publication-title: Ann. Rev. Fluid Mech. – volume: 48 start-page: 205 year: 2010 end-page: 212 ident: b0020 article-title: Machine fault diagnosis based on Gaussian mixture model and its application publication-title: Int. J. Adv. Manuf. Technol. – volume: 105 start-page: 178 year: 1983 end-page: 184 ident: b0110 article-title: Nearest neighbor-time series analysis classification of faults in rotating machinery publication-title: Trans. ASME J. Vib. Acoust. Stress Reliab. Des. – volume: 36 start-page: 765 year: 2008 end-page: 772 ident: b0015 article-title: Machine degradation analysis using fuzzy CMAC neural network approach publication-title: Int. J. Adv. Manuf. Technol. – volume: 302 start-page: 951 year: 2007 end-page: 961 ident: b0005 article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling – a method for bearing prognostics publication-title: J. Sound Vib. – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.measurement.2012.11.025_b0045 article-title: The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. London doi: 10.1098/rspa.1998.0193 – volume: 460A start-page: 1597 year: 2004 ident: 10.1016/j.measurement.2012.11.025_b0060 article-title: A study of the characteristics of white noise using the empirical mode decomposition method publication-title: Proc. R. Soc. London doi: 10.1098/rspa.2003.1221 – volume: 23 start-page: 436 year: 2004 ident: 10.1016/j.measurement.2012.11.025_b0080 article-title: Intelligent diagnostic technique of machining state for grinding publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-003-1899-0 – volume: 294 start-page: 69 year: 2006 ident: 10.1016/j.measurement.2012.11.025_b0035 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. – volume: 44 start-page: 281 year: 2011 ident: 10.1016/j.measurement.2012.11.025_b0085 article-title: A novel approach of analog circuit fault diagnosis using support vector machines classifier publication-title: Measurement doi: 10.1016/j.measurement.2010.10.004 – volume: 40 start-page: 943 year: 2007 ident: 10.1016/j.measurement.2012.11.025_b0040 article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM publication-title: Measurement doi: 10.1016/j.measurement.2006.10.010 – volume: 41 start-page: 3244 year: 2008 ident: 10.1016/j.measurement.2012.11.025_b0120 article-title: KPCA for semantic object extraction in images publication-title: Pattern Recog. doi: 10.1016/j.patcog.2008.03.018 – volume: 20 start-page: 350 year: 2006 ident: 10.1016/j.measurement.2012.11.025_b0055 article-title: A fault diagnosis approach for roller bearings based on EMD method and AR model publication-title: Mech. Sys. Sig. Process. doi: 10.1016/j.ymssp.2004.11.002 – volume: 23 start-page: 1327 year: 2009 ident: 10.1016/j.measurement.2012.11.025_b0065 article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery publication-title: Mech. Sys. Signal Process. doi: 10.1016/j.ymssp.2008.11.005 – volume: 3 start-page: 417 year: 1999 ident: 10.1016/j.measurement.2012.11.025_b0095 article-title: A new view of nonlinear water waves: the Hilbert spectrum publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.31.1.417 – volume: 10 start-page: 1299 year: 1998 ident: 10.1016/j.measurement.2012.11.025_b0115 article-title: Nonlinear component analysis as a Kernel eigenvalue problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 17 start-page: 317 issue: 2 year: 2003 ident: 10.1016/j.measurement.2012.11.025_b0075 article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features publication-title: Mech. Syst. Signal Process. doi: 10.1006/mssp.2001.1462 – volume: 105 start-page: 178 issue: 2 year: 1983 ident: 10.1016/j.measurement.2012.11.025_b0110 article-title: Nearest neighbor-time series analysis classification of faults in rotating machinery publication-title: Trans. ASME J. Vib. Acoust. Stress Reliab. Des. doi: 10.1115/1.3269082 – volume: 36 start-page: 765 year: 2008 ident: 10.1016/j.measurement.2012.11.025_b0015 article-title: Machine degradation analysis using fuzzy CMAC neural network approach publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-006-0887-6 – volume: 44 start-page: 1018 year: 2011 ident: 10.1016/j.measurement.2012.11.025_b0090 article-title: Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker publication-title: Measurement doi: 10.1016/j.measurement.2011.02.017 – ident: 10.1016/j.measurement.2012.11.025_b0140 – volume: 48 start-page: 205 year: 2010 ident: 10.1016/j.measurement.2012.11.025_b0020 article-title: Machine fault diagnosis based on Gaussian mixture model and its application publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2283-5 – volume: 1 start-page: 1 year: 2009 ident: 10.1016/j.measurement.2012.11.025_b0100 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv. Adaptive Data Anal. doi: 10.1142/S1793536909000047 – volume: 20 start-page: 125701 year: 2009 ident: 10.1016/j.measurement.2012.11.025_b0070 article-title: Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/12/125701 – ident: 10.1016/j.measurement.2012.11.025_b0050 doi: 10.1016/j.ymssp.2011.11.015 – volume: 64 start-page: 801 year: 2009 ident: 10.1016/j.measurement.2012.11.025_b0145 article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.10.012 – volume: 38 start-page: 9908 year: 2011 ident: 10.1016/j.measurement.2012.11.025_b0150 article-title: Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2011.02.043 – volume: 35 start-page: 197 year: 2002 ident: 10.1016/j.measurement.2012.11.025_b0010 article-title: Rolling element bearing fault diagnosis using wavelet packets publication-title: NDT Int. doi: 10.1016/S0963-8695(01)00044-5 – volume: 223 start-page: 2687 year: 2009 ident: 10.1016/j.measurement.2012.11.025_b0030 article-title: A hybrid model for bearing performance degradation assessment based on support vector data description and fuzzy c-means publication-title: Proc. Inst. Mech. Eng. Part C – J. Mech. Eng. Sci. doi: 10.1243/09544062JMES1447 – volume: 22 start-page: 419 year: 2008 ident: 10.1016/j.measurement.2012.11.025_b0105 article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2007.07.013 – volume: 35 start-page: 2791 issue: 9 year: 2008 ident: 10.1016/j.measurement.2012.11.025_b0135 article-title: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers publication-title: Comput. Operat. Res. doi: 10.1016/j.cor.2006.12.013 – volume: 39 start-page: 4410 year: 2012 ident: 10.1016/j.measurement.2012.11.025_b0025 article-title: Long-term potential performance degradation analysis method based on dynamical probability model publication-title: Expert Sys. Appl. doi: 10.1016/j.eswa.2011.09.150 – volume: 36 start-page: 2007 issue: 9 year: 2003 ident: 10.1016/j.measurement.2012.11.025_b0130 article-title: Hierarchical classification and feature reduction for fast face detection with support vector machines publication-title: Pattern Recog. doi: 10.1016/S0031-3203(03)00062-1 – ident: 10.1016/j.measurement.2012.11.025_b0125 doi: 10.1109/TPAMI.2005.181 – volume: 302 start-page: 951 year: 2007 ident: 10.1016/j.measurement.2012.11.025_b0005 article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling – a method for bearing prognostics publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.01.001 |
SSID | ssj0006396 |
Score | 2.292128 |
Snippet | ► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature... Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1178 |
SubjectTerms | Classification cost effectiveness Ensemble empirical mode decomposition Fault diagnosis Fault location Feature extraction Kernel principal component analysis Kernels Mathematical analysis Mathematical models Performance degradation principal component analysis Roller bearings Support vector machine Vectors (mathematics) vibration |
Title | Classification of fault location and performance degradation of a roller bearing |
URI | https://dx.doi.org/10.1016/j.measurement.2012.11.025 https://www.proquest.com/docview/1349472220 https://www.proquest.com/docview/1513479433 https://www.proquest.com/docview/1671470174 https://www.proquest.com/docview/1746316741 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_EYtGHUm1F-yER-rpevjbZhb6IVK4tSKEKvoV8gkX3jvPutX97M7ldz0o5hL4tYRKyk8xMPn75DcCnhgovbFCV09mapKeiaqNUVcM9T0lHlT8QbXGhxlfy23V9vQFnw1sYhFX2vn_p04u37ktGvTZH05ub0U-KVOM5ADFebiVx3y6lxll-8nsF88gRWC3PWUSF0i_heIXxuludwyHKi58goSdmzf53jHrirUsIOn8Nr_q1Izlddm8XNmK3BzuPGAX3YKsgOv39G_hR0l0iEKjonkwSSXZxOycYvUqJ7QKZrt4NkIC8EeFB2pIZHirMiMvGkBt_C1fnXy7PxlWfPqHyshbziinrXFs7G5lgQrGgIm2tFp7rIFsamcf1Tl3bNiiVHNUxNSGFukmM5ZaF2IfNbtLFAyCJJy99oszJvF9RqbFNq_MYOxtS21B9CM2gMON7bnFMcXFrBhDZL_NI1wZ1nfceJnfgEPhD1emSYOM5lT4Po2L-mi0mB4LnVD8eRtJka8IrEtvFyeLeIFkj0mdyukamLs9vpRBrZJRmUmdvJ9fIaKmQh0Cyd__3O-9hm5ckHYgn-gCb89kifsxLpbk7KrZwBC9Ov34fX_wBVSIWRw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6CQ1-H0qYtTdukCvS69eqx0i70EkKC06Sm0ARyE3pCQro2jv3_q5F37bQUE8htETNid7Qzo8enbwC-1CV33HhZWJW8SbiSF00QsqiZYzGqINMDoi3GcnQpvl9VV1tw1N-FQVhlF_uXMT1H665l2FlzOL2-Hv4qkWo8JSDK8qlkWrdvIztVNYDtw9Oz0XgVkFMSlsutFl6gwlM4WMO8fq-34hDoxb4ipycWzv5_mvonYOcsdPIKXnbTR3K4fMPXsBXaHXhxj1RwB55kUKe7ewM_c8VLxAJl85NJJNEsbucEE1huMa0n0_XVAeKROsKvpA2Z4b7CjNjkD6nzt3B5cnxxNCq6CgqFExWfF1Qaa5vKmkA55ZJ6GcrGKO6Y8qIpA3U45akq03gpoy1ViLWPvqojpalnzt_BoJ204T2QyKITLpbUirRkkbE2daPSMFvjY1OXahfq3mDadfTiWOXiVvc4sht9z9YabZ2WHzq9wC6wlep0ybHxEKVv_ajov34YnXLBQ9QP-pHUyaHwlMS0YbK408jXiAyarNwgU-UbuILzDTJSUaFSwBMbZJSQSEUg6IfHfc5neDa6-HGuz0_HZx_hOcs1OxBe9AkG89ki7KWZ09zud57xB8bHGPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+fault+location+and+performance+degradation+of+a+roller+bearing&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhang%2C+Ying&rft.au=Zuo%2C+Hongfu&rft.au=Bai%2C+Fang&rft.date=2013-04-01&rft.issn=0263-2241&rft.volume=46&rft.issue=3+p.1178-1189&rft.spage=1178&rft.epage=1189&rft_id=info:doi/10.1016%2Fj.measurement.2012.11.025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |