Classification of fault location and performance degradation of a roller bearing

► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature extraction and eliminate redundancy. ► We use PSO-SVM for the intelligent pattern classification. ► We compare the identification ability of several...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 46; no. 3; pp. 1178 - 1189
Main Authors Zhang, Ying, Zuo, Hongfu, Bai, Fang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature extraction and eliminate redundancy. ► We use PSO-SVM for the intelligent pattern classification. ► We compare the identification ability of several methods. Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which can reduce costs and the nonscheduled down time. In this paper, a new fault diagnosis method based on multiple features, kernel principal component analysis (KPCA) and particle swarm optimization-support vector machine (PSO-SVM) is put forward. First, traditional features of the vibration signals in time-domain and frequency-domain are calculated, and then two types of features referred to as singular values and AR model parameters based on ensemble empirical mode decomposition (EEMD) are introduced. After that, the original feature vectors are mapped into higher dimensional space and the kernel principal components are extracted as new feature vectors, which are used as inputs to PSO-SVM. The experimental results show that the new diagnosis approach proposed in this paper can identify not only the fault locations but also the performance degradation of the roller bearing.
AbstractList ► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature extraction and eliminate redundancy. ► We use PSO-SVM for the intelligent pattern classification. ► We compare the identification ability of several methods. Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which can reduce costs and the nonscheduled down time. In this paper, a new fault diagnosis method based on multiple features, kernel principal component analysis (KPCA) and particle swarm optimization-support vector machine (PSO-SVM) is put forward. First, traditional features of the vibration signals in time-domain and frequency-domain are calculated, and then two types of features referred to as singular values and AR model parameters based on ensemble empirical mode decomposition (EEMD) are introduced. After that, the original feature vectors are mapped into higher dimensional space and the kernel principal components are extracted as new feature vectors, which are used as inputs to PSO-SVM. The experimental results show that the new diagnosis approach proposed in this paper can identify not only the fault locations but also the performance degradation of the roller bearing.
Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which can reduce costs and the nonscheduled down time. In this paper, a new fault diagnosis method based on multiple features, kernel principal component analysis (KPCA) and particle swarm optimization-support vector machine (PSO-SVM) is put forward. First, traditional features of the vibration signals in time-domain and frequency-domain are calculated, and then two types of features referred to as singular values and AR model parameters based on ensemble empirical mode decomposition (EEMD) are introduced. After that, the original feature vectors are mapped into higher dimensional space and the kernel principal components are extracted as new feature vectors, which are used as inputs to PSO-SVM. The experimental results show that the new diagnosis approach proposed in this paper can identify not only the fault locations but also the performance degradation of the roller bearing.
Author Zuo, Hongfu
Bai, Fang
Zhang, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  email: zhangyingrms@163.com
– sequence: 2
  givenname: Hongfu
  surname: Zuo
  fullname: Zuo, Hongfu
– sequence: 3
  givenname: Fang
  surname: Bai
  fullname: Bai, Fang
BookMark eNqNkU1r3DAQhkVJoZu0_8G99WJHI8nS-lTK0o9AoD20kJsYS6OgRba2krfQf18nG0rpJXsSiOd9pZnnkl3MeSbG3gLvgIO-3ncTYT0WmmheOsFBdAAdF_0LtoGtka0CcXfBNlxo2Qqh4BW7rHXPOddy0Bv2bZew1hiiwyXmucmhCXhMS5Py0w3OvjlQCblMODtqPN0X9H9pbEpOiUozEpY4379mLwOmSm-eziv249PH77sv7e3Xzze7D7etU71cWtA4jkM_IoEEqcFr4gMa6YTxauAEbp1B9z0OXuswckNh64PvtwFgfUnKK_bu1Hso-eeR6mKnWB2lhDPlY7VglJagjYLnUW1AGb4mnkd7kMoMSp7xAakGZYQQfEXfn1BXcq2FgnVxedzgUjAmC9w-yLR7-49M-yDTAth1EWvD8F_DocQJy--zsrtTllYdvyIVW12kVaWPhdxifY5ntPwBXtHDdw
CitedBy_id crossref_primary_10_1002_acs_2952
crossref_primary_10_1016_j_aej_2020_03_034
crossref_primary_10_1016_j_heliyon_2022_e12053
crossref_primary_10_1155_2017_2623081
crossref_primary_10_1155_2017_7257603
crossref_primary_10_1080_10402004_2016_1213343
crossref_primary_10_17531_ein_2020_4_17
crossref_primary_10_1155_2016_8623530
crossref_primary_10_4304_jcp_8_11_2916_2924
crossref_primary_10_1051_meca_2014058
crossref_primary_10_1016_j_measurement_2014_09_045
crossref_primary_10_1016_j_jsv_2014_03_014
crossref_primary_10_1016_j_isatra_2021_08_040
crossref_primary_10_1016_j_measurement_2016_04_025
crossref_primary_10_1016_j_measurement_2016_04_069
crossref_primary_10_1088_1361_6501_abb551
crossref_primary_10_1016_j_isatra_2016_08_022
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1155_2020_6216903
crossref_primary_10_1016_j_measurement_2021_110571
crossref_primary_10_1155_2016_5341970
crossref_primary_10_1155_2020_7247195
crossref_primary_10_1016_j_jsv_2021_116493
crossref_primary_10_1016_j_measurement_2019_05_039
crossref_primary_10_1177_0954406216648985
crossref_primary_10_3390_machines6030034
crossref_primary_10_1016_j_jsv_2014_09_026
crossref_primary_10_21595_vp_2020_21315
crossref_primary_10_1007_s40430_016_0540_8
crossref_primary_10_1109_JSEN_2021_3139844
crossref_primary_10_1155_2019_3740586
crossref_primary_10_1016_j_cie_2019_106031
crossref_primary_10_1016_j_measurement_2014_04_016
crossref_primary_10_1016_j_promfg_2020_10_038
crossref_primary_10_1016_j_pes_2024_100030
crossref_primary_10_1007_s10845_014_0987_3
crossref_primary_10_1007_s10921_018_0543_8
crossref_primary_10_21595_jve_2017_18755
crossref_primary_10_1109_TIM_2018_2890329
crossref_primary_10_1115_1_4045010
crossref_primary_10_21595_jve_2016_17332
crossref_primary_10_3390_e16105400
crossref_primary_10_1080_10255842_2024_2374949
crossref_primary_10_1007_s00170_024_13325_0
crossref_primary_10_1016_j_measurement_2023_112908
crossref_primary_10_1177_1687814016661087
crossref_primary_10_1007_s11265_020_01571_w
crossref_primary_10_1088_1361_6501_abe286
crossref_primary_10_1177_1464419318778253
crossref_primary_10_1007_s40313_015_0173_7
crossref_primary_10_17531_ein_2021_2_20
crossref_primary_10_1007_s10845_017_1375_6
crossref_primary_10_2118_217425_PA
crossref_primary_10_3390_e19030086
crossref_primary_10_1007_s42417_022_00548_2
crossref_primary_10_1016_j_ymssp_2020_106956
crossref_primary_10_1177_1461348417744302
crossref_primary_10_1177_0954406214563235
crossref_primary_10_1016_j_ymssp_2013_07_006
crossref_primary_10_1109_TIM_2020_2971288
crossref_primary_10_1155_2016_3086454
crossref_primary_10_1007_s40799_020_00387_4
crossref_primary_10_1177_1350650117727976
crossref_primary_10_1016_j_engappai_2016_08_011
crossref_primary_10_1109_ACCESS_2021_3071796
crossref_primary_10_1016_j_measurement_2020_108723
crossref_primary_10_1016_j_ymssp_2017_06_012
crossref_primary_10_1016_j_jsv_2018_06_015
crossref_primary_10_1007_s10921_024_01131_3
crossref_primary_10_3390_s140815022
crossref_primary_10_3390_s21030849
Cites_doi 10.1098/rspa.1998.0193
10.1098/rspa.2003.1221
10.1007/s00170-003-1899-0
10.1016/j.measurement.2010.10.004
10.1016/j.measurement.2006.10.010
10.1016/j.patcog.2008.03.018
10.1016/j.ymssp.2004.11.002
10.1016/j.ymssp.2008.11.005
10.1146/annurev.fluid.31.1.417
10.1162/089976698300017467
10.1006/mssp.2001.1462
10.1115/1.3269082
10.1007/s00170-006-0887-6
10.1016/j.measurement.2011.02.017
10.1007/s00170-009-2283-5
10.1142/S1793536909000047
10.1088/0957-0233/20/12/125701
10.1016/j.ymssp.2011.11.015
10.1016/j.ces.2008.10.012
10.1016/j.eswa.2011.02.043
10.1016/S0963-8695(01)00044-5
10.1243/09544062JMES1447
10.1016/j.ymssp.2007.07.013
10.1016/j.cor.2006.12.013
10.1016/j.eswa.2011.09.150
10.1016/S0031-3203(03)00062-1
10.1109/TPAMI.2005.181
10.1016/j.jsv.2007.01.001
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
KR7
7S9
L.6
DOI 10.1016/j.measurement.2012.11.025
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Solid State and Superconductivity Abstracts
AGRICOLA
Civil Engineering Abstracts
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 1189
ExternalDocumentID 10_1016_j_measurement_2012_11_025
S0263224112004460
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
7U5
8FD
EFKBS
FR3
L7M
KR7
7S9
L.6
ID FETCH-LOGICAL-c453t-16abb95bae131361d6e09a73c27d490e1c025655a9d66fb07ef8dfd58f11bea33
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Jul 30 11:06:01 EDT 2025
Tue Aug 05 10:32:47 EDT 2025
Fri Jul 11 08:17:45 EDT 2025
Mon Aug 18 11:01:30 EDT 2025
Tue Jul 01 04:36:57 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
Fri Feb 23 02:27:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fault diagnosis
Feature extraction
Ensemble empirical mode decomposition
Support vector machine
Kernel principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-16abb95bae131361d6e09a73c27d490e1c025655a9d66fb07ef8dfd58f11bea33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1349472220
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1746316741
proquest_miscellaneous_1671470174
proquest_miscellaneous_1513479433
proquest_miscellaneous_1349472220
crossref_citationtrail_10_1016_j_measurement_2012_11_025
crossref_primary_10_1016_j_measurement_2012_11_025
elsevier_sciencedirect_doi_10_1016_j_measurement_2012_11_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pan, Chen, Dong (b0030) 2009; 223
Wu, Huang (b0060) 2004; 460A
Wu, Huang (b0100) 2009; 1
K.A. Loparo, Bearings Vibration Data Set, Case Western Reserve University [EB/OL] <http://www.eecs.case.edu/laboratory/bearing/welcome_over view.htm>.
Lei, Zuo (b0070) 2009; 20
Kwak, Ha (b0080) 2004; 23
Zhao, Sun, Sun, Ting (b0150) 2011; 38
Saman ta, Al-Balushi (b0075) 2003; 17
Liu, Wang, Jin (b0135) 2008; 35
Yaguo, Zhengjia, Yanyang (b0065) 2009; 23
Gersh, Brotherton, Braun (b0110) 1983; 105
Nikolaou, Antoniadis (b0010) 2002; 35
Lia, Lib, Taoc (b0120) 2008; 41
Heisele, Serre, Prentice, Poggio (b0130) 2003; 36
Cheng, Guang-Hua, Qing (b0025) 2012; 39
Jiang, Youren (b0085) 2011; 44
Yang, Yu, Cheng (b0035) 2006; 294
Cheng, Yu, Yang (b0055) 2006; 20
Ocak, Loparo, Discenzo (b0005) 2007; 302
Yu, Dejie, Junsheng (b0040) 2007; 40
Zhang (b0145) 2009; 64
Xu, Xie, Zhang, Li (b0015) 2008; 36
Huang, Shen, Long (b0045) 1998; 454
Yujing Wang, Shouqiang Kang, Yicheng Jiang, Guangxue Yang, Lixin Song, V.I. Mikulovich, Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine, Mech. Syst. Signal Process doi:10.1016/j.ymssp.2011.11.015.
Jian, Hu, Fan (b0090) 2011; 44
Yu, Li, Sun (b0020) 2010; 48
Lei, He, Zi, Chen (b0105) 2008; 22
Huang, Shen, Long (b0095) 1999; 3
Scholkopf, Smola, Muller (b0115) 1998; 10
Kwang, in: Kim Iterative kernel principal component analysis for image modeling, IEEE Trans. Pattern Anal. Mach. Intell 2005; 27(9): 1351–1366.
Lei (10.1016/j.measurement.2012.11.025_b0070) 2009; 20
10.1016/j.measurement.2012.11.025_b0050
Yang (10.1016/j.measurement.2012.11.025_b0035) 2006; 294
Zhao (10.1016/j.measurement.2012.11.025_b0150) 2011; 38
Yu (10.1016/j.measurement.2012.11.025_b0040) 2007; 40
Wu (10.1016/j.measurement.2012.11.025_b0060) 2004; 460A
Nikolaou (10.1016/j.measurement.2012.11.025_b0010) 2002; 35
Heisele (10.1016/j.measurement.2012.11.025_b0130) 2003; 36
Liu (10.1016/j.measurement.2012.11.025_b0135) 2008; 35
Kwak (10.1016/j.measurement.2012.11.025_b0080) 2004; 23
Ocak (10.1016/j.measurement.2012.11.025_b0005) 2007; 302
Huang (10.1016/j.measurement.2012.11.025_b0045) 1998; 454
Cheng (10.1016/j.measurement.2012.11.025_b0025) 2012; 39
Scholkopf (10.1016/j.measurement.2012.11.025_b0115) 1998; 10
Wu (10.1016/j.measurement.2012.11.025_b0100) 2009; 1
Cheng (10.1016/j.measurement.2012.11.025_b0055) 2006; 20
Lia (10.1016/j.measurement.2012.11.025_b0120) 2008; 41
Yaguo (10.1016/j.measurement.2012.11.025_b0065) 2009; 23
Lei (10.1016/j.measurement.2012.11.025_b0105) 2008; 22
Saman ta (10.1016/j.measurement.2012.11.025_b0075) 2003; 17
10.1016/j.measurement.2012.11.025_b0140
Jiang (10.1016/j.measurement.2012.11.025_b0085) 2011; 44
10.1016/j.measurement.2012.11.025_b0125
Xu (10.1016/j.measurement.2012.11.025_b0015) 2008; 36
Huang (10.1016/j.measurement.2012.11.025_b0095) 1999; 3
Zhang (10.1016/j.measurement.2012.11.025_b0145) 2009; 64
Gersh (10.1016/j.measurement.2012.11.025_b0110) 1983; 105
Jian (10.1016/j.measurement.2012.11.025_b0090) 2011; 44
Pan (10.1016/j.measurement.2012.11.025_b0030) 2009; 223
Yu (10.1016/j.measurement.2012.11.025_b0020) 2010; 48
References_xml – volume: 44
  start-page: 1018
  year: 2011
  end-page: 1027
  ident: b0090
  article-title: Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker
  publication-title: Measurement
– volume: 44
  start-page: 281
  year: 2011
  end-page: 289
  ident: b0085
  article-title: A novel approach of analog circuit fault diagnosis using support vector machines classifier
  publication-title: Measurement
– volume: 23
  start-page: 436
  year: 2004
  end-page: 443
  ident: b0080
  article-title: Intelligent diagnostic technique of machining state for grinding
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 38
  start-page: 9908
  year: 2011
  end-page: 9912
  ident: b0150
  article-title: Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine
  publication-title: Exp. Syst. Appl.
– volume: 35
  start-page: 2791
  year: 2008
  end-page: 2806
  ident: b0135
  article-title: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers
  publication-title: Comput. Operat. Res.
– volume: 64
  start-page: 801
  year: 2009
  end-page: 811
  ident: b0145
  article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
  publication-title: Chem. Eng. Sci.
– volume: 20
  start-page: 125701
  year: 2009
  ident: b0070
  article-title: Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs
  publication-title: Meas. Sci. Technol.
– volume: 39
  start-page: 4410
  year: 2012
  end-page: 4417
  ident: b0025
  article-title: Long-term potential performance degradation analysis method based on dynamical probability model
  publication-title: Expert Sys. Appl.
– volume: 41
  start-page: 3244
  year: 2008
  end-page: 3250
  ident: b0120
  article-title: KPCA for semantic object extraction in images
  publication-title: Pattern Recog.
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b0115
  article-title: Nonlinear component analysis as a Kernel eigenvalue problem
  publication-title: Neural Comput.
– volume: 35
  start-page: 197
  year: 2002
  end-page: 205
  ident: b0010
  article-title: Rolling element bearing fault diagnosis using wavelet packets
  publication-title: NDT Int.
– volume: 294
  start-page: 69
  year: 2006
  end-page: 277
  ident: b0035
  article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN
  publication-title: J. Sound Vib.
– volume: 223
  start-page: 2687
  year: 2009
  end-page: 2695
  ident: b0030
  article-title: A hybrid model for bearing performance degradation assessment based on support vector data description and fuzzy c-means
  publication-title: Proc. Inst. Mech. Eng. Part C – J. Mech. Eng. Sci.
– volume: 17
  start-page: 317
  year: 2003
  end-page: 328
  ident: b0075
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0045
  article-title: The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. London
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0100
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv. Adaptive Data Anal.
– volume: 460A
  start-page: 1597
  year: 2004
  end-page: 1611
  ident: b0060
  article-title: A study of the characteristics of white noise using the empirical mode decomposition method
  publication-title: Proc. R. Soc. London
– volume: 22
  start-page: 419
  year: 2008
  end-page: 435
  ident: b0105
  article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
  publication-title: Mech. Syst. Signal Process.
– volume: 20
  start-page: 350
  year: 2006
  end-page: 362
  ident: b0055
  article-title: A fault diagnosis approach for roller bearings based on EMD method and AR model
  publication-title: Mech. Sys. Sig. Process.
– volume: 40
  start-page: 943
  year: 2007
  end-page: 950
  ident: b0040
  article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
  publication-title: Measurement
– volume: 23
  start-page: 1327
  year: 2009
  end-page: 1338
  ident: b0065
  article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery
  publication-title: Mech. Sys. Signal Process.
– reference: K.A. Loparo, Bearings Vibration Data Set, Case Western Reserve University [EB/OL] <http://www.eecs.case.edu/laboratory/bearing/welcome_over view.htm>.
– reference: Yujing Wang, Shouqiang Kang, Yicheng Jiang, Guangxue Yang, Lixin Song, V.I. Mikulovich, Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine, Mech. Syst. Signal Process doi:10.1016/j.ymssp.2011.11.015.
– volume: 36
  start-page: 2007
  year: 2003
  end-page: 2017
  ident: b0130
  article-title: Hierarchical classification and feature reduction for fast face detection with support vector machines
  publication-title: Pattern Recog.
– reference: Kwang, in: Kim Iterative kernel principal component analysis for image modeling, IEEE Trans. Pattern Anal. Mach. Intell 2005; 27(9): 1351–1366.
– volume: 3
  start-page: 417
  year: 1999
  end-page: 457
  ident: b0095
  article-title: A new view of nonlinear water waves: the Hilbert spectrum
  publication-title: Ann. Rev. Fluid Mech.
– volume: 48
  start-page: 205
  year: 2010
  end-page: 212
  ident: b0020
  article-title: Machine fault diagnosis based on Gaussian mixture model and its application
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 105
  start-page: 178
  year: 1983
  end-page: 184
  ident: b0110
  article-title: Nearest neighbor-time series analysis classification of faults in rotating machinery
  publication-title: Trans. ASME J. Vib. Acoust. Stress Reliab. Des.
– volume: 36
  start-page: 765
  year: 2008
  end-page: 772
  ident: b0015
  article-title: Machine degradation analysis using fuzzy CMAC neural network approach
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 302
  start-page: 951
  year: 2007
  end-page: 961
  ident: b0005
  article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling – a method for bearing prognostics
  publication-title: J. Sound Vib.
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.measurement.2012.11.025_b0045
  article-title: The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. London
  doi: 10.1098/rspa.1998.0193
– volume: 460A
  start-page: 1597
  year: 2004
  ident: 10.1016/j.measurement.2012.11.025_b0060
  article-title: A study of the characteristics of white noise using the empirical mode decomposition method
  publication-title: Proc. R. Soc. London
  doi: 10.1098/rspa.2003.1221
– volume: 23
  start-page: 436
  year: 2004
  ident: 10.1016/j.measurement.2012.11.025_b0080
  article-title: Intelligent diagnostic technique of machining state for grinding
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-003-1899-0
– volume: 294
  start-page: 69
  year: 2006
  ident: 10.1016/j.measurement.2012.11.025_b0035
  article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN
  publication-title: J. Sound Vib.
– volume: 44
  start-page: 281
  year: 2011
  ident: 10.1016/j.measurement.2012.11.025_b0085
  article-title: A novel approach of analog circuit fault diagnosis using support vector machines classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2010.10.004
– volume: 40
  start-page: 943
  year: 2007
  ident: 10.1016/j.measurement.2012.11.025_b0040
  article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2006.10.010
– volume: 41
  start-page: 3244
  year: 2008
  ident: 10.1016/j.measurement.2012.11.025_b0120
  article-title: KPCA for semantic object extraction in images
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2008.03.018
– volume: 20
  start-page: 350
  year: 2006
  ident: 10.1016/j.measurement.2012.11.025_b0055
  article-title: A fault diagnosis approach for roller bearings based on EMD method and AR model
  publication-title: Mech. Sys. Sig. Process.
  doi: 10.1016/j.ymssp.2004.11.002
– volume: 23
  start-page: 1327
  year: 2009
  ident: 10.1016/j.measurement.2012.11.025_b0065
  article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery
  publication-title: Mech. Sys. Signal Process.
  doi: 10.1016/j.ymssp.2008.11.005
– volume: 3
  start-page: 417
  year: 1999
  ident: 10.1016/j.measurement.2012.11.025_b0095
  article-title: A new view of nonlinear water waves: the Hilbert spectrum
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.31.1.417
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.measurement.2012.11.025_b0115
  article-title: Nonlinear component analysis as a Kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 17
  start-page: 317
  issue: 2
  year: 2003
  ident: 10.1016/j.measurement.2012.11.025_b0075
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2001.1462
– volume: 105
  start-page: 178
  issue: 2
  year: 1983
  ident: 10.1016/j.measurement.2012.11.025_b0110
  article-title: Nearest neighbor-time series analysis classification of faults in rotating machinery
  publication-title: Trans. ASME J. Vib. Acoust. Stress Reliab. Des.
  doi: 10.1115/1.3269082
– volume: 36
  start-page: 765
  year: 2008
  ident: 10.1016/j.measurement.2012.11.025_b0015
  article-title: Machine degradation analysis using fuzzy CMAC neural network approach
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0887-6
– volume: 44
  start-page: 1018
  year: 2011
  ident: 10.1016/j.measurement.2012.11.025_b0090
  article-title: Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.02.017
– ident: 10.1016/j.measurement.2012.11.025_b0140
– volume: 48
  start-page: 205
  year: 2010
  ident: 10.1016/j.measurement.2012.11.025_b0020
  article-title: Machine fault diagnosis based on Gaussian mixture model and its application
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2283-5
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.measurement.2012.11.025_b0100
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv. Adaptive Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 20
  start-page: 125701
  year: 2009
  ident: 10.1016/j.measurement.2012.11.025_b0070
  article-title: Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/12/125701
– ident: 10.1016/j.measurement.2012.11.025_b0050
  doi: 10.1016/j.ymssp.2011.11.015
– volume: 64
  start-page: 801
  year: 2009
  ident: 10.1016/j.measurement.2012.11.025_b0145
  article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.10.012
– volume: 38
  start-page: 9908
  year: 2011
  ident: 10.1016/j.measurement.2012.11.025_b0150
  article-title: Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.043
– volume: 35
  start-page: 197
  year: 2002
  ident: 10.1016/j.measurement.2012.11.025_b0010
  article-title: Rolling element bearing fault diagnosis using wavelet packets
  publication-title: NDT Int.
  doi: 10.1016/S0963-8695(01)00044-5
– volume: 223
  start-page: 2687
  year: 2009
  ident: 10.1016/j.measurement.2012.11.025_b0030
  article-title: A hybrid model for bearing performance degradation assessment based on support vector data description and fuzzy c-means
  publication-title: Proc. Inst. Mech. Eng. Part C – J. Mech. Eng. Sci.
  doi: 10.1243/09544062JMES1447
– volume: 22
  start-page: 419
  year: 2008
  ident: 10.1016/j.measurement.2012.11.025_b0105
  article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2007.07.013
– volume: 35
  start-page: 2791
  issue: 9
  year: 2008
  ident: 10.1016/j.measurement.2012.11.025_b0135
  article-title: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers
  publication-title: Comput. Operat. Res.
  doi: 10.1016/j.cor.2006.12.013
– volume: 39
  start-page: 4410
  year: 2012
  ident: 10.1016/j.measurement.2012.11.025_b0025
  article-title: Long-term potential performance degradation analysis method based on dynamical probability model
  publication-title: Expert Sys. Appl.
  doi: 10.1016/j.eswa.2011.09.150
– volume: 36
  start-page: 2007
  issue: 9
  year: 2003
  ident: 10.1016/j.measurement.2012.11.025_b0130
  article-title: Hierarchical classification and feature reduction for fast face detection with support vector machines
  publication-title: Pattern Recog.
  doi: 10.1016/S0031-3203(03)00062-1
– ident: 10.1016/j.measurement.2012.11.025_b0125
  doi: 10.1109/TPAMI.2005.181
– volume: 302
  start-page: 951
  year: 2007
  ident: 10.1016/j.measurement.2012.11.025_b0005
  article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling – a method for bearing prognostics
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.01.001
SSID ssj0006396
Score 2.292128
Snippet ► EEMD signal processing method can overcome the mode mixing problem of EMD. ► We propose two types of features based on EEMD. ► We use KPCA to feature...
Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1178
SubjectTerms Classification
cost effectiveness
Ensemble empirical mode decomposition
Fault diagnosis
Fault location
Feature extraction
Kernel principal component analysis
Kernels
Mathematical analysis
Mathematical models
Performance degradation
principal component analysis
Roller bearings
Support vector machine
Vectors (mathematics)
vibration
Title Classification of fault location and performance degradation of a roller bearing
URI https://dx.doi.org/10.1016/j.measurement.2012.11.025
https://www.proquest.com/docview/1349472220
https://www.proquest.com/docview/1513479433
https://www.proquest.com/docview/1671470174
https://www.proquest.com/docview/1746316741
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_EYtGHUm1F-yER-rpevjbZhb6IVK4tSKEKvoV8gkX3jvPutX97M7ldz0o5hL4tYRKyk8xMPn75DcCnhgovbFCV09mapKeiaqNUVcM9T0lHlT8QbXGhxlfy23V9vQFnw1sYhFX2vn_p04u37ktGvTZH05ub0U-KVOM5ADFebiVx3y6lxll-8nsF88gRWC3PWUSF0i_heIXxuludwyHKi58goSdmzf53jHrirUsIOn8Nr_q1Izlddm8XNmK3BzuPGAX3YKsgOv39G_hR0l0iEKjonkwSSXZxOycYvUqJ7QKZrt4NkIC8EeFB2pIZHirMiMvGkBt_C1fnXy7PxlWfPqHyshbziinrXFs7G5lgQrGgIm2tFp7rIFsamcf1Tl3bNiiVHNUxNSGFukmM5ZaF2IfNbtLFAyCJJy99oszJvF9RqbFNq_MYOxtS21B9CM2gMON7bnFMcXFrBhDZL_NI1wZ1nfceJnfgEPhD1emSYOM5lT4Po2L-mi0mB4LnVD8eRtJka8IrEtvFyeLeIFkj0mdyukamLs9vpRBrZJRmUmdvJ9fIaKmQh0Cyd__3O-9hm5ckHYgn-gCb89kifsxLpbk7KrZwBC9Ov34fX_wBVSIWRw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6CQ1-H0qYtTdukCvS69eqx0i70EkKC06Sm0ARyE3pCQro2jv3_q5F37bQUE8htETNid7Qzo8enbwC-1CV33HhZWJW8SbiSF00QsqiZYzGqINMDoi3GcnQpvl9VV1tw1N-FQVhlF_uXMT1H665l2FlzOL2-Hv4qkWo8JSDK8qlkWrdvIztVNYDtw9Oz0XgVkFMSlsutFl6gwlM4WMO8fq-34hDoxb4ipycWzv5_mvonYOcsdPIKXnbTR3K4fMPXsBXaHXhxj1RwB55kUKe7ewM_c8VLxAJl85NJJNEsbucEE1huMa0n0_XVAeKROsKvpA2Z4b7CjNjkD6nzt3B5cnxxNCq6CgqFExWfF1Qaa5vKmkA55ZJ6GcrGKO6Y8qIpA3U45akq03gpoy1ViLWPvqojpalnzt_BoJ204T2QyKITLpbUirRkkbE2daPSMFvjY1OXahfq3mDadfTiWOXiVvc4sht9z9YabZ2WHzq9wC6wlep0ybHxEKVv_ajov34YnXLBQ9QP-pHUyaHwlMS0YbK408jXiAyarNwgU-UbuILzDTJSUaFSwBMbZJSQSEUg6IfHfc5neDa6-HGuz0_HZx_hOcs1OxBe9AkG89ki7KWZ09zud57xB8bHGPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+fault+location+and+performance+degradation+of+a+roller+bearing&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhang%2C+Ying&rft.au=Zuo%2C+Hongfu&rft.au=Bai%2C+Fang&rft.date=2013-04-01&rft.issn=0263-2241&rft.volume=46&rft.issue=3+p.1178-1189&rft.spage=1178&rft.epage=1189&rft_id=info:doi/10.1016%2Fj.measurement.2012.11.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon