Error reduction in EMG signal decomposition

Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequent...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 112; no. 11; pp. 2718 - 2728
Main Authors Kline, Joshua C., De Luca, Carlo J.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.
AbstractList Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.
Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.
Author De Luca, Carlo J.
Kline, Joshua C.
Author_xml – sequence: 1
  givenname: Joshua C.
  surname: Kline
  fullname: Kline, Joshua C.
  organization: NeuroMuscular Research Center, Boston University, Boston, Massachusetts;, Department of Biomedical Engineering, Boston University, Boston, Massachusetts
– sequence: 2
  givenname: Carlo J.
  surname: De Luca
  fullname: De Luca, Carlo J.
  organization: NeuroMuscular Research Center, Boston University, Boston, Massachusetts;, Department of Biomedical Engineering, Boston University, Boston, Massachusetts;, Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts;, Department of Neurology, Boston University, Boston, Massachusetts;, Department of Physical Therapy, Boston University, Boston, Massachusetts; and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25210159$$D View this record in MEDLINE/PubMed
BookMark eNptkctLAzEQxoNU7EOPXmWPgmzNY7OPiyClVqHiRc8hTWZrym5Sk13B_95d24qKpxlmfvN9MN8YDayzgNA5wVNCOL3e2CnGGU2mFBN2hEbdjMaEF_kAjTDueoazbIjGIWxwB3JMT9CQckpwB43Q1dx75yMPulWNcTYyNpo_LqJg1lZWkQbl6q0Lpt-douNSVgHO9nWCXu7mz7P7ePm0eJjdLmOVcNbEhOkkVRx4mq2wTFWZ8wIKnYOWCkq-0gyUxnmakDLDwFUqSy0TmUJeclWmjE3QzU53265q0Aps42Ultt7U0n8IJ434vbHmVazdu0goT_IcdwKXewHv3loIjahNUFBV0oJrgyApLYqMJbRHL356fZscPtQBbAco70LwUAplGtm_o7M2lSBY9DmIjRVfOYg-h-4q_nN1EP6f_wQdDYol
CitedBy_id crossref_primary_10_1152_japplphysiol_00061_2015
crossref_primary_10_1007_s00421_020_04363_z
crossref_primary_10_3390_ijms18040698
crossref_primary_10_3390_e19120697
crossref_primary_10_1152_jn_00452_2015
crossref_primary_10_1109_TNSRE_2025_3525517
crossref_primary_10_1142_S0129065717500253
crossref_primary_10_1152_jn_00725_2013
crossref_primary_10_1088_1741_2552_ac823d
crossref_primary_10_1016_j_rsci_2020_04_003
crossref_primary_10_1152_jn_00555_2014
crossref_primary_10_3390_s21206703
crossref_primary_10_1109_TBME_2022_3192119
crossref_primary_10_3390_app13179546
crossref_primary_10_1152_jn_00071_2019
crossref_primary_10_3389_fnhum_2017_00569
crossref_primary_10_1088_1741_2560_13_2_026027
crossref_primary_10_1002_acn3_51906
crossref_primary_10_3389_fpls_2015_00430
crossref_primary_10_3390_ijerph18063063
crossref_primary_10_1371_journal_pone_0189323
Cites_doi 10.1152/japplphysiol.00170.2007
10.1109/TBME.2005.863893
10.1113/jphysiol.1982.sp014294
10.1016/j.jelekin.2007.01.010
10.1016/0166-2236(94)90064-7
10.1007/s10439-009-9756-4
10.1109/TNSRE.2014.2306000
10.1523/JNEUROSCI.0046-05.2005
10.1088/1741-2560/9/5/056011
10.1109/TBME.1982.324882
10.1109/10.923782
10.1002/mus.23819
10.1152/jn.00041.2013
10.1152/jn.00686.2007
10.1152/jn.00650.2003
10.1152/jn.00725.2013
10.1109/TNSRE.2012.2218287
10.1152/jn.00961.2010
10.1088/1741-2560/8/6/066002
10.1113/jphysiol.1983.sp014765
10.1016/j.jelekin.2006.05.003
10.1016/j.clinph.2009.11.092
10.1007/s004210050061
10.1088/1741-2560/11/1/016008
10.1152/jn.00301.2012
10.1002/mus.880110707
10.1088/1741-2560/11/2/026007
10.1007/978-3-642-23508-5_301
10.1152/jn.1993.70.6.2470
10.1152/jn.00009.2006
10.1186/1743-0003-10-99
10.1109/TBME.2002.807321
10.1109/TSP.2007.896108
10.1152/jn.1989.62.6.1344
10.1002/mus.880181215
10.1113/jphysiol.1992.sp019244
10.1109/TNSRE.2010.2041593
10.1109/TBME.1982.324881
10.1016/j.clinph.2008.10.160
10.1152/jn.01154.2011
10.1152/jn.01060.2010
10.1016/0013-4694(84)90031-2
10.1152/jn.00855.2010
10.1109/TNSRE.2010.2056390
10.1007/s11517-007-0168-z
ContentType Journal Article
Copyright Copyright © 2014 the American Physiological Society.
Copyright © 2014 the American Physiological Society 2014 American Physiological Society
Copyright_xml – notice: Copyright © 2014 the American Physiological Society.
– notice: Copyright © 2014 the American Physiological Society 2014 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00724.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 2728
ExternalDocumentID PMC4254880
25210159
10_1152_jn_00724_2013
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R44 NS077526
– fundername: NICHD NIH HHS
  grantid: HD05011
– fundername: NICHD NIH HHS
  grantid: R01 HD050111
– fundername: NINDS NIH HHS
  grantid: NS077526-01
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c453t-13d46c5e567b0a6cf859e9d8edacef5bd3ecd08641f70e5c6afda4a6e8f5cf633
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 18:20:41 EDT 2025
Fri Jul 11 08:18:26 EDT 2025
Thu Apr 03 06:52:38 EDT 2025
Tue Jul 01 04:09:03 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords accuracy
error reduction
surface EMG signal
decomposition
motor-unit firing instances
Language English
License Copyright © 2014 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-13d46c5e567b0a6cf859e9d8edacef5bd3ecd08641f70e5c6afda4a6e8f5cf633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1152/jn.00724.2013
PMID 25210159
PQID 1629973420
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4254880
proquest_miscellaneous_1629973420
pubmed_primary_25210159
crossref_citationtrail_10_1152_jn_00724_2013
crossref_primary_10_1152_jn_00724_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2014
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References De Luca CJ (B4) 1984; 11
B20
B42
B21
B43
B22
B44
B23
B45
B24
B46
B47
B25
B26
B27
B28
B29
McGill KC (B39) 2004; 7
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B18
B19
B1
B2
B3
B5
B6
B7
B8
B9
B40
B41
References_xml – ident: B42
  doi: 10.1152/japplphysiol.00170.2007
– ident: B14
  doi: 10.1109/TBME.2005.863893
– volume: 11
  start-page: 251
  year: 1984
  ident: B4
  publication-title: Crit Rev Biomed Eng
– ident: B8
  doi: 10.1113/jphysiol.1982.sp014294
– ident: B33
  doi: 10.1016/j.jelekin.2007.01.010
– ident: B7
  doi: 10.1016/0166-2236(94)90064-7
– ident: B15
  doi: 10.1007/s10439-009-9756-4
– ident: B13
  doi: 10.1109/TNSRE.2014.2306000
– ident: B17
  doi: 10.1523/JNEUROSCI.0046-05.2005
– ident: B19
  doi: 10.1088/1741-2560/9/5/056011
– ident: B36
  doi: 10.1109/TBME.1982.324882
– ident: B12
  doi: 10.1109/10.923782
– ident: B27
  doi: 10.1002/mus.23819
– ident: B34
  doi: 10.1152/jn.00041.2013
– ident: B3
  doi: 10.1152/jn.00686.2007
– ident: B31
  doi: 10.1152/jn.00650.2003
– ident: B47
  doi: 10.1152/jn.00725.2013
– ident: B44
  doi: 10.1109/TNSRE.2012.2218287
– ident: B6
  doi: 10.1152/jn.00961.2010
– ident: B38
  doi: 10.1088/1741-2560/8/6/066002
– ident: B2
  doi: 10.1113/jphysiol.1983.sp014765
– ident: B32
  doi: 10.1016/j.jelekin.2006.05.003
– ident: B41
  doi: 10.1016/j.clinph.2009.11.092
– ident: B29
  doi: 10.1007/s004210050061
– ident: B22
  doi: 10.1088/1741-2560/11/1/016008
– ident: B26
  doi: 10.1152/jn.00301.2012
– ident: B28
  doi: 10.1002/mus.880110707
– ident: B24
  doi: 10.1088/1741-2560/11/2/026007
– ident: B20
  doi: 10.1007/978-3-642-23508-5_301
– ident: B16
  doi: 10.1152/jn.1993.70.6.2470
– ident: B5
  doi: 10.1152/jn.00009.2006
– ident: B25
  doi: 10.1186/1743-0003-10-99
– ident: B46
  doi: 10.1109/TBME.2002.807321
– ident: B23
  doi: 10.1109/TSP.2007.896108
– ident: B10
  doi: 10.1152/jn.1989.62.6.1344
– ident: B1
  doi: 10.1002/mus.880181215
– ident: B43
  doi: 10.1113/jphysiol.1992.sp019244
– ident: B21
  doi: 10.1109/TNSRE.2010.2041593
– ident: B35
  doi: 10.1109/TBME.1982.324881
– ident: B18
  doi: 10.1016/j.clinph.2008.10.160
– ident: B30
  doi: 10.1152/jn.01154.2011
– ident: B9
  doi: 10.1152/jn.01060.2010
– ident: B37
  doi: 10.1016/0013-4694(84)90031-2
– ident: B11
  doi: 10.1152/jn.00855.2010
– ident: B40
  doi: 10.1109/TNSRE.2010.2056390
– volume: 7
  start-page: 4744
  year: 2004
  ident: B39
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: B45
  doi: 10.1007/s11517-007-0168-z
SSID ssj0007502
Score 2.2733548
Snippet Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2718
SubjectTerms Algorithms
Control of Movement
Electromyography - methods
Electromyography - standards
Evoked Potentials, Motor
Female
Humans
Isometric Contraction
Male
Signal-To-Noise Ratio
Young Adult
Title Error reduction in EMG signal decomposition
URI https://www.ncbi.nlm.nih.gov/pubmed/25210159
https://www.proquest.com/docview/1629973420
https://pubmed.ncbi.nlm.nih.gov/PMC4254880
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXLggaPnYFpCRUC9LYJPYTnKsYKGigEBqpd4ixx6rrVqnCtlD--s7dr5bVgIuURQ7jjTPGT-Px8-EvFVZBhCCwR8JVMCUTINUSOzLOpGCa5MWxifI_hD7R-zrMT8ezsz0u0vq4r26_uO-kv9BFZ8hrm6X7D8g2zeKD_Ae8cUrIozXv8J4WVVlNa-c-mqXs7j8_mXucjLc2gu4fPE2KWsNCfVylj66MQmvHzT6o36B4GQlh1DqJ5h_WynZpoqcl-2qUhs2CNkoBQNaV4fTUCQz6cQXhtEY9HDs2pLGUd71udxpuJ5Zr0LuwlTN5tKR_S8vPAARUgVkH9kw9PQJgV3RffIgQr7vjqI4-DXIviOtiTqBVB59mHzLyTm3b0-5xZ0Jw-281xGROHxMHrXGp3sNnE_IPbCbZGvPyrq8uKK79GePxhaZe4RpjzA9tRQRpg3CdILwU3L0eXn4cT9oj7cIFONxHYSxZkJx4CIpFlIok_IMMp2ClgoML3QMSuOMk4UmWQBXQhotmRSQGq6MiONnZMOWFl4QqowUUqcJgDBMZrJQLI2M0sYwIYHBjLzrDJOrVvvdHUFynvs5II_yM5t7k-bOpDOy21e_bERP1lV801k5R7fk1pqkhXL1Ow8F8pwkZtFiRp43Vu-b6uCakWSCR1_BSZ5PS-zpiZc-xxHGjTjba9vcIQ-H3v6SbNTVCl4hbayL175L3QA8RW5f
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+reduction+in+EMG+signal+decomposition&rft.jtitle=Journal+of+neurophysiology&rft.au=Kline%2C+Joshua+C&rft.au=De+Luca%2C+Carlo+J&rft.date=2014-12-01&rft.eissn=1522-1598&rft.volume=112&rft.issue=11&rft.spage=2718&rft_id=info:doi/10.1152%2Fjn.00724.2013&rft_id=info%3Apmid%2F25210159&rft.externalDocID=25210159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon