Error reduction in EMG signal decomposition
Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequent...
Saved in:
Published in | Journal of neurophysiology Vol. 112; no. 11; pp. 2718 - 2728 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. |
---|---|
AbstractList | Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. |
Author | De Luca, Carlo J. Kline, Joshua C. |
Author_xml | – sequence: 1 givenname: Joshua C. surname: Kline fullname: Kline, Joshua C. organization: NeuroMuscular Research Center, Boston University, Boston, Massachusetts;, Department of Biomedical Engineering, Boston University, Boston, Massachusetts – sequence: 2 givenname: Carlo J. surname: De Luca fullname: De Luca, Carlo J. organization: NeuroMuscular Research Center, Boston University, Boston, Massachusetts;, Department of Biomedical Engineering, Boston University, Boston, Massachusetts;, Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts;, Department of Neurology, Boston University, Boston, Massachusetts;, Department of Physical Therapy, Boston University, Boston, Massachusetts; and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25210159$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLAzEQxoNU7EOPXmWPgmzNY7OPiyClVqHiRc8hTWZrym5Sk13B_95d24qKpxlmfvN9MN8YDayzgNA5wVNCOL3e2CnGGU2mFBN2hEbdjMaEF_kAjTDueoazbIjGIWxwB3JMT9CQckpwB43Q1dx75yMPulWNcTYyNpo_LqJg1lZWkQbl6q0Lpt-douNSVgHO9nWCXu7mz7P7ePm0eJjdLmOVcNbEhOkkVRx4mq2wTFWZ8wIKnYOWCkq-0gyUxnmakDLDwFUqSy0TmUJeclWmjE3QzU53265q0Aps42Ultt7U0n8IJ434vbHmVazdu0goT_IcdwKXewHv3loIjahNUFBV0oJrgyApLYqMJbRHL356fZscPtQBbAco70LwUAplGtm_o7M2lSBY9DmIjRVfOYg-h-4q_nN1EP6f_wQdDYol |
CitedBy_id | crossref_primary_10_1152_japplphysiol_00061_2015 crossref_primary_10_1007_s00421_020_04363_z crossref_primary_10_3390_ijms18040698 crossref_primary_10_3390_e19120697 crossref_primary_10_1152_jn_00452_2015 crossref_primary_10_1109_TNSRE_2025_3525517 crossref_primary_10_1142_S0129065717500253 crossref_primary_10_1152_jn_00725_2013 crossref_primary_10_1088_1741_2552_ac823d crossref_primary_10_1016_j_rsci_2020_04_003 crossref_primary_10_1152_jn_00555_2014 crossref_primary_10_3390_s21206703 crossref_primary_10_1109_TBME_2022_3192119 crossref_primary_10_3390_app13179546 crossref_primary_10_1152_jn_00071_2019 crossref_primary_10_3389_fnhum_2017_00569 crossref_primary_10_1088_1741_2560_13_2_026027 crossref_primary_10_1002_acn3_51906 crossref_primary_10_3389_fpls_2015_00430 crossref_primary_10_3390_ijerph18063063 crossref_primary_10_1371_journal_pone_0189323 |
Cites_doi | 10.1152/japplphysiol.00170.2007 10.1109/TBME.2005.863893 10.1113/jphysiol.1982.sp014294 10.1016/j.jelekin.2007.01.010 10.1016/0166-2236(94)90064-7 10.1007/s10439-009-9756-4 10.1109/TNSRE.2014.2306000 10.1523/JNEUROSCI.0046-05.2005 10.1088/1741-2560/9/5/056011 10.1109/TBME.1982.324882 10.1109/10.923782 10.1002/mus.23819 10.1152/jn.00041.2013 10.1152/jn.00686.2007 10.1152/jn.00650.2003 10.1152/jn.00725.2013 10.1109/TNSRE.2012.2218287 10.1152/jn.00961.2010 10.1088/1741-2560/8/6/066002 10.1113/jphysiol.1983.sp014765 10.1016/j.jelekin.2006.05.003 10.1016/j.clinph.2009.11.092 10.1007/s004210050061 10.1088/1741-2560/11/1/016008 10.1152/jn.00301.2012 10.1002/mus.880110707 10.1088/1741-2560/11/2/026007 10.1007/978-3-642-23508-5_301 10.1152/jn.1993.70.6.2470 10.1152/jn.00009.2006 10.1186/1743-0003-10-99 10.1109/TBME.2002.807321 10.1109/TSP.2007.896108 10.1152/jn.1989.62.6.1344 10.1002/mus.880181215 10.1113/jphysiol.1992.sp019244 10.1109/TNSRE.2010.2041593 10.1109/TBME.1982.324881 10.1016/j.clinph.2008.10.160 10.1152/jn.01154.2011 10.1152/jn.01060.2010 10.1016/0013-4694(84)90031-2 10.1152/jn.00855.2010 10.1109/TNSRE.2010.2056390 10.1007/s11517-007-0168-z |
ContentType | Journal Article |
Copyright | Copyright © 2014 the American Physiological Society. Copyright © 2014 the American Physiological Society 2014 American Physiological Society |
Copyright_xml | – notice: Copyright © 2014 the American Physiological Society. – notice: Copyright © 2014 the American Physiological Society 2014 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00724.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 2728 |
ExternalDocumentID | PMC4254880 25210159 10_1152_jn_00724_2013 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R44 NS077526 – fundername: NICHD NIH HHS grantid: HD05011 – fundername: NICHD NIH HHS grantid: R01 HD050111 – fundername: NINDS NIH HHS grantid: NS077526-01 |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-13d46c5e567b0a6cf859e9d8edacef5bd3ecd08641f70e5c6afda4a6e8f5cf633 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 18:20:41 EDT 2025 Fri Jul 11 08:18:26 EDT 2025 Thu Apr 03 06:52:38 EDT 2025 Tue Jul 01 04:09:03 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | accuracy error reduction surface EMG signal decomposition motor-unit firing instances |
Language | English |
License | Copyright © 2014 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-13d46c5e567b0a6cf859e9d8edacef5bd3ecd08641f70e5c6afda4a6e8f5cf633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1152/jn.00724.2013 |
PMID | 25210159 |
PQID | 1629973420 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4254880 proquest_miscellaneous_1629973420 pubmed_primary_25210159 crossref_citationtrail_10_1152_jn_00724_2013 crossref_primary_10_1152_jn_00724_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2014 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | De Luca CJ (B4) 1984; 11 B20 B42 B21 B43 B22 B44 B23 B45 B24 B46 B47 B25 B26 B27 B28 B29 McGill KC (B39) 2004; 7 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B18 B19 B1 B2 B3 B5 B6 B7 B8 B9 B40 B41 |
References_xml | – ident: B42 doi: 10.1152/japplphysiol.00170.2007 – ident: B14 doi: 10.1109/TBME.2005.863893 – volume: 11 start-page: 251 year: 1984 ident: B4 publication-title: Crit Rev Biomed Eng – ident: B8 doi: 10.1113/jphysiol.1982.sp014294 – ident: B33 doi: 10.1016/j.jelekin.2007.01.010 – ident: B7 doi: 10.1016/0166-2236(94)90064-7 – ident: B15 doi: 10.1007/s10439-009-9756-4 – ident: B13 doi: 10.1109/TNSRE.2014.2306000 – ident: B17 doi: 10.1523/JNEUROSCI.0046-05.2005 – ident: B19 doi: 10.1088/1741-2560/9/5/056011 – ident: B36 doi: 10.1109/TBME.1982.324882 – ident: B12 doi: 10.1109/10.923782 – ident: B27 doi: 10.1002/mus.23819 – ident: B34 doi: 10.1152/jn.00041.2013 – ident: B3 doi: 10.1152/jn.00686.2007 – ident: B31 doi: 10.1152/jn.00650.2003 – ident: B47 doi: 10.1152/jn.00725.2013 – ident: B44 doi: 10.1109/TNSRE.2012.2218287 – ident: B6 doi: 10.1152/jn.00961.2010 – ident: B38 doi: 10.1088/1741-2560/8/6/066002 – ident: B2 doi: 10.1113/jphysiol.1983.sp014765 – ident: B32 doi: 10.1016/j.jelekin.2006.05.003 – ident: B41 doi: 10.1016/j.clinph.2009.11.092 – ident: B29 doi: 10.1007/s004210050061 – ident: B22 doi: 10.1088/1741-2560/11/1/016008 – ident: B26 doi: 10.1152/jn.00301.2012 – ident: B28 doi: 10.1002/mus.880110707 – ident: B24 doi: 10.1088/1741-2560/11/2/026007 – ident: B20 doi: 10.1007/978-3-642-23508-5_301 – ident: B16 doi: 10.1152/jn.1993.70.6.2470 – ident: B5 doi: 10.1152/jn.00009.2006 – ident: B25 doi: 10.1186/1743-0003-10-99 – ident: B46 doi: 10.1109/TBME.2002.807321 – ident: B23 doi: 10.1109/TSP.2007.896108 – ident: B10 doi: 10.1152/jn.1989.62.6.1344 – ident: B1 doi: 10.1002/mus.880181215 – ident: B43 doi: 10.1113/jphysiol.1992.sp019244 – ident: B21 doi: 10.1109/TNSRE.2010.2041593 – ident: B35 doi: 10.1109/TBME.1982.324881 – ident: B18 doi: 10.1016/j.clinph.2008.10.160 – ident: B30 doi: 10.1152/jn.01154.2011 – ident: B9 doi: 10.1152/jn.01060.2010 – ident: B37 doi: 10.1016/0013-4694(84)90031-2 – ident: B11 doi: 10.1152/jn.00855.2010 – ident: B40 doi: 10.1109/TNSRE.2010.2056390 – volume: 7 start-page: 4744 year: 2004 ident: B39 publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: B45 doi: 10.1007/s11517-007-0168-z |
SSID | ssj0007502 |
Score | 2.2733548 |
Snippet | Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2718 |
SubjectTerms | Algorithms Control of Movement Electromyography - methods Electromyography - standards Evoked Potentials, Motor Female Humans Isometric Contraction Male Signal-To-Noise Ratio Young Adult |
Title | Error reduction in EMG signal decomposition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25210159 https://www.proquest.com/docview/1629973420 https://pubmed.ncbi.nlm.nih.gov/PMC4254880 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXLggaPnYFpCRUC9LYJPYTnKsYKGigEBqpd4ixx6rrVqnCtlD--s7dr5bVgIuURQ7jjTPGT-Px8-EvFVZBhCCwR8JVMCUTINUSOzLOpGCa5MWxifI_hD7R-zrMT8ezsz0u0vq4r26_uO-kv9BFZ8hrm6X7D8g2zeKD_Ae8cUrIozXv8J4WVVlNa-c-mqXs7j8_mXucjLc2gu4fPE2KWsNCfVylj66MQmvHzT6o36B4GQlh1DqJ5h_WynZpoqcl-2qUhs2CNkoBQNaV4fTUCQz6cQXhtEY9HDs2pLGUd71udxpuJ5Zr0LuwlTN5tKR_S8vPAARUgVkH9kw9PQJgV3RffIgQr7vjqI4-DXIviOtiTqBVB59mHzLyTm3b0-5xZ0Jw-281xGROHxMHrXGp3sNnE_IPbCbZGvPyrq8uKK79GePxhaZe4RpjzA9tRQRpg3CdILwU3L0eXn4cT9oj7cIFONxHYSxZkJx4CIpFlIok_IMMp2ClgoML3QMSuOMk4UmWQBXQhotmRSQGq6MiONnZMOWFl4QqowUUqcJgDBMZrJQLI2M0sYwIYHBjLzrDJOrVvvdHUFynvs5II_yM5t7k-bOpDOy21e_bERP1lV801k5R7fk1pqkhXL1Ow8F8pwkZtFiRp43Vu-b6uCakWSCR1_BSZ5PS-zpiZc-xxHGjTjba9vcIQ-H3v6SbNTVCl4hbayL175L3QA8RW5f |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+reduction+in+EMG+signal+decomposition&rft.jtitle=Journal+of+neurophysiology&rft.au=Kline%2C+Joshua+C&rft.au=De+Luca%2C+Carlo+J&rft.date=2014-12-01&rft.eissn=1522-1598&rft.volume=112&rft.issue=11&rft.spage=2718&rft_id=info:doi/10.1152%2Fjn.00724.2013&rft_id=info%3Apmid%2F25210159&rft.externalDocID=25210159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |