Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models

Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However,...

Full description

Saved in:
Bibliographic Details
Published inCancer medicine (Malden, MA) Vol. 9; no. 18; pp. 6667 - 6678
Main Authors Shuwen, Han, Xi, Yang, Qing, Zhou, Jing, Zhuang, Wei, Wu
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.09.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model. Methods The differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted. Results The optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione. Conclusion The CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis. APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic drug of CAD cells through functioning its role at sites of F2 and F9. CatBoost model constructed by 33 feature genes showed the optimal classification performance for identifying CAD liver metastasis.
AbstractList APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic drug of CAD cells through functioning its role at sites of F2 and F9. CatBoost model constructed by 33 feature genes showed the optimal classification performance for identifying CAD liver metastasis.
Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model. Methods The differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted. Results The optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione. Conclusion The CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis. APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic drug of CAD cells through functioning its role at sites of F2 and F9. CatBoost model constructed by 33 feature genes showed the optimal classification performance for identifying CAD liver metastasis.
BackgroundEarly diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model.MethodsThe differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted.ResultsThe optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione.ConclusionThe CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis.
Abstract Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model. Methods The differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted. Results The optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione. Conclusion The CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis.
Author Xi, Yang
Jing, Zhuang
Shuwen, Han
Qing, Zhou
Wei, Wu
AuthorAffiliation 5 Department of Gastroenterology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
4 Graduate School of Nursing Huzhou university Huzhou China
2 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
3 Department of Nursing Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
1 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
AuthorAffiliation_xml – name: 4 Graduate School of Nursing Huzhou university Huzhou China
– name: 1 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
– name: 2 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
– name: 3 Department of Nursing Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
– name: 5 Department of Gastroenterology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0001-6180-9565
  surname: Shuwen
  fullname: Shuwen, Han
  organization: Affiliated Central Hospital Huzhou University
– sequence: 2
  givenname: Yang
  orcidid: 0000-0003-2382-0282
  surname: Xi
  fullname: Xi, Yang
  organization: Affiliated Central Hospital Huzhou University
– sequence: 3
  givenname: Zhou
  surname: Qing
  fullname: Qing, Zhou
  organization: Affiliated Central Hospital Huzhou University
– sequence: 4
  givenname: Zhuang
  surname: Jing
  fullname: Jing, Zhuang
  organization: Huzhou university
– sequence: 5
  givenname: Wu
  orcidid: 0000-0002-4894-7178
  surname: Wei
  fullname: Wei, Wu
  email: hchwuwei2018@126.com
  organization: Affiliated Central Hospital Huzhou University
BookMark eNp1kV9rHCEUxSWk0DTNQ7-B0Kc-bOKo4zgvhbD0TyClfUiexdHrxo2jqc5uyLevs7uBpLQieLme8-Me7jt0HFMEhD405LwhhF4YPfJzRmV_hE4o4e2iE4wfv6jforNS1qSejlDRNSdo-yuD9WbycYUHn0ad7yEX7HIasQm6FO88ZOxSxsFvazXCpEu9vuDksEkhZTCTDlhbiMnobHysmII3ZWaO2tz5CDiAznHXSBZCeY_eOB0KnB3eU3T79cvN8vvi-ue3q-Xl9cLwlvULoENjJe97ZwfnaE3WOsdawZwkxPaWCqm5AykJVEVPWuhE11FBWcutYwM7RVd7rk16rR6yrwGfVNJe7Ropr5TOkzcBFBAYnBQwGHCccto30hKphXZSMjGwyvq8Zz1shhGsgThlHV5BX_9Ef6dWaau6lhLadhXw8QDI6fcGyqTWaZNjza8o54I3TPR9VV3sVSanUjI4ZfykJ59mqA-qIWpetpqXreZlV8envxzPM_1Le6A_-gBP_xeq5eUPvnP8AcsZvr8
CitedBy_id crossref_primary_10_1186_s12866_024_03416_z
crossref_primary_10_1155_2023_6403556
crossref_primary_10_1007_s00384_024_04674_z
crossref_primary_10_3389_fonc_2022_1078822
crossref_primary_10_1099_jmm_0_001706
crossref_primary_10_3390_su14148520
crossref_primary_10_1021_acs_jcim_3c00766
crossref_primary_10_1007_s11694_024_03032_5
crossref_primary_10_3390_curroncol30100668
crossref_primary_10_1016_j_clineuro_2024_108308
crossref_primary_10_1128_spectrum_01593_22
crossref_primary_10_1007_s12551_021_00849_y
crossref_primary_10_3390_pr9081466
crossref_primary_10_1371_journal_pone_0262895
crossref_primary_10_1016_j_cscm_2024_e03864
crossref_primary_10_1016_j_aca_2022_339571
Cites_doi 10.18632/oncotarget.16064
10.1093/bioinformatics/btm254
10.1007/s10620-010-1138-0
10.1111/his.13975
10.1186/s13550-017-0260-9
10.1016/j.atherosclerosis.2019.10.022
10.1089/omi.2011.0118
10.1093/nar/gky1131
10.1016/j.compbiomed.2018.06.030
10.2147/CMAR.S191352
10.21037/atm.2016.02.15
10.1021/la802663g
10.3389/fmed.2018.00281
10.1093/nar/gkx1143
10.1016/j.thromres.2017.12.020
10.1016/j.cegh.2018.10.003
10.1074/jbc.271.27.16227
10.1093/nar/gky1055
10.3945/ajcn.115.124321
10.1016/j.imu.2019.100228
10.1016/j.medici.2016.03.002
10.1007/978-3-030-36664-3_10
10.1016/j.oraloncology.2019.03.011
10.18632/oncotarget.12140
10.1056/NEJMp1606181
10.1016/j.patrec.2005.10.010
10.1016/j.jhydrol.2019.04.085
10.1186/1471-2105-14-170
10.1016/j.hpb.2019.10.426
10.1186/s12943-017-0646-3
10.1194/jlr.M077925
10.1177/172460080802300106
10.1158/0008-5472.CAN-18-3945
10.1371/journal.pone.0020454
10.1063/1.4990503
10.1186/s40880-019-0368-6
10.1046/j.1365-2796.2003.01281.x
10.1038/s41598-017-05415-9
10.1093/nar/gkw1092
10.1093/carcin/bgr321
10.1007/978-1-60761-987-1_18
10.1002/prca.201900017
10.21873/anticanres.13814
10.1093/bioinformatics/btg405
ContentType Journal Article
Copyright 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
5PM
DOA
DOI 10.1002/cam4.3289
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate SHUWEN et al
EISSN 2045-7634
EndPage 6678
ExternalDocumentID oai_doaj_org_article_e0ebf86ebcef4242918d08a6af8836b3
PMC7520257
10_1002_cam4_3289
CAM43289
Genre article
GroupedDBID 0R~
1OC
24P
31~
53G
5VS
7X7
8-0
8-1
8FE
8FH
8FI
8FJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
D-8
D-9
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LK8
M48
M7P
M~E
O9-
OK1
OVD
PIMPY
PQQKQ
PROAC
RPM
TEORI
TUS
UKHRP
WIN
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
5PM
PUEGO
ID FETCH-LOGICAL-c4539-e2b1d8499fdbff22895ff3563f800d9d268a4fe880efdb905e7677262354df3b3
IEDL.DBID M48
ISSN 2045-7634
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 14:11:46 EDT 2025
Wed Aug 13 07:31:36 EDT 2025
Tue Jul 01 02:16:06 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:34:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4539-e2b1d8499fdbff22895ff3563f800d9d268a4fe880efdb905e7677262354df3b3
Notes Funding information
This work was supported by the Major Science and Technology Projects for Medical and Health Care of Zhejiang Province (No. WKJ‐ZJ‐2013), Huzhou Key Research and Development Projects (No. 2020ZDT2015).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6180-9565
0000-0002-4894-7178
0000-0003-2382-0282
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/cam4.3289
PQID 2446413699
PQPubID 2032540
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_e0ebf86ebcef4242918d08a6af8836b3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7520257
proquest_journals_2446413699
crossref_citationtrail_10_1002_cam4_3289
crossref_primary_10_1002_cam4_3289
wiley_primary_10_1002_cam4_3289_CAM43289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
– name: Hoboken
PublicationTitle Cancer medicine (Malden, MA)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 164
2019; 7
2010; 55
2017; 7
2018; 100
2009; 25
2017; 8
2004; 20
2009; 41
2019; 92
2019; 11
2019; 79
2019; 13
2017; 45
2019; 39
2016; 52
2011; 12
2008; 55
2012; 16
2020; 76
2016; 103
2011; 6
2012; 33
2018; 46
2015; 24
2016; 4
2004; 255
2016; 7
2018; 2018
2013; 14
2018; 5
2017; 58
2019; 21
2017; 16
2006; 27
2019; 47
2019
1996; 271
2016; 375
2008; 23
2016
2019; 292
2017; 147
2007; 23
2019; 574
Bohorquez M (e_1_2_11_3_1) 2016
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
Montazeri M (e_1_2_11_13_1) 2015; 24
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
Tang J (e_1_2_11_50_1) 2009; 41
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
Prokhorenkova L (e_1_2_11_19_1) 2018; 2018
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_49_1
Pedregosa F (e_1_2_11_22_1) 2011; 12
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Wang X (e_1_2_11_54_1) 2008; 55
References_xml – volume: 103
  start-page: 1397
  issue: 6
  year: 2016
  end-page: 1407
  article-title: Lipid biomarkers and long‐term risk of cancer in the Women’s Health Study
  publication-title: Am J Clini Nutri
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  end-page: 287
  article-title: ClusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
– volume: 52
  start-page: 89
  issue: 2
  year: 2016
  end-page: 98
  article-title: Hypertension, serum lipids and cancer risk: a review of epidemiological evidence
  publication-title: Medicina
– volume: 55
  start-page: 3171
  issue: 11
  year: 2010
  end-page: 3180
  article-title: Genes regulated by Nkx2‐3 in sporadic and inflammatory bowel disease‐associated colorectal cancer cell lines
  publication-title: Dig Dis Sci
– volume: 14
  start-page: 170
  issue: 1
  year: 2013
  article-title: Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods
  publication-title: BMC Bioinform
– volume: 20
  start-page: 307
  issue: 3
  year: 2004
  end-page: 315
  article-title: Affy—analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinformatics
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
– volume: 5
  start-page: 281
  year: 2018
  article-title: Structure of coagulation factor II: molecular mechanism of thrombin generation and development of next‐generation anticoagulants
  publication-title: Front Med
– volume: 255
  start-page: 273
  issue: 2
  year: 2004
  end-page: 279
  article-title: Early alterations in the postprandial VLDL1 apoB‐100 and apoB‐48 metabolism in men with strong heredity for type 2 diabetes
  publication-title: J Intern Med
– volume: 55
  start-page: 2039
  issue: 88
  year: 2008
  end-page: 2044
  article-title: Screening of new tumor suppressor genes in sporadic colorectal cancer patients
  publication-title: Hepatogastroenterology
– volume: 6
  start-page: 2
  issue: 5
  year: 2011
  end-page: 3
  article-title: NKX2‐3 transcriptional regulation of endothelin‐1 and VEGF signaling in human intestinal microvascular endothelial cells
  publication-title: PLoS One
– volume: 375
  start-page: 1216
  issue: 13
  year: 2016
  article-title: Predicting the future—big data, machine learning, and clinical medicine
  publication-title: N Engl J Med
– volume: 47
  start-page: D330
  issue: D1
  year: 2019
  end-page: D338
  article-title: The gene ontology resource: 20 years and still GOing strong
  publication-title: Nucleic Acids Res
– volume: 25
  start-page: 2322
  issue: 4
  year: 2009
  end-page: 2330
  article-title: Interfacial properties of a complex multi‐domain 490 amino acid peptide derived from apolipoprotein B (residues 292–782)
  publication-title: Langmuir
– volume: 39
  start-page: 22
  issue: 1
  year: 2019
  article-title: Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?
  publication-title: Cancer Commun
– volume: 46
  start-page: D1068
  issue: D1
  year: 2018
  end-page: D1073
  article-title: DGIdb 3.0: a redesign and expansion of the drug–gene interaction database
  publication-title: Nucleic Acids Res
– volume: 13
  issue: 6
  year: 2019
  article-title: Co‐expression network analysis identified key proteins in association with hepatic metastatic colorectal cancer
  publication-title: Proteomi Clini Appli
– volume: 33
  start-page: 678
  issue: 3
  year: 2012
  end-page: 686
  article-title: The tumor‐suppressor gene Nkx2. 8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway
  publication-title: Carcinogenesis
– volume: 23
  start-page: 1846
  issue: 14
  year: 2007
  end-page: 1847
  article-title: GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor
  publication-title: Bioinformatics
– volume: 7
  start-page: 11
  issue: 1
  year: 2017
  article-title: Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non‐small cell lung cancer from 18 F‐FDG PET/CT images
  publication-title: EJNMMI research
– volume: 16
  start-page: 76
  issue: 1
  year: 2017
  article-title: Emerging roles of lipid metabolism in cancer metastasis
  publication-title: Mol Cancer
– volume: 79
  start-page: 4227
  issue: 16
  year: 2019
  end-page: 4241
  article-title: Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes
  publication-title: Can Res
– volume: 164
  start-page: S29
  year: 2018
  end-page: S33
  article-title: Mechanisms coupling thrombin to metastasis and tumorigenesis
  publication-title: Thromb Res
– volume: 21
  start-page: S656
  year: 2019
  article-title: The current limit for resection rate for colorectal liver metastases
  publication-title: HPB
– year: 2019
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– start-page: 100228
  year: 2019
  article-title: Screening of anxiety and depression among seafarers using machine learning technology
  publication-title: Inform Med Unlock
– volume: 58
  start-page: 1869
  issue: 9
  year: 2017
  end-page: 1883
  article-title: Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity
  publication-title: J Lipid Res
– volume: 8
  start-page: 25500
  issue: 15
  year: 2017
  article-title: Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis
  publication-title: Oncotarget
– volume: 11
  start-page: 2881
  year: 2019
  article-title: Apolipoprotein A1 and B as risk factors for development of intraocular metastasis in patients with breast cancer
  publication-title: Cancer Manag Res
– volume: 271
  start-page: 16227
  issue: 27
  year: 1996
  end-page: 16236
  article-title: Identification of the phospholipid binding site in the vitamin K‐dependent blood coagulation protein factor IX
  publication-title: J Biol Chem
– volume: 292
  start-page: 171
  year: 2019
  article-title: Intravascular ultrasound‐based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions
  publication-title: Atherosclerosis
– volume: 2018
  start-page: 6638
  year: 2018
  end-page: 6648
  article-title: CatBoost: unbiased boosting with categorical features
  publication-title: Adv Neural Inf Process Syst
– volume: 47
  start-page: D607
  issue: D1
  year: 2019
  end-page: D613
  article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets
  publication-title: Nucleic Acids Res
– volume: 76
  start-page: 182
  issue: 2
  year: 2020
  end-page: 188
  article-title: Board WCoTE: The 2019 WHO classification of tumours of the digestive system
  publication-title: Histopathology
– volume: 23
  start-page: 36
  issue: 1
  year: 2008
  end-page: 41
  article-title: Coagulation factor levels in non‐metastatic colorectal cancer patients
  publication-title: Int J Biol Markers
– volume: 41
  start-page: 531
  issue: 5
  year: 2009
  end-page: 536
  article-title: Ectopic expression and clinical significance of tissue factor/coagulation factor VII complex in colorectal cancer
  publication-title: Beijing da xue xue bao Yi xue ban= Journal of Peking University Health sciences
– volume: 7
  start-page: 72908
  issue: 45
  year: 2016
  article-title: Genomic characterization of liver metastases from colorectal cancer patients
  publication-title: Oncotarget
– volume: 39
  start-page: 6067
  issue: 11
  year: 2019
  article-title: Prothrombin 3'end gene variants in patients with sporadic colon adenocarcinoma
  publication-title: Anticancer Res
– volume: 574
  start-page: 1029
  year: 2019
  end-page: 1041
  article-title: Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions
  publication-title: J Hydrol
– volume: 100
  start-page: 92
  year: 2018
  end-page: 99
  article-title: Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma
  publication-title: Comput Biol Med
– start-page: 95(40)
  year: 2016
  article-title: Clinical manifestations of colorectal cancer patients from a large multicenter study in Colombia
  publication-title: Medicine
– volume: 4
  start-page: 111
  issue: 6
  year: 2016
  article-title: Model building strategy for logistic regression: purposeful selection
  publication-title: Ann Trans Med
– volume: 7
  start-page: 5374
  issue: 1
  year: 2017
  article-title: Decreased serum apolipoprotein A1 levels are associated with poor survival and systemic inflammatory response in colorectal cancer
  publication-title: Sci Rep
– volume: 45
  start-page: D353
  issue: D1
  year: 2017
  end-page: D361
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
– volume: 24
  start-page: 31
  issue: 1
  year: 2015
  article-title: Machine learning models in breast cancer survival prediction
  publication-title: Technol Health Care Offici J Euro Soc Eng Med
– volume: 7
  start-page: 293
  issue: 3
  year: 2019
  end-page: 299
  article-title: Prediction of survival and metastasis in breast cancer patients using machine learning classifiers
  publication-title: Clini Epidemiol Global Health
– volume: 92
  start-page: 20
  year: 2019
  end-page: 25
  article-title: Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma
  publication-title: Oral Oncol
– volume: 147
  issue: 2
  year: 2017
  article-title: Representations in neural network based empirical potentials
  publication-title: J Chem Phys
– ident: e_1_2_11_8_1
  doi: 10.18632/oncotarget.16064
– ident: e_1_2_11_20_1
  doi: 10.1093/bioinformatics/btm254
– ident: e_1_2_11_55_1
  doi: 10.1007/s10620-010-1138-0
– ident: e_1_2_11_4_1
  doi: 10.1111/his.13975
– ident: e_1_2_11_16_1
– ident: e_1_2_11_14_1
  doi: 10.1186/s13550-017-0260-9
– ident: e_1_2_11_37_1
  doi: 10.1016/j.atherosclerosis.2019.10.022
– ident: e_1_2_11_26_1
  doi: 10.1089/omi.2011.0118
– ident: e_1_2_11_27_1
  doi: 10.1093/nar/gky1131
– ident: e_1_2_11_34_1
  doi: 10.1016/j.compbiomed.2018.06.030
– ident: e_1_2_11_39_1
  doi: 10.2147/CMAR.S191352
– ident: e_1_2_11_15_1
  doi: 10.21037/atm.2016.02.15
– ident: e_1_2_11_40_1
  doi: 10.1021/la802663g
– ident: e_1_2_11_46_1
  doi: 10.3389/fmed.2018.00281
– ident: e_1_2_11_29_1
  doi: 10.1093/nar/gkx1143
– volume: 24
  start-page: 31
  issue: 1
  year: 2015
  ident: e_1_2_11_13_1
  article-title: Machine learning models in breast cancer survival prediction
  publication-title: Technol Health Care Offici J Euro Soc Eng Med
– ident: e_1_2_11_51_1
  doi: 10.1016/j.thromres.2017.12.020
– ident: e_1_2_11_12_1
  doi: 10.1016/j.cegh.2018.10.003
– ident: e_1_2_11_47_1
  doi: 10.1074/jbc.271.27.16227
– volume: 55
  start-page: 2039
  issue: 88
  year: 2008
  ident: e_1_2_11_54_1
  article-title: Screening of new tumor suppressor genes in sporadic colorectal cancer patients
  publication-title: Hepatogastroenterology
– ident: e_1_2_11_25_1
  doi: 10.1093/nar/gky1055
– ident: e_1_2_11_43_1
  doi: 10.3945/ajcn.115.124321
– volume: 2018
  start-page: 6638
  year: 2018
  ident: e_1_2_11_19_1
  article-title: CatBoost: unbiased boosting with categorical features
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_11_36_1
  doi: 10.1016/j.imu.2019.100228
– ident: e_1_2_11_38_1
  doi: 10.1016/j.medici.2016.03.002
– ident: e_1_2_11_10_1
  doi: 10.1007/978-3-030-36664-3_10
– ident: e_1_2_11_11_1
  doi: 10.1016/j.oraloncology.2019.03.011
– ident: e_1_2_11_17_1
– ident: e_1_2_11_7_1
  doi: 10.18632/oncotarget.12140
– ident: e_1_2_11_9_1
  doi: 10.1056/NEJMp1606181
– ident: e_1_2_11_30_1
– ident: e_1_2_11_32_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_11_35_1
  doi: 10.1016/j.jhydrol.2019.04.085
– ident: e_1_2_11_33_1
  doi: 10.1186/1471-2105-14-170
– ident: e_1_2_11_6_1
  doi: 10.1016/j.hpb.2019.10.426
– volume: 41
  start-page: 531
  issue: 5
  year: 2009
  ident: e_1_2_11_50_1
  article-title: Ectopic expression and clinical significance of tissue factor/coagulation factor VII complex in colorectal cancer
  publication-title: Beijing da xue xue bao Yi xue ban= Journal of Peking University Health sciences
– ident: e_1_2_11_45_1
  doi: 10.1186/s12943-017-0646-3
– ident: e_1_2_11_42_1
  doi: 10.1194/jlr.M077925
– ident: e_1_2_11_48_1
  doi: 10.1177/172460080802300106
– ident: e_1_2_11_5_1
  doi: 10.1158/0008-5472.CAN-18-3945
– ident: e_1_2_11_53_1
  doi: 10.1371/journal.pone.0020454
– ident: e_1_2_11_18_1
  doi: 10.1063/1.4990503
– ident: e_1_2_11_23_1
– ident: e_1_2_11_2_1
  doi: 10.1186/s40880-019-0368-6
– ident: e_1_2_11_41_1
  doi: 10.1046/j.1365-2796.2003.01281.x
– ident: e_1_2_11_44_1
  doi: 10.1038/s41598-017-05415-9
– ident: e_1_2_11_24_1
  doi: 10.1093/nar/gkw1092
– ident: e_1_2_11_31_1
– ident: e_1_2_11_56_1
  doi: 10.1093/carcin/bgr321
– ident: e_1_2_11_28_1
  doi: 10.1007/978-1-60761-987-1_18
– ident: e_1_2_11_52_1
  doi: 10.1002/prca.201900017
– ident: e_1_2_11_49_1
  doi: 10.21873/anticanres.13814
– ident: e_1_2_11_21_1
  doi: 10.1093/bioinformatics/btg405
– start-page: 95(40)
  year: 2016
  ident: e_1_2_11_3_1
  article-title: Clinical manifestations of colorectal cancer patients from a large multicenter study in Colombia
  publication-title: Medicine
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_11_22_1
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
SSID ssj0000702671
Score 2.6008782
Snippet Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined...
BackgroundEarly diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined...
APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic...
Abstract Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6667
SubjectTerms Adenocarcinoma
Biomarkers
CatBoost algorithm
Classification
Clinical Cancer Research
colorectal adenocarcinomas
Colorectal cancer
Datasets
feature genes
Learning algorithms
Liver
liver metastasis
machine learning approaches
Menadione
Metastases
Ontology
Original Research
Therapeutic targets
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iQbyIP3E6JYgHL3VtmqbtUcUxBMWDgreQNC862Kas07_f99JONlG8eCtdtrR5r-_7wr5-j7HTxCPKxJmLTClVJEtHdVBBZLASuip1kJigtrhTg0d585Q9LbT6Ik1YYw_cLFwPYrC-UGAr8BLxpEwKFxdGGV8UqbLB5xMxb2EzFWpwTp2VkrmVUCx6lRnL81RQO_cFAAo-_Uvk8rs0cpGyBszpb7KNlizyi-Yit9gKTLbZ2m37d_gO-7if0jEplzm9R09Sm2nN6ZURXhEtHnpEPY68lI9If8HHMDNIB-thzV89J8NqKng4hcHyg6g2xd8lwRAnOfwzHwelJfC2tQSeoL459S577F8_XA2itpFCVMksLSMQNnEF7m28s94LXITM-zRTqUe66EonVGGkB3yUAUeUcQa5QtaNzCiTzqc23WOrk9cJ7DOeWMT7xIG3lZDk_eZtbspKCgcSvyk67Gy-urpqXcap2cVIN_7IQlMgNAWiw06-hr411ho_DbqkEH0NIDfscAJzRLc5ov_KkQ7rzgOs20e01shrFCK4KnGOfCnoS5MtfzIZvgQL7jwTSBZzvNuQHr9fv766uJV0cPAfN3LI1gXt94PGrctWZ9N3OEJSNLPHIf8_AVcMDw4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4imWtshCHLiEJrbjxKeqVFQVUhEHKu3N8mNcVurulmTh9zPj9S7dCrhFjvPyjGe-OF--YexdkzDL1G2snFG6UiZSHNRQOYyEMcgIjctsiy_6_FJ9nrbTsuA2FlrlJibmQB2XgdbIjzANaQy42pjjmx8VVY2ir6ulhMZ99oCky8iru2m3XWNBdxa6azaCQrU4Cm6uPkhBRd1vpaGs1r8DMe8SJG8D15x5zp6wxwUy8pO1jZ-ye7B4xh5elI_iz9mvrwNtE3-Z09_0RLgZRk4_jvBA4HiWMPdxRKf8mlgYfA4rh6BwnI18mTjJVlPYw0s4DEKY2wY8L9GGOJHir_g88y2BlwIT2EDVc8YX7PLs07fT86qUU6iCaqWpQPgm9viGk6JPSeAgtCnJVsuEoDGaKHTvVAKc0IA9TN1CpxF7Iz5qVUzSy5dsb7FcwCvGG49Zv4mQfBCKFOCS75wJSkRQeKSYsPeb0bWhaI1TyYtru1ZJFpYMYckQE_Z22_VmLbDxt04fyUTbDqSJnRuWw5UtU8xCDT71GnyApBB5mKaPde-0S30vtZcTdrAxsC0TdbR_3GrCuh2j71xsd89i9j0LcXetQMjY4dNm9_j3_dvTkwtFG6__fw_77JGg9_nMYTtge6vhJxwi6Fn5N9mzfwMGlwW0
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoSFUvCGirLl-yUA-9BBLbcRJxAgRCSCAOReJm2fGYrsTuomTh9zPjzQZSUam3KJnEScYz85w8PzP2MwtYZdLcJ7ZSOlGVpzyoIbGYCX0tPWQ2si1u9OWdurrP71fY8XIuzEIfov_gRpER8zUFuHXt0ZtoaG0n6lDieOETW6OptcTnE-q2_8CCfVnoOOAixfUE40gtlYVScdSfPahHUbZ_gDX_Zkq-R7CxBF1ssPUOO_KThbM32QpMt9jn6-7v-Ff2ctvQNhGZOU2rJ-ZN03KaQcJrQsnjgEWQI0zlj0TH4BOYW0SH7bjls8BJv5ryHzZhMRthkWvwusQf4sSOf-CTSLwE3q00gTtoGZ32G7u7OP99dpl06yoktcpllYBwmS9xqBO8C0HgS8hDkLmWAdGjr7zQpVUBMLIBLao0h0IjCEeglCsfpJPf2ep0NoUfjGcOy3_mIbhaKJKCC66wVa2EB4VnihH7tXy7pu5Ex2nti0ezkEsWhhxhyBEjdtCbPi2UNj4yOiUX9QYkjh13zJoH08WagRRcKDW4GoJCCFJlpU9Lq20oS6mdHLHdpYNNF7GtQZijsaDrCtsoBk4fNDY8Mh3_iYrcRS4QOxb4tLF7_Pv-zdnJtaKN7f833WFfBA3yI7Ftl63Om2fYQyQ0d_uxx78CUbsHeA
  priority: 102
  providerName: Wiley-Blackwell
Title Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcam4.3289
https://www.proquest.com/docview/2446413699
https://pubmed.ncbi.nlm.nih.gov/PMC7520257
https://doaj.org/article/e0ebf86ebcef4242918d08a6af8836b3
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5QOmlpC-6bbqI0kMvTteSLNmHEpKQNBQ2LKULexOSJaUL-2jtbUn-fWe0cohLCr0YY48tW-OZ-cYef0PI-zxAlBkVLjOVkJmoHPpB6TMDntDV3PncxGqLK3k5FV9mxWyHdD020wS2D6Z22E9q2iyObn7eHoPBf0oEoh9rsxRHHDKHXbIPAUlhI4NxQvnRIStss4SpF3KvZ2BRouMYun90LzJFAv8e6vy7ZvI-lo3B6OKAPEkokp5s1f6U7PjVM_JonL6TPye_Jw2uY0kzxR_ssQanaSn-S0JrxMvzAOGQAmClCyzMoEu_MYAT23lL14EikzV6QhjCgF-CcNfAebGSiGKd_DVdxhJMT1PPCdiADXXaF2R6cf7t7DJLHRayWhS8yjyzuSsh6QnOhsBgEooQeCF5ABzpKsdkaUTwYOMeJKpR4ZUEOA6QqRAucMtfkr3VeuVfEZpbAAK588HWTCApXLDKVLVgzgs4kg3Ih252dZ3ox7ELxkJviZOZRkVoVMSAvLsT_bHl3HhI6BRVdCeANNlxw7q51snqtB95G0rpbe2DADBS5aUblUaaUJZcWj4gh52CdffoaQA8EkK7rGAM1VN6b7D-ntX8e-TmVgUDFKngbuPj8e_r12cnY4Err_9f9A15zDDdjyVuh2Rv0_zybwETbeyQ7DIxgaWaqSHZPz2_mnwdxvcLsPw8y4fRIv4Ax-IRaQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxFMsFLAQSFxCE8dx4gNCpVBtabfi0Ep7M3Zsl5W6uyVZQPwpfiMz3mTpIuDWW-RMXp7xzGfn8wzA8yxglEkLlxglZCKUIz8ofWLQE7o6dz4zkW1xJIcn4sO4GG_Az34vDNEqe58YHbWb17RGvo1hSKLDlUq9Of-SUNUo-rval9BYmsWB__Edp2zt6_13qN8XnO-9P94dJl1VgaQWRa4Sz23mKgT6wdkQOE44ihDyQuYBsZNTjsvKiODRrj1KqLTwpUQIijChEC7kNsf7XoGrGHhTmuyV43K1poPDh8sy6xMYpXy7NlPxKudURP5C2IvVAdYg7Z-EzItAOUa6vVtws4OobGdpU7dhw8_uwLVR9xP-Lnz72NAx8aUZ7d4ngk_TMtqowmoC45OAsZYhGmZnxPpgU78wCELbScvmgVGabHKz-AiDTg9jaYP3JZoSIxL-KZtGfqdnXUELbKBqPe09OLmUjr4Pm7P5zD8AlllEGZnzwdZcUMa5YEujasGdF3glH8DLvnd13eU2pxIbZ3qZlZlrUoQmRQzg2Ur0fJnQ429Cb0lFKwHKwR0b5s2p7oa09qm3oZLe1j4IRDoqq1xaGWlCVeXS5gPY6hWsO8fQ6t9mPIByTelrD1s_M5t8jom_y4IjRC3xa6N5_Pv99e7OSNDBw_-_w1O4PjweHerD_aODR3CD01pC5M9tweai-eofI-Ba2CfRyhl8uuxh9QvYSEIv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXyKwgALgcRLaOI4TvKA0L6qjbGqQkzam7Fje1Ra25EUEP8afx13qVNWBLztLXIuX77z3c_Oz3cALxKPUSbObKRLISNRWvKD0kUaPaGtUusS3bItRvLwVLw7y8424Ge3F4ZolZ1PbB21nVe0Rj7AMCTR4cqyHPhAixjvD99efomoghT9ae3KaSxN5Nj9-I7Tt-bN0T7q-iXnw4OPe4dRqDAQVSJLy8hxk9gCQb-3xnuOk4_M-zSTqUccZUvLZaGFd2jjDiXKOHO5RDiKkCET1qcmxfvegM2cZkU92Nw9GI0_rFZ4cDBxmSddOqOYDyo9Fa9TTiXlrwTBtlbAGsD9k555FTa3cW94G24FwMp2lhZ2Bzbc7C5snYRf8vfg27imY2JPM9rLT3SfumG0bYVVBM0nHiMvQ2zMLogDwqZuoRGSNpOGzT2jpNnkdPERGl0gRtYa70ukJUaU_HM2bdmejoXyFthAtXua-3B6LV39AHqz-cw9BJYYxByJdd5UXFD-OW9yXVaCWyfwSt6HV13vqipkOqeCGxdqmaOZK1KEIkX04flK9HKZ3uNvQrukopUAZeRuG-b1uQoDXLnYGV9IZyrnBeKeMilsXGipfVGk0qR92O4UrIKbaNRvo-5Dvqb0tYetn5lNPrdpwPOMI2DN8Wtb8_j3-6u9nRNBB4_-_w7PYAuHlHp_NDp-DDc5LSy0ZLpt6C3qr-4Joq-FeRrMnMGn6x5ZvwADnkfK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+biomarkers+from+classifier+for+liver+metastasis+of+colorectal+adenocarcinomas+using+machine+learning+models&rft.jtitle=Cancer+medicine+%28Malden%2C+MA%29&rft.au=Shuwen%2C+Han&rft.au=Xi%2C+Yang&rft.au=Qing%2C+Zhou&rft.au=Jing%2C+Zhuang&rft.date=2020-09-01&rft.issn=2045-7634&rft.eissn=2045-7634&rft.volume=9&rft.issue=18&rft.spage=6667&rft.epage=6678&rft_id=info:doi/10.1002%2Fcam4.3289&rft.externalDBID=10.1002%252Fcam4.3289&rft.externalDocID=CAM43289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7634&client=summon