Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models
Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However,...
Saved in:
Published in | Cancer medicine (Malden, MA) Vol. 9; no. 18; pp. 6667 - 6678 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.09.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model.
Methods
The differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted.
Results
The optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione.
Conclusion
The CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis.
APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic drug of CAD cells through functioning its role at sites of F2 and F9. CatBoost model constructed by 33 feature genes showed the optimal classification performance for identifying CAD liver metastasis. |
---|---|
AbstractList | APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic drug of CAD cells through functioning its role at sites of F2 and F9. CatBoost model constructed by 33 feature genes showed the optimal classification performance for identifying CAD liver metastasis. Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model. Methods The differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted. Results The optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione. Conclusion The CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis. APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic drug of CAD cells through functioning its role at sites of F2 and F9. CatBoost model constructed by 33 feature genes showed the optimal classification performance for identifying CAD liver metastasis. BackgroundEarly diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model.MethodsThe differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted.ResultsThe optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione.ConclusionThe CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis. Abstract Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However, it is little reported for CAD. This study therefore aimed to screen an optimal classier model of CAD with liver metastasis and explore the metastatic mechanisms of genes when applying this classier model. Methods The differentially expressed genes between primary CAD samples and CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) dataset GSE131418. The classification performances of six selected algorithms, namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with liver metastasis samples were compared using the MCC dataset GSE131418 by detecting their classification test accuracy. In addition, the consortium datasets of GSE131418 and GSE81558 were used as internal and external validation sets to screen the optimal method. Subsequently, functional analyses and a drug‐targeted network construction of the feature genes when applying the optimal method were conducted. Results The optimal CatBoost model with the highest accuracy of 99%, and an area under the curve of 1, was screened, which consisted of 33 feature genes. A functional analysis showed that the feature genes were closely associated with a “steroid metabolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). In addition, the feature genes were significantly enriched in the “complement and coagulation cascade” pathways (eg FGA, F2, and F9). In a drug‐target interaction network, F2 and F9 were predicted as targets of menadione. Conclusion The CatBoost model constructed using 33 feature genes showed the optimal classification performance for identifying CAD with liver metastasis. |
Author | Xi, Yang Jing, Zhuang Shuwen, Han Qing, Zhou Wei, Wu |
AuthorAffiliation | 5 Department of Gastroenterology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China 4 Graduate School of Nursing Huzhou university Huzhou China 2 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China 3 Department of Nursing Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China 1 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China |
AuthorAffiliation_xml | – name: 4 Graduate School of Nursing Huzhou university Huzhou China – name: 1 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China – name: 2 Department of Oncology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China – name: 3 Department of Nursing Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China – name: 5 Department of Gastroenterology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China |
Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0001-6180-9565 surname: Shuwen fullname: Shuwen, Han organization: Affiliated Central Hospital Huzhou University – sequence: 2 givenname: Yang orcidid: 0000-0003-2382-0282 surname: Xi fullname: Xi, Yang organization: Affiliated Central Hospital Huzhou University – sequence: 3 givenname: Zhou surname: Qing fullname: Qing, Zhou organization: Affiliated Central Hospital Huzhou University – sequence: 4 givenname: Zhuang surname: Jing fullname: Jing, Zhuang organization: Huzhou university – sequence: 5 givenname: Wu orcidid: 0000-0002-4894-7178 surname: Wei fullname: Wei, Wu email: hchwuwei2018@126.com organization: Affiliated Central Hospital Huzhou University |
BookMark | eNp1kV9rHCEUxSWk0DTNQ7-B0Kc-bOKo4zgvhbD0TyClfUiexdHrxo2jqc5uyLevs7uBpLQieLme8-Me7jt0HFMEhD405LwhhF4YPfJzRmV_hE4o4e2iE4wfv6jforNS1qSejlDRNSdo-yuD9WbycYUHn0ad7yEX7HIasQm6FO88ZOxSxsFvazXCpEu9vuDksEkhZTCTDlhbiMnobHysmII3ZWaO2tz5CDiAznHXSBZCeY_eOB0KnB3eU3T79cvN8vvi-ue3q-Xl9cLwlvULoENjJe97ZwfnaE3WOsdawZwkxPaWCqm5AykJVEVPWuhE11FBWcutYwM7RVd7rk16rR6yrwGfVNJe7Ropr5TOkzcBFBAYnBQwGHCccto30hKphXZSMjGwyvq8Zz1shhGsgThlHV5BX_9Ef6dWaau6lhLadhXw8QDI6fcGyqTWaZNjza8o54I3TPR9VV3sVSanUjI4ZfykJ59mqA-qIWpetpqXreZlV8envxzPM_1Le6A_-gBP_xeq5eUPvnP8AcsZvr8 |
CitedBy_id | crossref_primary_10_1186_s12866_024_03416_z crossref_primary_10_1155_2023_6403556 crossref_primary_10_1007_s00384_024_04674_z crossref_primary_10_3389_fonc_2022_1078822 crossref_primary_10_1099_jmm_0_001706 crossref_primary_10_3390_su14148520 crossref_primary_10_1021_acs_jcim_3c00766 crossref_primary_10_1007_s11694_024_03032_5 crossref_primary_10_3390_curroncol30100668 crossref_primary_10_1016_j_clineuro_2024_108308 crossref_primary_10_1128_spectrum_01593_22 crossref_primary_10_1007_s12551_021_00849_y crossref_primary_10_3390_pr9081466 crossref_primary_10_1371_journal_pone_0262895 crossref_primary_10_1016_j_cscm_2024_e03864 crossref_primary_10_1016_j_aca_2022_339571 |
Cites_doi | 10.18632/oncotarget.16064 10.1093/bioinformatics/btm254 10.1007/s10620-010-1138-0 10.1111/his.13975 10.1186/s13550-017-0260-9 10.1016/j.atherosclerosis.2019.10.022 10.1089/omi.2011.0118 10.1093/nar/gky1131 10.1016/j.compbiomed.2018.06.030 10.2147/CMAR.S191352 10.21037/atm.2016.02.15 10.1021/la802663g 10.3389/fmed.2018.00281 10.1093/nar/gkx1143 10.1016/j.thromres.2017.12.020 10.1016/j.cegh.2018.10.003 10.1074/jbc.271.27.16227 10.1093/nar/gky1055 10.3945/ajcn.115.124321 10.1016/j.imu.2019.100228 10.1016/j.medici.2016.03.002 10.1007/978-3-030-36664-3_10 10.1016/j.oraloncology.2019.03.011 10.18632/oncotarget.12140 10.1056/NEJMp1606181 10.1016/j.patrec.2005.10.010 10.1016/j.jhydrol.2019.04.085 10.1186/1471-2105-14-170 10.1016/j.hpb.2019.10.426 10.1186/s12943-017-0646-3 10.1194/jlr.M077925 10.1177/172460080802300106 10.1158/0008-5472.CAN-18-3945 10.1371/journal.pone.0020454 10.1063/1.4990503 10.1186/s40880-019-0368-6 10.1046/j.1365-2796.2003.01281.x 10.1038/s41598-017-05415-9 10.1093/nar/gkw1092 10.1093/carcin/bgr321 10.1007/978-1-60761-987-1_18 10.1002/prca.201900017 10.21873/anticanres.13814 10.1093/bioinformatics/btg405 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 5PM DOA |
DOI | 10.1002/cam4.3289 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | SHUWEN et al |
EISSN | 2045-7634 |
EndPage | 6678 |
ExternalDocumentID | oai_doaj_org_article_e0ebf86ebcef4242918d08a6af8836b3 PMC7520257 10_1002_cam4_3289 CAM43289 |
Genre | article |
GroupedDBID | 0R~ 1OC 24P 31~ 53G 5VS 7X7 8-0 8-1 8FE 8FH 8FI 8FJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU D-8 D-9 DIK EBS EJD FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE HZ~ IAO IHR ITC KQ8 LK8 M48 M7P M~E O9- OK1 OVD PIMPY PQQKQ PROAC RPM TEORI TUS UKHRP WIN AAYXX CITATION PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 5PM PUEGO |
ID | FETCH-LOGICAL-c4539-e2b1d8499fdbff22895ff3563f800d9d268a4fe880efdb905e7677262354df3b3 |
IEDL.DBID | M48 |
ISSN | 2045-7634 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 14:11:46 EDT 2025 Wed Aug 13 07:31:36 EDT 2025 Tue Jul 01 02:16:06 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:34:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4539-e2b1d8499fdbff22895ff3563f800d9d268a4fe880efdb905e7677262354df3b3 |
Notes | Funding information This work was supported by the Major Science and Technology Projects for Medical and Health Care of Zhejiang Province (No. WKJ‐ZJ‐2013), Huzhou Key Research and Development Projects (No. 2020ZDT2015). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6180-9565 0000-0002-4894-7178 0000-0003-2382-0282 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/cam4.3289 |
PQID | 2446413699 |
PQPubID | 2032540 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0ebf86ebcef4242918d08a6af8836b3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7520257 proquest_journals_2446413699 crossref_citationtrail_10_1002_cam4_3289 crossref_primary_10_1002_cam4_3289 wiley_primary_10_1002_cam4_3289_CAM43289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis – name: Hoboken |
PublicationTitle | Cancer medicine (Malden, MA) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018; 164 2019; 7 2010; 55 2017; 7 2018; 100 2009; 25 2017; 8 2004; 20 2009; 41 2019; 92 2019; 11 2019; 79 2019; 13 2017; 45 2019; 39 2016; 52 2011; 12 2008; 55 2012; 16 2020; 76 2016; 103 2011; 6 2012; 33 2018; 46 2015; 24 2016; 4 2004; 255 2016; 7 2018; 2018 2013; 14 2018; 5 2017; 58 2019; 21 2017; 16 2006; 27 2019; 47 2019 1996; 271 2016; 375 2008; 23 2016 2019; 292 2017; 147 2007; 23 2019; 574 Bohorquez M (e_1_2_11_3_1) 2016 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 Montazeri M (e_1_2_11_13_1) 2015; 24 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 Tang J (e_1_2_11_50_1) 2009; 41 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 Prokhorenkova L (e_1_2_11_19_1) 2018; 2018 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_49_1 Pedregosa F (e_1_2_11_22_1) 2011; 12 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Wang X (e_1_2_11_54_1) 2008; 55 |
References_xml | – volume: 103 start-page: 1397 issue: 6 year: 2016 end-page: 1407 article-title: Lipid biomarkers and long‐term risk of cancer in the Women’s Health Study publication-title: Am J Clini Nutri – volume: 16 start-page: 284 issue: 5 year: 2012 end-page: 287 article-title: ClusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS – volume: 52 start-page: 89 issue: 2 year: 2016 end-page: 98 article-title: Hypertension, serum lipids and cancer risk: a review of epidemiological evidence publication-title: Medicina – volume: 55 start-page: 3171 issue: 11 year: 2010 end-page: 3180 article-title: Genes regulated by Nkx2‐3 in sporadic and inflammatory bowel disease‐associated colorectal cancer cell lines publication-title: Dig Dis Sci – volume: 14 start-page: 170 issue: 1 year: 2013 article-title: Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods publication-title: BMC Bioinform – volume: 20 start-page: 307 issue: 3 year: 2004 end-page: 315 article-title: Affy—analysis of Affymetrix GeneChip data at the probe level publication-title: Bioinformatics – volume: 27 start-page: 861 issue: 8 year: 2006 end-page: 874 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett – volume: 5 start-page: 281 year: 2018 article-title: Structure of coagulation factor II: molecular mechanism of thrombin generation and development of next‐generation anticoagulants publication-title: Front Med – volume: 255 start-page: 273 issue: 2 year: 2004 end-page: 279 article-title: Early alterations in the postprandial VLDL1 apoB‐100 and apoB‐48 metabolism in men with strong heredity for type 2 diabetes publication-title: J Intern Med – volume: 55 start-page: 2039 issue: 88 year: 2008 end-page: 2044 article-title: Screening of new tumor suppressor genes in sporadic colorectal cancer patients publication-title: Hepatogastroenterology – volume: 6 start-page: 2 issue: 5 year: 2011 end-page: 3 article-title: NKX2‐3 transcriptional regulation of endothelin‐1 and VEGF signaling in human intestinal microvascular endothelial cells publication-title: PLoS One – volume: 375 start-page: 1216 issue: 13 year: 2016 article-title: Predicting the future—big data, machine learning, and clinical medicine publication-title: N Engl J Med – volume: 47 start-page: D330 issue: D1 year: 2019 end-page: D338 article-title: The gene ontology resource: 20 years and still GOing strong publication-title: Nucleic Acids Res – volume: 25 start-page: 2322 issue: 4 year: 2009 end-page: 2330 article-title: Interfacial properties of a complex multi‐domain 490 amino acid peptide derived from apolipoprotein B (residues 292–782) publication-title: Langmuir – volume: 39 start-page: 22 issue: 1 year: 2019 article-title: Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? publication-title: Cancer Commun – volume: 46 start-page: D1068 issue: D1 year: 2018 end-page: D1073 article-title: DGIdb 3.0: a redesign and expansion of the drug–gene interaction database publication-title: Nucleic Acids Res – volume: 13 issue: 6 year: 2019 article-title: Co‐expression network analysis identified key proteins in association with hepatic metastatic colorectal cancer publication-title: Proteomi Clini Appli – volume: 33 start-page: 678 issue: 3 year: 2012 end-page: 686 article-title: The tumor‐suppressor gene Nkx2. 8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway publication-title: Carcinogenesis – volume: 23 start-page: 1846 issue: 14 year: 2007 end-page: 1847 article-title: GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor publication-title: Bioinformatics – volume: 7 start-page: 11 issue: 1 year: 2017 article-title: Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non‐small cell lung cancer from 18 F‐FDG PET/CT images publication-title: EJNMMI research – volume: 16 start-page: 76 issue: 1 year: 2017 article-title: Emerging roles of lipid metabolism in cancer metastasis publication-title: Mol Cancer – volume: 79 start-page: 4227 issue: 16 year: 2019 end-page: 4241 article-title: Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes publication-title: Can Res – volume: 164 start-page: S29 year: 2018 end-page: S33 article-title: Mechanisms coupling thrombin to metastasis and tumorigenesis publication-title: Thromb Res – volume: 21 start-page: S656 year: 2019 article-title: The current limit for resection rate for colorectal liver metastases publication-title: HPB – year: 2019 – volume: 12 start-page: 2825 issue: Oct year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res – start-page: 100228 year: 2019 article-title: Screening of anxiety and depression among seafarers using machine learning technology publication-title: Inform Med Unlock – volume: 58 start-page: 1869 issue: 9 year: 2017 end-page: 1883 article-title: Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity publication-title: J Lipid Res – volume: 8 start-page: 25500 issue: 15 year: 2017 article-title: Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis publication-title: Oncotarget – volume: 11 start-page: 2881 year: 2019 article-title: Apolipoprotein A1 and B as risk factors for development of intraocular metastasis in patients with breast cancer publication-title: Cancer Manag Res – volume: 271 start-page: 16227 issue: 27 year: 1996 end-page: 16236 article-title: Identification of the phospholipid binding site in the vitamin K‐dependent blood coagulation protein factor IX publication-title: J Biol Chem – volume: 292 start-page: 171 year: 2019 article-title: Intravascular ultrasound‐based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions publication-title: Atherosclerosis – volume: 2018 start-page: 6638 year: 2018 end-page: 6648 article-title: CatBoost: unbiased boosting with categorical features publication-title: Adv Neural Inf Process Syst – volume: 47 start-page: D607 issue: D1 year: 2019 end-page: D613 article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets publication-title: Nucleic Acids Res – volume: 76 start-page: 182 issue: 2 year: 2020 end-page: 188 article-title: Board WCoTE: The 2019 WHO classification of tumours of the digestive system publication-title: Histopathology – volume: 23 start-page: 36 issue: 1 year: 2008 end-page: 41 article-title: Coagulation factor levels in non‐metastatic colorectal cancer patients publication-title: Int J Biol Markers – volume: 41 start-page: 531 issue: 5 year: 2009 end-page: 536 article-title: Ectopic expression and clinical significance of tissue factor/coagulation factor VII complex in colorectal cancer publication-title: Beijing da xue xue bao Yi xue ban= Journal of Peking University Health sciences – volume: 7 start-page: 72908 issue: 45 year: 2016 article-title: Genomic characterization of liver metastases from colorectal cancer patients publication-title: Oncotarget – volume: 39 start-page: 6067 issue: 11 year: 2019 article-title: Prothrombin 3'end gene variants in patients with sporadic colon adenocarcinoma publication-title: Anticancer Res – volume: 574 start-page: 1029 year: 2019 end-page: 1041 article-title: Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions publication-title: J Hydrol – volume: 100 start-page: 92 year: 2018 end-page: 99 article-title: Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma publication-title: Comput Biol Med – start-page: 95(40) year: 2016 article-title: Clinical manifestations of colorectal cancer patients from a large multicenter study in Colombia publication-title: Medicine – volume: 4 start-page: 111 issue: 6 year: 2016 article-title: Model building strategy for logistic regression: purposeful selection publication-title: Ann Trans Med – volume: 7 start-page: 5374 issue: 1 year: 2017 article-title: Decreased serum apolipoprotein A1 levels are associated with poor survival and systemic inflammatory response in colorectal cancer publication-title: Sci Rep – volume: 45 start-page: D353 issue: D1 year: 2017 end-page: D361 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res – volume: 24 start-page: 31 issue: 1 year: 2015 article-title: Machine learning models in breast cancer survival prediction publication-title: Technol Health Care Offici J Euro Soc Eng Med – volume: 7 start-page: 293 issue: 3 year: 2019 end-page: 299 article-title: Prediction of survival and metastasis in breast cancer patients using machine learning classifiers publication-title: Clini Epidemiol Global Health – volume: 92 start-page: 20 year: 2019 end-page: 25 article-title: Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma publication-title: Oral Oncol – volume: 147 issue: 2 year: 2017 article-title: Representations in neural network based empirical potentials publication-title: J Chem Phys – ident: e_1_2_11_8_1 doi: 10.18632/oncotarget.16064 – ident: e_1_2_11_20_1 doi: 10.1093/bioinformatics/btm254 – ident: e_1_2_11_55_1 doi: 10.1007/s10620-010-1138-0 – ident: e_1_2_11_4_1 doi: 10.1111/his.13975 – ident: e_1_2_11_16_1 – ident: e_1_2_11_14_1 doi: 10.1186/s13550-017-0260-9 – ident: e_1_2_11_37_1 doi: 10.1016/j.atherosclerosis.2019.10.022 – ident: e_1_2_11_26_1 doi: 10.1089/omi.2011.0118 – ident: e_1_2_11_27_1 doi: 10.1093/nar/gky1131 – ident: e_1_2_11_34_1 doi: 10.1016/j.compbiomed.2018.06.030 – ident: e_1_2_11_39_1 doi: 10.2147/CMAR.S191352 – ident: e_1_2_11_15_1 doi: 10.21037/atm.2016.02.15 – ident: e_1_2_11_40_1 doi: 10.1021/la802663g – ident: e_1_2_11_46_1 doi: 10.3389/fmed.2018.00281 – ident: e_1_2_11_29_1 doi: 10.1093/nar/gkx1143 – volume: 24 start-page: 31 issue: 1 year: 2015 ident: e_1_2_11_13_1 article-title: Machine learning models in breast cancer survival prediction publication-title: Technol Health Care Offici J Euro Soc Eng Med – ident: e_1_2_11_51_1 doi: 10.1016/j.thromres.2017.12.020 – ident: e_1_2_11_12_1 doi: 10.1016/j.cegh.2018.10.003 – ident: e_1_2_11_47_1 doi: 10.1074/jbc.271.27.16227 – volume: 55 start-page: 2039 issue: 88 year: 2008 ident: e_1_2_11_54_1 article-title: Screening of new tumor suppressor genes in sporadic colorectal cancer patients publication-title: Hepatogastroenterology – ident: e_1_2_11_25_1 doi: 10.1093/nar/gky1055 – ident: e_1_2_11_43_1 doi: 10.3945/ajcn.115.124321 – volume: 2018 start-page: 6638 year: 2018 ident: e_1_2_11_19_1 article-title: CatBoost: unbiased boosting with categorical features publication-title: Adv Neural Inf Process Syst – ident: e_1_2_11_36_1 doi: 10.1016/j.imu.2019.100228 – ident: e_1_2_11_38_1 doi: 10.1016/j.medici.2016.03.002 – ident: e_1_2_11_10_1 doi: 10.1007/978-3-030-36664-3_10 – ident: e_1_2_11_11_1 doi: 10.1016/j.oraloncology.2019.03.011 – ident: e_1_2_11_17_1 – ident: e_1_2_11_7_1 doi: 10.18632/oncotarget.12140 – ident: e_1_2_11_9_1 doi: 10.1056/NEJMp1606181 – ident: e_1_2_11_30_1 – ident: e_1_2_11_32_1 doi: 10.1016/j.patrec.2005.10.010 – ident: e_1_2_11_35_1 doi: 10.1016/j.jhydrol.2019.04.085 – ident: e_1_2_11_33_1 doi: 10.1186/1471-2105-14-170 – ident: e_1_2_11_6_1 doi: 10.1016/j.hpb.2019.10.426 – volume: 41 start-page: 531 issue: 5 year: 2009 ident: e_1_2_11_50_1 article-title: Ectopic expression and clinical significance of tissue factor/coagulation factor VII complex in colorectal cancer publication-title: Beijing da xue xue bao Yi xue ban= Journal of Peking University Health sciences – ident: e_1_2_11_45_1 doi: 10.1186/s12943-017-0646-3 – ident: e_1_2_11_42_1 doi: 10.1194/jlr.M077925 – ident: e_1_2_11_48_1 doi: 10.1177/172460080802300106 – ident: e_1_2_11_5_1 doi: 10.1158/0008-5472.CAN-18-3945 – ident: e_1_2_11_53_1 doi: 10.1371/journal.pone.0020454 – ident: e_1_2_11_18_1 doi: 10.1063/1.4990503 – ident: e_1_2_11_23_1 – ident: e_1_2_11_2_1 doi: 10.1186/s40880-019-0368-6 – ident: e_1_2_11_41_1 doi: 10.1046/j.1365-2796.2003.01281.x – ident: e_1_2_11_44_1 doi: 10.1038/s41598-017-05415-9 – ident: e_1_2_11_24_1 doi: 10.1093/nar/gkw1092 – ident: e_1_2_11_31_1 – ident: e_1_2_11_56_1 doi: 10.1093/carcin/bgr321 – ident: e_1_2_11_28_1 doi: 10.1007/978-1-60761-987-1_18 – ident: e_1_2_11_52_1 doi: 10.1002/prca.201900017 – ident: e_1_2_11_49_1 doi: 10.21873/anticanres.13814 – ident: e_1_2_11_21_1 doi: 10.1093/bioinformatics/btg405 – start-page: 95(40) year: 2016 ident: e_1_2_11_3_1 article-title: Clinical manifestations of colorectal cancer patients from a large multicenter study in Colombia publication-title: Medicine – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_11_22_1 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res |
SSID | ssj0000702671 |
Score | 2.6008782 |
Snippet | Background
Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined... BackgroundEarly diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined... APOB, APOC3, FGA, F2, F9, and NKX2‐3 were potential biomarkers for classification of CAD with liver metastasis. Menadione might be a promising anti‐metastatic... Abstract Background Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the... |
SourceID | doaj pubmedcentral proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6667 |
SubjectTerms | Adenocarcinoma Biomarkers CatBoost algorithm Classification Clinical Cancer Research colorectal adenocarcinomas Colorectal cancer Datasets feature genes Learning algorithms Liver liver metastasis machine learning approaches Menadione Metastases Ontology Original Research Therapeutic targets |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iQbyIP3E6JYgHL3VtmqbtUcUxBMWDgreQNC862Kas07_f99JONlG8eCtdtrR5r-_7wr5-j7HTxCPKxJmLTClVJEtHdVBBZLASuip1kJigtrhTg0d585Q9LbT6Ik1YYw_cLFwPYrC-UGAr8BLxpEwKFxdGGV8UqbLB5xMxb2EzFWpwTp2VkrmVUCx6lRnL81RQO_cFAAo-_Uvk8rs0cpGyBszpb7KNlizyi-Yit9gKTLbZ2m37d_gO-7if0jEplzm9R09Sm2nN6ZURXhEtHnpEPY68lI9If8HHMDNIB-thzV89J8NqKng4hcHyg6g2xd8lwRAnOfwzHwelJfC2tQSeoL459S577F8_XA2itpFCVMksLSMQNnEF7m28s94LXITM-zRTqUe66EonVGGkB3yUAUeUcQa5QtaNzCiTzqc23WOrk9cJ7DOeWMT7xIG3lZDk_eZtbspKCgcSvyk67Gy-urpqXcap2cVIN_7IQlMgNAWiw06-hr411ho_DbqkEH0NIDfscAJzRLc5ov_KkQ7rzgOs20e01shrFCK4KnGOfCnoS5MtfzIZvgQL7jwTSBZzvNuQHr9fv766uJV0cPAfN3LI1gXt94PGrctWZ9N3OEJSNLPHIf8_AVcMDw4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4imWtshCHLiEJrbjxKeqVFQVUhEHKu3N8mNcVurulmTh9zPj9S7dCrhFjvPyjGe-OF--YexdkzDL1G2snFG6UiZSHNRQOYyEMcgIjctsiy_6_FJ9nrbTsuA2FlrlJibmQB2XgdbIjzANaQy42pjjmx8VVY2ir6ulhMZ99oCky8iru2m3XWNBdxa6azaCQrU4Cm6uPkhBRd1vpaGs1r8DMe8SJG8D15x5zp6wxwUy8pO1jZ-ye7B4xh5elI_iz9mvrwNtE3-Z09_0RLgZRk4_jvBA4HiWMPdxRKf8mlgYfA4rh6BwnI18mTjJVlPYw0s4DEKY2wY8L9GGOJHir_g88y2BlwIT2EDVc8YX7PLs07fT86qUU6iCaqWpQPgm9viGk6JPSeAgtCnJVsuEoDGaKHTvVAKc0IA9TN1CpxF7Iz5qVUzSy5dsb7FcwCvGG49Zv4mQfBCKFOCS75wJSkRQeKSYsPeb0bWhaI1TyYtru1ZJFpYMYckQE_Z22_VmLbDxt04fyUTbDqSJnRuWw5UtU8xCDT71GnyApBB5mKaPde-0S30vtZcTdrAxsC0TdbR_3GrCuh2j71xsd89i9j0LcXetQMjY4dNm9_j3_dvTkwtFG6__fw_77JGg9_nMYTtge6vhJxwi6Fn5N9mzfwMGlwW0 priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoSFUvCGirLl-yUA-9BBLbcRJxAgRCSCAOReJm2fGYrsTuomTh9zPjzQZSUam3KJnEScYz85w8PzP2MwtYZdLcJ7ZSOlGVpzyoIbGYCX0tPWQ2si1u9OWdurrP71fY8XIuzEIfov_gRpER8zUFuHXt0ZtoaG0n6lDieOETW6OptcTnE-q2_8CCfVnoOOAixfUE40gtlYVScdSfPahHUbZ_gDX_Zkq-R7CxBF1ssPUOO_KThbM32QpMt9jn6-7v-Ff2ctvQNhGZOU2rJ-ZN03KaQcJrQsnjgEWQI0zlj0TH4BOYW0SH7bjls8BJv5ryHzZhMRthkWvwusQf4sSOf-CTSLwE3q00gTtoGZ32G7u7OP99dpl06yoktcpllYBwmS9xqBO8C0HgS8hDkLmWAdGjr7zQpVUBMLIBLao0h0IjCEeglCsfpJPf2ep0NoUfjGcOy3_mIbhaKJKCC66wVa2EB4VnihH7tXy7pu5Ex2nti0ezkEsWhhxhyBEjdtCbPi2UNj4yOiUX9QYkjh13zJoH08WagRRcKDW4GoJCCFJlpU9Lq20oS6mdHLHdpYNNF7GtQZijsaDrCtsoBk4fNDY8Mh3_iYrcRS4QOxb4tLF7_Pv-zdnJtaKN7f833WFfBA3yI7Ftl63Om2fYQyQ0d_uxx78CUbsHeA priority: 102 providerName: Wiley-Blackwell |
Title | Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcam4.3289 https://www.proquest.com/docview/2446413699 https://pubmed.ncbi.nlm.nih.gov/PMC7520257 https://doaj.org/article/e0ebf86ebcef4242918d08a6af8836b3 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5QOmlpC-6bbqI0kMvTteSLNmHEpKQNBQ2LKULexOSJaUL-2jtbUn-fWe0cohLCr0YY48tW-OZ-cYef0PI-zxAlBkVLjOVkJmoHPpB6TMDntDV3PncxGqLK3k5FV9mxWyHdD020wS2D6Z22E9q2iyObn7eHoPBf0oEoh9rsxRHHDKHXbIPAUlhI4NxQvnRIStss4SpF3KvZ2BRouMYun90LzJFAv8e6vy7ZvI-lo3B6OKAPEkokp5s1f6U7PjVM_JonL6TPye_Jw2uY0kzxR_ssQanaSn-S0JrxMvzAOGQAmClCyzMoEu_MYAT23lL14EikzV6QhjCgF-CcNfAebGSiGKd_DVdxhJMT1PPCdiADXXaF2R6cf7t7DJLHRayWhS8yjyzuSsh6QnOhsBgEooQeCF5ABzpKsdkaUTwYOMeJKpR4ZUEOA6QqRAucMtfkr3VeuVfEZpbAAK588HWTCApXLDKVLVgzgs4kg3Ih252dZ3ox7ELxkJviZOZRkVoVMSAvLsT_bHl3HhI6BRVdCeANNlxw7q51snqtB95G0rpbe2DADBS5aUblUaaUJZcWj4gh52CdffoaQA8EkK7rGAM1VN6b7D-ntX8e-TmVgUDFKngbuPj8e_r12cnY4Err_9f9A15zDDdjyVuh2Rv0_zybwETbeyQ7DIxgaWaqSHZPz2_mnwdxvcLsPw8y4fRIv4Ax-IRaQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxFMsFLAQSFxCE8dx4gNCpVBtabfi0Ep7M3Zsl5W6uyVZQPwpfiMz3mTpIuDWW-RMXp7xzGfn8wzA8yxglEkLlxglZCKUIz8ofWLQE7o6dz4zkW1xJIcn4sO4GG_Az34vDNEqe58YHbWb17RGvo1hSKLDlUq9Of-SUNUo-rval9BYmsWB__Edp2zt6_13qN8XnO-9P94dJl1VgaQWRa4Sz23mKgT6wdkQOE44ihDyQuYBsZNTjsvKiODRrj1KqLTwpUQIijChEC7kNsf7XoGrGHhTmuyV43K1poPDh8sy6xMYpXy7NlPxKudURP5C2IvVAdYg7Z-EzItAOUa6vVtws4OobGdpU7dhw8_uwLVR9xP-Lnz72NAx8aUZ7d4ngk_TMtqowmoC45OAsZYhGmZnxPpgU78wCELbScvmgVGabHKz-AiDTg9jaYP3JZoSIxL-KZtGfqdnXUELbKBqPe09OLmUjr4Pm7P5zD8AlllEGZnzwdZcUMa5YEujasGdF3glH8DLvnd13eU2pxIbZ3qZlZlrUoQmRQzg2Ur0fJnQ429Cb0lFKwHKwR0b5s2p7oa09qm3oZLe1j4IRDoqq1xaGWlCVeXS5gPY6hWsO8fQ6t9mPIByTelrD1s_M5t8jom_y4IjRC3xa6N5_Pv99e7OSNDBw_-_w1O4PjweHerD_aODR3CD01pC5M9tweai-eofI-Ba2CfRyhl8uuxh9QvYSEIv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXyKwgALgcRLaOI4TvKA0L6qjbGqQkzam7Fje1Ra25EUEP8afx13qVNWBLztLXIuX77z3c_Oz3cALxKPUSbObKRLISNRWvKD0kUaPaGtUusS3bItRvLwVLw7y8424Ge3F4ZolZ1PbB21nVe0Rj7AMCTR4cqyHPhAixjvD99efomoghT9ae3KaSxN5Nj9-I7Tt-bN0T7q-iXnw4OPe4dRqDAQVSJLy8hxk9gCQb-3xnuOk4_M-zSTqUccZUvLZaGFd2jjDiXKOHO5RDiKkCET1qcmxfvegM2cZkU92Nw9GI0_rFZ4cDBxmSddOqOYDyo9Fa9TTiXlrwTBtlbAGsD9k555FTa3cW94G24FwMp2lhZ2Bzbc7C5snYRf8vfg27imY2JPM9rLT3SfumG0bYVVBM0nHiMvQ2zMLogDwqZuoRGSNpOGzT2jpNnkdPERGl0gRtYa70ukJUaU_HM2bdmejoXyFthAtXua-3B6LV39AHqz-cw9BJYYxByJdd5UXFD-OW9yXVaCWyfwSt6HV13vqipkOqeCGxdqmaOZK1KEIkX04flK9HKZ3uNvQrukopUAZeRuG-b1uQoDXLnYGV9IZyrnBeKeMilsXGipfVGk0qR92O4UrIKbaNRvo-5Dvqb0tYetn5lNPrdpwPOMI2DN8Wtb8_j3-6u9nRNBB4_-_w7PYAuHlHp_NDp-DDc5LSy0ZLpt6C3qr-4Joq-FeRrMnMGn6x5ZvwADnkfK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+biomarkers+from+classifier+for+liver+metastasis+of+colorectal+adenocarcinomas+using+machine+learning+models&rft.jtitle=Cancer+medicine+%28Malden%2C+MA%29&rft.au=Shuwen%2C+Han&rft.au=Xi%2C+Yang&rft.au=Qing%2C+Zhou&rft.au=Jing%2C+Zhuang&rft.date=2020-09-01&rft.issn=2045-7634&rft.eissn=2045-7634&rft.volume=9&rft.issue=18&rft.spage=6667&rft.epage=6678&rft_id=info:doi/10.1002%2Fcam4.3289&rft.externalDBID=10.1002%252Fcam4.3289&rft.externalDocID=CAM43289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7634&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7634&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7634&client=summon |