Study of biological communities subject to imperfect detection: bias and precision of community N-mixture abundance models in small-sample situations
Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy model...
Saved in:
Published in | Ecological research Vol. 31; no. 3; pp. 289 - 305 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Springer Japan
01.05.2016
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0912-3814 1440-1703 |
DOI | 10.1007/s11284-016-1340-4 |
Cover
Loading…
Abstract | Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance [Formula: see text]: 0.1, 0.5, 1, 5), detection probability [Formula: see text]: 0.1, 0.2, 0.5), and number of sampling sites (n ₛᵢₜₑ : 10, 20, 40) and visits (n ᵥᵢₛᵢₜ : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables [Formula: see text], [Formula: see text], n ₛᵢₜₑ , n ᵥᵢₛᵢₜ) increased. Detection probability [Formula: see text] was most important for the estimates of mean abundance, while [Formula: see text] was most influential for covariate effect and species richness estimates. For all parameters, increasing n ₛᵢₜₑ was more beneficial than increasing n ᵥᵢₛᵢₜ . Minimal conditions for obtaining adequate performance of community abundance models were n ₛᵢₜₑ ≥ 20, [Formula: see text] ≥ 0.2, and [Formula: see text] ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance ...: 0.1, 0.5, 1, 5), detection probability ...: 0.1, 0.2, 0.5), and number of sampling sites (n site : 10, 20, 40) and visits (n visit : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables ..., ..., n site , n visit ) increased. Detection probability ... was most important for the estimates of mean abundance, while ... was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site greater than or equal to 20, ... greater than or equal to 0.2, and ... greater than or equal to 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate beta diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance [Formula: see text]: 0.1, 0.5, 1, 5), detection probability [Formula: see text]: 0.1, 0.2, 0.5), and number of sampling sites (n ₛᵢₜₑ : 10, 20, 40) and visits (n ᵥᵢₛᵢₜ : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables [Formula: see text], [Formula: see text], n ₛᵢₜₑ , n ᵥᵢₛᵢₜ) increased. Detection probability [Formula: see text] was most important for the estimates of mean abundance, while [Formula: see text] was most influential for covariate effect and species richness estimates. For all parameters, increasing n ₛᵢₜₑ was more beneficial than increasing n ᵥᵢₛᵢₜ . Minimal conditions for obtaining adequate performance of community abundance models were n ₛᵢₜₑ ≥ 20, [Formula: see text] ≥ 0.2, and [Formula: see text] ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance [Formula: see text]: 0.1, 0.5, 1, 5), detection probability [Formula: see text]: 0.1, 0.2, 0.5), and number of sampling sites (n ₛᵢₜₑ : 10, 20, 40) and visits (n ᵥᵢₛᵢₜ : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables [Formula: see text], [Formula: see text], n ₛᵢₜₑ , n ᵥᵢₛᵢₜ) increased. Detection probability [Formula: see text] was most important for the estimates of mean abundance, while [Formula: see text] was most influential for covariate effect and species richness estimates. For all parameters, increasing n ₛᵢₜₑ was more beneficial than increasing n ᵥᵢₛᵢₜ . Minimal conditions for obtaining adequate performance of community abundance models were n ₛᵢₜₑ ≥ 20, [Formula: see text] ≥ 0.2, and [Formula: see text] ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. Community N -mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance ( λ ¯ : 0.1, 0.5, 1, 5), detection probability ( p ¯ : 0.1, 0.2, 0.5), and number of sampling sites ( n site : 10, 20, 40) and visits ( n visit : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables ( λ ¯ , p ¯ , n site , n visit ) increased. Detection probability p ¯ was most important for the estimates of mean abundance, while λ ¯ was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site ≥ 20, p ¯ ≥ 0.2, and λ ¯ ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N -mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance ...: 0.1, 0.5, 1, 5), detection probability ...: 0.1, 0.2, 0.5), and number of sampling sites (n ^sub site^: 10, 20, 40) and visits (n ^sub visit^: 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables ..., ..., n ^sub site^, n ^sub visit^) increased. Detection probability ... was most important for the estimates of mean abundance, while ... was most influential for covariate effect and species richness estimates. For all parameters, increasing n ^sub site^ was more beneficial than increasing n ^sub visit^. Minimal conditions for obtaining adequate performance of community abundance models were n ^sub site^ [greater than or equal to] 20, ... [greater than or equal to] 0.2, and ... [greater than or equal to] 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate [beta] diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. Community N‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance (λ¯: 0.1, 0.5, 1, 5), detection probability (p¯: 0.1, 0.2, 0.5), and number of sampling sites (nsite: 10, 20, 40) and visits (nvisit: 2, 3, 4) on the bias and precision of species‐level parameters (mean abundance and covariate effect) and a community‐level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables (λ¯, p¯, nsite, nvisit) increased. Detection probability p¯ was most important for the estimates of mean abundance, while λ¯ was most influential for covariate effect and species richness estimates. For all parameters, increasing nsite was more beneficial than increasing nvisit. Minimal conditions for obtaining adequate performance of community abundance models were nsite ≥ 20, p¯ ≥ 0.2, and λ¯ ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N‐mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. Community N ‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance : 0.1, 0.5, 1, 5), detection probability : 0.1, 0.2, 0.5), and number of sampling sites ( n site : 10, 20, 40) and visits ( n visit : 2, 3, 4) on the bias and precision of species‐level parameters (mean abundance and covariate effect) and a community‐level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables , , n site , n visit ) increased. Detection probability was most important for the estimates of mean abundance, while was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site ≥ 20, ≥ 0.2, and ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N ‐mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available. |
Author | Yamaura, Yuichi Andrew Royle, J. Kéry, Marc |
Author_xml | – sequence: 1 fullname: Yamaura, Yuichi – sequence: 2 fullname: Kéry, Marc – sequence: 3 fullname: Andrew Royle, J |
BookMark | eNqFksGO1SAYhRszJt4ZfQBXkrhxU-UvUMCdmVwdk4kmjrMmlNIbbihUaKP3QXxf6VQTM4uZ1Q_kfIccDufVWYjBVtVLwG8BY_4uAzSC1hjaGgjFNX1S7YCWBXBMzqodltDURAB9Vp3nfMQYGsnxrvp9My_9CcUBdS76eHBGe2TiOC7Bzc5mlJfuaM2M5ojcONk0rJvezmW4GN4XTGekQ4-mZI3L5Ww1--dwQl_q0f2al2SR7pbQ62AsGmNvfUYuoDxq7-usx8lblN286NU1P6-eDtpn--LvvKhuP-6_X17V118_fb78cF0byoiszYCltD1tsdRSMtb2BIRglBDRSAac9S3hhHSyH7oOQFAmWD8wSanupGGEXFRvNt8pxR-LzbMaXTbWex1sXLICgQk0GIrLo1IuuOSiEaxIX9-THuOSQgmyqhoiQWJRVHxTmRRzTnZQxs138eeknVeA1dqs2ppVpVm1NqtoIeEeOSU36nR6kGk35qfz9vQ4oPbf9rgRsoDNBubChINN_4V54LZXGzToqPQhuaxub8o7tuu_49By8gezBtGO |
CitedBy_id | crossref_primary_10_3161_15081109ACC2018_20_2_016 crossref_primary_10_1016_j_foreco_2020_118131 crossref_primary_10_1002_ecy_2759 crossref_primary_10_1016_j_gecco_2022_e02296 crossref_primary_10_1111_ecog_05379 crossref_primary_10_1111_ecog_05577 crossref_primary_10_1111_2041_210X_13875 crossref_primary_10_1007_s13253_017_0316_3 crossref_primary_10_1002_ecs2_4954 crossref_primary_10_1111_icad_12661 crossref_primary_10_1016_j_agee_2018_06_014 crossref_primary_10_1016_j_foreco_2016_10_008 crossref_primary_10_1002_eap_1650 crossref_primary_10_1016_j_jfca_2021_104343 crossref_primary_10_1007_s10531_021_02178_8 crossref_primary_10_1002_eap_2249 crossref_primary_10_1002_eap_1632 crossref_primary_10_3390_computers13100255 crossref_primary_10_1002_ecs2_1902 crossref_primary_10_1002_eap_2802 crossref_primary_10_1111_acv_13015 crossref_primary_10_1002_ece3_2244 crossref_primary_10_1002_jwmg_21266 crossref_primary_10_1002_ece3_4821 crossref_primary_10_1016_j_soilbio_2020_108042 crossref_primary_10_1111_1440_1703_12222 crossref_primary_10_1111_2041_210X_12856 crossref_primary_10_47603_mano_v10n1_389 crossref_primary_10_1002_ecy_2362 crossref_primary_10_1016_j_agee_2021_107539 crossref_primary_10_1108_MRR_09_2020_0598 crossref_primary_10_1016_j_gecco_2022_e02046 crossref_primary_10_1016_j_gecco_2023_e02420 crossref_primary_10_1002_ecs2_2101 crossref_primary_10_1002_ecs2_2028 crossref_primary_10_1007_s10531_018_1510_5 crossref_primary_10_7717_peerj_12906 crossref_primary_10_1098_rspb_2022_0338 crossref_primary_10_1016_j_baae_2017_09_002 |
Cites_doi | 10.1086/378901 10.1111/1365-2664.12272 10.1007/978-1-4471-3708-5 10.1111/j.2041-210X.2012.00225.x 10.2307/3677009 10.1111/geb.12207 10.1111/j.1600-0706.2013.01073.x 10.1111/jbi.12087 10.1111/j.1365-2664.2007.01441.x 10.1111/j.0030-1299.2005.13534.x 10.1111/2041-210X.12333 10.1890/04-1120 10.1111/j.1365-2656.2005.00940.x 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2 10.1111/j.1365-2664.2010.01922.x 10.1111/cobi.12046 10.1111/j.1365-2745.2006.01151.x 10.1890/07-2147.1 10.2193/2007-294 10.1111/biom.12246 10.1016/j.foreco.2012.08.039 10.1111/j.0006-341X.2004.00142.x 10.1111/1365-2664.12252 10.1002/ece3.976 10.1034/j.1600-0706.2002.960313.x 10.2307/3546022 10.1111/geb.12268 10.1371/journal.pone.0099571 10.1016/S0006-3207(00)00208-1 10.1111/j.1467-9876.2005.00466.x 10.1111/j.1523-1739.2004.00105.x 10.1890/04-1060 10.1890/09-1033.1 10.1111/1365-2664.12399 10.1198/106186007X181425 10.1890/13-0791.1 10.1111/j.1461-0248.2004.00707.x 10.1007/978-0-387-78151-8_28 10.1111/2041-210x.12023 10.1111/j.2041-210X.2010.00017.x 10.2307/2265557 10.1111/j.1365-2664.2005.01098.x 10.1007/978-4-431-99495-4_12 10.1017/S0959270908000294 10.1111/j.1365-2664.2010.01811.x 10.1111/2041-210X.12296 10.1016/j.tree.2013.10.012 10.1111/j.1472-4642.2011.00874.x 10.1198/016214505000000015 10.1111/ddi.12255 10.1890/14-1248.1 10.1371/journal.pone.0052015 10.1046/j.1461-0248.2001.00230.x 10.2326/osj.12.73 10.1111/geb.12138 10.1111/1365-2745.12021 10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2 10.1002/jwmg.499 10.1111/j.1600-0587.2010.06433.x 10.1086/505764 10.1016/j.biocon.2015.07.027 10.1007/s10531-012-0244-z 10.1525/auk.2008.06185 10.1525/auk.2012.11093 10.1111/j.1365-2664.2006.01271.x 10.1034/j.1600-0706.2002.990101.x 10.1111/j.1461-0248.2010.01552.x 10.1890/10-1251.1 10.1111/j.1365-2664.2009.01664.x 10.1371/journal.pone.0094323 10.1093/oso/9780198506492.001.0001 10.1111/j.1365-2699.2010.02345.x 10.1093/oso/9780198507833.001.0001 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 2016 The Ecological Society of Japan The Ecological Society of Japan 2016 |
Copyright_xml | – notice: The Author(s) 2016 – notice: 2016 The Ecological Society of Japan – notice: The Ecological Society of Japan 2016 |
DBID | FBQ C6C 24P AAYXX CITATION 3V. 7QG 7SN 7SS 7ST 7XB 8FD 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H95 HCIFZ L.G LK8 M2O M7P MBDVC P64 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY Q9U RC3 SOI 7U6 7S9 L.6 |
DOI | 10.1007/s11284-016-1340-4 |
DatabaseName | AGRIS Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic Genetics Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Zoology Forestry |
EISSN | 1440-1703 |
EndPage | 305 |
ExternalDocumentID | 4029182501 10_1007_s11284_016_1340_4 ERE0289 US201600127167 |
Genre | miscellaneous Feature |
GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 23780153; 26292074 – fundername: Swiss National Science Foundation grantid: 31_146125 |
GroupedDBID | -4W -56 -5G -BR -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1OB 1OC 1SB 2.D 203 28- 29G 29~ 2J2 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 31~ 33P 3SX 3V. 4.4 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7XC 8-1 8CJ 8FE 8FH 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHHS AAIAL AAJKR AANLZ AANXM AARHV AARTL AASGY AATVU AAWCG AAXRX AAYIU AAYQN AAYTO ABBBX ABBXA ABCUV ABDBF ABHLI ABHUG ABJNI ABJOX ABKTR ABMNI ABMYL ABNWP ABPLI ABQBU ABTEG ABTHY ABTMW ABUWG ACAHQ ACBXY ACCFJ ACCZN ACGFS ACHXU ACKNC ACOKC ACOMO ACPOU ACPRK ACSNA ACXBN ACXQS ADBBV ADDAD ADHHG ADHIR ADIMF ADINQ ADKPE ADKYN ADMGS ADOZA ADRFC ADXAS ADZKW ADZMN ADZOD AEBTG AEEZP AEFIE AEGAL AEGNC AEIGN AEJHL AEKMD AENEX AEOHA AEPYU AEQDE AETLH AEUYR AEXYK AFBBN AFEXP AFFPM AFGCZ AFGKR AFKRA AFLOW AFNRJ AFRAH AFWTZ AFZJQ AFZKB AGAYW AGGDS AGJBK AGJLS AGQMX AGWIL AGWZB AGYKE AHAVH AHBTC AHBYD AHKAY AHSBF AHYZX AIIXL AIURR AIWBW AJBDE AJBLW AJRNO AKMHD ALMA_UNASSIGNED_HOLDINGS ALUQN ALWAN AMKLP AMYDB AMYQR ARMRJ ASPBG ATCPS AVWKF AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BENPR BFHJK BGNMA BHPHI BIYOS BKSAR BPHCQ CAG CCPQU CO8 COF CS3 CSCUP D1J DCZOG DL5 DRFUL DRSTM DU5 DWQXO EAD EAP EAS EBD EBO EBS EDH EJD EMK EN4 EPAXT EPL ESBYG ESX FBQ FEDTE FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GNUQQ GQ6 GQ7 GQ8 GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- ITM IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX KDC KOV KOW KPH LAS LATKE LEEKS LH4 LK8 LW6 LYRES M2O M4Y M7P MA- MEWTI MXFUL MXSTM N2Q NB0 NDZJH NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P2W PATMY PCBAR PF0 PQQKQ PROAC PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAMSI SAP SBL SDH SDM SHX SISQX SNE SNX SOJ SPISZ SSXJD SUPJJ SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A U9L UG4 VC2 W23 W48 WH7 WJK WK6 WK8 WXSBR Y6R YLTOR Z45 ZOVNA ZZTAW ~8M ~KM AAHBH AAHQN AAMNL AAYCA AAYZH ABQSL ACUHS AEUYN AFWVQ AITYG ALVPJ C6C H13 HGLYW ZMTXR 24P AAYXX ABFSG ACSTC ADHKG AEYWJ AEZWR AFHIU AGHNM AGQPQ AGYGG AHWEU AIXLP CITATION PHGZM PHGZT 7QG 7SN 7SS 7ST 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G MBDVC P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c4539-cf099ed4609a99556d318854338295175d63733b9dfbb1184585df5944ab9c533 |
IEDL.DBID | 24P |
ISSN | 0912-3814 |
IngestDate | Thu Jul 10 17:03:59 EDT 2025 Fri Jul 11 16:44:13 EDT 2025 Wed Aug 13 11:16:05 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 04:06:43 EDT 2025 Wed Jan 22 16:22:02 EST 2025 Fri Feb 21 02:40:35 EST 2025 Wed Mar 13 07:57:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Data augmentation Count data β (beta) diversity False negative Species richness |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4539-cf099ed4609a99556d318854338295175d63733b9dfbb1184585df5944ab9c533 |
Notes | http://dx.doi.org/10.1007/s11284-016-1340-4 Yuichi Yamaura is the recipient of the 18th Denzaburo Miyadi Award. The online version of this article (doi:10.1007/s11284‐016‐1340‐4) contains supplementary material, which is available to authorized users. Electronic supplementary material SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs11284-016-1340-4 |
PQID | 1782391908 |
PQPubID | 31033 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1803120137 proquest_miscellaneous_1787978285 proquest_journals_1782391908 crossref_citationtrail_10_1007_s11284_016_1340_4 crossref_primary_10_1007_s11284_016_1340_4 wiley_primary_10_1007_s11284_016_1340_4_ERE0289 springer_journals_10_1007_s11284_016_1340_4 fao_agris_US201600127167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2016 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Ecological research |
PublicationTitleAbbrev | Ecol Res |
PublicationYear | 2016 |
Publisher | Springer Japan Blackwell Publishing Ltd |
Publisher_xml | – name: Springer Japan – name: Blackwell Publishing Ltd |
References | Banks-Leite, Pardini, Boscolo, Cassano, Püttker, Barros, Barlow (CR3) 2014; 51 Chen, Kéry, Plattner, Ma, Gardner (CR15) 2013; 101 Ovaskainen, Soininen (CR65) 2011; 92 Chandler, King, Raudales, Trubey, Chandler, Chávez (CR12) 2013; 27 White, Rassweiler, Samhouri, Stier, White (CR84) 2014; 123 Chao, Chazdon, Colwell, Shen (CR13) 2005; 8 Iknayan, Tingley, Furnas, Beissinger (CR37) 2014; 29 McIntyre, Jones, Lund, Waterstrat, Giovanini, Duke, Hayes, Quinn, Kroll (CR61) 2012; 286 CR39 Wintle, Walshe, Parris, McCarthy (CR86) 2012; 18 Guillera-Arroita, Lahoz-Monfort (CR31) 2012; 3 Kéry, Schaub (CR47) 2012 CR79 Dennis, Morgan, Ridout (CR19) 2015; 71 Beck, Holloway, Schwanghart (CR5) 2013; 4 Dorazio, Royle, Söderström, Glimskär (CR22) 2006; 87 Lahoz-Monfort, Guillera-Arroita, Wintle (CR53) 2014; 23 Kéry (CR42) 2010 Buckland, Anderson, Burnham, Laake, Borchers, Thomas (CR10) 2004 Royle, Nichols, Kéry (CR72) 2005; 110 Guillera-Arroita, Lahoz-Monfort, MacKenzie, Wintle, McCarthy (CR33) 2014; 9 Hunt, Weckerly, Ott (CR36) 2012; 129 Fahrig (CR27) 2001; 100 Link, Sauer (CR56) 1996; 77 Gotelli, Colwell (CR30) 2001; 4 Tyler, Hargrove (CR81) 1997; 79 Dorazio, Kéry, Royle, Plattner (CR23) 2010; 91 Buckland, Marsden, Green (CR11) 2008; 18 Ehrlich, Roughgarden (CR26) 1987 O’Hara (CR63) 2005; 74 Royle, Chandler, Sollmann, Gardner (CR74) 2014 Yamaura, Royle, Shimada, Asanuma, Sato, Taki, Makino (CR89) 2012; 21 Broms, Hooten, Fitzpatrick (CR8) 2015; 6 Crist, Veech, Gering, Summerville (CR17) 2003; 162 Senzaki, Yamaura, Nakamura (CR78) 2015; 191 Legendre (CR54) 2014; 23 Buckland, Anderson, Burnham, Laake, Borchers, Thomas (CR9) 2001 Kéry (CR40) 2004; 18 Dénes, Silveira, Beissinger (CR18) 2015; 6 Chao, Colwell, Lin, Gotelli (CR14) 2009; 90 Johnson (CR38) 2008; 72 Higa, Yamaura, Koizumi, Yabuhara, Senzaki, Ono (CR35) 2015; 21 Kéry, Spillmann, Truong, Holderegger (CR49) 2006; 94 Royle, Dorazio, Link (CR73) 2007; 16 Bibby, Burgess, Hill, Mustoe (CR6) 2000 Dorazio, Gotelli, Ellison, Grillo, Venora (CR24) 2011 Tobler, Hartley, Carrillo-Percastegui, Powell (CR80) 2015; 52 Kéry, Royle, Schmid (CR48) 2005; 15 Rota, Fletcher, Evans, Hutto (CR69) 2011; 34 Kéry, O’Connell, Nichols, Karanth (CR43) 2011 Fletcher (CR28) 2006; 168 Kéry (CR41) 2008; 125 Mc New, Handel (CR60) 2015; 25 Dorazio, Royle (CR21) 2005; 100 King, Morgan, Gimenez, Brooks (CR52) 2010 Pacifici, Zipkin, Collazo, Irizarry, DeWan (CR66) 2014; 4 Guillera-Arroita, Lahoz-Monfort, Elith, Gordon, Kujala, Lentini, McCarthy, Tingley, Wintle (CR34) 2015; 24 Welsh, Lindenmayer, Donnelly (CR83) 2013; 8 Couturier, Cheylan, Bertolero, Astruc, Besnard (CR16) 2013; 77 Guillera-Arroita, Ridout, Morgan (CR32) 2010; 1 Borchers, Buckland, Zucchini (CR7) 2002 MacKenzie, Royle (CR57) 2005; 42 Yamaura, Royle, Kuboi, Tada, Ikeno, Makino (CR88) 2011; 48 Kéry, Guillera-Arroita, Lahoz-Monfort (CR51) 2013; 40 Drapeau, Leduc, McNeil (CR25) 1999; 30 Kéry, Royle (CR44) 2008; 45 Sauer, Link (CR77) 2002; 83 Kéry, Gardner, Monnerat (CR50) 2010; 37 Zipkin, DeWan, Royle (CR90) 2009; 46 MacKenzie, Nichols, Sutton, Kawanishi, Bailey (CR58) 2005; 86 Barnagaud, Barbaro, Papaïx, Deconchat, Brockerhoff (CR4) 2014; 95 Sanderlin, Block, Ganey (CR76) 2014; 51 Alldredge, Pollock, Simons, Shriner (CR1) 2007; 44 Anderson, Crist, Chase, Vellend, Inouye, Freestone, Sanders, Cornell, Comita, Davies, Harrison, Kraft, Stegen, Swenson (CR2) 2011; 14 CR68 Ruiz-Gutiérrez, Zipkin, Dhondt (CR75) 2010; 47 Williams, Nichols, Conroy (CR85) 2002 CR67 Yamaura (CR87) 2013; 12 Royle, Dorazio (CR71) 2008 Kéry, Royle, Thomson, Cooch, Conroy (CR45) 2009 Dorazio, Connor (CR20) 2014; 9 Moilanen (CR62) 2002; 96 CR64 Link, Barker (CR55) 2009 Royle (CR70) 2004; 60 Gelfand, Schmidt, Wu, Silander, Latimer, Rebelo (CR29) 2005; 54 MacKenzie, Nichols, Royle, Pollock, Bailey, Hines (CR59) 2006 Kéry, Royle (CR46) 2016 Veech, Summerville, Crist, Gering (CR82) 2002; 99 2001; 100 2009; 46 2012; 286 2013; 4 2013; 27 2004; 60 2015; 71 2002; 96 2002; 99 2012; 18 2014; 29 2011; 14 2008; 72 2013; 8 2012; 129 2014; 23 1996; 77 2014; 4 2010; 1 2001 2000 2005; 100 2002; 83 2013; 12 2009; 90 2003; 162 1987 2005; 74 2014; 9 2014; 51 2014; 95 2012; 21 2014; 123 2006; 168 2015; 6 2010; 37 2006; 94 2012 2005; 110 2011 2010 2008; 18 2013; 40 2015; 52 2013; 101 2009 2008 2005; 42 2005; 86 2006 2004 2011; 34 2008; 125 2002 2007; 16 2015; 24 2015; 25 2015; 191 2012; 3 2010; 47 2013; 77 2004; 18 2006; 87 2001; 4 2005; 8 2011; 92 1997; 79 2015; 21 2008; 45 2005; 54 2016 1999; 30 2015 2014 2011; 48 2013 2005; 15 2010; 91 2007; 44 Kéry M (e_1_2_6_48_1) 2012 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_83_1 Buckland ST (e_1_2_6_10_1) 2001 Dorazio RM (e_1_2_6_25_1) 2011 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_31_1 Kéry M (e_1_2_6_47_1) 2016 e_1_2_6_50_1 e_1_2_6_71_1 Bibby CJ (e_1_2_6_7_1) 2000 Ehrlich PR (e_1_2_6_27_1) 1987 e_1_2_6_90_1 Kéry M (e_1_2_6_43_1) 2010 R Core Team (e_1_2_6_69_1) 2014 King R (e_1_2_6_53_1) 2010 Royle JA (e_1_2_6_72_1) 2008 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 MacKenzie DI (e_1_2_6_60_1) 2006 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 Buckland ST (e_1_2_6_11_1) 2004 Royle JA (e_1_2_6_75_1) 2014 Williams BK (e_1_2_6_86_1) 2002 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 Link WA (e_1_2_6_56_1) 2009 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_46_1 |
References_xml | – volume: 162 start-page: 734 year: 2003 end-page: 743 ident: CR17 article-title: Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity publication-title: Am Nat doi: 10.1086/378901 – volume: 51 start-page: 849 year: 2014 end-page: 859 ident: CR3 article-title: Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science publication-title: J Appl Ecol doi: 10.1111/1365-2664.12272 – ident: CR68 – year: 2016 ident: CR46 publication-title: Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness using R and BUGS, vol 1. Prelude and static models – start-page: 277 year: 2011 end-page: 302 ident: CR24 article-title: Modern methods of estimating biodiversity from presence-absence surveys publication-title: Biodiversity loss in a changing planet – year: 2002 ident: CR7 publication-title: Estimating animal abundance: closed populations doi: 10.1007/978-1-4471-3708-5 – ident: CR39 – volume: 3 start-page: 860 year: 2012 end-page: 869 ident: CR31 article-title: Designing studies to detect differences in species occupancy: power analysis under imperfect detection publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2012.00225.x – volume: 30 start-page: 367 year: 1999 end-page: 382 ident: CR25 article-title: Refining the use of point counts at the scale of individual points in studies of bird-habitat relationships publication-title: J Avian Biol doi: 10.2307/3677009 – volume: 23 start-page: 1324 year: 2014 end-page: 1334 ident: CR54 article-title: Interpreting the replacement and richness difference components of beta diversity publication-title: Global Ecol Biogeogr doi: 10.1111/geb.12207 – volume: 123 start-page: 385 year: 2014 end-page: 388 ident: CR84 article-title: Ecologists should not use statistical significance tests to interpret simulation model results publication-title: Oikos doi: 10.1111/j.1600-0706.2013.01073.x – year: 2006 ident: CR59 publication-title: Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence – year: 2010 ident: CR42 publication-title: Introduction to WinBUGS for ecologists: a Bayesian approach to regression, ANOVA, mixed models and related analysis – volume: 40 start-page: 1463 year: 2013 end-page: 1474 ident: CR51 article-title: Analysing and mapping species range dynamics using occupancy models publication-title: J Biogeogr doi: 10.1111/jbi.12087 – volume: 45 start-page: 589 year: 2008 end-page: 598 ident: CR44 article-title: Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2007.01441.x – volume: 110 start-page: 353 year: 2005 end-page: 359 ident: CR72 article-title: Modelling occurrence and abundance of species when detection is imperfect publication-title: Oikos doi: 10.1111/j.0030-1299.2005.13534.x – volume: 6 start-page: 543 year: 2015 end-page: 556 ident: CR18 article-title: Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12333 – volume: 15 start-page: 1450 year: 2005 end-page: 1461 ident: CR48 article-title: Modeling avian abundance from replicated counts using binomial mixture models publication-title: Ecol Appl doi: 10.1890/04-1120 – volume: 74 start-page: 375 year: 2005 end-page: 386 ident: CR63 article-title: Species richness estimators: how many species can dance on the head of a pin? publication-title: J Anim Ecol doi: 10.1111/j.1365-2656.2005.00940.x – volume: 87 start-page: 842 year: 2006 end-page: 854 ident: CR22 article-title: Estimating species richness and accumulation by modeling species occurrence and detectability publication-title: Ecology doi: 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2 – volume: 48 start-page: 67 year: 2011 end-page: 75 ident: CR88 article-title: Modelling community dynamics based on species-level abundance models from detection/nondetection data publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2010.01922.x – volume: 27 start-page: 785 year: 2013 end-page: 795 ident: CR12 article-title: A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes publication-title: Conserv Biol doi: 10.1111/cobi.12046 – volume: 94 start-page: 980 year: 2006 end-page: 986 ident: CR49 article-title: How biased are estimates of extinction probability in revisitation studies? publication-title: J Ecol doi: 10.1111/j.1365-2745.2006.01151.x – volume: 90 start-page: 1125 year: 2009 end-page: 1133 ident: CR14 article-title: Sufficient sampling for asymptotic minimum species richness estimators publication-title: Ecology doi: 10.1890/07-2147.1 – volume: 72 start-page: 857 year: 2008 end-page: 868 ident: CR38 article-title: In defense of indices: the case of bird surveys publication-title: J Wildl Manage doi: 10.2193/2007-294 – volume: 71 start-page: 237 year: 2015 end-page: 246 ident: CR19 article-title: Computational aspects of -mixture models publication-title: Biometrics doi: 10.1111/biom.12246 – ident: CR67 – year: 2004 ident: CR10 publication-title: Advanced distance sampling: estimating abundance of biological populations – volume: 286 start-page: 129 year: 2012 end-page: 136 ident: CR61 article-title: Empirical and simulation evaluations of an abundance estimator using unmarked individuals of cryptic forest-dwelling taxa publication-title: For Ecol Manage doi: 10.1016/j.foreco.2012.08.039 – volume: 60 start-page: 108 year: 2004 end-page: 115 ident: CR70 article-title: -mixture models for estimating population size from spatially replicated counts publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00142.x – volume: 51 start-page: 860 year: 2014 end-page: 870 ident: CR76 article-title: Optimizing study design for multi-species avian monitoring programmes publication-title: J Appl Ecol doi: 10.1111/1365-2664.12252 – volume: 4 start-page: 877 year: 2014 end-page: 888 ident: CR66 article-title: Guidelines for a priori grouping of species in hierarchical community models publication-title: Ecol Evol doi: 10.1002/ece3.976 – volume: 96 start-page: 516 year: 2002 end-page: 530 ident: CR62 article-title: Implications of empirical data quality to metapopulation model parameter estimation and application publication-title: Oikos doi: 10.1034/j.1600-0706.2002.960313.x – volume: 79 start-page: 376 year: 1997 end-page: 386 ident: CR81 article-title: Predicting spatial distribution of foragers over large resource landscapes: a modeling analysis of the Ideal Free Distribution publication-title: Oikos doi: 10.2307/3546022 – volume: 24 start-page: 276 year: 2015 end-page: 292 ident: CR34 article-title: Is my species distribution model fit for purpose? Matching data and models to applications publication-title: Global Ecol Biogeogr doi: 10.1111/geb.12268 – year: 2012 ident: CR47 publication-title: Bayesian population analysis using WinBUGS: a hierarchical perspective – volume: 9 start-page: e99571 year: 2014 ident: CR33 article-title: Ignoring imperfect detection in biological surveys is dangerous: a response to ‘Fitting and interpreting occupancy models’ publication-title: PLoS ONE doi: 10.1371/journal.pone.0099571 – volume: 100 start-page: 65 year: 2001 end-page: 74 ident: CR27 article-title: How much habitat is enough? publication-title: Biol Conserv doi: 10.1016/S0006-3207(00)00208-1 – volume: 54 start-page: 1 year: 2005 end-page: 20 ident: CR29 article-title: Modelling species diversity through species level hierarchical modelling publication-title: J Roy Stat Soc: Ser C (Appl Stat) doi: 10.1111/j.1467-9876.2005.00466.x – volume: 18 start-page: 570 year: 2004 end-page: 574 ident: CR40 article-title: Extinction rate estimates for plant populations in revisitation studies: importance of detectability publication-title: Conserv Biol doi: 10.1111/j.1523-1739.2004.00105.x – volume: 86 start-page: 1101 year: 2005 end-page: 1113 ident: CR58 article-title: Improving inferences in population studies of rare species that are detected imperfectly publication-title: Ecology doi: 10.1890/04-1060 – year: 2001 ident: CR9 publication-title: Introduction to distance sampling: estimating abundance of biological populations – ident: CR64 – volume: 91 start-page: 2466 year: 2010 end-page: 2475 ident: CR23 article-title: Models for inference in dynamic metacommunity systems publication-title: Ecology doi: 10.1890/09-1033.1 – volume: 52 start-page: 413 year: 2015 end-page: 421 ident: CR80 article-title: Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data publication-title: J Appl Ecol doi: 10.1111/1365-2664.12399 – volume: 16 start-page: 67 year: 2007 end-page: 85 ident: CR73 article-title: Analysis of multinomial models with unknown index using data augmentation publication-title: J Comput Graph Stat doi: 10.1198/106186007X181425 – volume: 95 start-page: 78 year: 2014 end-page: 87 ident: CR4 article-title: Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds publication-title: Ecology doi: 10.1890/13-0791.1 – volume: 8 start-page: 148 year: 2005 end-page: 159 ident: CR13 article-title: A new statistical approach for assessing similarity of species composition with incidence and abundance data publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2004.00707.x – year: 2008 ident: CR71 publication-title: Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities – year: 2002 ident: CR85 publication-title: Analysis and management of animal populations – start-page: 639 year: 2009 end-page: 656 ident: CR45 article-title: Inference about species richness and community structure using species-specific occupancy models in the National Swiss Breeding Bird Survey MHB publication-title: Modeling demographic processes in marked populations doi: 10.1007/978-0-387-78151-8_28 – volume: 4 start-page: 370 year: 2013 end-page: 382 ident: CR5 article-title: Undersampling and the measurement of beta diversity publication-title: Methods Ecol Evol doi: 10.1111/2041-210x.12023 – volume: 1 start-page: 131 year: 2010 end-page: 139 ident: CR32 article-title: Design of occupancy studies with imperfect detection publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2010.00017.x – volume: 77 start-page: 1633 year: 1996 end-page: 1640 ident: CR56 article-title: Extremes in ecology: avoiding the misleading effects of sampling variation in summary analyses publication-title: Ecology doi: 10.2307/2265557 – volume: 42 start-page: 1105 year: 2005 end-page: 1114 ident: CR57 article-title: Designing occupancy studies: general advice and allocating survey effort publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2005.01098.x – start-page: 207 year: 2011 end-page: 231 ident: CR43 article-title: Species richness and community dynamics: a conceptual framework publication-title: Camera traps in animal ecology doi: 10.1007/978-4-431-99495-4_12 – ident: CR79 – volume: 18 start-page: S91 year: 2008 end-page: S108 ident: CR11 article-title: Estimating bird abundance: making methods work publication-title: Bird Conserv Int doi: 10.1017/S0959270908000294 – volume: 47 start-page: 621 year: 2010 end-page: 630 ident: CR75 article-title: Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2010.01811.x – volume: 6 start-page: 99 year: 2015 end-page: 108 ident: CR8 article-title: Accounting for imperfect detection in Hill numbers for biodiversity studies publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12296 – volume: 29 start-page: 97 year: 2014 end-page: 106 ident: CR37 article-title: Detecting diversity: emerging methods to estimate species diversity publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2013.10.012 – volume: 37 start-page: 1851 year: 2010 end-page: 1862 ident: CR50 article-title: Predicting species distributions from checklist data using site-occupancy models publication-title: J Biogeogr – volume: 18 start-page: 417 year: 2012 end-page: 424 ident: CR86 article-title: Designing occupancy surveys and interpreting non-detection when observations are imperfect publication-title: Divers Distrib doi: 10.1111/j.1472-4642.2011.00874.x – volume: 100 start-page: 389 year: 2005 end-page: 398 ident: CR21 article-title: Estimating size and composition of biological communities by modeling the occurrence of species publication-title: J Am Stat Assoc doi: 10.1198/016214505000000015 – volume: 21 start-page: 46 year: 2015 end-page: 54 ident: CR35 article-title: Mapping large-scale bird distributions using occupancy models and citizen data with spatially biased sampling effort publication-title: Divers Distrib doi: 10.1111/ddi.12255 – year: 2010 ident: CR52 publication-title: Bayesian analysis for population ecology – volume: 25 start-page: 1669 year: 2015 end-page: 1680 ident: CR60 article-title: Evaluating species richness: biased ecological inference results from spatial heterogeneity in detection probabilities publication-title: Ecol Appl doi: 10.1890/14-1248.1 – volume: 8 start-page: e52015 year: 2013 ident: CR83 article-title: Fitting and interpreting occupancy models publication-title: PLoS ONE doi: 10.1371/journal.pone.0052015 – volume: 4 start-page: 379 year: 2001 end-page: 391 ident: CR30 article-title: Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness publication-title: Ecol Lett doi: 10.1046/j.1461-0248.2001.00230.x – volume: 12 start-page: 73 year: 2013 end-page: 88 ident: CR87 article-title: Confronting imperfect detection: behavior of binomial mixture models under varying circumstances of visits, sampling sites, detectability, and abundance, in small-sample situations publication-title: Ornithol Sci doi: 10.2326/osj.12.73 – year: 1987 ident: CR26 publication-title: The science of ecology – volume: 23 start-page: 504 year: 2014 end-page: 515 ident: CR53 article-title: Imperfect detection impacts the performance of species distribution models publication-title: Global Ecol Biogeogr doi: 10.1111/geb.12138 – volume: 101 start-page: 183 year: 2013 end-page: 191 ident: CR15 article-title: Imperfect detection is the rule rather than the exception in plant distribution studies publication-title: J Ecol doi: 10.1111/1365-2745.12021 – year: 2009 ident: CR55 publication-title: Bayesian Inference: with ecological applications – volume: 83 start-page: 1743 year: 2002 end-page: 1751 ident: CR77 article-title: Hierarchical modeling of population stability and species group attributes from survey data publication-title: Ecology doi: 10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2 – volume: 77 start-page: 454 year: 2013 end-page: 462 ident: CR16 article-title: Estimating abundance and population trends when detection is low and highly variable: a comparison of three methods for the Hermann’s tortoise publication-title: J Wildl Manage doi: 10.1002/jwmg.499 – year: 2014 ident: CR74 publication-title: Spatial capture-recapture – volume: 34 start-page: 659 year: 2011 end-page: 670 ident: CR69 article-title: Does accounting for imperfect detection improve species distribution models? publication-title: Ecography doi: 10.1111/j.1600-0587.2010.06433.x – volume: 168 start-page: 207 year: 2006 end-page: 219 ident: CR28 article-title: Emergent properties of conspecific attraction in fragmented landscapes publication-title: Am Nat doi: 10.1086/505764 – volume: 191 start-page: 460 year: 2015 end-page: 468 ident: CR78 article-title: The usefulness of top predators as biodiversity surrogates indicated by the relationship between the reproductive outputs of raptors and other bird species publication-title: Biol Conserv doi: 10.1016/j.biocon.2015.07.027 – volume: 21 start-page: 1365 year: 2012 end-page: 1380 ident: CR89 article-title: Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data publication-title: Biodivers Conserv doi: 10.1007/s10531-012-0244-z – volume: 125 start-page: 336 year: 2008 end-page: 345 ident: CR41 article-title: Estimating abundance from bird counts: binomial mixture models uncover complex covariate relationships publication-title: Auk doi: 10.1525/auk.2008.06185 – year: 2000 ident: CR6 publication-title: Bird census techniques – volume: 129 start-page: 105 year: 2012 end-page: 114 ident: CR36 article-title: Reliability of occupancy and binomial mixture models for estimating abundance of golden-cheeked warblers ( ) publication-title: Auk doi: 10.1525/auk.2012.11093 – volume: 44 start-page: 281 year: 2007 end-page: 290 ident: CR1 article-title: Multiple-species analysis of point count data: a more parsimonious modelling framework publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2006.01271.x – volume: 99 start-page: 3 year: 2002 end-page: 9 ident: CR82 article-title: The additive partitioning of species diversity: recent revival of an old idea publication-title: Oikos doi: 10.1034/j.1600-0706.2002.990101.x – volume: 14 start-page: 19 year: 2011 end-page: 28 ident: CR2 article-title: Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2010.01552.x – volume: 92 start-page: 289 year: 2011 end-page: 295 ident: CR65 article-title: Making more out of sparse data: hierarchical modeling of species communities publication-title: Ecology doi: 10.1890/10-1251.1 – volume: 46 start-page: 815 year: 2009 end-page: 822 ident: CR90 article-title: Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2009.01664.x – volume: 9 start-page: e94323 year: 2014 ident: CR20 article-title: Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat publication-title: PLoS ONE doi: 10.1371/journal.pone.0094323 – volume: 27 start-page: 785 year: 2013 end-page: 795 article-title: A small‐scale land‐sparing approach to conserving biological diversity in tropical agricultural landscapes publication-title: Conserv Biol – year: 2009 – volume: 125 start-page: 336 year: 2008 end-page: 345 article-title: Estimating abundance from bird counts: binomial mixture models uncover complex covariate relationships publication-title: Auk – volume: 95 start-page: 78 year: 2014 end-page: 87 article-title: Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds publication-title: Ecology – volume: 46 start-page: 815 year: 2009 end-page: 822 article-title: Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling publication-title: J Appl Ecol – start-page: 277 year: 2011 end-page: 302 – volume: 25 start-page: 1669 year: 2015 end-page: 1680 article-title: Evaluating species richness: biased ecological inference results from spatial heterogeneity in detection probabilities publication-title: Ecol Appl – year: 2001 – volume: 52 start-page: 413 year: 2015 end-page: 421 article-title: Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data publication-title: J Appl Ecol – volume: 48 start-page: 67 year: 2011 end-page: 75 article-title: Modelling community dynamics based on species‐level abundance models from detection/nondetection data publication-title: J Appl Ecol – volume: 18 start-page: S91 year: 2008 end-page: S108 article-title: Estimating bird abundance: making methods work publication-title: Bird Conserv Int – volume: 100 start-page: 389 year: 2005 end-page: 398 article-title: Estimating size and composition of biological communities by modeling the occurrence of species publication-title: J Am Stat Assoc – volume: 286 start-page: 129 year: 2012 end-page: 136 article-title: Empirical and simulation evaluations of an abundance estimator using unmarked individuals of cryptic forest‐dwelling taxa publication-title: For Ecol Manage – volume: 24 start-page: 276 year: 2015 end-page: 292 article-title: Is my species distribution model fit for purpose? Matching data and models to applications publication-title: Global Ecol Biogeogr – volume: 101 start-page: 183 year: 2013 end-page: 191 article-title: Imperfect detection is the rule rather than the exception in plant distribution studies publication-title: J Ecol – start-page: 639 year: 2009 end-page: 656 – volume: 94 start-page: 980 year: 2006 end-page: 986 article-title: How biased are estimates of extinction probability in revisitation studies? publication-title: J Ecol – volume: 21 start-page: 46 year: 2015 end-page: 54 article-title: Mapping large‐scale bird distributions using occupancy models and citizen data with spatially biased sampling effort publication-title: Divers Distrib – volume: 99 start-page: 3 year: 2002 end-page: 9 article-title: The additive partitioning of species diversity: recent revival of an old idea publication-title: Oikos – volume: 6 start-page: 99 year: 2015 end-page: 108 article-title: Accounting for imperfect detection in Hill numbers for biodiversity studies publication-title: Methods Ecol Evol – volume: 23 start-page: 1324 year: 2014 end-page: 1334 article-title: Interpreting the replacement and richness difference components of beta diversity publication-title: Global Ecol Biogeogr – volume: 60 start-page: 108 year: 2004 end-page: 115 article-title: ‐mixture models for estimating population size from spatially replicated counts publication-title: Biometrics – year: 2014 – volume: 34 start-page: 659 year: 2011 end-page: 670 article-title: Does accounting for imperfect detection improve species distribution models? publication-title: Ecography – start-page: 207 year: 2011 end-page: 231 – volume: 9 start-page: e94323 year: 2014 article-title: Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat publication-title: PLoS ONE – volume: 87 start-page: 842 year: 2006 end-page: 854 article-title: Estimating species richness and accumulation by modeling species occurrence and detectability publication-title: Ecology – volume: 8 start-page: e52015 year: 2013 article-title: Fitting and interpreting occupancy models publication-title: PLoS ONE – volume: 1 start-page: 131 year: 2010 end-page: 139 article-title: Design of occupancy studies with imperfect detection publication-title: Methods Ecol Evol – volume: 29 start-page: 97 year: 2014 end-page: 106 article-title: Detecting diversity: emerging methods to estimate species diversity publication-title: Trends Ecol Evol – year: 2008 – year: 2004 – volume: 14 start-page: 19 year: 2011 end-page: 28 article-title: Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist publication-title: Ecol Lett – volume: 4 start-page: 877 year: 2014 end-page: 888 article-title: Guidelines for a priori grouping of species in hierarchical community models publication-title: Ecol Evol – volume: 162 start-page: 734 year: 2003 end-page: 743 article-title: Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity publication-title: Am Nat – volume: 9 start-page: e99571 year: 2014 article-title: Ignoring imperfect detection in biological surveys is dangerous: a response to ‘Fitting and interpreting occupancy models’ publication-title: PLoS ONE – volume: 18 start-page: 417 year: 2012 end-page: 424 article-title: Designing occupancy surveys and interpreting non‐detection when observations are imperfect publication-title: Divers Distrib – volume: 54 start-page: 1 year: 2005 end-page: 20 article-title: Modelling species diversity through species level hierarchical modelling publication-title: J Roy Stat Soc: Ser C (Appl Stat) – volume: 40 start-page: 1463 year: 2013 end-page: 1474 article-title: Analysing and mapping species range dynamics using occupancy models publication-title: J Biogeogr – volume: 91 start-page: 2466 year: 2010 end-page: 2475 article-title: Models for inference in dynamic metacommunity systems publication-title: Ecology – volume: 90 start-page: 1125 year: 2009 end-page: 1133 article-title: Sufficient sampling for asymptotic minimum species richness estimators publication-title: Ecology – year: 2015 – volume: 42 start-page: 1105 year: 2005 end-page: 1114 article-title: Designing occupancy studies: general advice and allocating survey effort publication-title: J Appl Ecol – volume: 96 start-page: 516 year: 2002 end-page: 530 article-title: Implications of empirical data quality to metapopulation model parameter estimation and application publication-title: Oikos – volume: 21 start-page: 1365 year: 2012 end-page: 1380 article-title: Biodiversity of man‐made open habitats in an underused country: a class of multispecies abundance models for count data publication-title: Biodivers Conserv – volume: 37 start-page: 1851 year: 2010 end-page: 1862 article-title: Predicting species distributions from checklist data using site‐occupancy models publication-title: J Biogeogr – volume: 77 start-page: 454 year: 2013 end-page: 462 article-title: Estimating abundance and population trends when detection is low and highly variable: a comparison of three methods for the Hermann's tortoise publication-title: J Wildl Manage – volume: 71 start-page: 237 year: 2015 end-page: 246 article-title: Computational aspects of ‐mixture models publication-title: Biometrics – volume: 110 start-page: 353 year: 2005 end-page: 359 article-title: Modelling occurrence and abundance of species when detection is imperfect publication-title: Oikos – volume: 123 start-page: 385 year: 2014 end-page: 388 article-title: Ecologists should not use statistical significance tests to interpret simulation model results publication-title: Oikos – volume: 44 start-page: 281 year: 2007 end-page: 290 article-title: Multiple‐species analysis of point count data: a more parsimonious modelling framework publication-title: J Appl Ecol – volume: 4 start-page: 370 year: 2013 end-page: 382 article-title: Undersampling and the measurement of beta diversity publication-title: Methods Ecol Evol – volume: 3 start-page: 860 year: 2012 end-page: 869 article-title: Designing studies to detect differences in species occupancy: power analysis under imperfect detection publication-title: Methods Ecol Evol – volume: 191 start-page: 460 year: 2015 end-page: 468 article-title: The usefulness of top predators as biodiversity surrogates indicated by the relationship between the reproductive outputs of raptors and other bird species publication-title: Biol Conserv – volume: 12 start-page: 73 year: 2013 end-page: 88 article-title: Confronting imperfect detection: behavior of binomial mixture models under varying circumstances of visits, sampling sites, detectability, and abundance, in small‐sample situations publication-title: Ornithol Sci – volume: 72 start-page: 857 year: 2008 end-page: 868 article-title: In defense of indices: the case of bird surveys publication-title: J Wildl Manage – volume: 92 start-page: 289 year: 2011 end-page: 295 article-title: Making more out of sparse data: hierarchical modeling of species communities publication-title: Ecology – year: 1987 – volume: 100 start-page: 65 year: 2001 end-page: 74 article-title: How much habitat is enough? publication-title: Biol Conserv – volume: 51 start-page: 860 year: 2014 end-page: 870 article-title: Optimizing study design for multi‐species avian monitoring programmes publication-title: J Appl Ecol – volume: 4 start-page: 379 year: 2001 end-page: 391 article-title: Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness publication-title: Ecol Lett – year: 2000 – year: 2016 – volume: 129 start-page: 105 year: 2012 end-page: 114 article-title: Reliability of occupancy and binomial mixture models for estimating abundance of golden‐cheeked warblers ( ) publication-title: Auk – year: 2010 – year: 2012 – volume: 15 start-page: 1450 year: 2005 end-page: 1461 article-title: Modeling avian abundance from replicated counts using binomial mixture models publication-title: Ecol Appl – volume: 8 start-page: 148 year: 2005 end-page: 159 article-title: A new statistical approach for assessing similarity of species composition with incidence and abundance data publication-title: Ecol Lett – volume: 168 start-page: 207 year: 2006 end-page: 219 article-title: Emergent properties of conspecific attraction in fragmented landscapes publication-title: Am Nat – volume: 18 start-page: 570 year: 2004 end-page: 574 article-title: Extinction rate estimates for plant populations in revisitation studies: importance of detectability publication-title: Conserv Biol – volume: 77 start-page: 1633 year: 1996 end-page: 1640 article-title: Extremes in ecology: avoiding the misleading effects of sampling variation in summary analyses publication-title: Ecology – volume: 51 start-page: 849 year: 2014 end-page: 859 article-title: Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science publication-title: J Appl Ecol – year: 2002 – volume: 23 start-page: 504 year: 2014 end-page: 515 article-title: Imperfect detection impacts the performance of species distribution models publication-title: Global Ecol Biogeogr – volume: 16 start-page: 67 year: 2007 end-page: 85 article-title: Analysis of multinomial models with unknown index using data augmentation publication-title: J Comput Graph Stat – year: 2006 – volume: 30 start-page: 367 year: 1999 end-page: 382 article-title: Refining the use of point counts at the scale of individual points in studies of bird‐habitat relationships publication-title: J Avian Biol – volume: 6 start-page: 543 year: 2015 end-page: 556 article-title: Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation publication-title: Methods Ecol Evol – volume: 86 start-page: 1101 year: 2005 end-page: 1113 article-title: Improving inferences in population studies of rare species that are detected imperfectly publication-title: Ecology – volume: 79 start-page: 376 year: 1997 end-page: 386 article-title: Predicting spatial distribution of foragers over large resource landscapes: a modeling analysis of the Ideal Free Distribution publication-title: Oikos – volume: 74 start-page: 375 year: 2005 end-page: 386 article-title: Species richness estimators: how many species can dance on the head of a pin? publication-title: J Anim Ecol – volume: 45 start-page: 589 year: 2008 end-page: 598 article-title: Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys publication-title: J Appl Ecol – volume: 83 start-page: 1743 year: 2002 end-page: 1751 article-title: Hierarchical modeling of population stability and species group attributes from survey data publication-title: Ecology – volume: 47 start-page: 621 year: 2010 end-page: 630 article-title: Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non‐forest species publication-title: J Appl Ecol – year: 2013 – ident: e_1_2_6_74_1 doi: 10.1198/106186007X181425 – ident: e_1_2_6_42_1 doi: 10.1525/auk.2008.06185 – ident: e_1_2_6_63_1 doi: 10.1034/j.1600-0706.2002.960313.x – ident: e_1_2_6_12_1 doi: 10.1017/S0959270908000294 – ident: e_1_2_6_17_1 doi: 10.1002/jwmg.499 – ident: e_1_2_6_68_1 – volume-title: Bayesian population analysis using WinBUGS: a hierarchical perspective year: 2012 ident: e_1_2_6_48_1 – start-page: 277 volume-title: Biodiversity loss in a changing planet year: 2011 ident: e_1_2_6_25_1 – ident: e_1_2_6_28_1 doi: 10.1016/S0006-3207(00)00208-1 – ident: e_1_2_6_40_1 – volume-title: Introduction to distance sampling: estimating abundance of biological populations year: 2001 ident: e_1_2_6_10_1 doi: 10.1093/oso/9780198506492.001.0001 – ident: e_1_2_6_57_1 doi: 10.2307/2265557 – volume-title: Bayesian analysis for population ecology year: 2010 ident: e_1_2_6_53_1 – ident: e_1_2_6_77_1 doi: 10.1111/1365-2664.12252 – volume-title: Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence year: 2006 ident: e_1_2_6_60_1 – ident: e_1_2_6_54_1 doi: 10.1111/geb.12138 – ident: e_1_2_6_23_1 doi: 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2 – ident: e_1_2_6_20_1 doi: 10.1111/biom.12246 – ident: e_1_2_6_14_1 doi: 10.1111/j.1461-0248.2004.00707.x – ident: e_1_2_6_83_1 doi: 10.1034/j.1600-0706.2002.990101.x – ident: e_1_2_6_80_1 – ident: e_1_2_6_32_1 doi: 10.1111/j.2041-210X.2012.00225.x – volume-title: Spatial capture‐recapture year: 2014 ident: e_1_2_6_75_1 – ident: e_1_2_6_21_1 doi: 10.1371/journal.pone.0094323 – volume-title: Bayesian Inference: with ecological applications year: 2009 ident: e_1_2_6_56_1 – ident: e_1_2_6_82_1 doi: 10.2307/3546022 – ident: e_1_2_6_61_1 doi: 10.1890/14-1248.1 – ident: e_1_2_6_89_1 doi: 10.1111/j.1365-2664.2010.01922.x – ident: e_1_2_6_29_1 doi: 10.1086/505764 – ident: e_1_2_6_4_1 doi: 10.1111/1365-2664.12272 – ident: e_1_2_6_33_1 doi: 10.1111/j.2041-210X.2010.00017.x – volume-title: Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities year: 2008 ident: e_1_2_6_72_1 – ident: e_1_2_6_30_1 doi: 10.1111/j.1467-9876.2005.00466.x – ident: e_1_2_6_71_1 doi: 10.1111/j.0006-341X.2004.00142.x – ident: e_1_2_6_64_1 doi: 10.1111/j.1365-2656.2005.00940.x – ident: e_1_2_6_70_1 doi: 10.1111/j.1600-0587.2010.06433.x – ident: e_1_2_6_79_1 doi: 10.1016/j.biocon.2015.07.027 – ident: e_1_2_6_90_1 doi: 10.1007/s10531-012-0244-z – ident: e_1_2_6_91_1 doi: 10.1111/j.1365-2664.2009.01664.x – ident: e_1_2_6_36_1 doi: 10.1111/ddi.12255 – ident: e_1_2_6_15_1 doi: 10.1890/07-2147.1 – ident: e_1_2_6_41_1 doi: 10.1111/j.1523-1739.2004.00105.x – ident: e_1_2_6_52_1 doi: 10.1111/jbi.12087 – ident: e_1_2_6_73_1 doi: 10.1111/j.0030-1299.2005.13534.x – ident: e_1_2_6_16_1 doi: 10.1111/1365-2745.12021 – ident: e_1_2_6_67_1 doi: 10.1002/ece3.976 – ident: e_1_2_6_18_1 doi: 10.1086/378901 – ident: e_1_2_6_8_1 doi: 10.1007/978-1-4471-3708-5 – ident: e_1_2_6_9_1 doi: 10.1111/2041-210X.12296 – ident: e_1_2_6_6_1 doi: 10.1111/2041-210x.12023 – ident: e_1_2_6_5_1 doi: 10.1890/13-0791.1 – ident: e_1_2_6_44_1 doi: 10.1007/978-4-431-99495-4_12 – ident: e_1_2_6_65_1 – ident: e_1_2_6_84_1 doi: 10.1371/journal.pone.0052015 – ident: e_1_2_6_46_1 doi: 10.1007/978-0-387-78151-8_28 – volume-title: Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness using R and BUGS, vol 1. Prelude and static models year: 2016 ident: e_1_2_6_47_1 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-2664.2005.01098.x – volume-title: R: a language and environment for statistical computing: R Foundation for Statistical Computing year: 2014 ident: e_1_2_6_69_1 – ident: e_1_2_6_2_1 doi: 10.1111/j.1365-2664.2006.01271.x – ident: e_1_2_6_51_1 doi: 10.1111/j.1365-2699.2010.02345.x – ident: e_1_2_6_87_1 doi: 10.1111/j.1472-4642.2011.00874.x – ident: e_1_2_6_26_1 doi: 10.2307/3677009 – ident: e_1_2_6_39_1 doi: 10.2193/2007-294 – ident: e_1_2_6_31_1 doi: 10.1046/j.1461-0248.2001.00230.x – ident: e_1_2_6_55_1 doi: 10.1111/geb.12207 – volume-title: The science of ecology year: 1987 ident: e_1_2_6_27_1 – ident: e_1_2_6_78_1 doi: 10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2 – volume-title: Bird census techniques year: 2000 ident: e_1_2_6_7_1 – ident: e_1_2_6_24_1 doi: 10.1890/09-1033.1 – ident: e_1_2_6_3_1 doi: 10.1111/j.1461-0248.2010.01552.x – ident: e_1_2_6_37_1 doi: 10.1525/auk.2012.11093 – ident: e_1_2_6_49_1 doi: 10.1890/04-1120 – volume-title: Advanced distance sampling: estimating abundance of biological populations year: 2004 ident: e_1_2_6_11_1 doi: 10.1093/oso/9780198507833.001.0001 – ident: e_1_2_6_59_1 doi: 10.1890/04-1060 – ident: e_1_2_6_88_1 doi: 10.2326/osj.12.73 – ident: e_1_2_6_45_1 doi: 10.1111/j.1365-2664.2007.01441.x – ident: e_1_2_6_76_1 doi: 10.1111/j.1365-2664.2010.01811.x – ident: e_1_2_6_66_1 doi: 10.1890/10-1251.1 – ident: e_1_2_6_22_1 doi: 10.1198/016214505000000015 – ident: e_1_2_6_35_1 doi: 10.1111/geb.12268 – ident: e_1_2_6_38_1 doi: 10.1016/j.tree.2013.10.012 – volume-title: Analysis and management of animal populations year: 2002 ident: e_1_2_6_86_1 – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-2745.2006.01151.x – ident: e_1_2_6_19_1 doi: 10.1111/2041-210X.12333 – ident: e_1_2_6_85_1 doi: 10.1111/j.1600-0706.2013.01073.x – ident: e_1_2_6_81_1 doi: 10.1111/1365-2664.12399 – ident: e_1_2_6_34_1 doi: 10.1371/journal.pone.0099571 – volume-title: Introduction to WinBUGS for ecologists: a Bayesian approach to regression, ANOVA, mixed models and related analysis year: 2010 ident: e_1_2_6_43_1 – ident: e_1_2_6_13_1 doi: 10.1111/cobi.12046 – ident: e_1_2_6_62_1 doi: 10.1016/j.foreco.2012.08.039 |
SSID | ssj0012970 |
Score | 2.2964199 |
Snippet | Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within... Community N -mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within... Community N‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within... Community N ‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Community N-mixture abundance models for replicated counts provide a powerful and... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Community N-mixture abundance models for replicated counts provide a powerful and... |
SourceID | proquest crossref wiley springer fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 289 |
SubjectTerms | Behavioral Sciences Biomedical and Life Sciences Community ecology Count data Data augmentation Ecology Estimating techniques Evolutionary Biology False negative Forestry Life Sciences Mathematical models Miyadi Award Performance assessment Plant Sciences Population density probability Species diversity Species richness Zoology β (beta) diversity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZYJyReEOOHFhiTkXgCWWsTO7H3ggBlmpCY0KDS3iI7tlGlLilNK9E_hP93d47T0QfKW6U4SZ07f3fnO39HyNuJdN6BIWJgnQQDpZBM5lIx5wtwF4xxRY6Hk79e5ZdT_uVG3MQNty6WVQ6YGIDatjXukZ9NwJRlCsyX_LD4xbBrFGZXYwuNA3IIECzFiBx-Kq--XW_zCKkK7eLAKKYMbBMf8prh8BxCM4TSyMPHx4zvWKYDr9sdp3ObJ931YoMZunhCHkf_kX7sBX5EHrjmKXnYd5TcwK8ysFBvnpE_WCG4oa2nPc8SCoPW_XEQJFGl3drgHgxdtXQGvvMS6zqodatQm9Wcw226o7qxdLGMfXjwYcMTNhQgePYb8w9UGzxOAtpDQ1-djs4a2t3q-Zx1GsmHKXzDnlG8e06mF-WPz5cs9mBgNReZYrUHF9JZno-VVkqI3AIISMEhsk3BOSuEzbMiy4yy3hgIVjiEH9YLxbk2qgZf8gUZNW3jjgnNRaFUnQFGeMtNwaWtU53KifeAGkpnCRkP37-qI0E59smYV_fUyiiyCovSUGQVT8i77S2Lnp1j3-BjEGqlfwJ6VtPvKXLrYeJ9khcJORkkXcU13FX3GpeQN9vLsPowpaIb167DmALicFC9PWMkAGeK1I4JeT9o0V-v-ff_PQuK9v-ZVeV1iRnjl_un8Yo8wkn35ZonZLRart1rcKlW5jSumzv3LRfS priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZrx8ZeRveLuuuGBnvaEEtsyZb2VkZKGWwP2wJlL0KypBHI7BI50Pwh_X97J9vpAmvH3owjKU5OuvvOd_cdIW-n0gcPhoiBdRIMNoVkspSK-VABXLDWVyUWJ3_5Wp7N-edzcT7Ucccx230MSSZNfVPshqoUXF_kzeMTxvfIfQGuO-bxzfOTbeggV6lDHNjBnIE54mMo829L7BijvWDaHZy5DY3uAtdkeU4PyOMBMtKTXsZPyD3fPCUP-iaSG7ia1cPVQ-yzic3b4ObPNt18Rq4wU3BD20B7viUUCq37shAkU6VxbfFdDO1augAMvcL8Dup8l3K0mo8wzURqGkcvVkM_HlxsXGFDQRUvLjEOQY3FshLYRTT114l00dD42yyXLBokIaZx0fXM4vE5mZ_Ofnw6Y0MvBlZzUShWB4CS3vFyooxSQpQOlIEUHDzcHEBaJVxZVEVhlQvWgtPCwQ1xQSjOjVU1YMoXZL9pG39IaCkqpeoCdEVw3FZcujo3uZyGANpDmSIjk1Eouh6IyrFfxlLfUCyjHDUmp6EcNc_Iu-2Ui56l467BhyBpbX6BFtXz7zly7GEAflpWGTkexa-Hsxz1FEBUoQA4yYy82X4MpxBDK6bx7TqNqcAfz6W4Y4wEBZojxWNG3o9b64-vuf15P6Td9-9fpmffZhg5Pvqv9V-SR_gf9Fmcx2S_W639K0BanX2dTtY1QZgZWw priority: 102 providerName: Springer Nature |
Title | Study of biological communities subject to imperfect detection: bias and precision of community N-mixture abundance models in small-sample situations |
URI | https://link.springer.com/article/10.1007/s11284-016-1340-4 https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs11284-016-1340-4 https://www.proquest.com/docview/1782391908 https://www.proquest.com/docview/1787978285 https://www.proquest.com/docview/1803120137 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiKc2sKyMxAkU0Th2YnNrq5QViGq1UGk5RXYSryp1k1WdSvTGT-DK3-OXMJMXWyQWcWkqxXYfY898k5n5hpCXgSxsAYbIB-skfNgU0peRVH5hY4ALxhRxhMXJH-fR6YK_vxAXe2Ta18K0_BDDAzc8GY2-xgOujbsR13cBqlZwhZFHj498vk8OscQW2xgwfjaEEphqOsaBXWQ-mCfehzab-rk_ltgxTvtWVzu4cwiV7gLZxhLN7pN7HYSk41bmD8heUT4kd9qmklt4lzRE1NtH5AcmCW5pZWlLtYTyoFlbEYI8qtRtDD6GoXVFlwCf15jaQfOibtKzyrcwTTuqy5xer7tWPLhYv8KWzn9--361_IpBCKoN1pTAFqJNcx1HlyV1V3q1gjFOIwcxdcu6JRZ3j8lilnyenvpdKwY_4yJUfmYBSRY5j0ZKKyVElIMukIKDg8sAo8Uij8I4DI3KrTHgs3DwQnIrFOfaqAwg5RNyUFZlcURoJGKlshBUhc25ibnMM6aZDKwF5aF06JFRL4M063jKsV3GKv3NsIxiSzE3DcWWco-8GqZctyQdtw0-AsGm-hKUaLr4xJBiD-PvQRR75LiXdtodZZcGgKFCBbhJeuTFcBsOIUZWdFlUm2ZMDO44k-KWMRL0J0OGR4-87nfSjY_5-_d902y2f_-yNDlPMHD89L9nPCN38X9oEzmPyUG93hTPAWzV5qQ5TCfkcDybTOZ4ffflQwLXSTI_O4e702gKrws2_gUXOyLx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgQviE8tMMBI8AKy1jp2EiMhxEenjm0VGqu0N8-JbVSpJKVpBflD-Df4G7nLR0cfKE97qxQnqXPnu599d78j5Hk_cd6BI2LgnSQDpUhYEiWKOR8DXEhTF0dYnHwyioZj8elcnm-R310tDKZVdjaxNtS2yPCMfL8PrixU4L6St7PvDLtGYXS1a6HRqMWRq37Alq18c_gR5PuC84PB2Ycha7sKsEzIULHMAyhyVkQ9ZZSSMrKg1okUsFfjADdiaaMwDsNUWZ-mAL8FAGrrpRLCpCqTeAAKJn8HpqZgFe28H4w-n67iFlzV7enACXMGvlB0cdS6WA9dAWzdkfdP9JhY84TXvCnWQO4qLruOmmu3d3Cb3GrxKn3XKNgdsuXyu-R608Gygl-DmvW6ukd-YUZiRQtPG14nFD7NmvITJG2l5TLFMx-6KOgEsPoc80iodYs6Fyx_DbeZkprc0tm87fuDD-ueUFEw-ZOfGO-gJsXyFdBWWvfxKekkp-U3M52y0iDZMQWZNQzm5X0yvhLpPCDbeZG7XUIjGSuVhWCTvBVpLBKbccOTvvdgpZQJA9Lrvr_OWkJ07Msx1ZdUzigyjUlwKDItAvJydcusYQPZNHgXhKrNV7DWevyFI5cfBvr7URyQvU7SurUZpb7U8IA8W12G1Y4hHJO7YlmPiWHfzxO5YUwChpojlWRAXnVa9Ndr_v1_92tF-__M9OB0gBHqh5un8ZTcGJ6dHOvjw9HRI3ITP0CTKrpHthfzpXsMcG6RPmnXECUXV71s_wBxcFHH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZ2F4G4IH61gQWMxAkU0SR2YnNDS6vlr1oBlfZm2bGNKnWTqkkleuMRuPJ6PAkzThO2SCziVim202Q8M58zM98Q8jQRzjtwRDF4Jx7DphCxyIWMnS8ALhjjihyLkz9M85MZe3vGz_bIcV8L0_FDDB_cUDOCvUYFX1p_Ia7fJGha4SiMPHpsFLN9cgWDfpjXl7LTIZSQytAxDvxiGoN7Yn1oM9TP_bHEjnPa97rewZ1DqHQXyAZPNLlJbmwhJH3VyfwW2XPVbXK1ayq5gV_jQES9uUN-YJLghtaedlRLKA9adhUhyKNKm7XBzzC0rekc4PMKUzuodW1Iz6pewjTdUF1ZulxtW_HgYv0KGzr9-e37-fwrBiGoNlhTAluIhuY6DZ1XtDnXiwWMaTRyENNm3nbE4s1dMpuMPx-fxNtWDHHJeCbj0gOSdJblI6ml5Dy3YAsEZ3DATQGjFdzmWZFlRlpvDJxZQBDcei4Z00aWACnvkYOqrtwhoTkvpCwzMBXeMlMwYctUpyLxHoyH1FlERr0MVLnlKcd2GQv1m2EZxaYwNw3FplhEng1Tlh1Jx2WDD0GwSn8BI6pmn1Kk2MP4e5IXETnqpa22qtyoBDBUJgE3iYg8GS6DEmJkRVeuXocxBRzHU8EvGSPAfqbI8BiR5_1OunCbv__fF2Gz_fvJ1PjjGAPH9_97xmNy7fT1RL1_M333gFzHV9LldB6Rg3a1dg8Bd7XmUdCrXymLHx8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+biological+communities+subject+to+imperfect+detection%3A+bias+and+precision+of+community+N%E2%80%90mixture+abundance+models+in+small%E2%80%90sample+situations&rft.jtitle=Ecological+research&rft.au=Yamaura%2C+Yuichi&rft.au=K%C3%A9ry%2C+Marc&rft.au=Andrew+Royle%2C+J.&rft.date=2016-05-01&rft.pub=Springer+Japan&rft.issn=0912-3814&rft.eissn=1440-1703&rft.volume=31&rft.issue=3&rft.spage=289&rft.epage=305&rft_id=info:doi/10.1007%2Fs11284-016-1340-4&rft.externalDBID=10.1007%252Fs11284-016-1340-4&rft.externalDocID=ERE0289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0912-3814&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0912-3814&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0912-3814&client=summon |