Study of biological communities subject to imperfect detection: bias and precision of community N-mixture abundance models in small-sample situations

Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy model...

Full description

Saved in:
Bibliographic Details
Published inEcological research Vol. 31; no. 3; pp. 289 - 305
Main Authors Yamaura, Yuichi, Kéry, Marc, Andrew Royle, J
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.05.2016
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0912-3814
1440-1703
DOI10.1007/s11284-016-1340-4

Cover

Loading…
Abstract Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance [Formula: see text]: 0.1, 0.5, 1, 5), detection probability [Formula: see text]: 0.1, 0.2, 0.5), and number of sampling sites (n ₛᵢₜₑ : 10, 20, 40) and visits (n ᵥᵢₛᵢₜ : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables [Formula: see text], [Formula: see text], n ₛᵢₜₑ , n ᵥᵢₛᵢₜ) increased. Detection probability [Formula: see text] was most important for the estimates of mean abundance, while [Formula: see text] was most influential for covariate effect and species richness estimates. For all parameters, increasing n ₛᵢₜₑ was more beneficial than increasing n ᵥᵢₛᵢₜ . Minimal conditions for obtaining adequate performance of community abundance models were n ₛᵢₜₑ ≥ 20, [Formula: see text] ≥ 0.2, and [Formula: see text] ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance ...: 0.1, 0.5, 1, 5), detection probability ...: 0.1, 0.2, 0.5), and number of sampling sites (n site : 10, 20, 40) and visits (n visit : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables ..., ..., n site , n visit ) increased. Detection probability ... was most important for the estimates of mean abundance, while ... was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site greater than or equal to 20, ... greater than or equal to 0.2, and ... greater than or equal to 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate beta diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance [Formula: see text]: 0.1, 0.5, 1, 5), detection probability [Formula: see text]: 0.1, 0.2, 0.5), and number of sampling sites (n ₛᵢₜₑ : 10, 20, 40) and visits (n ᵥᵢₛᵢₜ : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables [Formula: see text], [Formula: see text], n ₛᵢₜₑ , n ᵥᵢₛᵢₜ) increased. Detection probability [Formula: see text] was most important for the estimates of mean abundance, while [Formula: see text] was most influential for covariate effect and species richness estimates. For all parameters, increasing n ₛᵢₜₑ was more beneficial than increasing n ᵥᵢₛᵢₜ . Minimal conditions for obtaining adequate performance of community abundance models were n ₛᵢₜₑ ≥ 20, [Formula: see text] ≥ 0.2, and [Formula: see text] ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance [Formula: see text]: 0.1, 0.5, 1, 5), detection probability [Formula: see text]: 0.1, 0.2, 0.5), and number of sampling sites (n ₛᵢₜₑ : 10, 20, 40) and visits (n ᵥᵢₛᵢₜ : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables [Formula: see text], [Formula: see text], n ₛᵢₜₑ , n ᵥᵢₛᵢₜ) increased. Detection probability [Formula: see text] was most important for the estimates of mean abundance, while [Formula: see text] was most influential for covariate effect and species richness estimates. For all parameters, increasing n ₛᵢₜₑ was more beneficial than increasing n ᵥᵢₛᵢₜ . Minimal conditions for obtaining adequate performance of community abundance models were n ₛᵢₜₑ ≥ 20, [Formula: see text] ≥ 0.2, and [Formula: see text] ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
Community N -mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance ( λ ¯ : 0.1, 0.5, 1, 5), detection probability ( p ¯ : 0.1, 0.2, 0.5), and number of sampling sites ( n site : 10, 20, 40) and visits ( n visit : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables ( λ ¯ , p ¯ , n site , n visit ) increased. Detection probability p ¯ was most important for the estimates of mean abundance, while λ ¯ was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site  ≥ 20, p ¯  ≥ 0.2, and λ ¯  ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N -mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance ...: 0.1, 0.5, 1, 5), detection probability ...: 0.1, 0.2, 0.5), and number of sampling sites (n ^sub site^: 10, 20, 40) and visits (n ^sub visit^: 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables ..., ..., n ^sub site^, n ^sub visit^) increased. Detection probability ... was most important for the estimates of mean abundance, while ... was most influential for covariate effect and species richness estimates. For all parameters, increasing n ^sub site^ was more beneficial than increasing n ^sub visit^. Minimal conditions for obtaining adequate performance of community abundance models were n ^sub site^ [greater than or equal to] 20, ... [greater than or equal to] 0.2, and ... [greater than or equal to] 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate [beta] diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
Community N‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance (λ¯: 0.1, 0.5, 1, 5), detection probability (p¯: 0.1, 0.2, 0.5), and number of sampling sites (nsite: 10, 20, 40) and visits (nvisit: 2, 3, 4) on the bias and precision of species‐level parameters (mean abundance and covariate effect) and a community‐level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables (λ¯, p¯, nsite, nvisit) increased. Detection probability p¯ was most important for the estimates of mean abundance, while λ¯ was most influential for covariate effect and species richness estimates. For all parameters, increasing nsite was more beneficial than increasing nvisit. Minimal conditions for obtaining adequate performance of community abundance models were nsite ≥ 20, p¯ ≥ 0.2, and λ¯ ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N‐mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
Community N ‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance : 0.1, 0.5, 1, 5), detection probability : 0.1, 0.2, 0.5), and number of sampling sites ( n site : 10, 20, 40) and visits ( n visit : 2, 3, 4) on the bias and precision of species‐level parameters (mean abundance and covariate effect) and a community‐level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables , , n site , n visit ) increased. Detection probability was most important for the estimates of mean abundance, while was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site ≥ 20, ≥ 0.2, and ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N ‐mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
Author Yamaura, Yuichi
Andrew Royle, J.
Kéry, Marc
Author_xml – sequence: 1
  fullname: Yamaura, Yuichi
– sequence: 2
  fullname: Kéry, Marc
– sequence: 3
  fullname: Andrew Royle, J
BookMark eNqFksGO1SAYhRszJt4ZfQBXkrhxU-UvUMCdmVwdk4kmjrMmlNIbbihUaKP3QXxf6VQTM4uZ1Q_kfIccDufVWYjBVtVLwG8BY_4uAzSC1hjaGgjFNX1S7YCWBXBMzqodltDURAB9Vp3nfMQYGsnxrvp9My_9CcUBdS76eHBGe2TiOC7Bzc5mlJfuaM2M5ojcONk0rJvezmW4GN4XTGekQ4-mZI3L5Ww1--dwQl_q0f2al2SR7pbQ62AsGmNvfUYuoDxq7-usx8lblN286NU1P6-eDtpn--LvvKhuP-6_X17V118_fb78cF0byoiszYCltD1tsdRSMtb2BIRglBDRSAac9S3hhHSyH7oOQFAmWD8wSanupGGEXFRvNt8pxR-LzbMaXTbWex1sXLICgQk0GIrLo1IuuOSiEaxIX9-THuOSQgmyqhoiQWJRVHxTmRRzTnZQxs138eeknVeA1dqs2ppVpVm1NqtoIeEeOSU36nR6kGk35qfz9vQ4oPbf9rgRsoDNBubChINN_4V54LZXGzToqPQhuaxub8o7tuu_49By8gezBtGO
CitedBy_id crossref_primary_10_3161_15081109ACC2018_20_2_016
crossref_primary_10_1016_j_foreco_2020_118131
crossref_primary_10_1002_ecy_2759
crossref_primary_10_1016_j_gecco_2022_e02296
crossref_primary_10_1111_ecog_05379
crossref_primary_10_1111_ecog_05577
crossref_primary_10_1111_2041_210X_13875
crossref_primary_10_1007_s13253_017_0316_3
crossref_primary_10_1002_ecs2_4954
crossref_primary_10_1111_icad_12661
crossref_primary_10_1016_j_agee_2018_06_014
crossref_primary_10_1016_j_foreco_2016_10_008
crossref_primary_10_1002_eap_1650
crossref_primary_10_1016_j_jfca_2021_104343
crossref_primary_10_1007_s10531_021_02178_8
crossref_primary_10_1002_eap_2249
crossref_primary_10_1002_eap_1632
crossref_primary_10_3390_computers13100255
crossref_primary_10_1002_ecs2_1902
crossref_primary_10_1002_eap_2802
crossref_primary_10_1111_acv_13015
crossref_primary_10_1002_ece3_2244
crossref_primary_10_1002_jwmg_21266
crossref_primary_10_1002_ece3_4821
crossref_primary_10_1016_j_soilbio_2020_108042
crossref_primary_10_1111_1440_1703_12222
crossref_primary_10_1111_2041_210X_12856
crossref_primary_10_47603_mano_v10n1_389
crossref_primary_10_1002_ecy_2362
crossref_primary_10_1016_j_agee_2021_107539
crossref_primary_10_1108_MRR_09_2020_0598
crossref_primary_10_1016_j_gecco_2022_e02046
crossref_primary_10_1016_j_gecco_2023_e02420
crossref_primary_10_1002_ecs2_2101
crossref_primary_10_1002_ecs2_2028
crossref_primary_10_1007_s10531_018_1510_5
crossref_primary_10_7717_peerj_12906
crossref_primary_10_1098_rspb_2022_0338
crossref_primary_10_1016_j_baae_2017_09_002
Cites_doi 10.1086/378901
10.1111/1365-2664.12272
10.1007/978-1-4471-3708-5
10.1111/j.2041-210X.2012.00225.x
10.2307/3677009
10.1111/geb.12207
10.1111/j.1600-0706.2013.01073.x
10.1111/jbi.12087
10.1111/j.1365-2664.2007.01441.x
10.1111/j.0030-1299.2005.13534.x
10.1111/2041-210X.12333
10.1890/04-1120
10.1111/j.1365-2656.2005.00940.x
10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2
10.1111/j.1365-2664.2010.01922.x
10.1111/cobi.12046
10.1111/j.1365-2745.2006.01151.x
10.1890/07-2147.1
10.2193/2007-294
10.1111/biom.12246
10.1016/j.foreco.2012.08.039
10.1111/j.0006-341X.2004.00142.x
10.1111/1365-2664.12252
10.1002/ece3.976
10.1034/j.1600-0706.2002.960313.x
10.2307/3546022
10.1111/geb.12268
10.1371/journal.pone.0099571
10.1016/S0006-3207(00)00208-1
10.1111/j.1467-9876.2005.00466.x
10.1111/j.1523-1739.2004.00105.x
10.1890/04-1060
10.1890/09-1033.1
10.1111/1365-2664.12399
10.1198/106186007X181425
10.1890/13-0791.1
10.1111/j.1461-0248.2004.00707.x
10.1007/978-0-387-78151-8_28
10.1111/2041-210x.12023
10.1111/j.2041-210X.2010.00017.x
10.2307/2265557
10.1111/j.1365-2664.2005.01098.x
10.1007/978-4-431-99495-4_12
10.1017/S0959270908000294
10.1111/j.1365-2664.2010.01811.x
10.1111/2041-210X.12296
10.1016/j.tree.2013.10.012
10.1111/j.1472-4642.2011.00874.x
10.1198/016214505000000015
10.1111/ddi.12255
10.1890/14-1248.1
10.1371/journal.pone.0052015
10.1046/j.1461-0248.2001.00230.x
10.2326/osj.12.73
10.1111/geb.12138
10.1111/1365-2745.12021
10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2
10.1002/jwmg.499
10.1111/j.1600-0587.2010.06433.x
10.1086/505764
10.1016/j.biocon.2015.07.027
10.1007/s10531-012-0244-z
10.1525/auk.2008.06185
10.1525/auk.2012.11093
10.1111/j.1365-2664.2006.01271.x
10.1034/j.1600-0706.2002.990101.x
10.1111/j.1461-0248.2010.01552.x
10.1890/10-1251.1
10.1111/j.1365-2664.2009.01664.x
10.1371/journal.pone.0094323
10.1093/oso/9780198506492.001.0001
10.1111/j.1365-2699.2010.02345.x
10.1093/oso/9780198507833.001.0001
ContentType Journal Article
Copyright The Author(s) 2016
2016 The Ecological Society of Japan
The Ecological Society of Japan 2016
Copyright_xml – notice: The Author(s) 2016
– notice: 2016 The Ecological Society of Japan
– notice: The Ecological Society of Japan 2016
DBID FBQ
C6C
24P
AAYXX
CITATION
3V.
7QG
7SN
7SS
7ST
7XB
8FD
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H95
HCIFZ
L.G
LK8
M2O
M7P
MBDVC
P64
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
RC3
SOI
7U6
7S9
L.6
DOI 10.1007/s11284-016-1340-4
DatabaseName AGRIS
Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts
AGRICOLA


Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Zoology
Forestry
EISSN 1440-1703
EndPage 305
ExternalDocumentID 4029182501
10_1007_s11284_016_1340_4
ERE0289
US201600127167
Genre miscellaneous
Feature
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 23780153; 26292074
– fundername: Swiss National Science Foundation
  grantid: 31_146125
GroupedDBID -4W
-56
-5G
-BR
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1OB
1OC
1SB
2.D
203
28-
29G
29~
2J2
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
31~
33P
3SX
3V.
4.4
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7XC
8-1
8CJ
8FE
8FH
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHHS
AAIAL
AAJKR
AANLZ
AANXM
AARHV
AARTL
AASGY
AATVU
AAWCG
AAXRX
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABCUV
ABDBF
ABHLI
ABHUG
ABJNI
ABJOX
ABKTR
ABMNI
ABMYL
ABNWP
ABPLI
ABQBU
ABTEG
ABTHY
ABTMW
ABUWG
ACAHQ
ACBXY
ACCFJ
ACCZN
ACGFS
ACHXU
ACKNC
ACOKC
ACOMO
ACPOU
ACPRK
ACSNA
ACXBN
ACXQS
ADBBV
ADDAD
ADHHG
ADHIR
ADIMF
ADINQ
ADKPE
ADKYN
ADMGS
ADOZA
ADRFC
ADXAS
ADZKW
ADZMN
ADZOD
AEBTG
AEEZP
AEFIE
AEGAL
AEGNC
AEIGN
AEJHL
AEKMD
AENEX
AEOHA
AEPYU
AEQDE
AETLH
AEUYR
AEXYK
AFBBN
AFEXP
AFFPM
AFGCZ
AFGKR
AFKRA
AFLOW
AFNRJ
AFRAH
AFWTZ
AFZJQ
AFZKB
AGAYW
AGGDS
AGJBK
AGJLS
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBTC
AHBYD
AHKAY
AHSBF
AHYZX
AIIXL
AIURR
AIWBW
AJBDE
AJBLW
AJRNO
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALWAN
AMKLP
AMYDB
AMYQR
ARMRJ
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BENPR
BFHJK
BGNMA
BHPHI
BIYOS
BKSAR
BPHCQ
CAG
CCPQU
CO8
COF
CS3
CSCUP
D1J
DCZOG
DL5
DRFUL
DRSTM
DU5
DWQXO
EAD
EAP
EAS
EBD
EBO
EBS
EDH
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
FBQ
FEDTE
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GNUQQ
GQ6
GQ7
GQ8
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
ITM
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KOW
KPH
LAS
LATKE
LEEKS
LH4
LK8
LW6
LYRES
M2O
M4Y
M7P
MA-
MEWTI
MXFUL
MXSTM
N2Q
NB0
NDZJH
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P2W
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT5
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAMSI
SAP
SBL
SDH
SDM
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SSXJD
SUPJJ
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
VC2
W23
W48
WH7
WJK
WK6
WK8
WXSBR
Y6R
YLTOR
Z45
ZOVNA
ZZTAW
~8M
~KM
AAHBH
AAHQN
AAMNL
AAYCA
AAYZH
ABQSL
ACUHS
AEUYN
AFWVQ
AITYG
ALVPJ
C6C
H13
HGLYW
ZMTXR
24P
AAYXX
ABFSG
ACSTC
ADHKG
AEYWJ
AEZWR
AFHIU
AGHNM
AGQPQ
AGYGG
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
7QG
7SN
7SS
7ST
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
MBDVC
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7U6
7S9
L.6
ID FETCH-LOGICAL-c4539-cf099ed4609a99556d318854338295175d63733b9dfbb1184585df5944ab9c533
IEDL.DBID 24P
ISSN 0912-3814
IngestDate Thu Jul 10 17:03:59 EDT 2025
Fri Jul 11 16:44:13 EDT 2025
Wed Aug 13 11:16:05 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 04:06:43 EDT 2025
Wed Jan 22 16:22:02 EST 2025
Fri Feb 21 02:40:35 EST 2025
Wed Mar 13 07:57:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Data augmentation
Count data
β (beta) diversity
False negative
Species richness
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4539-cf099ed4609a99556d318854338295175d63733b9dfbb1184585df5944ab9c533
Notes http://dx.doi.org/10.1007/s11284-016-1340-4
Yuichi Yamaura is the recipient of the 18th Denzaburo Miyadi Award.
The online version of this article (doi:10.1007/s11284‐016‐1340‐4) contains supplementary material, which is available to authorized users.
Electronic supplementary material
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs11284-016-1340-4
PQID 1782391908
PQPubID 31033
PageCount 17
ParticipantIDs proquest_miscellaneous_1803120137
proquest_miscellaneous_1787978285
proquest_journals_1782391908
crossref_citationtrail_10_1007_s11284_016_1340_4
crossref_primary_10_1007_s11284_016_1340_4
wiley_primary_10_1007_s11284_016_1340_4_ERE0289
springer_journals_10_1007_s11284_016_1340_4
fao_agris_US201600127167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Ecological research
PublicationTitleAbbrev Ecol Res
PublicationYear 2016
Publisher Springer Japan
Blackwell Publishing Ltd
Publisher_xml – name: Springer Japan
– name: Blackwell Publishing Ltd
References Banks-Leite, Pardini, Boscolo, Cassano, Püttker, Barros, Barlow (CR3) 2014; 51
Chen, Kéry, Plattner, Ma, Gardner (CR15) 2013; 101
Ovaskainen, Soininen (CR65) 2011; 92
Chandler, King, Raudales, Trubey, Chandler, Chávez (CR12) 2013; 27
White, Rassweiler, Samhouri, Stier, White (CR84) 2014; 123
Chao, Chazdon, Colwell, Shen (CR13) 2005; 8
Iknayan, Tingley, Furnas, Beissinger (CR37) 2014; 29
McIntyre, Jones, Lund, Waterstrat, Giovanini, Duke, Hayes, Quinn, Kroll (CR61) 2012; 286
CR39
Wintle, Walshe, Parris, McCarthy (CR86) 2012; 18
Guillera-Arroita, Lahoz-Monfort (CR31) 2012; 3
Kéry, Schaub (CR47) 2012
CR79
Dennis, Morgan, Ridout (CR19) 2015; 71
Beck, Holloway, Schwanghart (CR5) 2013; 4
Dorazio, Royle, Söderström, Glimskär (CR22) 2006; 87
Lahoz-Monfort, Guillera-Arroita, Wintle (CR53) 2014; 23
Kéry (CR42) 2010
Buckland, Anderson, Burnham, Laake, Borchers, Thomas (CR10) 2004
Royle, Nichols, Kéry (CR72) 2005; 110
Guillera-Arroita, Lahoz-Monfort, MacKenzie, Wintle, McCarthy (CR33) 2014; 9
Hunt, Weckerly, Ott (CR36) 2012; 129
Fahrig (CR27) 2001; 100
Link, Sauer (CR56) 1996; 77
Gotelli, Colwell (CR30) 2001; 4
Tyler, Hargrove (CR81) 1997; 79
Dorazio, Kéry, Royle, Plattner (CR23) 2010; 91
Buckland, Marsden, Green (CR11) 2008; 18
Ehrlich, Roughgarden (CR26) 1987
O’Hara (CR63) 2005; 74
Royle, Chandler, Sollmann, Gardner (CR74) 2014
Yamaura, Royle, Shimada, Asanuma, Sato, Taki, Makino (CR89) 2012; 21
Broms, Hooten, Fitzpatrick (CR8) 2015; 6
Crist, Veech, Gering, Summerville (CR17) 2003; 162
Senzaki, Yamaura, Nakamura (CR78) 2015; 191
Legendre (CR54) 2014; 23
Buckland, Anderson, Burnham, Laake, Borchers, Thomas (CR9) 2001
Kéry (CR40) 2004; 18
Dénes, Silveira, Beissinger (CR18) 2015; 6
Chao, Colwell, Lin, Gotelli (CR14) 2009; 90
Johnson (CR38) 2008; 72
Higa, Yamaura, Koizumi, Yabuhara, Senzaki, Ono (CR35) 2015; 21
Kéry, Spillmann, Truong, Holderegger (CR49) 2006; 94
Royle, Dorazio, Link (CR73) 2007; 16
Bibby, Burgess, Hill, Mustoe (CR6) 2000
Dorazio, Gotelli, Ellison, Grillo, Venora (CR24) 2011
Tobler, Hartley, Carrillo-Percastegui, Powell (CR80) 2015; 52
Kéry, Royle, Schmid (CR48) 2005; 15
Rota, Fletcher, Evans, Hutto (CR69) 2011; 34
Kéry, O’Connell, Nichols, Karanth (CR43) 2011
Fletcher (CR28) 2006; 168
Kéry (CR41) 2008; 125
Mc New, Handel (CR60) 2015; 25
Dorazio, Royle (CR21) 2005; 100
King, Morgan, Gimenez, Brooks (CR52) 2010
Pacifici, Zipkin, Collazo, Irizarry, DeWan (CR66) 2014; 4
Guillera-Arroita, Lahoz-Monfort, Elith, Gordon, Kujala, Lentini, McCarthy, Tingley, Wintle (CR34) 2015; 24
Welsh, Lindenmayer, Donnelly (CR83) 2013; 8
Couturier, Cheylan, Bertolero, Astruc, Besnard (CR16) 2013; 77
Guillera-Arroita, Ridout, Morgan (CR32) 2010; 1
Borchers, Buckland, Zucchini (CR7) 2002
MacKenzie, Royle (CR57) 2005; 42
Yamaura, Royle, Kuboi, Tada, Ikeno, Makino (CR88) 2011; 48
Kéry, Guillera-Arroita, Lahoz-Monfort (CR51) 2013; 40
Drapeau, Leduc, McNeil (CR25) 1999; 30
Kéry, Royle (CR44) 2008; 45
Sauer, Link (CR77) 2002; 83
Kéry, Gardner, Monnerat (CR50) 2010; 37
Zipkin, DeWan, Royle (CR90) 2009; 46
MacKenzie, Nichols, Sutton, Kawanishi, Bailey (CR58) 2005; 86
Barnagaud, Barbaro, Papaïx, Deconchat, Brockerhoff (CR4) 2014; 95
Sanderlin, Block, Ganey (CR76) 2014; 51
Alldredge, Pollock, Simons, Shriner (CR1) 2007; 44
Anderson, Crist, Chase, Vellend, Inouye, Freestone, Sanders, Cornell, Comita, Davies, Harrison, Kraft, Stegen, Swenson (CR2) 2011; 14
CR68
Ruiz-Gutiérrez, Zipkin, Dhondt (CR75) 2010; 47
Williams, Nichols, Conroy (CR85) 2002
CR67
Yamaura (CR87) 2013; 12
Royle, Dorazio (CR71) 2008
Kéry, Royle, Thomson, Cooch, Conroy (CR45) 2009
Dorazio, Connor (CR20) 2014; 9
Moilanen (CR62) 2002; 96
CR64
Link, Barker (CR55) 2009
Royle (CR70) 2004; 60
Gelfand, Schmidt, Wu, Silander, Latimer, Rebelo (CR29) 2005; 54
MacKenzie, Nichols, Royle, Pollock, Bailey, Hines (CR59) 2006
Kéry, Royle (CR46) 2016
Veech, Summerville, Crist, Gering (CR82) 2002; 99
2001; 100
2009; 46
2012; 286
2013; 4
2013; 27
2004; 60
2015; 71
2002; 96
2002; 99
2012; 18
2014; 29
2011; 14
2008; 72
2013; 8
2012; 129
2014; 23
1996; 77
2014; 4
2010; 1
2001
2000
2005; 100
2002; 83
2013; 12
2009; 90
2003; 162
1987
2005; 74
2014; 9
2014; 51
2014; 95
2012; 21
2014; 123
2006; 168
2015; 6
2010; 37
2006; 94
2012
2005; 110
2011
2010
2008; 18
2013; 40
2015; 52
2013; 101
2009
2008
2005; 42
2005; 86
2006
2004
2011; 34
2008; 125
2002
2007; 16
2015; 24
2015; 25
2015; 191
2012; 3
2010; 47
2013; 77
2004; 18
2006; 87
2001; 4
2005; 8
2011; 92
1997; 79
2015; 21
2008; 45
2005; 54
2016
1999; 30
2015
2014
2011; 48
2013
2005; 15
2010; 91
2007; 44
Kéry M (e_1_2_6_48_1) 2012
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_83_1
Buckland ST (e_1_2_6_10_1) 2001
Dorazio RM (e_1_2_6_25_1) 2011
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_31_1
Kéry M (e_1_2_6_47_1) 2016
e_1_2_6_50_1
e_1_2_6_71_1
Bibby CJ (e_1_2_6_7_1) 2000
Ehrlich PR (e_1_2_6_27_1) 1987
e_1_2_6_90_1
Kéry M (e_1_2_6_43_1) 2010
R Core Team (e_1_2_6_69_1) 2014
King R (e_1_2_6_53_1) 2010
Royle JA (e_1_2_6_72_1) 2008
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
MacKenzie DI (e_1_2_6_60_1) 2006
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
Buckland ST (e_1_2_6_11_1) 2004
Royle JA (e_1_2_6_75_1) 2014
Williams BK (e_1_2_6_86_1) 2002
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
Link WA (e_1_2_6_56_1) 2009
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_46_1
References_xml – volume: 162
  start-page: 734
  year: 2003
  end-page: 743
  ident: CR17
  article-title: Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity
  publication-title: Am Nat
  doi: 10.1086/378901
– volume: 51
  start-page: 849
  year: 2014
  end-page: 859
  ident: CR3
  article-title: Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12272
– ident: CR68
– year: 2016
  ident: CR46
  publication-title: Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness using R and BUGS, vol 1. Prelude and static models
– start-page: 277
  year: 2011
  end-page: 302
  ident: CR24
  article-title: Modern methods of estimating biodiversity from presence-absence surveys
  publication-title: Biodiversity loss in a changing planet
– year: 2002
  ident: CR7
  publication-title: Estimating animal abundance: closed populations
  doi: 10.1007/978-1-4471-3708-5
– ident: CR39
– volume: 3
  start-page: 860
  year: 2012
  end-page: 869
  ident: CR31
  article-title: Designing studies to detect differences in species occupancy: power analysis under imperfect detection
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2012.00225.x
– volume: 30
  start-page: 367
  year: 1999
  end-page: 382
  ident: CR25
  article-title: Refining the use of point counts at the scale of individual points in studies of bird-habitat relationships
  publication-title: J Avian Biol
  doi: 10.2307/3677009
– volume: 23
  start-page: 1324
  year: 2014
  end-page: 1334
  ident: CR54
  article-title: Interpreting the replacement and richness difference components of beta diversity
  publication-title: Global Ecol Biogeogr
  doi: 10.1111/geb.12207
– volume: 123
  start-page: 385
  year: 2014
  end-page: 388
  ident: CR84
  article-title: Ecologists should not use statistical significance tests to interpret simulation model results
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2013.01073.x
– year: 2006
  ident: CR59
  publication-title: Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence
– year: 2010
  ident: CR42
  publication-title: Introduction to WinBUGS for ecologists: a Bayesian approach to regression, ANOVA, mixed models and related analysis
– volume: 40
  start-page: 1463
  year: 2013
  end-page: 1474
  ident: CR51
  article-title: Analysing and mapping species range dynamics using occupancy models
  publication-title: J Biogeogr
  doi: 10.1111/jbi.12087
– volume: 45
  start-page: 589
  year: 2008
  end-page: 598
  ident: CR44
  article-title: Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2007.01441.x
– volume: 110
  start-page: 353
  year: 2005
  end-page: 359
  ident: CR72
  article-title: Modelling occurrence and abundance of species when detection is imperfect
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2005.13534.x
– volume: 6
  start-page: 543
  year: 2015
  end-page: 556
  ident: CR18
  article-title: Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12333
– volume: 15
  start-page: 1450
  year: 2005
  end-page: 1461
  ident: CR48
  article-title: Modeling avian abundance from replicated counts using binomial mixture models
  publication-title: Ecol Appl
  doi: 10.1890/04-1120
– volume: 74
  start-page: 375
  year: 2005
  end-page: 386
  ident: CR63
  article-title: Species richness estimators: how many species can dance on the head of a pin?
  publication-title: J Anim Ecol
  doi: 10.1111/j.1365-2656.2005.00940.x
– volume: 87
  start-page: 842
  year: 2006
  end-page: 854
  ident: CR22
  article-title: Estimating species richness and accumulation by modeling species occurrence and detectability
  publication-title: Ecology
  doi: 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2
– volume: 48
  start-page: 67
  year: 2011
  end-page: 75
  ident: CR88
  article-title: Modelling community dynamics based on species-level abundance models from detection/nondetection data
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2010.01922.x
– volume: 27
  start-page: 785
  year: 2013
  end-page: 795
  ident: CR12
  article-title: A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes
  publication-title: Conserv Biol
  doi: 10.1111/cobi.12046
– volume: 94
  start-page: 980
  year: 2006
  end-page: 986
  ident: CR49
  article-title: How biased are estimates of extinction probability in revisitation studies?
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2006.01151.x
– volume: 90
  start-page: 1125
  year: 2009
  end-page: 1133
  ident: CR14
  article-title: Sufficient sampling for asymptotic minimum species richness estimators
  publication-title: Ecology
  doi: 10.1890/07-2147.1
– volume: 72
  start-page: 857
  year: 2008
  end-page: 868
  ident: CR38
  article-title: In defense of indices: the case of bird surveys
  publication-title: J Wildl Manage
  doi: 10.2193/2007-294
– volume: 71
  start-page: 237
  year: 2015
  end-page: 246
  ident: CR19
  article-title: Computational aspects of -mixture models
  publication-title: Biometrics
  doi: 10.1111/biom.12246
– ident: CR67
– year: 2004
  ident: CR10
  publication-title: Advanced distance sampling: estimating abundance of biological populations
– volume: 286
  start-page: 129
  year: 2012
  end-page: 136
  ident: CR61
  article-title: Empirical and simulation evaluations of an abundance estimator using unmarked individuals of cryptic forest-dwelling taxa
  publication-title: For Ecol Manage
  doi: 10.1016/j.foreco.2012.08.039
– volume: 60
  start-page: 108
  year: 2004
  end-page: 115
  ident: CR70
  article-title: -mixture models for estimating population size from spatially replicated counts
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00142.x
– volume: 51
  start-page: 860
  year: 2014
  end-page: 870
  ident: CR76
  article-title: Optimizing study design for multi-species avian monitoring programmes
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12252
– volume: 4
  start-page: 877
  year: 2014
  end-page: 888
  ident: CR66
  article-title: Guidelines for a priori grouping of species in hierarchical community models
  publication-title: Ecol Evol
  doi: 10.1002/ece3.976
– volume: 96
  start-page: 516
  year: 2002
  end-page: 530
  ident: CR62
  article-title: Implications of empirical data quality to metapopulation model parameter estimation and application
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2002.960313.x
– volume: 79
  start-page: 376
  year: 1997
  end-page: 386
  ident: CR81
  article-title: Predicting spatial distribution of foragers over large resource landscapes: a modeling analysis of the Ideal Free Distribution
  publication-title: Oikos
  doi: 10.2307/3546022
– volume: 24
  start-page: 276
  year: 2015
  end-page: 292
  ident: CR34
  article-title: Is my species distribution model fit for purpose? Matching data and models to applications
  publication-title: Global Ecol Biogeogr
  doi: 10.1111/geb.12268
– year: 2012
  ident: CR47
  publication-title: Bayesian population analysis using WinBUGS: a hierarchical perspective
– volume: 9
  start-page: e99571
  year: 2014
  ident: CR33
  article-title: Ignoring imperfect detection in biological surveys is dangerous: a response to ‘Fitting and interpreting occupancy models’
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099571
– volume: 100
  start-page: 65
  year: 2001
  end-page: 74
  ident: CR27
  article-title: How much habitat is enough?
  publication-title: Biol Conserv
  doi: 10.1016/S0006-3207(00)00208-1
– volume: 54
  start-page: 1
  year: 2005
  end-page: 20
  ident: CR29
  article-title: Modelling species diversity through species level hierarchical modelling
  publication-title: J Roy Stat Soc: Ser C (Appl Stat)
  doi: 10.1111/j.1467-9876.2005.00466.x
– volume: 18
  start-page: 570
  year: 2004
  end-page: 574
  ident: CR40
  article-title: Extinction rate estimates for plant populations in revisitation studies: importance of detectability
  publication-title: Conserv Biol
  doi: 10.1111/j.1523-1739.2004.00105.x
– volume: 86
  start-page: 1101
  year: 2005
  end-page: 1113
  ident: CR58
  article-title: Improving inferences in population studies of rare species that are detected imperfectly
  publication-title: Ecology
  doi: 10.1890/04-1060
– year: 2001
  ident: CR9
  publication-title: Introduction to distance sampling: estimating abundance of biological populations
– ident: CR64
– volume: 91
  start-page: 2466
  year: 2010
  end-page: 2475
  ident: CR23
  article-title: Models for inference in dynamic metacommunity systems
  publication-title: Ecology
  doi: 10.1890/09-1033.1
– volume: 52
  start-page: 413
  year: 2015
  end-page: 421
  ident: CR80
  article-title: Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12399
– volume: 16
  start-page: 67
  year: 2007
  end-page: 85
  ident: CR73
  article-title: Analysis of multinomial models with unknown index using data augmentation
  publication-title: J Comput Graph Stat
  doi: 10.1198/106186007X181425
– volume: 95
  start-page: 78
  year: 2014
  end-page: 87
  ident: CR4
  article-title: Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds
  publication-title: Ecology
  doi: 10.1890/13-0791.1
– volume: 8
  start-page: 148
  year: 2005
  end-page: 159
  ident: CR13
  article-title: A new statistical approach for assessing similarity of species composition with incidence and abundance data
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2004.00707.x
– year: 2008
  ident: CR71
  publication-title: Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities
– year: 2002
  ident: CR85
  publication-title: Analysis and management of animal populations
– start-page: 639
  year: 2009
  end-page: 656
  ident: CR45
  article-title: Inference about species richness and community structure using species-specific occupancy models in the National Swiss Breeding Bird Survey MHB
  publication-title: Modeling demographic processes in marked populations
  doi: 10.1007/978-0-387-78151-8_28
– volume: 4
  start-page: 370
  year: 2013
  end-page: 382
  ident: CR5
  article-title: Undersampling and the measurement of beta diversity
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210x.12023
– volume: 1
  start-page: 131
  year: 2010
  end-page: 139
  ident: CR32
  article-title: Design of occupancy studies with imperfect detection
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2010.00017.x
– volume: 77
  start-page: 1633
  year: 1996
  end-page: 1640
  ident: CR56
  article-title: Extremes in ecology: avoiding the misleading effects of sampling variation in summary analyses
  publication-title: Ecology
  doi: 10.2307/2265557
– volume: 42
  start-page: 1105
  year: 2005
  end-page: 1114
  ident: CR57
  article-title: Designing occupancy studies: general advice and allocating survey effort
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2005.01098.x
– start-page: 207
  year: 2011
  end-page: 231
  ident: CR43
  article-title: Species richness and community dynamics: a conceptual framework
  publication-title: Camera traps in animal ecology
  doi: 10.1007/978-4-431-99495-4_12
– ident: CR79
– volume: 18
  start-page: S91
  year: 2008
  end-page: S108
  ident: CR11
  article-title: Estimating bird abundance: making methods work
  publication-title: Bird Conserv Int
  doi: 10.1017/S0959270908000294
– volume: 47
  start-page: 621
  year: 2010
  end-page: 630
  ident: CR75
  article-title: Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2010.01811.x
– volume: 6
  start-page: 99
  year: 2015
  end-page: 108
  ident: CR8
  article-title: Accounting for imperfect detection in Hill numbers for biodiversity studies
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12296
– volume: 29
  start-page: 97
  year: 2014
  end-page: 106
  ident: CR37
  article-title: Detecting diversity: emerging methods to estimate species diversity
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2013.10.012
– volume: 37
  start-page: 1851
  year: 2010
  end-page: 1862
  ident: CR50
  article-title: Predicting species distributions from checklist data using site-occupancy models
  publication-title: J Biogeogr
– volume: 18
  start-page: 417
  year: 2012
  end-page: 424
  ident: CR86
  article-title: Designing occupancy surveys and interpreting non-detection when observations are imperfect
  publication-title: Divers Distrib
  doi: 10.1111/j.1472-4642.2011.00874.x
– volume: 100
  start-page: 389
  year: 2005
  end-page: 398
  ident: CR21
  article-title: Estimating size and composition of biological communities by modeling the occurrence of species
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000000015
– volume: 21
  start-page: 46
  year: 2015
  end-page: 54
  ident: CR35
  article-title: Mapping large-scale bird distributions using occupancy models and citizen data with spatially biased sampling effort
  publication-title: Divers Distrib
  doi: 10.1111/ddi.12255
– year: 2010
  ident: CR52
  publication-title: Bayesian analysis for population ecology
– volume: 25
  start-page: 1669
  year: 2015
  end-page: 1680
  ident: CR60
  article-title: Evaluating species richness: biased ecological inference results from spatial heterogeneity in detection probabilities
  publication-title: Ecol Appl
  doi: 10.1890/14-1248.1
– volume: 8
  start-page: e52015
  year: 2013
  ident: CR83
  article-title: Fitting and interpreting occupancy models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052015
– volume: 4
  start-page: 379
  year: 2001
  end-page: 391
  ident: CR30
  article-title: Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness
  publication-title: Ecol Lett
  doi: 10.1046/j.1461-0248.2001.00230.x
– volume: 12
  start-page: 73
  year: 2013
  end-page: 88
  ident: CR87
  article-title: Confronting imperfect detection: behavior of binomial mixture models under varying circumstances of visits, sampling sites, detectability, and abundance, in small-sample situations
  publication-title: Ornithol Sci
  doi: 10.2326/osj.12.73
– year: 1987
  ident: CR26
  publication-title: The science of ecology
– volume: 23
  start-page: 504
  year: 2014
  end-page: 515
  ident: CR53
  article-title: Imperfect detection impacts the performance of species distribution models
  publication-title: Global Ecol Biogeogr
  doi: 10.1111/geb.12138
– volume: 101
  start-page: 183
  year: 2013
  end-page: 191
  ident: CR15
  article-title: Imperfect detection is the rule rather than the exception in plant distribution studies
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12021
– year: 2009
  ident: CR55
  publication-title: Bayesian Inference: with ecological applications
– volume: 83
  start-page: 1743
  year: 2002
  end-page: 1751
  ident: CR77
  article-title: Hierarchical modeling of population stability and species group attributes from survey data
  publication-title: Ecology
  doi: 10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2
– volume: 77
  start-page: 454
  year: 2013
  end-page: 462
  ident: CR16
  article-title: Estimating abundance and population trends when detection is low and highly variable: a comparison of three methods for the Hermann’s tortoise
  publication-title: J Wildl Manage
  doi: 10.1002/jwmg.499
– year: 2014
  ident: CR74
  publication-title: Spatial capture-recapture
– volume: 34
  start-page: 659
  year: 2011
  end-page: 670
  ident: CR69
  article-title: Does accounting for imperfect detection improve species distribution models?
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2010.06433.x
– volume: 168
  start-page: 207
  year: 2006
  end-page: 219
  ident: CR28
  article-title: Emergent properties of conspecific attraction in fragmented landscapes
  publication-title: Am Nat
  doi: 10.1086/505764
– volume: 191
  start-page: 460
  year: 2015
  end-page: 468
  ident: CR78
  article-title: The usefulness of top predators as biodiversity surrogates indicated by the relationship between the reproductive outputs of raptors and other bird species
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2015.07.027
– volume: 21
  start-page: 1365
  year: 2012
  end-page: 1380
  ident: CR89
  article-title: Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data
  publication-title: Biodivers Conserv
  doi: 10.1007/s10531-012-0244-z
– volume: 125
  start-page: 336
  year: 2008
  end-page: 345
  ident: CR41
  article-title: Estimating abundance from bird counts: binomial mixture models uncover complex covariate relationships
  publication-title: Auk
  doi: 10.1525/auk.2008.06185
– year: 2000
  ident: CR6
  publication-title: Bird census techniques
– volume: 129
  start-page: 105
  year: 2012
  end-page: 114
  ident: CR36
  article-title: Reliability of occupancy and binomial mixture models for estimating abundance of golden-cheeked warblers ( )
  publication-title: Auk
  doi: 10.1525/auk.2012.11093
– volume: 44
  start-page: 281
  year: 2007
  end-page: 290
  ident: CR1
  article-title: Multiple-species analysis of point count data: a more parsimonious modelling framework
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2006.01271.x
– volume: 99
  start-page: 3
  year: 2002
  end-page: 9
  ident: CR82
  article-title: The additive partitioning of species diversity: recent revival of an old idea
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2002.990101.x
– volume: 14
  start-page: 19
  year: 2011
  end-page: 28
  ident: CR2
  article-title: Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2010.01552.x
– volume: 92
  start-page: 289
  year: 2011
  end-page: 295
  ident: CR65
  article-title: Making more out of sparse data: hierarchical modeling of species communities
  publication-title: Ecology
  doi: 10.1890/10-1251.1
– volume: 46
  start-page: 815
  year: 2009
  end-page: 822
  ident: CR90
  article-title: Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2009.01664.x
– volume: 9
  start-page: e94323
  year: 2014
  ident: CR20
  article-title: Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0094323
– volume: 27
  start-page: 785
  year: 2013
  end-page: 795
  article-title: A small‐scale land‐sparing approach to conserving biological diversity in tropical agricultural landscapes
  publication-title: Conserv Biol
– year: 2009
– volume: 125
  start-page: 336
  year: 2008
  end-page: 345
  article-title: Estimating abundance from bird counts: binomial mixture models uncover complex covariate relationships
  publication-title: Auk
– volume: 95
  start-page: 78
  year: 2014
  end-page: 87
  article-title: Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds
  publication-title: Ecology
– volume: 46
  start-page: 815
  year: 2009
  end-page: 822
  article-title: Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling
  publication-title: J Appl Ecol
– start-page: 277
  year: 2011
  end-page: 302
– volume: 25
  start-page: 1669
  year: 2015
  end-page: 1680
  article-title: Evaluating species richness: biased ecological inference results from spatial heterogeneity in detection probabilities
  publication-title: Ecol Appl
– year: 2001
– volume: 52
  start-page: 413
  year: 2015
  end-page: 421
  article-title: Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data
  publication-title: J Appl Ecol
– volume: 48
  start-page: 67
  year: 2011
  end-page: 75
  article-title: Modelling community dynamics based on species‐level abundance models from detection/nondetection data
  publication-title: J Appl Ecol
– volume: 18
  start-page: S91
  year: 2008
  end-page: S108
  article-title: Estimating bird abundance: making methods work
  publication-title: Bird Conserv Int
– volume: 100
  start-page: 389
  year: 2005
  end-page: 398
  article-title: Estimating size and composition of biological communities by modeling the occurrence of species
  publication-title: J Am Stat Assoc
– volume: 286
  start-page: 129
  year: 2012
  end-page: 136
  article-title: Empirical and simulation evaluations of an abundance estimator using unmarked individuals of cryptic forest‐dwelling taxa
  publication-title: For Ecol Manage
– volume: 24
  start-page: 276
  year: 2015
  end-page: 292
  article-title: Is my species distribution model fit for purpose? Matching data and models to applications
  publication-title: Global Ecol Biogeogr
– volume: 101
  start-page: 183
  year: 2013
  end-page: 191
  article-title: Imperfect detection is the rule rather than the exception in plant distribution studies
  publication-title: J Ecol
– start-page: 639
  year: 2009
  end-page: 656
– volume: 94
  start-page: 980
  year: 2006
  end-page: 986
  article-title: How biased are estimates of extinction probability in revisitation studies?
  publication-title: J Ecol
– volume: 21
  start-page: 46
  year: 2015
  end-page: 54
  article-title: Mapping large‐scale bird distributions using occupancy models and citizen data with spatially biased sampling effort
  publication-title: Divers Distrib
– volume: 99
  start-page: 3
  year: 2002
  end-page: 9
  article-title: The additive partitioning of species diversity: recent revival of an old idea
  publication-title: Oikos
– volume: 6
  start-page: 99
  year: 2015
  end-page: 108
  article-title: Accounting for imperfect detection in Hill numbers for biodiversity studies
  publication-title: Methods Ecol Evol
– volume: 23
  start-page: 1324
  year: 2014
  end-page: 1334
  article-title: Interpreting the replacement and richness difference components of beta diversity
  publication-title: Global Ecol Biogeogr
– volume: 60
  start-page: 108
  year: 2004
  end-page: 115
  article-title: ‐mixture models for estimating population size from spatially replicated counts
  publication-title: Biometrics
– year: 2014
– volume: 34
  start-page: 659
  year: 2011
  end-page: 670
  article-title: Does accounting for imperfect detection improve species distribution models?
  publication-title: Ecography
– start-page: 207
  year: 2011
  end-page: 231
– volume: 9
  start-page: e94323
  year: 2014
  article-title: Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat
  publication-title: PLoS ONE
– volume: 87
  start-page: 842
  year: 2006
  end-page: 854
  article-title: Estimating species richness and accumulation by modeling species occurrence and detectability
  publication-title: Ecology
– volume: 8
  start-page: e52015
  year: 2013
  article-title: Fitting and interpreting occupancy models
  publication-title: PLoS ONE
– volume: 1
  start-page: 131
  year: 2010
  end-page: 139
  article-title: Design of occupancy studies with imperfect detection
  publication-title: Methods Ecol Evol
– volume: 29
  start-page: 97
  year: 2014
  end-page: 106
  article-title: Detecting diversity: emerging methods to estimate species diversity
  publication-title: Trends Ecol Evol
– year: 2008
– year: 2004
– volume: 14
  start-page: 19
  year: 2011
  end-page: 28
  article-title: Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist
  publication-title: Ecol Lett
– volume: 4
  start-page: 877
  year: 2014
  end-page: 888
  article-title: Guidelines for a priori grouping of species in hierarchical community models
  publication-title: Ecol Evol
– volume: 162
  start-page: 734
  year: 2003
  end-page: 743
  article-title: Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity
  publication-title: Am Nat
– volume: 9
  start-page: e99571
  year: 2014
  article-title: Ignoring imperfect detection in biological surveys is dangerous: a response to ‘Fitting and interpreting occupancy models’
  publication-title: PLoS ONE
– volume: 18
  start-page: 417
  year: 2012
  end-page: 424
  article-title: Designing occupancy surveys and interpreting non‐detection when observations are imperfect
  publication-title: Divers Distrib
– volume: 54
  start-page: 1
  year: 2005
  end-page: 20
  article-title: Modelling species diversity through species level hierarchical modelling
  publication-title: J Roy Stat Soc: Ser C (Appl Stat)
– volume: 40
  start-page: 1463
  year: 2013
  end-page: 1474
  article-title: Analysing and mapping species range dynamics using occupancy models
  publication-title: J Biogeogr
– volume: 91
  start-page: 2466
  year: 2010
  end-page: 2475
  article-title: Models for inference in dynamic metacommunity systems
  publication-title: Ecology
– volume: 90
  start-page: 1125
  year: 2009
  end-page: 1133
  article-title: Sufficient sampling for asymptotic minimum species richness estimators
  publication-title: Ecology
– year: 2015
– volume: 42
  start-page: 1105
  year: 2005
  end-page: 1114
  article-title: Designing occupancy studies: general advice and allocating survey effort
  publication-title: J Appl Ecol
– volume: 96
  start-page: 516
  year: 2002
  end-page: 530
  article-title: Implications of empirical data quality to metapopulation model parameter estimation and application
  publication-title: Oikos
– volume: 21
  start-page: 1365
  year: 2012
  end-page: 1380
  article-title: Biodiversity of man‐made open habitats in an underused country: a class of multispecies abundance models for count data
  publication-title: Biodivers Conserv
– volume: 37
  start-page: 1851
  year: 2010
  end-page: 1862
  article-title: Predicting species distributions from checklist data using site‐occupancy models
  publication-title: J Biogeogr
– volume: 77
  start-page: 454
  year: 2013
  end-page: 462
  article-title: Estimating abundance and population trends when detection is low and highly variable: a comparison of three methods for the Hermann's tortoise
  publication-title: J Wildl Manage
– volume: 71
  start-page: 237
  year: 2015
  end-page: 246
  article-title: Computational aspects of ‐mixture models
  publication-title: Biometrics
– volume: 110
  start-page: 353
  year: 2005
  end-page: 359
  article-title: Modelling occurrence and abundance of species when detection is imperfect
  publication-title: Oikos
– volume: 123
  start-page: 385
  year: 2014
  end-page: 388
  article-title: Ecologists should not use statistical significance tests to interpret simulation model results
  publication-title: Oikos
– volume: 44
  start-page: 281
  year: 2007
  end-page: 290
  article-title: Multiple‐species analysis of point count data: a more parsimonious modelling framework
  publication-title: J Appl Ecol
– volume: 4
  start-page: 370
  year: 2013
  end-page: 382
  article-title: Undersampling and the measurement of beta diversity
  publication-title: Methods Ecol Evol
– volume: 3
  start-page: 860
  year: 2012
  end-page: 869
  article-title: Designing studies to detect differences in species occupancy: power analysis under imperfect detection
  publication-title: Methods Ecol Evol
– volume: 191
  start-page: 460
  year: 2015
  end-page: 468
  article-title: The usefulness of top predators as biodiversity surrogates indicated by the relationship between the reproductive outputs of raptors and other bird species
  publication-title: Biol Conserv
– volume: 12
  start-page: 73
  year: 2013
  end-page: 88
  article-title: Confronting imperfect detection: behavior of binomial mixture models under varying circumstances of visits, sampling sites, detectability, and abundance, in small‐sample situations
  publication-title: Ornithol Sci
– volume: 72
  start-page: 857
  year: 2008
  end-page: 868
  article-title: In defense of indices: the case of bird surveys
  publication-title: J Wildl Manage
– volume: 92
  start-page: 289
  year: 2011
  end-page: 295
  article-title: Making more out of sparse data: hierarchical modeling of species communities
  publication-title: Ecology
– year: 1987
– volume: 100
  start-page: 65
  year: 2001
  end-page: 74
  article-title: How much habitat is enough?
  publication-title: Biol Conserv
– volume: 51
  start-page: 860
  year: 2014
  end-page: 870
  article-title: Optimizing study design for multi‐species avian monitoring programmes
  publication-title: J Appl Ecol
– volume: 4
  start-page: 379
  year: 2001
  end-page: 391
  article-title: Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness
  publication-title: Ecol Lett
– year: 2000
– year: 2016
– volume: 129
  start-page: 105
  year: 2012
  end-page: 114
  article-title: Reliability of occupancy and binomial mixture models for estimating abundance of golden‐cheeked warblers ( )
  publication-title: Auk
– year: 2010
– year: 2012
– volume: 15
  start-page: 1450
  year: 2005
  end-page: 1461
  article-title: Modeling avian abundance from replicated counts using binomial mixture models
  publication-title: Ecol Appl
– volume: 8
  start-page: 148
  year: 2005
  end-page: 159
  article-title: A new statistical approach for assessing similarity of species composition with incidence and abundance data
  publication-title: Ecol Lett
– volume: 168
  start-page: 207
  year: 2006
  end-page: 219
  article-title: Emergent properties of conspecific attraction in fragmented landscapes
  publication-title: Am Nat
– volume: 18
  start-page: 570
  year: 2004
  end-page: 574
  article-title: Extinction rate estimates for plant populations in revisitation studies: importance of detectability
  publication-title: Conserv Biol
– volume: 77
  start-page: 1633
  year: 1996
  end-page: 1640
  article-title: Extremes in ecology: avoiding the misleading effects of sampling variation in summary analyses
  publication-title: Ecology
– volume: 51
  start-page: 849
  year: 2014
  end-page: 859
  article-title: Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science
  publication-title: J Appl Ecol
– year: 2002
– volume: 23
  start-page: 504
  year: 2014
  end-page: 515
  article-title: Imperfect detection impacts the performance of species distribution models
  publication-title: Global Ecol Biogeogr
– volume: 16
  start-page: 67
  year: 2007
  end-page: 85
  article-title: Analysis of multinomial models with unknown index using data augmentation
  publication-title: J Comput Graph Stat
– year: 2006
– volume: 30
  start-page: 367
  year: 1999
  end-page: 382
  article-title: Refining the use of point counts at the scale of individual points in studies of bird‐habitat relationships
  publication-title: J Avian Biol
– volume: 6
  start-page: 543
  year: 2015
  end-page: 556
  article-title: Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation
  publication-title: Methods Ecol Evol
– volume: 86
  start-page: 1101
  year: 2005
  end-page: 1113
  article-title: Improving inferences in population studies of rare species that are detected imperfectly
  publication-title: Ecology
– volume: 79
  start-page: 376
  year: 1997
  end-page: 386
  article-title: Predicting spatial distribution of foragers over large resource landscapes: a modeling analysis of the Ideal Free Distribution
  publication-title: Oikos
– volume: 74
  start-page: 375
  year: 2005
  end-page: 386
  article-title: Species richness estimators: how many species can dance on the head of a pin?
  publication-title: J Anim Ecol
– volume: 45
  start-page: 589
  year: 2008
  end-page: 598
  article-title: Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys
  publication-title: J Appl Ecol
– volume: 83
  start-page: 1743
  year: 2002
  end-page: 1751
  article-title: Hierarchical modeling of population stability and species group attributes from survey data
  publication-title: Ecology
– volume: 47
  start-page: 621
  year: 2010
  end-page: 630
  article-title: Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non‐forest species
  publication-title: J Appl Ecol
– year: 2013
– ident: e_1_2_6_74_1
  doi: 10.1198/106186007X181425
– ident: e_1_2_6_42_1
  doi: 10.1525/auk.2008.06185
– ident: e_1_2_6_63_1
  doi: 10.1034/j.1600-0706.2002.960313.x
– ident: e_1_2_6_12_1
  doi: 10.1017/S0959270908000294
– ident: e_1_2_6_17_1
  doi: 10.1002/jwmg.499
– ident: e_1_2_6_68_1
– volume-title: Bayesian population analysis using WinBUGS: a hierarchical perspective
  year: 2012
  ident: e_1_2_6_48_1
– start-page: 277
  volume-title: Biodiversity loss in a changing planet
  year: 2011
  ident: e_1_2_6_25_1
– ident: e_1_2_6_28_1
  doi: 10.1016/S0006-3207(00)00208-1
– ident: e_1_2_6_40_1
– volume-title: Introduction to distance sampling: estimating abundance of biological populations
  year: 2001
  ident: e_1_2_6_10_1
  doi: 10.1093/oso/9780198506492.001.0001
– ident: e_1_2_6_57_1
  doi: 10.2307/2265557
– volume-title: Bayesian analysis for population ecology
  year: 2010
  ident: e_1_2_6_53_1
– ident: e_1_2_6_77_1
  doi: 10.1111/1365-2664.12252
– volume-title: Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence
  year: 2006
  ident: e_1_2_6_60_1
– ident: e_1_2_6_54_1
  doi: 10.1111/geb.12138
– ident: e_1_2_6_23_1
  doi: 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2
– ident: e_1_2_6_20_1
  doi: 10.1111/biom.12246
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1461-0248.2004.00707.x
– ident: e_1_2_6_83_1
  doi: 10.1034/j.1600-0706.2002.990101.x
– ident: e_1_2_6_80_1
– ident: e_1_2_6_32_1
  doi: 10.1111/j.2041-210X.2012.00225.x
– volume-title: Spatial capture‐recapture
  year: 2014
  ident: e_1_2_6_75_1
– ident: e_1_2_6_21_1
  doi: 10.1371/journal.pone.0094323
– volume-title: Bayesian Inference: with ecological applications
  year: 2009
  ident: e_1_2_6_56_1
– ident: e_1_2_6_82_1
  doi: 10.2307/3546022
– ident: e_1_2_6_61_1
  doi: 10.1890/14-1248.1
– ident: e_1_2_6_89_1
  doi: 10.1111/j.1365-2664.2010.01922.x
– ident: e_1_2_6_29_1
  doi: 10.1086/505764
– ident: e_1_2_6_4_1
  doi: 10.1111/1365-2664.12272
– ident: e_1_2_6_33_1
  doi: 10.1111/j.2041-210X.2010.00017.x
– volume-title: Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities
  year: 2008
  ident: e_1_2_6_72_1
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1467-9876.2005.00466.x
– ident: e_1_2_6_71_1
  doi: 10.1111/j.0006-341X.2004.00142.x
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1365-2656.2005.00940.x
– ident: e_1_2_6_70_1
  doi: 10.1111/j.1600-0587.2010.06433.x
– ident: e_1_2_6_79_1
  doi: 10.1016/j.biocon.2015.07.027
– ident: e_1_2_6_90_1
  doi: 10.1007/s10531-012-0244-z
– ident: e_1_2_6_91_1
  doi: 10.1111/j.1365-2664.2009.01664.x
– ident: e_1_2_6_36_1
  doi: 10.1111/ddi.12255
– ident: e_1_2_6_15_1
  doi: 10.1890/07-2147.1
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1523-1739.2004.00105.x
– ident: e_1_2_6_52_1
  doi: 10.1111/jbi.12087
– ident: e_1_2_6_73_1
  doi: 10.1111/j.0030-1299.2005.13534.x
– ident: e_1_2_6_16_1
  doi: 10.1111/1365-2745.12021
– ident: e_1_2_6_67_1
  doi: 10.1002/ece3.976
– ident: e_1_2_6_18_1
  doi: 10.1086/378901
– ident: e_1_2_6_8_1
  doi: 10.1007/978-1-4471-3708-5
– ident: e_1_2_6_9_1
  doi: 10.1111/2041-210X.12296
– ident: e_1_2_6_6_1
  doi: 10.1111/2041-210x.12023
– ident: e_1_2_6_5_1
  doi: 10.1890/13-0791.1
– ident: e_1_2_6_44_1
  doi: 10.1007/978-4-431-99495-4_12
– ident: e_1_2_6_65_1
– ident: e_1_2_6_84_1
  doi: 10.1371/journal.pone.0052015
– ident: e_1_2_6_46_1
  doi: 10.1007/978-0-387-78151-8_28
– volume-title: Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness using R and BUGS, vol 1. Prelude and static models
  year: 2016
  ident: e_1_2_6_47_1
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-2664.2005.01098.x
– volume-title: R: a language and environment for statistical computing: R Foundation for Statistical Computing
  year: 2014
  ident: e_1_2_6_69_1
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-2664.2006.01271.x
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1365-2699.2010.02345.x
– ident: e_1_2_6_87_1
  doi: 10.1111/j.1472-4642.2011.00874.x
– ident: e_1_2_6_26_1
  doi: 10.2307/3677009
– ident: e_1_2_6_39_1
  doi: 10.2193/2007-294
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1461-0248.2001.00230.x
– ident: e_1_2_6_55_1
  doi: 10.1111/geb.12207
– volume-title: The science of ecology
  year: 1987
  ident: e_1_2_6_27_1
– ident: e_1_2_6_78_1
  doi: 10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2
– volume-title: Bird census techniques
  year: 2000
  ident: e_1_2_6_7_1
– ident: e_1_2_6_24_1
  doi: 10.1890/09-1033.1
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1461-0248.2010.01552.x
– ident: e_1_2_6_37_1
  doi: 10.1525/auk.2012.11093
– ident: e_1_2_6_49_1
  doi: 10.1890/04-1120
– volume-title: Advanced distance sampling: estimating abundance of biological populations
  year: 2004
  ident: e_1_2_6_11_1
  doi: 10.1093/oso/9780198507833.001.0001
– ident: e_1_2_6_59_1
  doi: 10.1890/04-1060
– ident: e_1_2_6_88_1
  doi: 10.2326/osj.12.73
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1365-2664.2007.01441.x
– ident: e_1_2_6_76_1
  doi: 10.1111/j.1365-2664.2010.01811.x
– ident: e_1_2_6_66_1
  doi: 10.1890/10-1251.1
– ident: e_1_2_6_22_1
  doi: 10.1198/016214505000000015
– ident: e_1_2_6_35_1
  doi: 10.1111/geb.12268
– ident: e_1_2_6_38_1
  doi: 10.1016/j.tree.2013.10.012
– volume-title: Analysis and management of animal populations
  year: 2002
  ident: e_1_2_6_86_1
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-2745.2006.01151.x
– ident: e_1_2_6_19_1
  doi: 10.1111/2041-210X.12333
– ident: e_1_2_6_85_1
  doi: 10.1111/j.1600-0706.2013.01073.x
– ident: e_1_2_6_81_1
  doi: 10.1111/1365-2664.12399
– ident: e_1_2_6_34_1
  doi: 10.1371/journal.pone.0099571
– volume-title: Introduction to WinBUGS for ecologists: a Bayesian approach to regression, ANOVA, mixed models and related analysis
  year: 2010
  ident: e_1_2_6_43_1
– ident: e_1_2_6_13_1
  doi: 10.1111/cobi.12046
– ident: e_1_2_6_62_1
  doi: 10.1016/j.foreco.2012.08.039
SSID ssj0012970
Score 2.2964199
Snippet Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within...
Community N -mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within...
Community N‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within...
Community N ‐mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Community N-mixture abundance models for replicated counts provide a powerful and...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Community N-mixture abundance models for replicated counts provide a powerful and...
SourceID proquest
crossref
wiley
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 289
SubjectTerms Behavioral Sciences
Biomedical and Life Sciences
Community ecology
Count data
Data augmentation
Ecology
Estimating techniques
Evolutionary Biology
False negative
Forestry
Life Sciences
Mathematical models
Miyadi Award
Performance assessment
Plant Sciences
Population density
probability
Species diversity
Species richness
Zoology
β (beta) diversity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZYJyReEOOHFhiTkXgCWWsTO7H3ggBlmpCY0KDS3iI7tlGlLilNK9E_hP93d47T0QfKW6U4SZ07f3fnO39HyNuJdN6BIWJgnQQDpZBM5lIx5wtwF4xxRY6Hk79e5ZdT_uVG3MQNty6WVQ6YGIDatjXukZ9NwJRlCsyX_LD4xbBrFGZXYwuNA3IIECzFiBx-Kq--XW_zCKkK7eLAKKYMbBMf8prh8BxCM4TSyMPHx4zvWKYDr9sdp3ObJ931YoMZunhCHkf_kX7sBX5EHrjmKXnYd5TcwK8ysFBvnpE_WCG4oa2nPc8SCoPW_XEQJFGl3drgHgxdtXQGvvMS6zqodatQm9Wcw226o7qxdLGMfXjwYcMTNhQgePYb8w9UGzxOAtpDQ1-djs4a2t3q-Zx1GsmHKXzDnlG8e06mF-WPz5cs9mBgNReZYrUHF9JZno-VVkqI3AIISMEhsk3BOSuEzbMiy4yy3hgIVjiEH9YLxbk2qgZf8gUZNW3jjgnNRaFUnQFGeMtNwaWtU53KifeAGkpnCRkP37-qI0E59smYV_fUyiiyCovSUGQVT8i77S2Lnp1j3-BjEGqlfwJ6VtPvKXLrYeJ9khcJORkkXcU13FX3GpeQN9vLsPowpaIb167DmALicFC9PWMkAGeK1I4JeT9o0V-v-ff_PQuK9v-ZVeV1iRnjl_un8Yo8wkn35ZonZLRart1rcKlW5jSumzv3LRfS
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZrx8ZeRveLuuuGBnvaEEtsyZb2VkZKGWwP2wJlL0KypBHI7BI50Pwh_X97J9vpAmvH3owjKU5OuvvOd_cdIW-n0gcPhoiBdRIMNoVkspSK-VABXLDWVyUWJ3_5Wp7N-edzcT7Ucccx230MSSZNfVPshqoUXF_kzeMTxvfIfQGuO-bxzfOTbeggV6lDHNjBnIE54mMo829L7BijvWDaHZy5DY3uAtdkeU4PyOMBMtKTXsZPyD3fPCUP-iaSG7ia1cPVQ-yzic3b4ObPNt18Rq4wU3BD20B7viUUCq37shAkU6VxbfFdDO1augAMvcL8Dup8l3K0mo8wzURqGkcvVkM_HlxsXGFDQRUvLjEOQY3FshLYRTT114l00dD42yyXLBokIaZx0fXM4vE5mZ_Ofnw6Y0MvBlZzUShWB4CS3vFyooxSQpQOlIEUHDzcHEBaJVxZVEVhlQvWgtPCwQ1xQSjOjVU1YMoXZL9pG39IaCkqpeoCdEVw3FZcujo3uZyGANpDmSIjk1Eouh6IyrFfxlLfUCyjHDUmp6EcNc_Iu-2Ui56l467BhyBpbX6BFtXz7zly7GEAflpWGTkexa-Hsxz1FEBUoQA4yYy82X4MpxBDK6bx7TqNqcAfz6W4Y4wEBZojxWNG3o9b64-vuf15P6Td9-9fpmffZhg5Pvqv9V-SR_gf9Fmcx2S_W639K0BanX2dTtY1QZgZWw
  priority: 102
  providerName: Springer Nature
Title Study of biological communities subject to imperfect detection: bias and precision of community N-mixture abundance models in small-sample situations
URI https://link.springer.com/article/10.1007/s11284-016-1340-4
https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs11284-016-1340-4
https://www.proquest.com/docview/1782391908
https://www.proquest.com/docview/1787978285
https://www.proquest.com/docview/1803120137
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiKc2sKyMxAkU0Th2YnNrq5QViGq1UGk5RXYSryp1k1WdSvTGT-DK3-OXMJMXWyQWcWkqxXYfY898k5n5hpCXgSxsAYbIB-skfNgU0peRVH5hY4ALxhRxhMXJH-fR6YK_vxAXe2Ta18K0_BDDAzc8GY2-xgOujbsR13cBqlZwhZFHj498vk8OscQW2xgwfjaEEphqOsaBXWQ-mCfehzab-rk_ltgxTvtWVzu4cwiV7gLZxhLN7pN7HYSk41bmD8heUT4kd9qmklt4lzRE1NtH5AcmCW5pZWlLtYTyoFlbEYI8qtRtDD6GoXVFlwCf15jaQfOibtKzyrcwTTuqy5xer7tWPLhYv8KWzn9--361_IpBCKoN1pTAFqJNcx1HlyV1V3q1gjFOIwcxdcu6JRZ3j8lilnyenvpdKwY_4yJUfmYBSRY5j0ZKKyVElIMukIKDg8sAo8Uij8I4DI3KrTHgs3DwQnIrFOfaqAwg5RNyUFZlcURoJGKlshBUhc25ibnMM6aZDKwF5aF06JFRL4M063jKsV3GKv3NsIxiSzE3DcWWco-8GqZctyQdtw0-AsGm-hKUaLr4xJBiD-PvQRR75LiXdtodZZcGgKFCBbhJeuTFcBsOIUZWdFlUm2ZMDO44k-KWMRL0J0OGR4-87nfSjY_5-_d902y2f_-yNDlPMHD89L9nPCN38X9oEzmPyUG93hTPAWzV5qQ5TCfkcDybTOZ4ffflQwLXSTI_O4e702gKrws2_gUXOyLx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgQviE8tMMBI8AKy1jp2EiMhxEenjm0VGqu0N8-JbVSpJKVpBflD-Df4G7nLR0cfKE97qxQnqXPnu599d78j5Hk_cd6BI2LgnSQDpUhYEiWKOR8DXEhTF0dYnHwyioZj8elcnm-R310tDKZVdjaxNtS2yPCMfL8PrixU4L6St7PvDLtGYXS1a6HRqMWRq37Alq18c_gR5PuC84PB2Ycha7sKsEzIULHMAyhyVkQ9ZZSSMrKg1okUsFfjADdiaaMwDsNUWZ-mAL8FAGrrpRLCpCqTeAAKJn8HpqZgFe28H4w-n67iFlzV7enACXMGvlB0cdS6WA9dAWzdkfdP9JhY84TXvCnWQO4qLruOmmu3d3Cb3GrxKn3XKNgdsuXyu-R608Gygl-DmvW6ukd-YUZiRQtPG14nFD7NmvITJG2l5TLFMx-6KOgEsPoc80iodYs6Fyx_DbeZkprc0tm87fuDD-ueUFEw-ZOfGO-gJsXyFdBWWvfxKekkp-U3M52y0iDZMQWZNQzm5X0yvhLpPCDbeZG7XUIjGSuVhWCTvBVpLBKbccOTvvdgpZQJA9Lrvr_OWkJ07Msx1ZdUzigyjUlwKDItAvJydcusYQPZNHgXhKrNV7DWevyFI5cfBvr7URyQvU7SurUZpb7U8IA8W12G1Y4hHJO7YlmPiWHfzxO5YUwChpojlWRAXnVa9Ndr_v1_92tF-__M9OB0gBHqh5un8ZTcGJ6dHOvjw9HRI3ITP0CTKrpHthfzpXsMcG6RPmnXECUXV71s_wBxcFHH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZ2F4G4IH61gQWMxAkU0SR2YnNDS6vlr1oBlfZm2bGNKnWTqkkleuMRuPJ6PAkzThO2SCziVim202Q8M58zM98Q8jQRzjtwRDF4Jx7DphCxyIWMnS8ALhjjihyLkz9M85MZe3vGz_bIcV8L0_FDDB_cUDOCvUYFX1p_Ia7fJGha4SiMPHpsFLN9cgWDfpjXl7LTIZSQytAxDvxiGoN7Yn1oM9TP_bHEjnPa97rewZ1DqHQXyAZPNLlJbmwhJH3VyfwW2XPVbXK1ayq5gV_jQES9uUN-YJLghtaedlRLKA9adhUhyKNKm7XBzzC0rekc4PMKUzuodW1Iz6pewjTdUF1ZulxtW_HgYv0KGzr9-e37-fwrBiGoNlhTAluIhuY6DZ1XtDnXiwWMaTRyENNm3nbE4s1dMpuMPx-fxNtWDHHJeCbj0gOSdJblI6ml5Dy3YAsEZ3DATQGjFdzmWZFlRlpvDJxZQBDcei4Z00aWACnvkYOqrtwhoTkvpCwzMBXeMlMwYctUpyLxHoyH1FlERr0MVLnlKcd2GQv1m2EZxaYwNw3FplhEng1Tlh1Jx2WDD0GwSn8BI6pmn1Kk2MP4e5IXETnqpa22qtyoBDBUJgE3iYg8GS6DEmJkRVeuXocxBRzHU8EvGSPAfqbI8BiR5_1OunCbv__fF2Gz_fvJ1PjjGAPH9_97xmNy7fT1RL1_M333gFzHV9LldB6Rg3a1dg8Bd7XmUdCrXymLHx8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+biological+communities+subject+to+imperfect+detection%3A+bias+and+precision+of+community+N%E2%80%90mixture+abundance+models+in+small%E2%80%90sample+situations&rft.jtitle=Ecological+research&rft.au=Yamaura%2C+Yuichi&rft.au=K%C3%A9ry%2C+Marc&rft.au=Andrew+Royle%2C+J.&rft.date=2016-05-01&rft.pub=Springer+Japan&rft.issn=0912-3814&rft.eissn=1440-1703&rft.volume=31&rft.issue=3&rft.spage=289&rft.epage=305&rft_id=info:doi/10.1007%2Fs11284-016-1340-4&rft.externalDBID=10.1007%252Fs11284-016-1340-4&rft.externalDocID=ERE0289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0912-3814&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0912-3814&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0912-3814&client=summon