The Case Time Series Design

Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or small-area level. Although these rich data resources offer the possibility to address epidemiologic questions that could not be feasibly examined us...

Full description

Saved in:
Bibliographic Details
Published inEpidemiology (Cambridge, Mass.) Vol. 32; no. 6; p. 829
Main Author Gasparrini, Antonio
Format Journal Article
LanguageEnglish
Published United States 01.11.2021
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or small-area level. Although these rich data resources offer the possibility to address epidemiologic questions that could not be feasibly examined using traditional studies, they require innovative analytical approaches. Here we present a new study design, called case time series, for epidemiologic investigations of transient health risks associated with time-varying exposures. This design combines a longitudinal structure and flexible control of time-varying confounders, typical of aggregated time series, with individual-level analysis and control-by-design of time-invariant between-subject differences, typical of self-matched methods such as case-crossover and self-controlled case series. The modeling framework is highly adaptable to various outcome and exposure definitions, and it is based on efficient estimation and computational methods that make it suitable for the analysis of highly informative longitudinal data resources. We assess the methodology in a simulation study that demonstrates its validity under defined assumptions in a wide range of data settings. We then illustrate the design in real-data examples: a first case study replicates an analysis on influenza infections and the risk of myocardial infarction using linked clinical datasets, while a second case study assesses the association between environmental exposures and respiratory symptoms using real-time measurements from a smartphone study. The case time series design represents a general and flexible tool, applicable in different epidemiologic areas for investigating transient associations with environmental factors, clinical conditions, or medications.
AbstractList Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or small-area level. Although these rich data resources offer the possibility to address epidemiologic questions that could not be feasibly examined using traditional studies, they require innovative analytical approaches. Here we present a new study design, called case time series, for epidemiologic investigations of transient health risks associated with time-varying exposures. This design combines a longitudinal structure and flexible control of time-varying confounders, typical of aggregated time series, with individual-level analysis and control-by-design of time-invariant between-subject differences, typical of self-matched methods such as case-crossover and self-controlled case series. The modeling framework is highly adaptable to various outcome and exposure definitions, and it is based on efficient estimation and computational methods that make it suitable for the analysis of highly informative longitudinal data resources. We assess the methodology in a simulation study that demonstrates its validity under defined assumptions in a wide range of data settings. We then illustrate the design in real-data examples: a first case study replicates an analysis on influenza infections and the risk of myocardial infarction using linked clinical datasets, while a second case study assesses the association between environmental exposures and respiratory symptoms using real-time measurements from a smartphone study. The case time series design represents a general and flexible tool, applicable in different epidemiologic areas for investigating transient associations with environmental factors, clinical conditions, or medications.
Author Gasparrini, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  surname: Gasparrini
  fullname: Gasparrini, Antonio
  organization: Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34432723$$D View this record in MEDLINE/PubMed
BookMark eNpNjstKxEAQRQtRnId-gSL5gcykuqsfWUomPmBgFsb1UOmuaMTEIY0L_94BFbybe7iLw13A6fgxCsA1FissSreuN_Wq-BckLE5gjkZjbsi7GSxSejvuTqM5h5km0sopPYer5lWyipNkTT9I9iRTLynbSOpfxgs46_g9yeVvL-H5rm6qh3y7u3-sbrd5IKPLXLXsWw42IrloA3KgQgky-s74QFai0yV2rUHPxmq07Kk8UgjOE0dSS7j58R4-20Hi_jD1A09f-7-X6hto-Dyz
CitedBy_id crossref_primary_10_1016_j_envint_2024_108950
crossref_primary_10_1016_j_envres_2024_120614
crossref_primary_10_1093_jamia_ocad101
crossref_primary_10_1371_journal_pclm_0000162
crossref_primary_10_1016_j_chemosphere_2024_143669
crossref_primary_10_1016_j_envres_2024_118116
crossref_primary_10_1016_j_envres_2021_111484
crossref_primary_10_1289_EHP9835
crossref_primary_10_1371_journal_pntd_0012884
crossref_primary_10_1016_j_jad_2025_03_046
crossref_primary_10_1097_EE9_0000000000000360
crossref_primary_10_1186_s12889_024_21058_8
crossref_primary_10_1007_s11657_022_01192_9
crossref_primary_10_1289_EHP12589
crossref_primary_10_1200_CCI_23_00039
crossref_primary_10_1016_j_xinn_2023_100528
crossref_primary_10_25217_0020236374100
crossref_primary_10_1177_09622802241313284
crossref_primary_10_1097_JSM_0000000000001272
crossref_primary_10_1136_bmj_2023_076322
crossref_primary_10_1016_j_envint_2023_108367
crossref_primary_10_1088_2752_5309_acab78
crossref_primary_10_1016_S2542_5196_22_00138_3
crossref_primary_10_1016_j_jacadv_2024_101463
crossref_primary_10_1016_j_psycom_2022_100077
crossref_primary_10_1088_1748_9326_ace0d0
crossref_primary_10_1093_ije_dyac103
crossref_primary_10_1016_S2542_5196_23_00138_9
crossref_primary_10_1016_j_envpol_2025_125870
crossref_primary_10_1097_EDE_0000000000001664
crossref_primary_10_1016_j_envint_2024_108501
crossref_primary_10_1093_ije_dyae020
crossref_primary_10_1289_EHP14213
crossref_primary_10_4414_SMW_2022_w30115
crossref_primary_10_1016_j_scs_2024_106000
crossref_primary_10_1093_ije_dyae061
crossref_primary_10_1016_j_scitotenv_2022_159410
crossref_primary_10_1186_s12889_024_18785_3
crossref_primary_10_1016_j_envres_2024_120320
crossref_primary_10_14710_jkli_23_2_207_214
crossref_primary_10_1093_jamia_ocad129
crossref_primary_10_1183_20734735_0183_2023
crossref_primary_10_1186_s12874_022_01612_x
crossref_primary_10_3390_ijerph19020906
ContentType Journal Article
Copyright Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
Copyright_xml – notice: Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/EDE.0000000000001410
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1531-5487
ExternalDocumentID 34432723
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/R013349/1
GroupedDBID ---
.-D
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AACGO
AAFWJ
AAGIX
AAHPQ
AAIKC
AAIQE
AAMNW
AAMOA
AAMTA
AANCE
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABPLY
ABPXF
ABTLG
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACHQT
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADGGA
ADHPY
AE3
AE6
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BOYCO
BQLVK
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
E.X
EBS
ECM
EEVPB
EIF
ERAAH
EX3
F2M
F2N
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
JLS
JSG
K8S
KD2
L-C
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OLG
OLH
OLU
OLY
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWV
OWW
OWY
OWZ
OXXIT
P2P
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XYM
YOC
ZFV
ID FETCH-LOGICAL-c4539-2ba8bac6d147d6c1ac402e1a18f58c46ed7391fb518a56316a849a56cc784ad42
IngestDate Mon Jul 21 06:03:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4539-2ba8bac6d147d6c1ac402e1a18f58c46ed7391fb518a56316a849a56cc784ad42
OpenAccessLink https://doi.org/10.1097/ede.0000000000001410
PMID 34432723
ParticipantIDs pubmed_primary_34432723
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epidemiology (Cambridge, Mass.)
PublicationTitleAlternate Epidemiology
PublicationYear 2021
SSID ssj0017315
Score 2.543266
Snippet Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or...
SourceID pubmed
SourceType Index Database
StartPage 829
SubjectTerms Computer Simulation
Environmental Exposure - analysis
Humans
Research Design
Title The Case Time Series Design
URI https://www.ncbi.nlm.nih.gov/pubmed/34432723
Volume 32
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8MgFCdOE7PEGL8_pqYHr8xRoNCjmdPFg6ct2W0BCje3xe3kX-8D2rWZH1F7IITXtIVfecCD33sI3crUyB4rGKbUm2641VgD8tjmML5ZkKkiHJB9yYZj9jzhkzoIXmCXrHTXvH_JK_kPqlAGuHqW7B-QXT8UCiAP-EIKCEP6a4z7MAwFIofv9rDsBQ2yPpNRWdzrKLBhb3_N04pkneWy27AHPCnQMW9-X6f0LQCdft60DaSkJMkF1V7pM4L9oqSp8GqD4ob2kvFln7Rq9NY7eBhEb4_l5U-INm-Htlm8hpamjNFURB7xz9INX9eVqIVaMOv3YUy97aXcExKU8Ir8mIu7rz6njXarR2wsE8J0YXSA9st5fnIfQTtEW3Z2hPaikTSJ3K9j1AEAEw9g4gFMIoBJBPAEjR8Ho_4Ql9EqsGGc5jjVSmplsoIwUWSGKANLc0sUkY5LwzJbCJoTpzmRimeUZEqyHHLGCMlUwdJTtD2bz-w5SgST1mQ-IonLmVBOUe6EzR10HyZdj1-gs1i36SK6JJlWtb78VtJB7foPuUI7DvqAvYYJ1UrfhHb-AJHgFgE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Case+Time+Series+Design&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Gasparrini%2C+Antonio&rft.date=2021-11-01&rft.eissn=1531-5487&rft.volume=32&rft.issue=6&rft.spage=829&rft_id=info:doi/10.1097%2FEDE.0000000000001410&rft_id=info%3Apmid%2F34432723&rft_id=info%3Apmid%2F34432723&rft.externalDocID=34432723