The Case Time Series Design
Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or small-area level. Although these rich data resources offer the possibility to address epidemiologic questions that could not be feasibly examined us...
Saved in:
Published in | Epidemiology (Cambridge, Mass.) Vol. 32; no. 6; p. 829 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2021
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or small-area level. Although these rich data resources offer the possibility to address epidemiologic questions that could not be feasibly examined using traditional studies, they require innovative analytical approaches. Here we present a new study design, called case time series, for epidemiologic investigations of transient health risks associated with time-varying exposures. This design combines a longitudinal structure and flexible control of time-varying confounders, typical of aggregated time series, with individual-level analysis and control-by-design of time-invariant between-subject differences, typical of self-matched methods such as case-crossover and self-controlled case series. The modeling framework is highly adaptable to various outcome and exposure definitions, and it is based on efficient estimation and computational methods that make it suitable for the analysis of highly informative longitudinal data resources. We assess the methodology in a simulation study that demonstrates its validity under defined assumptions in a wide range of data settings. We then illustrate the design in real-data examples: a first case study replicates an analysis on influenza infections and the risk of myocardial infarction using linked clinical datasets, while a second case study assesses the association between environmental exposures and respiratory symptoms using real-time measurements from a smartphone study. The case time series design represents a general and flexible tool, applicable in different epidemiologic areas for investigating transient associations with environmental factors, clinical conditions, or medications. |
---|---|
AbstractList | Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or small-area level. Although these rich data resources offer the possibility to address epidemiologic questions that could not be feasibly examined using traditional studies, they require innovative analytical approaches. Here we present a new study design, called case time series, for epidemiologic investigations of transient health risks associated with time-varying exposures. This design combines a longitudinal structure and flexible control of time-varying confounders, typical of aggregated time series, with individual-level analysis and control-by-design of time-invariant between-subject differences, typical of self-matched methods such as case-crossover and self-controlled case series. The modeling framework is highly adaptable to various outcome and exposure definitions, and it is based on efficient estimation and computational methods that make it suitable for the analysis of highly informative longitudinal data resources. We assess the methodology in a simulation study that demonstrates its validity under defined assumptions in a wide range of data settings. We then illustrate the design in real-data examples: a first case study replicates an analysis on influenza infections and the risk of myocardial infarction using linked clinical datasets, while a second case study assesses the association between environmental exposures and respiratory symptoms using real-time measurements from a smartphone study. The case time series design represents a general and flexible tool, applicable in different epidemiologic areas for investigating transient associations with environmental factors, clinical conditions, or medications. |
Author | Gasparrini, Antonio |
Author_xml | – sequence: 1 givenname: Antonio surname: Gasparrini fullname: Gasparrini, Antonio organization: Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34432723$$D View this record in MEDLINE/PubMed |
BookMark | eNpNjstKxEAQRQtRnId-gSL5gcykuqsfWUomPmBgFsb1UOmuaMTEIY0L_94BFbybe7iLw13A6fgxCsA1FissSreuN_Wq-BckLE5gjkZjbsi7GSxSejvuTqM5h5km0sopPYer5lWyipNkTT9I9iRTLynbSOpfxgs46_g9yeVvL-H5rm6qh3y7u3-sbrd5IKPLXLXsWw42IrloA3KgQgky-s74QFai0yV2rUHPxmq07Kk8UgjOE0dSS7j58R4-20Hi_jD1A09f-7-X6hto-Dyz |
CitedBy_id | crossref_primary_10_1016_j_envint_2024_108950 crossref_primary_10_1016_j_envres_2024_120614 crossref_primary_10_1093_jamia_ocad101 crossref_primary_10_1371_journal_pclm_0000162 crossref_primary_10_1016_j_chemosphere_2024_143669 crossref_primary_10_1016_j_envres_2024_118116 crossref_primary_10_1016_j_envres_2021_111484 crossref_primary_10_1289_EHP9835 crossref_primary_10_1371_journal_pntd_0012884 crossref_primary_10_1016_j_jad_2025_03_046 crossref_primary_10_1097_EE9_0000000000000360 crossref_primary_10_1186_s12889_024_21058_8 crossref_primary_10_1007_s11657_022_01192_9 crossref_primary_10_1289_EHP12589 crossref_primary_10_1200_CCI_23_00039 crossref_primary_10_1016_j_xinn_2023_100528 crossref_primary_10_25217_0020236374100 crossref_primary_10_1177_09622802241313284 crossref_primary_10_1097_JSM_0000000000001272 crossref_primary_10_1136_bmj_2023_076322 crossref_primary_10_1016_j_envint_2023_108367 crossref_primary_10_1088_2752_5309_acab78 crossref_primary_10_1016_S2542_5196_22_00138_3 crossref_primary_10_1016_j_jacadv_2024_101463 crossref_primary_10_1016_j_psycom_2022_100077 crossref_primary_10_1088_1748_9326_ace0d0 crossref_primary_10_1093_ije_dyac103 crossref_primary_10_1016_S2542_5196_23_00138_9 crossref_primary_10_1016_j_envpol_2025_125870 crossref_primary_10_1097_EDE_0000000000001664 crossref_primary_10_1016_j_envint_2024_108501 crossref_primary_10_1093_ije_dyae020 crossref_primary_10_1289_EHP14213 crossref_primary_10_4414_SMW_2022_w30115 crossref_primary_10_1016_j_scs_2024_106000 crossref_primary_10_1093_ije_dyae061 crossref_primary_10_1016_j_scitotenv_2022_159410 crossref_primary_10_1186_s12889_024_18785_3 crossref_primary_10_1016_j_envres_2024_120320 crossref_primary_10_14710_jkli_23_2_207_214 crossref_primary_10_1093_jamia_ocad129 crossref_primary_10_1183_20734735_0183_2023 crossref_primary_10_1186_s12874_022_01612_x crossref_primary_10_3390_ijerph19020906 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. |
Copyright_xml | – notice: Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/EDE.0000000000001410 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1531-5487 |
ExternalDocumentID | 34432723 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/R013349/1 |
GroupedDBID | --- .-D .Z2 01R 0R~ 1J1 40H 4Q1 4Q2 4Q3 5GY 5VS 71W 77Y 7O~ 8L- AAAAV AAAXR AACGO AAFWJ AAGIX AAHPQ AAIKC AAIQE AAMNW AAMOA AAMTA AANCE AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABPLY ABPXF ABTLG ABVCZ ABXVJ ABZAD ABZZY ACDDN ACEWG ACGFO ACGFS ACHQT ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADGGA ADHPY AE3 AE6 AENEX AFBFQ AFDTB AFUWQ AGINI AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BOYCO BQLVK C45 CGR CS3 CUY CVF DIWNM DU5 E.X EBS ECM EEVPB EIF ERAAH EX3 F2M F2N F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 JLS JSG K8S KD2 L-C N9A NPM N~7 N~B O9- OAG OAH OLG OLH OLU OLY OPUJH OVD OVDNE OVIDH OVLEI OWV OWW OWY OWZ OXXIT P2P RIG RLZ S4R S4S TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W XYM YOC ZFV |
ID | FETCH-LOGICAL-c4539-2ba8bac6d147d6c1ac402e1a18f58c46ed7391fb518a56316a849a56cc784ad42 |
IngestDate | Mon Jul 21 06:03:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4539-2ba8bac6d147d6c1ac402e1a18f58c46ed7391fb518a56316a849a56cc784ad42 |
OpenAccessLink | https://doi.org/10.1097/ede.0000000000001410 |
PMID | 34432723 |
ParticipantIDs | pubmed_primary_34432723 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Epidemiology (Cambridge, Mass.) |
PublicationTitleAlternate | Epidemiology |
PublicationYear | 2021 |
SSID | ssj0017315 |
Score | 2.543266 |
Snippet | Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles of health outcomes and predictors at the individual or... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 829 |
SubjectTerms | Computer Simulation Environmental Exposure - analysis Humans Research Design |
Title | The Case Time Series Design |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34432723 |
Volume | 32 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8MgFCdOE7PEGL8_pqYHr8xRoNCjmdPFg6ct2W0BCje3xe3kX-8D2rWZH1F7IITXtIVfecCD33sI3crUyB4rGKbUm2641VgD8tjmML5ZkKkiHJB9yYZj9jzhkzoIXmCXrHTXvH_JK_kPqlAGuHqW7B-QXT8UCiAP-EIKCEP6a4z7MAwFIofv9rDsBQ2yPpNRWdzrKLBhb3_N04pkneWy27AHPCnQMW9-X6f0LQCdft60DaSkJMkF1V7pM4L9oqSp8GqD4ob2kvFln7Rq9NY7eBhEb4_l5U-INm-Htlm8hpamjNFURB7xz9INX9eVqIVaMOv3YUy97aXcExKU8Ir8mIu7rz6njXarR2wsE8J0YXSA9st5fnIfQTtEW3Z2hPaikTSJ3K9j1AEAEw9g4gFMIoBJBPAEjR8Ho_4Ql9EqsGGc5jjVSmplsoIwUWSGKANLc0sUkY5LwzJbCJoTpzmRimeUZEqyHHLGCMlUwdJTtD2bz-w5SgST1mQ-IonLmVBOUe6EzR10HyZdj1-gs1i36SK6JJlWtb78VtJB7foPuUI7DvqAvYYJ1UrfhHb-AJHgFgE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Case+Time+Series+Design&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Gasparrini%2C+Antonio&rft.date=2021-11-01&rft.eissn=1531-5487&rft.volume=32&rft.issue=6&rft.spage=829&rft_id=info:doi/10.1097%2FEDE.0000000000001410&rft_id=info%3Apmid%2F34432723&rft_id=info%3Apmid%2F34432723&rft.externalDocID=34432723 |