Review of the pyrolysis platform for coproducing bio-oil and biochar

Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a...

Full description

Saved in:
Bibliographic Details
Published inBiofuels, bioproducts and biorefining Vol. 3; no. 5; pp. 547 - 562
Main Authors Laird, David A., Brown, Robert C., Amonette, James E., Lehmann, Johannes
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.09.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio‐oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biochar is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeters studies and it is anticipated to do the same for agricultural watersheds. The pyrolysis platform for producing bio‐oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio‐oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive. Published in 2009 by John Wiley & Sons, Ltd
AbstractList Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio-oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biochar is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeters studies and it is anticipated to do the same for agricultural watersheds. The pyrolysis platform for producing bio-oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio-oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive. Published in 2009 by John Wiley & Sons, Ltd.
Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio‐oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biochar is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeters studies and it is anticipated to do the same for agricultural watersheds. The pyrolysis platform for producing bio‐oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio‐oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive. Published in 2009 by John Wiley & Sons, Ltd
Author Laird, David A.
Brown, Robert C.
Lehmann, Johannes
Amonette, James E.
Author_xml – sequence: 1
  givenname: David A.
  surname: Laird
  fullname: Laird, David A.
  email: david.laird@ars.usda.gov
  organization: USDA-ARS-National Soil Tilth Laboratory, Ames, IA
– sequence: 2
  givenname: Robert C.
  surname: Brown
  fullname: Brown, Robert C.
  organization: Iowa State University, Ames, IA
– sequence: 3
  givenname: James E.
  surname: Amonette
  fullname: Amonette, James E.
  organization: Pacific Northwest National Laboratory, Richland, WA
– sequence: 4
  givenname: Johannes
  surname: Lehmann
  fullname: Lehmann, Johannes
  organization: Cornell University, Ithaca, NY
BookMark eNqF0E9PwjAYBvDGYCKg8SvspAcz7N-NHQUVjUQTo-Ct6dZWqmOd7RD37R0Z4WA0Xp73Pfzy5s3TA53CFgqAYwQHCEJ8nqbpAEXJHuiihOAQQYI6u52-HICe928QsohR1gWXj-rTqHVgdVAtVFDWzua1Nz4oc1Fp65ZBE0FmS2flKjPFa5AaG1qTB6KQmz1bCHcI9rXIvTrazj54vr56Gt-E04fJ7fhiGmaUkSREjCkohxBpnEIUY4ykjDHSQyEppATTGAksI6k1jEQMVZyKiCUyYSLVdEgR6YOT9m7zzcdK-Yovjc9UnotC2ZXnhCaEUEj-hRgOCWJN9EHYwsxZ753SPDOVqIwtKidMzhHkm1J5UypvSm386Q9fOrMUrv5FnrVybXJV_8X4aDRq9fYP4yv1tdPCvfMoJjHj8_sJR2Q2uyPjGZ-Tb8IqlQA
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_115166
crossref_primary_10_1016_j_jaap_2024_106622
crossref_primary_10_1016_j_eti_2020_101310
crossref_primary_10_1016_j_resconrec_2016_01_007
crossref_primary_10_1016_j_jiec_2015_04_016
crossref_primary_10_3389_fclim_2022_842650
crossref_primary_10_1016_j_jclepro_2018_08_252
crossref_primary_10_1016_j_jclepro_2019_119714
crossref_primary_10_1007_s42729_019_00075_2
crossref_primary_10_1016_j_jenvman_2015_07_056
crossref_primary_10_1016_S1002_0160_21_60084_X
crossref_primary_10_7857_JSGE_2012_17_2_054
crossref_primary_10_1007_s42823_023_00527_x
crossref_primary_10_1016_j_cej_2020_125128
crossref_primary_10_1016_j_biombioe_2014_01_049
crossref_primary_10_1007_s12649_015_9459_z
crossref_primary_10_1039_c3ta10538e
crossref_primary_10_1016_j_fuproc_2017_04_012
crossref_primary_10_1177_0021998319888734
crossref_primary_10_1016_j_scitotenv_2016_08_190
crossref_primary_10_3390_su131810362
crossref_primary_10_1016_j_biortech_2013_08_020
crossref_primary_10_1039_C8TA07563H
crossref_primary_10_3390_microbiolres14010018
crossref_primary_10_1186_s42269_019_0222_7
crossref_primary_10_3390_su131911061
crossref_primary_10_1098_rstb_2020_0180
crossref_primary_10_1016_j_biombioe_2017_05_015
crossref_primary_10_7857_JSGE_2015_20_6_127
crossref_primary_10_4236_jsbs_2015_51002
crossref_primary_10_1016_j_jclepro_2024_143133
crossref_primary_10_1016_j_rser_2014_07_197
crossref_primary_10_1021_acs_jpca_0c06037
crossref_primary_10_3934_environsci_2019_5_379
crossref_primary_10_1016_j_jclepro_2018_01_122
crossref_primary_10_1007_s12665_016_5440_9
crossref_primary_10_1016_j_rser_2015_01_050
crossref_primary_10_1021_acsomega_1c00285
crossref_primary_10_1038_s41467_021_21868_z
crossref_primary_10_3389_fenrg_2019_00005
crossref_primary_10_1016_j_fuproc_2017_05_034
crossref_primary_10_1080_19443994_2016_1175972
crossref_primary_10_3846_16486897_2017_1319375
crossref_primary_10_1007_s10098_017_1386_1
crossref_primary_10_1016_j_fuel_2021_120533
crossref_primary_10_1016_j_scitotenv_2018_08_412
crossref_primary_10_1088_1755_1315_1201_1_012075
crossref_primary_10_1111_gcbb_12915
crossref_primary_10_1016_j_jenvman_2021_114403
crossref_primary_10_1021_es500073r
crossref_primary_10_1080_21622515_2019_1631393
crossref_primary_10_1016_j_catena_2014_07_005
crossref_primary_10_3390_en17194861
crossref_primary_10_1007_s11814_017_0255_2
crossref_primary_10_1039_C5GC01611H
crossref_primary_10_1021_acsomega_4c00911
crossref_primary_10_1016_j_fuproc_2015_01_002
crossref_primary_10_53472_jenas_1190980
crossref_primary_10_1016_j_indcrop_2020_113123
crossref_primary_10_4491_eer_2020_592
crossref_primary_10_1016_j_scitotenv_2023_166171
crossref_primary_10_1002_cjce_24472
crossref_primary_10_1016_j_jclepro_2016_11_100
crossref_primary_10_1007_s11368_013_0680_8
crossref_primary_10_1016_j_fuel_2012_05_063
crossref_primary_10_1038_s41598_023_44292_3
crossref_primary_10_3390_en16062865
crossref_primary_10_1016_j_carbon_2017_12_070
crossref_primary_10_1371_journal_pone_0154562
crossref_primary_10_1016_j_jhazmat_2015_08_025
crossref_primary_10_1016_j_mtsust_2022_100209
crossref_primary_10_4236_as_2017_89064
crossref_primary_10_1007_s42773_021_00091_5
crossref_primary_10_1021_acs_iecr_9b05744
crossref_primary_10_1007_s42773_019_00004_7
crossref_primary_10_1016_j_rser_2016_11_189
crossref_primary_10_1088_1742_6596_1519_1_012014
crossref_primary_10_1007_s11368_022_03338_1
crossref_primary_10_1016_j_fuel_2017_09_076
crossref_primary_10_1021_acssuschemeng_9b03098
crossref_primary_10_1016_j_techfore_2023_122704
crossref_primary_10_1016_S2095_3119_16_61578_2
crossref_primary_10_1088_1755_1315_175_1_012020
crossref_primary_10_1021_ef501114v
crossref_primary_10_1016_j_tsep_2023_102339
crossref_primary_10_1016_j_envres_2020_109164
crossref_primary_10_2134_jeq2014_09_0385
crossref_primary_10_1016_j_ecoenv_2016_11_029
crossref_primary_10_1007_s12155_011_9133_7
crossref_primary_10_1016_j_scitotenv_2018_06_076
crossref_primary_10_2175_106143016X14609975747441
crossref_primary_10_1007_s42729_024_02179_w
crossref_primary_10_1016_j_jclepro_2016_06_144
crossref_primary_10_1007_s11104_011_0771_5
crossref_primary_10_1016_j_ceja_2023_100474
crossref_primary_10_1021_acs_est_9b03261
crossref_primary_10_1080_09583157_2018_1450488
crossref_primary_10_1039_D0RA04607H
crossref_primary_10_1016_j_enconman_2025_119511
crossref_primary_10_1063_1_4966696
crossref_primary_10_1016_j_jclepro_2020_123338
crossref_primary_10_1016_j_jenvman_2021_112154
crossref_primary_10_1016_j_scitotenv_2019_06_484
crossref_primary_10_1007_s13399_021_01587_7
crossref_primary_10_1080_15567036_2016_1212292
crossref_primary_10_1016_j_biortech_2014_03_134
crossref_primary_10_1016_j_jhazmat_2016_02_044
crossref_primary_10_1016_j_biombioe_2013_12_010
crossref_primary_10_1007_s13399_022_02842_1
crossref_primary_10_1016_j_biortech_2016_06_114
crossref_primary_10_1021_ef501112q
crossref_primary_10_1007_s40831_023_00720_2
crossref_primary_10_1007_s11356_015_4348_3
crossref_primary_10_1039_C7EW00132K
crossref_primary_10_1039_C5EW00229J
crossref_primary_10_1016_j_energy_2024_130338
crossref_primary_10_1016_j_biombioe_2016_02_023
crossref_primary_10_2134_jeq2011_0077
crossref_primary_10_1007_s42773_024_00323_4
crossref_primary_10_3390_plants13060851
crossref_primary_10_1016_j_rser_2014_10_074
crossref_primary_10_1111_gcbb_12314
crossref_primary_10_1002_aic_13705
crossref_primary_10_1080_19443994_2014_981227
crossref_primary_10_1080_00194506_2020_1845987
crossref_primary_10_36953_ECJ_22862589
crossref_primary_10_1016_j_jhazmat_2016_05_088
crossref_primary_10_1016_j_isci_2024_110812
crossref_primary_10_1080_01904167_2021_1943675
crossref_primary_10_1021_acs_iecr_8b01527
crossref_primary_10_1016_j_apenergy_2012_11_057
crossref_primary_10_1016_j_rser_2019_109343
crossref_primary_10_1039_C6GC02335E
crossref_primary_10_1021_ie201309r
crossref_primary_10_1016_j_scitotenv_2018_07_402
crossref_primary_10_1016_j_rser_2011_07_035
crossref_primary_10_3390_pr10101970
crossref_primary_10_1016_j_chemosphere_2011_07_031
crossref_primary_10_1016_j_chemosphere_2019_03_170
crossref_primary_10_1007_s11356_017_8707_0
crossref_primary_10_3390_c9020049
crossref_primary_10_1039_D4MA00675E
crossref_primary_10_3390_agronomy4010052
crossref_primary_10_1007_s13399_021_01391_3
crossref_primary_10_1016_j_rser_2021_111073
crossref_primary_10_1007_s11368_015_1338_5
crossref_primary_10_1016_j_jenvman_2025_124547
crossref_primary_10_1016_j_jclepro_2020_125664
crossref_primary_10_1111_gcbb_12529
crossref_primary_10_1016_j_jaap_2018_11_027
crossref_primary_10_1038_s41598_024_70975_6
crossref_primary_10_3390_su16208838
crossref_primary_10_1016_j_plaphy_2016_03_001
crossref_primary_10_1016_j_fuel_2013_02_065
crossref_primary_10_3390_molecules26185449
crossref_primary_10_1016_j_chemosphere_2018_08_106
crossref_primary_10_1016_j_chemosphere_2015_06_016
crossref_primary_10_1016_j_jclepro_2024_143645
crossref_primary_10_1016_j_scitotenv_2019_03_257
crossref_primary_10_1021_acs_chemrev_5b00195
crossref_primary_10_3390_en14196157
crossref_primary_10_1016_j_jenvman_2023_119745
crossref_primary_10_1063_1_4923442
crossref_primary_10_3390_su13031330
crossref_primary_10_1016_j_jclepro_2021_126825
crossref_primary_10_1016_j_carbon_2018_03_079
crossref_primary_10_1016_j_fuel_2018_03_028
crossref_primary_10_1016_j_fuel_2014_03_025
crossref_primary_10_2136_sssaj2010_0325
crossref_primary_10_1007_s11356_015_5114_2
crossref_primary_10_1016_j_jaap_2012_11_005
crossref_primary_10_1016_j_biteb_2021_100838
crossref_primary_10_1021_am300510u
crossref_primary_10_1016_j_still_2021_105126
crossref_primary_10_3390_app9081706
crossref_primary_10_1016_j_jaap_2011_01_001
crossref_primary_10_1016_j_fuel_2020_118792
crossref_primary_10_1016_j_jclepro_2013_04_004
crossref_primary_10_3390_su12197909
crossref_primary_10_1021_acs_energyfuels_5b01020
crossref_primary_10_1016_j_fuel_2023_129283
crossref_primary_10_1039_C5RA13409A
crossref_primary_10_1016_j_jclepro_2020_125368
crossref_primary_10_1016_j_jenvman_2021_112457
crossref_primary_10_1007_s10295_017_1958_4
crossref_primary_10_1016_j_jaap_2013_06_016
crossref_primary_10_3390_molecules28104008
crossref_primary_10_1139_cjss_2021_0047
crossref_primary_10_1016_j_apenergy_2017_11_033
crossref_primary_10_1021_acs_energyfuels_9b00531
crossref_primary_10_1007_s11104_011_0948_y
crossref_primary_10_1016_j_rser_2019_109548
crossref_primary_10_1016_j_wasman_2014_08_004
crossref_primary_10_1016_j_jclepro_2019_118409
crossref_primary_10_1016_j_energy_2018_12_075
crossref_primary_10_1007_s40003_017_0281_7
crossref_primary_10_1155_2013_354965
crossref_primary_10_3389_fpls_2020_01281
crossref_primary_10_35193_bseufbd_571391
crossref_primary_10_1021_acs_energyfuels_2c04093
crossref_primary_10_1039_C8RA03958E
crossref_primary_10_1016_j_fcr_2018_12_013
crossref_primary_10_1016_j_jaap_2014_08_014
crossref_primary_10_1016_j_anres_2017_04_001
crossref_primary_10_3390_su14159626
crossref_primary_10_1016_j_geoderma_2019_07_027
crossref_primary_10_1016_j_wasman_2015_01_022
crossref_primary_10_1016_j_fcr_2018_07_012
crossref_primary_10_1016_j_biombioe_2014_11_016
crossref_primary_10_1039_C6GC02477G
crossref_primary_10_3390_agronomy3020294
crossref_primary_10_1039_C7EW00380C
crossref_primary_10_1111_j_1365_2389_2011_01377_x
crossref_primary_10_1002_er_4383
crossref_primary_10_1007_s11104_013_1639_7
crossref_primary_10_1021_acssuschemeng_8b04253
crossref_primary_10_1080_10643389_2010_507980
crossref_primary_10_3934_agrfood_2021024
crossref_primary_10_1016_j_fuel_2012_02_065
crossref_primary_10_1016_j_susmat_2024_e00831
crossref_primary_10_1021_acs_iecr_7b01548
crossref_primary_10_1016_j_jiec_2016_12_038
crossref_primary_10_1016_j_fuel_2013_04_090
crossref_primary_10_1016_j_jenvman_2023_119305
crossref_primary_10_1039_C2GC36332A
crossref_primary_10_1007_s11368_023_03439_5
crossref_primary_10_1016_j_enconman_2018_09_041
crossref_primary_10_1007_s42773_020_00047_1
crossref_primary_10_1007_s11356_024_31936_8
crossref_primary_10_1016_j_jaap_2020_104826
crossref_primary_10_1016_j_jclepro_2014_12_050
crossref_primary_10_3390_land8120179
crossref_primary_10_7857_JSGE_2012_17_2_047
crossref_primary_10_3389_fmicb_2022_862075
crossref_primary_10_1016_j_est_2023_109114
crossref_primary_10_1177_0734242X19838608
crossref_primary_10_3389_fmicb_2017_00589
crossref_primary_10_1016_j_soilbio_2011_11_019
crossref_primary_10_1016_j_eti_2021_102128
crossref_primary_10_1007_s12649_015_9364_5
crossref_primary_10_1016_j_biortech_2017_06_087
crossref_primary_10_1016_j_jia_2024_03_022
crossref_primary_10_1007_s11356_014_2993_6
crossref_primary_10_1016_j_jclepro_2016_07_205
crossref_primary_10_1016_j_fuel_2015_07_039
crossref_primary_10_1002_er_4361
crossref_primary_10_1016_j_wasman_2023_10_031
crossref_primary_10_1021_acsomega_1c00622
crossref_primary_10_1016_j_rser_2020_110649
crossref_primary_10_1007_s42773_019_00021_6
crossref_primary_10_1088_1748_9326_aafcf0
crossref_primary_10_1111_gcbb_12037
crossref_primary_10_1016_j_scitotenv_2020_137775
crossref_primary_10_1016_j_supflu_2021_105329
crossref_primary_10_1007_s11356_017_8500_0
crossref_primary_10_1111_gcbb_12032
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118988
crossref_primary_10_1016_j_jclepro_2017_11_137
crossref_primary_10_3389_fsufs_2018_00054
crossref_primary_10_1016_j_envpol_2020_115549
crossref_primary_10_3390_polym16223102
crossref_primary_10_1016_j_jclepro_2021_126645
crossref_primary_10_1016_j_biortech_2011_10_074
crossref_primary_10_1021_acsenvironau_1c00025
crossref_primary_10_1016_j_spc_2019_03_008
crossref_primary_10_3390_en9070526
crossref_primary_10_1016_j_ecmx_2024_100725
crossref_primary_10_1021_acs_iecr_0c04504
crossref_primary_10_1007_s13399_024_05789_7
crossref_primary_10_1177_0734242X211069741
crossref_primary_10_1016_j_energy_2020_118186
crossref_primary_10_1111_gcbb_12265
crossref_primary_10_1080_17597269_2015_1015312
crossref_primary_10_1002_cctc_202001289
crossref_primary_10_3390_w11071390
crossref_primary_10_1007_s10668_023_04219_4
crossref_primary_10_1021_acs_energyfuels_4c02605
crossref_primary_10_1016_j_meteno_2016_01_005
crossref_primary_10_1007_s10800_014_0726_7
crossref_primary_10_1039_C3EE43585G
crossref_primary_10_1002_cssc_201600582
crossref_primary_10_1111_gcbb_12018
crossref_primary_10_1111_gcbb_12137
crossref_primary_10_3923_ijar_2016_13_22
crossref_primary_10_1007_s13399_023_04096_x
crossref_primary_10_1111_gcbb_12376
crossref_primary_10_1071_SR10036
crossref_primary_10_1002_bbb_344
crossref_primary_10_1002_slct_201700582
crossref_primary_10_1016_j_egyr_2023_03_111
crossref_primary_10_1021_acs_energyfuels_0c02396
crossref_primary_10_1016_j_conbuildmat_2024_135218
crossref_primary_10_3390_su17052316
crossref_primary_10_1097_SS_0b013e3182171eac
crossref_primary_10_1021_acs_energyfuels_7b00545
crossref_primary_10_1016_j_jiec_2014_06_030
crossref_primary_10_1002_cssc_201000052
crossref_primary_10_1016_j_susmat_2024_e01053
crossref_primary_10_1007_s13593_012_0081_1
crossref_primary_10_1111_gcbb_12001
crossref_primary_10_1016_j_biortech_2012_11_114
crossref_primary_10_1002_cjce_22796
crossref_primary_10_1016_j_indcrop_2022_114533
crossref_primary_10_1016_j_jenvman_2014_07_001
crossref_primary_10_1021_acs_est_7b02528
crossref_primary_10_1016_j_pecs_2015_10_002
crossref_primary_10_1016_j_renene_2021_07_104
crossref_primary_10_1021_ef501869e
crossref_primary_10_1007_s42452_020_2156_y
crossref_primary_10_1016_j_apenergy_2015_03_024
crossref_primary_10_1515_reveh_2018_0007
crossref_primary_10_4081_ija_2016_780
crossref_primary_10_1007_s10295_015_1687_5
crossref_primary_10_1016_j_spc_2021_07_015
crossref_primary_10_1002_bbb_2188
crossref_primary_10_1002_ehs2_1202
crossref_primary_10_1016_j_scitotenv_2019_134847
crossref_primary_10_1016_j_rser_2013_02_038
crossref_primary_10_1007_s10891_010_0393_4
crossref_primary_10_1016_j_scitotenv_2017_05_203
crossref_primary_10_1016_j_jece_2023_109643
crossref_primary_10_1021_acssuschemeng_9b00019
crossref_primary_10_4236_ajcc_2018_71005
crossref_primary_10_1111_jfpe_13585
crossref_primary_10_1002_cjce_22968
crossref_primary_10_1007_s12649_023_02070_2
crossref_primary_10_4236_as_2021_123014
crossref_primary_10_1007_s10098_022_02274_5
crossref_primary_10_1016_j_biortech_2013_07_086
crossref_primary_10_1016_j_jclepro_2022_132057
crossref_primary_10_1016_j_scienta_2014_05_029
crossref_primary_10_1016_j_chemosphere_2015_11_063
crossref_primary_10_1016_j_catena_2020_104587
crossref_primary_10_1021_ez400165g
crossref_primary_10_1155_2019_4506314
crossref_primary_10_1016_j_jaap_2022_105460
crossref_primary_10_3390_en16010355
crossref_primary_10_1021_acs_est_5b03548
crossref_primary_10_1016_j_jclepro_2018_12_025
crossref_primary_10_3390_su15021206
crossref_primary_10_1080_01904167_2018_1509092
crossref_primary_10_1007_s00253_014_5991_1
crossref_primary_10_1016_j_biortech_2016_03_077
crossref_primary_10_1016_j_rser_2016_01_088
crossref_primary_10_1016_j_enpol_2009_11_075
crossref_primary_10_1007_s10668_021_01276_5
crossref_primary_10_1016_j_jaap_2011_11_018
crossref_primary_10_1007_s12517_018_4006_4
crossref_primary_10_1016_j_jaap_2015_02_011
crossref_primary_10_3389_fbioe_2021_769667
crossref_primary_10_1021_acs_energyfuels_0c03174
crossref_primary_10_2136_sssaj2013_07_0304nafsc
crossref_primary_10_3389_frsus_2024_1417207
crossref_primary_10_1016_j_biortech_2019_121976
crossref_primary_10_1007_s00253_011_3495_9
crossref_primary_10_1007_s10163_018_0769_7
crossref_primary_10_1039_C1GC15619E
crossref_primary_10_1007_s42773_019_00020_7
crossref_primary_10_1016_j_rser_2021_111959
crossref_primary_10_1007_s11356_023_27484_2
crossref_primary_10_2136_sssaj2011_0101
crossref_primary_10_1016_j_rser_2014_10_013
crossref_primary_10_1021_acssuschemeng_6b01859
crossref_primary_10_1021_es500474q
crossref_primary_10_1111_j_1757_1707_2012_01163_x
crossref_primary_10_1111_gcbb_12449
crossref_primary_10_1016_j_rser_2021_111603
crossref_primary_10_1016_j_wasman_2018_04_009
crossref_primary_10_3390_en12050809
crossref_primary_10_1016_j_wasman_2019_06_022
crossref_primary_10_1007_s11356_015_4191_6
crossref_primary_10_3390_pr9050882
crossref_primary_10_1016_j_fuel_2011_06_031
crossref_primary_10_1371_journal_pone_0075932
crossref_primary_10_1016_j_jiec_2016_03_004
crossref_primary_10_1021_acssuschemeng_0c00571
crossref_primary_10_1039_C5EE01633A
crossref_primary_10_1002_bbb_254
crossref_primary_10_1007_s11356_015_4115_5
crossref_primary_10_3390_jcs5120312
crossref_primary_10_4028_www_scientific_net_AMR_518_523_807
crossref_primary_10_1016_j_apsoil_2017_07_007
crossref_primary_10_1016_j_jhazmat_2013_10_033
crossref_primary_10_1061__ASCE_EE_1943_7870_0001259
crossref_primary_10_1016_j_crmicr_2024_100237
crossref_primary_10_1016_j_psep_2022_02_061
crossref_primary_10_5433_1679_0359_2021v42n6p3167
crossref_primary_10_1016_j_biortech_2010_06_088
crossref_primary_10_1016_j_rser_2016_09_057
crossref_primary_10_1021_ef101342v
crossref_primary_10_3390_agronomy13102455
crossref_primary_10_1016_j_biortech_2012_08_016
crossref_primary_10_1007_s40974_020_00159_1
crossref_primary_10_1016_j_fuel_2024_133065
crossref_primary_10_1080_14620316_2017_1407679
crossref_primary_10_1016_j_jaap_2021_105405
crossref_primary_10_1071_SR13186
crossref_primary_10_3390_en11113115
crossref_primary_10_1021_acs_iecr_7b05137
crossref_primary_10_1007_s10705_023_10281_1
crossref_primary_10_1016_j_cec_2022_100006
crossref_primary_10_1021_ef200915s
crossref_primary_10_1016_j_biortech_2017_07_150
crossref_primary_10_3390_pr9020190
crossref_primary_10_1007_s10668_023_03984_6
crossref_primary_10_1016_j_chemosphere_2018_04_107
crossref_primary_10_3390_pr12061111
crossref_primary_10_4081_ija_2018_1136
crossref_primary_10_1371_journal_pone_0203475
crossref_primary_10_1016_j_resconrec_2016_03_022
crossref_primary_10_3390_app9193980
crossref_primary_10_1029_2021EF002583
crossref_primary_10_1016_j_geoderma_2016_11_025
crossref_primary_10_1071_CP14247
crossref_primary_10_5937_jpea27_43553
crossref_primary_10_1007_s11356_019_05181_3
crossref_primary_10_3390_molecules24122250
crossref_primary_10_1111_sum_12285
crossref_primary_10_1002_cjce_23915
crossref_primary_10_1016_j_jclepro_2018_06_142
crossref_primary_10_3390_agriculture12101704
crossref_primary_10_1021_ef401705g
crossref_primary_10_1177_0734242X211045004
crossref_primary_10_1002_adsu_201700102
crossref_primary_10_1016_j_indcrop_2018_09_050
crossref_primary_10_1039_C7EE00682A
crossref_primary_10_1016_j_jclepro_2018_05_101
crossref_primary_10_1016_j_fcr_2017_08_018
crossref_primary_10_1039_c2ee21855k
crossref_primary_10_1007_s10098_014_0721_z
crossref_primary_10_1016_j_biombioe_2013_07_019
crossref_primary_10_1016_j_biombioe_2014_09_024
crossref_primary_10_1016_j_seppur_2024_129049
crossref_primary_10_1080_10643389_2016_1239975
crossref_primary_10_1016_j_rser_2020_110143
crossref_primary_10_1016_j_envint_2015_10_018
crossref_primary_10_1016_j_scitotenv_2020_144351
crossref_primary_10_1016_j_diamond_2021_108530
crossref_primary_10_1016_j_biombioe_2024_107293
crossref_primary_10_1016_j_jclepro_2015_11_073
crossref_primary_10_1016_j_fuproc_2017_09_025
crossref_primary_10_3390_app9071365
crossref_primary_10_1007_s12517_020_05586_2
crossref_primary_10_1111_sum_12102
crossref_primary_10_1007_s12649_019_00797_5
crossref_primary_10_3390_en16145464
crossref_primary_10_1080_10643389_2015_1096880
crossref_primary_10_1016_j_jaap_2016_06_011
crossref_primary_10_1016_j_chemosphere_2013_12_024
crossref_primary_10_1016_j_jwpe_2025_107458
crossref_primary_10_1063_1_3663846
crossref_primary_10_1080_19443994_2013_792546
crossref_primary_10_3390_su13094628
crossref_primary_10_1007_s12155_015_9692_0
crossref_primary_10_1016_j_jenvman_2011_05_013
crossref_primary_10_1016_j_enconman_2016_09_031
crossref_primary_10_1021_es401756h
crossref_primary_10_1016_j_rser_2020_110046
crossref_primary_10_1016_j_cherd_2021_01_008
crossref_primary_10_1039_C5RA22870K
crossref_primary_10_2134_jeq2016_04_0156
crossref_primary_10_1016_j_biombioe_2021_106245
crossref_primary_10_1016_j_rser_2017_03_136
crossref_primary_10_1186_s13068_019_1529_1
crossref_primary_10_1016_j_geoderma_2010_05_013
crossref_primary_10_1016_j_scitotenv_2015_03_060
crossref_primary_10_1080_23311916_2024_2307201
crossref_primary_10_1002_jctb_6591
crossref_primary_10_1016_j_scitotenv_2021_149296
crossref_primary_10_1016_j_energy_2018_07_117
crossref_primary_10_1016_j_jhazmat_2010_12_105
crossref_primary_10_1007_s12649_023_02256_8
crossref_primary_10_1016_j_biombioe_2017_06_022
crossref_primary_10_1016_j_jenvman_2016_06_063
crossref_primary_10_1007_s10661_021_09107_w
crossref_primary_10_1039_C9EE00206E
crossref_primary_10_1016_j_coche_2017_08_005
crossref_primary_10_1016_j_resconrec_2019_01_024
crossref_primary_10_1111_gcbb_12052
crossref_primary_10_3390_molecules27228107
crossref_primary_10_1016_j_jpowsour_2025_236471
crossref_primary_10_3390_f12111495
crossref_primary_10_1016_j_energy_2020_119325
crossref_primary_10_1039_D2GC03172H
crossref_primary_10_1111_j_1757_1707_2010_01055_x
crossref_primary_10_3390_soilsystems4040069
crossref_primary_10_15446_rev_colomb_quim_v49n2_83231
crossref_primary_10_1016_j_rser_2016_09_110
crossref_primary_10_1016_j_rser_2022_112715
crossref_primary_10_1016_j_fuel_2014_01_085
crossref_primary_10_1186_s40643_021_00364_8
crossref_primary_10_1007_s12649_021_01471_5
crossref_primary_10_1016_j_chemosphere_2022_133954
Cites_doi 10.1007/s11027-005-9006-5
10.1007/s11244-008-9159-z
10.1111/j.1747-0765.2006.00065.x
10.1002/bbb.73
10.1007/s001140000193
10.1111/j.1467-8306.1980.tb01332.x
10.2134/agronj2007.0161
10.1071/EA97143
10.1016/j.biombioe.2005.07.011
10.1007/s11104-004-5485-5
10.1016/j.rser.2006.07.014
10.1016/j.biortech.2006.09.038
10.1097/00010694-200111000-00010
10.1016/S1003-9953(08)60001-8
10.1017/S0033822200041242
10.2136/sssaj2002.1249
10.1046/j.1365-2389.1999.00236.x
10.1002/bbb.25
10.1016/j.biombioe.2007.01.012
10.1016/j.pecs.2006.12.001
10.1007/s11104-007-9391-5
10.1016/j.rser.2008.01.004
10.2503/jjshs.63.529
10.1016/j.still.2006.11.007
10.1021/es071451n
10.1016/j.fuel.2007.07.026
10.1002/bbb.92
10.2136/sssaj2005.0383
10.1029/95GB02742
10.1016/j.ecolecon.2007.07.012
10.2172/894989
10.1016/j.powtec.2007.05.012
10.1007/s00374-003-0707-1
10.5194/bg-3-397-2006
10.2134/agronj2004.1000a
10.1126/science.1151861
10.1073/pnas.0704243104
10.1016/0038-0717(80)90057-7
10.1016/j.geoderma.2007.10.025
10.1007/s00374-002-0466-4
10.1016/0016-2361(95)00165-2
10.1016/j.soilbio.2008.10.016
10.2134/agronj2007.0150
10.2136/sssaj2005.0096
10.1016/j.jaap.2005.03.005
10.2134/agronj2008.0087
10.2136/1990.humicsubstances.c8
10.1016/j.forpol.2006.01.001
10.1016/j.cattod.2006.08.071
10.1023/A:1022833116184
10.1016/S0146-6380(99)00120-5
10.1007/s00374-004-0801-z
10.2135/cropsci2006.06.0406
10.1016/j.biortech.2005.12.005
10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
10.1007/s11104-008-9573-9
10.1016/j.gca.2008.01.010
ContentType Journal Article
Copyright This article is the US Government work and is in the public domain in the USA. Published in 2009 by John Wiley & Sons, Ltd.
Copyright_xml – notice: This article is the US Government work and is in the public domain in the USA. Published in 2009 by John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QO
7TV
8FD
C1K
FR3
P64
7TB
KR7
DOI 10.1002/bbb.169
DatabaseName Istex
CrossRef
Biotechnology Research Abstracts
Pollution Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Mechanical & Transportation Engineering Abstracts
Civil Engineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Engineering Research Database

CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1932-1031
EndPage 562
ExternalDocumentID 10_1002_bbb_169
BBB169
ark_67375_WNG_13VVK3CV_W
Genre reviewArticle
GeographicLocations USA
GeographicLocations_xml – name: USA
GroupedDBID 05W
0R~
1OC
23N
31~
33P
3SF
4.4
52U
52V
5DZ
5GY
66C
8-1
8UM
A00
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
L8X
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABJIA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QO
7TV
8FD
C1K
FR3
P64
7TB
KR7
ID FETCH-LOGICAL-c4539-155e0d801f2b017221dd721f8ad40432471a2d6dff06a70e7ba659d95abf48413
IEDL.DBID DR2
ISSN 1932-104X
IngestDate Fri Jul 11 07:43:57 EDT 2025
Fri Jul 11 07:41:57 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Tue Jul 01 01:58:30 EDT 2025
Wed Jan 22 16:24:03 EST 2025
Wed Oct 30 09:47:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4539-155e0d801f2b017221dd721f8ad40432471a2d6dff06a70e7ba659d95abf48413
Notes This article is the US Government work and is in the public domain in the USA.
ArticleID:BBB169
ark:/67375/WNG-13VVK3CV-W
istex:A83AC1E34F2831B3E90BDE43F3B7A83F2DE65533
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 20831508
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_34933403
proquest_miscellaneous_20831508
crossref_citationtrail_10_1002_bbb_169
crossref_primary_10_1002_bbb_169
wiley_primary_10_1002_bbb_169_BBB169
istex_primary_ark_67375_WNG_13VVK3CV_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September/October 2009
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: September/October 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Biofuels, bioproducts and biorefining
PublicationTitleAlternate Biofuels, Bioprod. Bioref
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Fowles M, Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg 31:426-432:(2007).
DeLuca TH, MacKenzie MD, Gundale MJ and Holben WE, Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448-453:(2006).
Lehmann J, Bio-energy in the black. Frontiers Ecol Envir 5:381-387:(2007).
Lu YJ and Lee T, Influence of the feed gas composition on the Fischer-Tropsch synthesis in commercial operations. J Natural Gas Chem 16:329-341:(2007).
Heggenstaller AH, Anex RP, Liebman M, Sundberg DN and Gibson LR, Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron J 100:1740-1748:(2008).
Ishii T and Kadoya K, Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J Jap Soc Hortic Sci 63:529-535:(1994).
Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I and Xu XL, Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210-219:(2009).
Keech O, Carcaillet C and Nilsson MC, Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291-300:(2005).
Namaalwa J, Sankhayan PL and Hofstad O, A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy Econ 9:479-495:(2007).
Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luiza FJ, Petersen J and Neves EG, Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719-1730:(2006).
Wardle DA, Nilsson MC and Zackrisson O, Fire-derived charcoal causes loss of forest humus. Science 320:629(2008).
Oguntunde PG, Fosu M, Ajayi AE and van de Giesen ND, Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soils 39:295-299:(2004).
Preston CM and Schmidt MWI, Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397-420:(2006).
Wright MM, Brown RC and Boateng AA, Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels, Bioprod Bioref 2:229-238:(2008).
Goyal HB, Seal D and Saxena RC, Bio-fuels from thermochemical conversion of renewable resources: A review. Renew Sustain Energy Rev 12:504-517:(2008).
Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzer C, Gingrich S, Lucht W and Fischer-Kowalski M, Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci 104:12942-12947:(2007).
Glaser B, Haumaier L, Guggenberger G and Zech W, The [Terra Preta] phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37-41:(2001).
Swift RS, Sequestration of carbon by soil. Soil Sci 166:858-871:(2001).
Badger PC and Fransham P, Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs-A preliminary assessment. Biomass Bioenerg 30:321-325:(2006).
Ioannidou O, Zabaniotou A, Antonakou EV, Papazisi KM, Lappas AA and Athanassiou C, Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sustain Energy Rev 13:750-762:(2009).
Wilhelm WW, Johnson JMF, Karlen DL and Lightle DT, Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665-1667:(2007).
Laird DA, The Charcoal Vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178-181:(2008).
Tagoe SO, Horiuchi T and Matsui T, Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybeans. Plant Soil 306:211-220:(2008).
Boateng AA, Hicks KB and Vogel KP, Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity. J Anal Appl Pyrolysis 75:55-64:(2006).
Donnis B, Egeberg RG, Blom P and Knudsen KG, Hydroprocessing of bio-oils and oxygenates to oydrocarbons. Understanding the reaction routes. Topics Catalysis 52:229-240:(2009).
Smith NJH, Anthrosols and human carrying capacity in Amazonia. Ann Assoc Am Geog 70:553-566:(1980).
Garnett E, Jonsson LM, Dighton J and Murnen K, Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds. Biology Fertility Soils 40:421-426:(2004).
Lal R, Is crop residue a waste? J Soil Water Conser 59:136-139:(2004).
Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W and Glaser B, Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343-357:(2003).
Schmidt MWI, Skjemstad JO, Gehrt E and Kögel-Knabner I, Charred organic carbon in German chernozemic soils. Euro J Soil Sci 50:351-365:(1999).
Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu TH, Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238-1240:(2008).
Rhodes AH, Carlin A and Semple KT, Impact of black carbon in the extraction and mineralization of phenanthrene in soil more options. Env Sci Tech 42:740-745:(2008).
Koutcheiko S, Monreal CM, Kodama H, McCracken T and Kotlyar L, Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Biores Technol 98:2459-2464:(2007).
Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM, The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87:1230-1240:(2008).
Di Blasi C, Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust Sci 34:47-90:(2008).
Babu BV, Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioprod Bioref 2:393-414:(2008).
Skjemstad JO, Janik LJ and Taylor JA, Non-living soil organic matter: What do we know about it? Aust J Exp Agr 38:667-680:(1998).
Lehmann J, Gaunt J and Rondon M, Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change 11:403-427:(2006).
Marjenah MS, Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jap Forestry Soc 76:462-464:(1994).
Tsai WT, Lee MK and Chang YM, Fast pyrolysis of rice husk: Product yields and compositions. Biores Technol 9822-28:(2007).
Krausmann F, Erb KH, Gingrich S, Lauk C and Haberl H, Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol Econ 65:471-487:(2008).
Bridgwater AV, Meier D and Radlein D, An overview of fast pyrolysis of biomass. Organic Geochem 30:1479-1493:(1999).
Skjemstad JO, Reicosky DC, Wilts AR and McGowan JA, Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249-1255:(2002).
Leibold H, Hornunga A and Seiferta H, HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis. Powder Technology 180:265-270:(2008).
Benallal B, Roy C, Pakdel H, Chabot S and Poirier MA, Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tires - Comparison with petroleum naphtha. Fuel 74:1589-1594:(1995).
Glaser B, Lehmann J and Zech W, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol Fertil Soils 35:219-230:(2002).
Wilhelm WW, Johnson JF, Hatfield JL, Voorhees WB and Linden DR, Crop and soil productivity response to corn residue removal: A Literature Review. Agron J 96:1-17:(2004).
Laird DA, Chappell MA, Martens DA, Wershaw RL and Thompson ML, Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115-122:(2008).
Wright M and Brown RC, Establishing the optimal sizes of different kinds of biorefineries, Biofuels Bioproces Bioref 1:191-200:(2007).
Cheng CH, Lehmann J and Engelhard MH, Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598-1610:(2008).
Kuhlbusch TAJ and Crutzen PJ, Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochemical Cycles 9:491-501:(1995).
Iswaran V, Jauhri KS and Sen A, Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191-192:(1980).
Lal R and Pimentel D, Biofuels from crop residues. Soil Tillage Res 93:237-238:(2007).
Anex RP, Lynd LR, Laser MS, Heggenstaller AH and Liebman M, Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Sci 47:1327-1335:(2007).
Czernik S, Evans R and French R, Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catalysis Today 129:265-268:(2007).
Warnock DD, Lehmann J, Kuyper TW and Rillig MC, Mycorrhizal responses to biochar in soil - concepts and mechanisms. Plant Soil 300:9-20:(2007).
Kishimoto S and Sugiura G, Charcoal as a soil conditioner. Int Achieve Future 5:12-23:(1985).
Yamato M, Okimori Y, Wibowo IF, Anshiori S and Ogawa M, Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489-495:(2006).
Pessenda LCR, Gouveia SEM and Aravena R, Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43:595-601:(2001).
2006; 70
1995; 74
2007; 104
2007; 300
2006; 30
2009; 41
2006; 75
2008; 306
2008; 34
2001; 88
2008; 72
2007; 31
2008; 2
2008; 100
2008; 143
1994; 63
2001; 43
2009; 13
2009; 52
2003; 249
1990
2000
2004; 39
2008; 319
2007; 9
2008; 65
2007; 5
1999; 50
2007; 1
1994; 76
2001; 166
1995; 9
2007; 129
2006; 52
2005; 272
2004; 40
1985; 5
2006; 11
2002; 35
2009
2008
1997
2008; 12
2007
1995
2006
2005
2007; 93
2006; 3
1980; 70
2007; 98
2007; 99
2007; 16
1998; 38
2008; 180
2004; 96
2004; 59
1980; 12
2002; 66
2008; 87
1999; 30
2008; 42
2007; 47
1966
e_1_2_1_41_2
e_1_2_1_64_2
e_1_2_1_66_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_62_2
e_1_2_1_49_2
Lehmann J (e_1_2_1_50_2) 2006
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_68_2
cr-split#-e_1_2_1_60_2.1
e_1_2_1_28_2
cr-split#-e_1_2_1_60_2.2
Suarez DL (e_1_2_1_57_2) 2000
Wardle DA (e_1_2_1_53_2) 2008
e_1_2_1_6_2
e_1_2_1_54_2
e_1_2_1_75_2
e_1_2_1_4_2
e_1_2_1_56_2
e_1_2_1_2_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_52_2
e_1_2_1_73_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_58_2
e_1_2_1_8_2
e_1_2_1_18_2
e_1_2_1_39_2
Marjenah MS (e_1_2_1_69_2) 1994; 76
Kishimoto S (e_1_2_1_71_2) 1985; 5
e_1_2_1_40_2
e_1_2_1_65_2
e_1_2_1_67_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_61_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_63_2
e_1_2_1_27_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_29_2
Mbagwu JSC (e_1_2_1_70_2) 1997
e_1_2_1_30_2
e_1_2_1_76_2
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_72_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_74_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_19_2
Lal R (e_1_2_1_26_2) 2004; 59
e_1_2_1_17_2
e_1_2_1_59_2
e_1_2_1_9_2
References_xml – reference: Heggenstaller AH, Anex RP, Liebman M, Sundberg DN and Gibson LR, Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron J 100:1740-1748:(2008).
– reference: Laird DA, Chappell MA, Martens DA, Wershaw RL and Thompson ML, Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115-122:(2008).
– reference: Leibold H, Hornunga A and Seiferta H, HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis. Powder Technology 180:265-270:(2008).
– reference: Di Blasi C, Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust Sci 34:47-90:(2008).
– reference: Fowles M, Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg 31:426-432:(2007).
– reference: Pessenda LCR, Gouveia SEM and Aravena R, Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43:595-601:(2001).
– reference: Cheng CH, Lehmann J and Engelhard MH, Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598-1610:(2008).
– reference: Bridgwater AV, Meier D and Radlein D, An overview of fast pyrolysis of biomass. Organic Geochem 30:1479-1493:(1999).
– reference: Donnis B, Egeberg RG, Blom P and Knudsen KG, Hydroprocessing of bio-oils and oxygenates to oydrocarbons. Understanding the reaction routes. Topics Catalysis 52:229-240:(2009).
– reference: Oguntunde PG, Fosu M, Ajayi AE and van de Giesen ND, Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soils 39:295-299:(2004).
– reference: Koutcheiko S, Monreal CM, Kodama H, McCracken T and Kotlyar L, Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Biores Technol 98:2459-2464:(2007).
– reference: Iswaran V, Jauhri KS and Sen A, Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191-192:(1980).
– reference: Boateng AA, Hicks KB and Vogel KP, Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity. J Anal Appl Pyrolysis 75:55-64:(2006).
– reference: Skjemstad JO, Reicosky DC, Wilts AR and McGowan JA, Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249-1255:(2002).
– reference: Anex RP, Lynd LR, Laser MS, Heggenstaller AH and Liebman M, Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Sci 47:1327-1335:(2007).
– reference: Warnock DD, Lehmann J, Kuyper TW and Rillig MC, Mycorrhizal responses to biochar in soil - concepts and mechanisms. Plant Soil 300:9-20:(2007).
– reference: Marjenah MS, Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jap Forestry Soc 76:462-464:(1994).
– reference: Skjemstad JO, Janik LJ and Taylor JA, Non-living soil organic matter: What do we know about it? Aust J Exp Agr 38:667-680:(1998).
– reference: Czernik S, Evans R and French R, Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catalysis Today 129:265-268:(2007).
– reference: Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I and Xu XL, Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210-219:(2009).
– reference: Wardle DA, Nilsson MC and Zackrisson O, Fire-derived charcoal causes loss of forest humus. Science 320:629(2008).
– reference: Garnett E, Jonsson LM, Dighton J and Murnen K, Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds. Biology Fertility Soils 40:421-426:(2004).
– reference: Namaalwa J, Sankhayan PL and Hofstad O, A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy Econ 9:479-495:(2007).
– reference: Lu YJ and Lee T, Influence of the feed gas composition on the Fischer-Tropsch synthesis in commercial operations. J Natural Gas Chem 16:329-341:(2007).
– reference: Wilhelm WW, Johnson JMF, Karlen DL and Lightle DT, Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665-1667:(2007).
– reference: Tsai WT, Lee MK and Chang YM, Fast pyrolysis of rice husk: Product yields and compositions. Biores Technol 9822-28:(2007).
– reference: Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W and Glaser B, Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343-357:(2003).
– reference: Swift RS, Sequestration of carbon by soil. Soil Sci 166:858-871:(2001).
– reference: Badger PC and Fransham P, Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs-A preliminary assessment. Biomass Bioenerg 30:321-325:(2006).
– reference: Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luiza FJ, Petersen J and Neves EG, Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719-1730:(2006).
– reference: Lehmann J, Bio-energy in the black. Frontiers Ecol Envir 5:381-387:(2007).
– reference: Rhodes AH, Carlin A and Semple KT, Impact of black carbon in the extraction and mineralization of phenanthrene in soil more options. Env Sci Tech 42:740-745:(2008).
– reference: Lal R and Pimentel D, Biofuels from crop residues. Soil Tillage Res 93:237-238:(2007).
– reference: Glaser B, Haumaier L, Guggenberger G and Zech W, The [Terra Preta] phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37-41:(2001).
– reference: Ishii T and Kadoya K, Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J Jap Soc Hortic Sci 63:529-535:(1994).
– reference: Goyal HB, Seal D and Saxena RC, Bio-fuels from thermochemical conversion of renewable resources: A review. Renew Sustain Energy Rev 12:504-517:(2008).
– reference: Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu TH, Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238-1240:(2008).
– reference: Schmidt MWI, Skjemstad JO, Gehrt E and Kögel-Knabner I, Charred organic carbon in German chernozemic soils. Euro J Soil Sci 50:351-365:(1999).
– reference: Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzer C, Gingrich S, Lucht W and Fischer-Kowalski M, Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci 104:12942-12947:(2007).
– reference: Kuhlbusch TAJ and Crutzen PJ, Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochemical Cycles 9:491-501:(1995).
– reference: Benallal B, Roy C, Pakdel H, Chabot S and Poirier MA, Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tires - Comparison with petroleum naphtha. Fuel 74:1589-1594:(1995).
– reference: Lal R, Is crop residue a waste? J Soil Water Conser 59:136-139:(2004).
– reference: Yamato M, Okimori Y, Wibowo IF, Anshiori S and Ogawa M, Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489-495:(2006).
– reference: Glaser B, Lehmann J and Zech W, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol Fertil Soils 35:219-230:(2002).
– reference: Wright MM, Brown RC and Boateng AA, Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels, Bioprod Bioref 2:229-238:(2008).
– reference: Wilhelm WW, Johnson JF, Hatfield JL, Voorhees WB and Linden DR, Crop and soil productivity response to corn residue removal: A Literature Review. Agron J 96:1-17:(2004).
– reference: Lehmann J, Gaunt J and Rondon M, Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change 11:403-427:(2006).
– reference: Smith NJH, Anthrosols and human carrying capacity in Amazonia. Ann Assoc Am Geog 70:553-566:(1980).
– reference: Keech O, Carcaillet C and Nilsson MC, Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291-300:(2005).
– reference: Laird DA, The Charcoal Vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178-181:(2008).
– reference: Tagoe SO, Horiuchi T and Matsui T, Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybeans. Plant Soil 306:211-220:(2008).
– reference: Babu BV, Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioprod Bioref 2:393-414:(2008).
– reference: Preston CM and Schmidt MWI, Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397-420:(2006).
– reference: Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM, The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87:1230-1240:(2008).
– reference: Kishimoto S and Sugiura G, Charcoal as a soil conditioner. Int Achieve Future 5:12-23:(1985).
– reference: Ioannidou O, Zabaniotou A, Antonakou EV, Papazisi KM, Lappas AA and Athanassiou C, Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sustain Energy Rev 13:750-762:(2009).
– reference: DeLuca TH, MacKenzie MD, Gundale MJ and Holben WE, Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448-453:(2006).
– reference: Krausmann F, Erb KH, Gingrich S, Lauk C and Haberl H, Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol Econ 65:471-487:(2008).
– reference: Wright M and Brown RC, Establishing the optimal sizes of different kinds of biorefineries, Biofuels Bioproces Bioref 1:191-200:(2007).
– year: (2005)
– volume: 12
  start-page: 504
  year: 2008
  end-page: 517
  article-title: Bio‐fuels from thermochemical conversion of renewable resources: A review
  publication-title: Renew Sustain Energy Rev
– volume: 3
  start-page: 397
  year: 2006
  end-page: 420
  article-title: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions
  publication-title: Biogeosciences
– volume: 74
  start-page: 1589
  year: 1995
  end-page: 1594
  article-title: Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tires – Comparison with petroleum naphtha
  publication-title: Fuel
– start-page: 187
  year: 1990
  end-page: 202
– year: 1966
– volume: 100
  start-page: 1740
  year: 2008
  end-page: 1748
  article-title: Productivity and nutrient dynamics in bioenergy double‐cropping systems
  publication-title: Agron J
– start-page: 127
  year: 2009
  end-page: 146
– start-page: 320
  year: 2008
  end-page: 629
  article-title: Fire‐derived charcoal causes loss of forest humus
  publication-title: Science
– year: (2006)
– volume: 72
  start-page: 1598
  year: 2008
  end-page: 1610
  article-title: Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence
  publication-title: Geochim Cosmochim Acta
– year: (1995)
– volume: 43
  start-page: 595
  year: 2001
  end-page: 601
  article-title: Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal
  publication-title: Radiocarbon
– volume: 30
  start-page: 1479
  year: 1999
  end-page: 1493
  article-title: An overview of fast pyrolysis of biomass
  publication-title: Organic Geochem
– volume: 34
  start-page: 47
  year: 2008
  end-page: 90
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Prog Energ Combust Sci
– start-page: 921
  year: 1997
  end-page: 925
– volume: 16
  start-page: 329
  year: 2007
  end-page: 341
  article-title: Influence of the feed gas composition on the Fischer‐Tropsch synthesis in commercial operations
  publication-title: J Natural Gas Chem
– volume: 104
  start-page: 12942
  year: 2007
  end-page: 12947
  article-title: Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems
  publication-title: Proc Natl Acad Sci
– year: (2007)
– volume: 98
  start-page: 2459
  year: 2007
  end-page: 2464
  article-title: Preparation and characterization of activated carbon derived from the thermo‐chemical conversion of chicken manure
  publication-title: Biores Technol
– volume: 306
  start-page: 211
  year: 2008
  end-page: 220
  article-title: Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybeans
  publication-title: Plant Soil
– volume: 319
  start-page: 1238
  year: 2008
  end-page: 1240
  article-title: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change
  publication-title: Science
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci Soc Am J
– volume: 66
  start-page: 1249
  year: 2002
  end-page: 1255
  article-title: Charcoal carbon in U.S. agricultural soils
  publication-title: Soil Sci Soc Am J
– volume: 300
  start-page: 9
  year: 2007
  end-page: 20
  article-title: Mycorrhizal responses to biochar in soil – concepts and mechanisms
  publication-title: Plant Soil
– volume: 9
  start-page: 491
  year: 1995
  end-page: 501
  article-title: Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2
  publication-title: Global Biogeochemical Cycles
– volume: 42
  start-page: 740
  year: 2008
  end-page: 745
  article-title: Impact of black carbon in the extraction and mineralization of phenanthrene in soil more options
  publication-title: Env Sci Tech
– volume: 75
  start-page: 55
  year: 2006
  end-page: 64
  article-title: Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity
  publication-title: J Anal Appl Pyrolysis
– volume: 5
  start-page: 12
  year: 1985
  end-page: 23
  article-title: Charcoal as a soil conditioner
  publication-title: Int Achieve Future
– volume: 39
  start-page: 295
  year: 2004
  end-page: 299
  article-title: Effects of charcoal production on maize yield, chemical properties and texture of soil
  publication-title: Biol Fert Soils
– volume: 143
  start-page: 115
  year: 2008
  end-page: 122
  article-title: Distinguishing black carbon from biogenic humic substances in soil clay fractions
  publication-title: Geoderma
– volume: 30
  start-page: 321
  year: 2006
  end-page: 325
  article-title: Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment
  publication-title: Biomass Bioenerg
– volume: 70
  start-page: 553
  year: 1980
  end-page: 566
  article-title: Anthrosols and human carrying capacity in Amazonia
  publication-title: Ann Assoc Am Geog
– volume: 76
  start-page: 462
  year: 1994
  end-page: 464
  article-title: Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation
  publication-title: J Jap Forestry Soc
– volume: 40
  start-page: 421
  year: 2004
  end-page: 426
  article-title: Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds
  publication-title: Biology Fertility Soils
– volume: 2
  start-page: 229
  year: 2008
  end-page: 238
  article-title: Distributed processing of biomass to bio‐oil for subsequent production of Fischer‐Tropsch liquids
  publication-title: Biofuels, Bioprod Bioref
– volume: 180
  start-page: 265
  year: 2008
  end-page: 270
  article-title: HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis
  publication-title: Powder Technology
– volume: 93
  start-page: 237
  year: 2007
  end-page: 238
  article-title: Biofuels from crop residues
  publication-title: Soil Tillage Res
– volume: 59
  start-page: 136
  year: 2004
  end-page: 139
  article-title: Is crop residue a waste?
  publication-title: J Soil Water Conser
– volume: 47
  start-page: 1327
  year: 2007
  end-page: 1335
  article-title: Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems
  publication-title: Crop Sci
– year: (2000)
– volume: 50
  start-page: 351
  year: 1999
  end-page: 365
  article-title: Charred organic carbon in German chernozemic soils
  publication-title: Euro J Soil Sci
– volume: 1
  start-page: 191
  year: 2007
  end-page: 200
  article-title: Establishing the optimal sizes of different kinds of biorefineries,
  publication-title: Biofuels Bioproces Bioref
– volume: 98
  start-page: 22
  year: 2007
  end-page: 28
  article-title: Fast pyrolysis of rice husk: Product yields and compositions
  publication-title: Biores Technol
– volume: 38
  start-page: 667
  year: 1998
  end-page: 680
  article-title: Non‐living soil organic matter: What do we know about it?
  publication-title: Aust J Exp Agr
– volume: 52
  start-page: 229
  year: 2009
  end-page: 240
  article-title: Hydroprocessing of bio‐oils and oxygenates to oydrocarbons. Understanding the reaction routes
  publication-title: Topics Catalysis
– volume: 88
  start-page: 37
  year: 2001
  end-page: 41
  article-title: The [Terra Preta] phenomenon: a model for sustainable agriculture in the humid tropics
  publication-title: Naturwissenschaften
– start-page: 397
  year: 2006
  end-page: 420
– volume: 5
  start-page: 381
  year: 2007
  end-page: 387
  article-title: Bio‐energy in the black
  publication-title: Frontiers Ecol Envir
– volume: 99
  start-page: 1665
  year: 2007
  end-page: 1667
  article-title: Corn stover to sustain soil organic carbon further constrains biomass supply
  publication-title: Agron J
– volume: 166
  start-page: 858
  year: 2001
  end-page: 871
  article-title: Sequestration of carbon by soil
  publication-title: Soil Sci
– volume: 9
  start-page: 479
  year: 2007
  end-page: 495
  article-title: A dynamic bio‐economic model for analyzing deforestation and degradation: An application to woodlands in Uganda
  publication-title: Forest Policy Econ
– volume: 70
  start-page: 448
  year: 2006
  end-page: 453
  article-title: Wildfire‐produced charcoal directly influences nitrogen cycling in ponderosa pine forests
  publication-title: Soil Sci Soc Am J
– volume: 31
  start-page: 426
  year: 2007
  end-page: 432
  article-title: Black carbon sequestration as an alternative to bioenergy
  publication-title: Biomass Bioenerg
– volume: 41
  start-page: 210
  year: 2009
  end-page: 219
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling
  publication-title: Soil Biol Biochem
– volume: 65
  start-page: 471
  year: 2008
  end-page: 487
  article-title: Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints
  publication-title: Ecol Econ
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review
  publication-title: Biol Fertil Soils
– volume: 2
  start-page: 393
  year: 2008
  end-page: 414
  article-title: Biomass pyrolysis: a state‐of‐the‐art review
  publication-title: Biofuels, Bioprod Bioref
– volume: 96
  start-page: 1
  year: 2004
  end-page: 17
  article-title: Crop and soil productivity response to corn residue removal: A Literature Review
  publication-title: Agron J
– year: (2008)
– volume: 13
  start-page: 750
  year: 2009
  end-page: 762
  article-title: Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non‐catalytic and catalytic pyrolysis in two reactor configurations
  publication-title: Renew Sustain Energy Rev
– volume: 63
  start-page: 529
  year: 1994
  end-page: 535
  article-title: Effects of charcoal as a soil conditioner on citrus growth and vesicular–arbuscular mycorrhizal development
  publication-title: J Jap Soc Hortic Sci
– volume: 12
  start-page: 191
  year: 1980
  end-page: 192
  article-title: Effect of charcoal, coal and peat on the yield of moong, soybean and pea
  publication-title: Soil Biol Biochem
– start-page: 665
  year: (2008)
  end-page: 5
– volume: 87
  start-page: 1230
  year: 2008
  end-page: 1240
  article-title: The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability
  publication-title: Fuel
– volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  article-title: Bio‐char sequestration in terrestrial ecosystems – A review
  publication-title: Mitigation and Adaptation Strategies for Global Change
– volume: 129
  start-page: 265
  year: 2007
  end-page: 268
  article-title: Hydrogen from biomass‐production by steam reforming of biomass pyrolysis oil
  publication-title: Catalysis Today
– volume: 52
  start-page: 489
  year: 2006
  end-page: 495
  article-title: Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia
  publication-title: Soil Sci Plant Nutr
– volume: 249
  start-page: 343
  year: 2003
  end-page: 357
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
– volume: 100
  start-page: 178
  year: 2008
  end-page: 181
  article-title: The Charcoal Vision: A win‐win‐win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality
  publication-title: Agron J
– volume: 272
  start-page: 291
  year: 2005
  end-page: 300
  article-title: Adsorption of allelopathic compounds by wood‐derived charcoal: the role of wood porosity
  publication-title: Plant Soil
– ident: e_1_2_1_11_2
– ident: e_1_2_1_59_2
  doi: 10.1007/s11027-005-9006-5
– ident: e_1_2_1_25_2
– ident: e_1_2_1_21_2
  doi: 10.1007/s11244-008-9159-z
– ident: e_1_2_1_72_2
  doi: 10.1111/j.1747-0765.2006.00065.x
– ident: e_1_2_1_17_2
  doi: 10.1002/bbb.73
– ident: e_1_2_1_33_2
  doi: 10.1007/s001140000193
– ident: e_1_2_1_32_2
  doi: 10.1111/j.1467-8306.1980.tb01332.x
– ident: e_1_2_1_24_2
  doi: 10.2134/agronj2007.0161
– ident: e_1_2_1_46_2
  doi: 10.1071/EA97143
– ident: #cr-split#-e_1_2_1_60_2.2
– ident: e_1_2_1_15_2
  doi: 10.1016/j.biombioe.2005.07.011
– ident: e_1_2_1_66_2
  doi: 10.1007/s11104-004-5485-5
– ident: e_1_2_1_74_2
– ident: e_1_2_1_8_2
  doi: 10.1016/j.rser.2006.07.014
– volume-title: Global Climate Change and Pedogenic Carbonates
  year: 2000
  ident: e_1_2_1_57_2
– ident: e_1_2_1_7_2
– ident: e_1_2_1_64_2
  doi: 10.1016/j.biortech.2006.09.038
– ident: e_1_2_1_47_2
  doi: 10.1097/00010694-200111000-00010
– ident: e_1_2_1_20_2
  doi: 10.1016/S1003-9953(08)60001-8
– ident: e_1_2_1_48_2
  doi: 10.1017/S0033822200041242
– ident: e_1_2_1_37_2
  doi: 10.2136/sssaj2002.1249
– ident: e_1_2_1_45_2
  doi: 10.1046/j.1365-2389.1999.00236.x
– ident: e_1_2_1_76_2
  doi: 10.1002/bbb.25
– ident: e_1_2_1_55_2
  doi: 10.1016/j.biombioe.2007.01.012
– ident: e_1_2_1_4_2
  doi: 10.1016/j.pecs.2006.12.001
– ident: e_1_2_1_41_2
  doi: 10.1007/s11104-007-9391-5
– ident: e_1_2_1_3_2
  doi: 10.1016/j.rser.2008.01.004
– ident: e_1_2_1_35_2
  doi: 10.2503/jjshs.63.529
– ident: e_1_2_1_31_2
– ident: e_1_2_1_28_2
  doi: 10.1016/j.still.2006.11.007
– ident: e_1_2_1_65_2
  doi: 10.1021/es071451n
– ident: e_1_2_1_10_2
  doi: 10.1016/j.fuel.2007.07.026
– start-page: 921
  volume-title: The role of humic substances in the ecosystems and in environmental protection
  year: 1997
  ident: e_1_2_1_70_2
– ident: e_1_2_1_61_2
– ident: e_1_2_1_5_2
  doi: 10.1002/bbb.92
– ident: e_1_2_1_40_2
  doi: 10.2136/sssaj2005.0383
– ident: e_1_2_1_58_2
  doi: 10.1029/95GB02742
– ident: e_1_2_1_62_2
  doi: 10.1016/j.ecolecon.2007.07.012
– ident: e_1_2_1_75_2
  doi: 10.2172/894989
– ident: e_1_2_1_19_2
  doi: 10.1016/j.powtec.2007.05.012
– ident: e_1_2_1_13_2
– ident: e_1_2_1_36_2
  doi: 10.1007/s00374-003-0707-1
– ident: e_1_2_1_49_2
  doi: 10.5194/bg-3-397-2006
– ident: e_1_2_1_27_2
  doi: 10.2134/agronj2004.1000a
– start-page: 320
  year: 2008
  ident: e_1_2_1_53_2
  article-title: Fire‐derived charcoal causes loss of forest humus
  publication-title: Science
– ident: e_1_2_1_56_2
  doi: 10.1126/science.1151861
– ident: e_1_2_1_63_2
  doi: 10.1073/pnas.0704243104
– ident: e_1_2_1_68_2
  doi: 10.1016/0038-0717(80)90057-7
– ident: e_1_2_1_38_2
  doi: 10.1016/j.geoderma.2007.10.025
– ident: e_1_2_1_44_2
– ident: e_1_2_1_22_2
  doi: 10.1007/s00374-002-0466-4
– ident: e_1_2_1_12_2
  doi: 10.1016/0016-2361(95)00165-2
– volume: 59
  start-page: 136
  year: 2004
  ident: e_1_2_1_26_2
  article-title: Is crop residue a waste?
  publication-title: J Soil Water Conser
– ident: e_1_2_1_54_2
  doi: 10.1016/j.soilbio.2008.10.016
– ident: e_1_2_1_14_2
  doi: 10.2134/agronj2007.0150
– ident: e_1_2_1_42_2
  doi: 10.2136/sssaj2005.0096
– ident: e_1_2_1_9_2
  doi: 10.1016/j.jaap.2005.03.005
– ident: e_1_2_1_30_2
  doi: 10.2134/agronj2008.0087
– ident: e_1_2_1_39_2
  doi: 10.2136/1990.humicsubstances.c8
– start-page: 397
  volume-title: Biochar for Environmental Management
  year: 2006
  ident: e_1_2_1_50_2
– ident: e_1_2_1_43_2
– ident: e_1_2_1_6_2
  doi: 10.1016/j.forpol.2006.01.001
– ident: e_1_2_1_16_2
  doi: 10.1016/j.cattod.2006.08.071
– ident: e_1_2_1_34_2
  doi: 10.1023/A:1022833116184
– volume: 76
  start-page: 462
  year: 1994
  ident: e_1_2_1_69_2
  article-title: Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation
  publication-title: J Jap Forestry Soc
– ident: e_1_2_1_2_2
  doi: 10.1016/S0146-6380(99)00120-5
– ident: #cr-split#-e_1_2_1_60_2.1
– ident: e_1_2_1_67_2
  doi: 10.1007/s00374-004-0801-z
– ident: e_1_2_1_29_2
  doi: 10.2135/cropsci2006.06.0406
– ident: e_1_2_1_18_2
  doi: 10.1016/j.biortech.2005.12.005
– ident: e_1_2_1_23_2
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– ident: e_1_2_1_51_2
  doi: 10.1007/s11104-008-9573-9
– ident: e_1_2_1_52_2
  doi: 10.1016/j.gca.2008.01.010
– ident: e_1_2_1_73_2
– volume: 5
  start-page: 12
  year: 1985
  ident: e_1_2_1_71_2
  article-title: Charcoal as a soil conditioner
  publication-title: Int Achieve Future
SSID ssj0056545
Score 2.4641414
SecondaryResourceType review_article
Snippet Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust...
Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 547
SubjectTerms agriculture
bio-oil
biochar
biomass
carbon sequestration
pyrolysis
soil quality
Terra Preta
Title Review of the pyrolysis platform for coproducing bio-oil and biochar
URI https://api.istex.fr/ark:/67375/WNG-13VVK3CV-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbbb.169
https://www.proquest.com/docview/20831508
https://www.proquest.com/docview/34933403
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQXMqBUh4ipS0-IG4b9uF9HQlqQEXlUJGHuFh-VlGi3SgPqXDiJ_Q38kuY8W7SAEKquOzK2rHk9dieb-zxN4Qcg5HKbay1l5o48ZgBB0X4OSyGKlNWZcyGAvchf14nlx32ox_3V1J9VfwQyw03nBluvcYJLuT09B9pqJSyGSR4dQ8jtRAO_VoSRwFKcemJEZ3AQsP61XVZrHla13tmhzawS_88A5mrUNXZmvZHcrtoZRViMmzOZ7Kp7l8QOL7rN7bJVo1A6Vk1ZD6RNVPskM2z35OahcNAaYWlcJe0q_MDWloKaJGO7yal4zGh45GYIeal8KCqHDvyWKhC5aB8fPhbDkZUFBpLeLdrj3Ta32_OL706_YKnWBzlHiAN42uwYDaU6CmGgdbgL9pMaOaI_NJAhDrR1vqJSH2TSpHEuc5jIS3LwDjuk_WiLMwBoalKfJvGxgRKAf7SmQitiTI_lCoVOsga5GShDK5qbnJMkTHiFatyyKGbOHRTg9Cl4Lii43gtcuK0ufwuJkOMXktj3ru-4EHU7V5F513ea5Cjhbo5zCk8KBGFKedTHmL6NUCub0tELI8i5kcNcuyU-1ZjeKvVgtfn_xM7JB-qwyoMYftC1meTufkKmGcmv7nh_QSBUv8j
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0q7QJY8EaEV2dRunNqj8evBYumJaSkzQK1aXbDPFHVyI7SRFBWfALfwa_wF3wJd8ZOaEGV2HTBxtbIY2s89zHnzuNcgA0cpAqbaB1kJkkDZjBAEWGBzlDlyqqcWSrcPOTBIO0dsXejZLQC3xdnYWp-iOWEm7MM76-dgbsJ6a3frKFSynaUFs2Gyr45_4Th2tnrvV2U7StKu28Od3pBk1EgUCyJiwAHTxNqdMqWShf80EhrDIFsLjTz3HRZJKhOtbVhKrLQZFKkSaGLREjLcvT3-N0bsObyhzue_t33S6oqxEU-IbLDQ-ja2Kg-oOuautU09NLIt-aE-PkSrL0Ijv3o1r0LPxb9Um9qOW3PZ7KtvvxBGfl_dNw9uNOAbLJdW8V9WDHlA7i9_XHaEI0YLF0gYnwI3XqJhFSWICAmk_Np5alayGQsZg7WE7wQVU08Py6-QuRJ9fPrt-pkTESpXckdX3sER9fyW49htaxK8wRIptLQZokxkVIIMXUuqDVxHlKpMqGjvAWbC-lz1dCvuywgY14TR1OOYuEolhaQZcVJzTjyd5VNrz7L52J66jboZQk_HrzlUTwc9uOdIT9uwfpCvzi6DbcWJEpTzc84dRnmEJxfXSNmRRyzMG7BhtemqxrDO50O3p7-W7V1uNk7PNjn-3uD_jO4Va_NuR17z2F1Np2bFwjxZvKlty0CH65bJ38BWUFbEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qrYRgwRuRttBZlO6c2uPxa8GiaQgtgQghmmY3zLOqGtlWmoiWVT-B3-BX-Ay-hDu2E1pQJTZdsLE18tgaz33MufM4F2ATB6nMRlp7iYlijxkMUISfoTNUqbIqZZYKNw_5fhDvHbC3o2i0BN_nZ2FqfojFhJuzjMpfOwMvtd3-TRoqpWwHcdbsp-yb8y8YrZ2-2u-iaF9S2nv9aXfPaxIKeIpFYebh2Gl8jT7ZUuliHxpojRGQTYVmFTVdEgiqY22tH4vEN4kUcZTpLBLSshTdPX73Fqyw2M9clojuxwVTFcKiKh-yg0Po2dioPp_rmrrdNPTKwLfiZHh2BdVexsbV4Na7Dz_m3VLvaTlpz6ayrb7-wRj5X_TbA7jXQGyyU9vEQ1gy-SO4u3M0aWhGDJYu0TA-hl69QEIKSxAOk_J8UlRELaQci6kD9QQvRBVlxY6LrxB5XPy8-FYcj4nItSu5w2tP4OBGfuspLOdFbp4BSVTs2yQyJlAKAaZOBbUmTH0qVSJ0kLZgay58rhrydZcDZMxr2mjKUSwcxdICsqhY1nwjf1fZqrRn8VxMTtz2vCTih4M3PAiHw364O-SHLdiYqxdHp-FWgkRuitkppy6_HELz62uELAtD5oct2KyU6brG8E6ng7fVf6u2Abc_dHv83f6gvwZ36oU5t11vHZank5l5jvhuKl9UlkXg802r5C_V4FnC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+pyrolysis+platform+for+coproducing+bio-oil+and+biochar&rft.jtitle=Biofuels%2C+bioproducts+and+biorefining&rft.au=Laird%2C+David+A&rft.au=Brown%2C+Robert+C&rft.au=Amonette%2C+James+E&rft.au=Lehmann%2C+Johannes&rft.date=2009-09-01&rft.issn=1932-104X&rft.volume=3&rft.issue=5&rft.spage=547&rft.epage=562&rft_id=info:doi/10.1002%2Fbbb.169&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-104X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-104X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-104X&client=summon