Review of the pyrolysis platform for coproducing bio-oil and biochar
Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a...
Saved in:
Published in | Biofuels, bioproducts and biorefining Vol. 3; no. 5; pp. 547 - 562 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.09.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio‐oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biochar is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeters studies and it is anticipated to do the same for agricultural watersheds.
The pyrolysis platform for producing bio‐oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio‐oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive. Published in 2009 by John Wiley & Sons, Ltd |
---|---|
AbstractList | Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio-oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biochar is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeters studies and it is anticipated to do the same for agricultural watersheds. The pyrolysis platform for producing bio-oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio-oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive. Published in 2009 by John Wiley & Sons, Ltd. Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio‐oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biochar is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeters studies and it is anticipated to do the same for agricultural watersheds. The pyrolysis platform for producing bio‐oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio‐oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive. Published in 2009 by John Wiley & Sons, Ltd |
Author | Laird, David A. Brown, Robert C. Lehmann, Johannes Amonette, James E. |
Author_xml | – sequence: 1 givenname: David A. surname: Laird fullname: Laird, David A. email: david.laird@ars.usda.gov organization: USDA-ARS-National Soil Tilth Laboratory, Ames, IA – sequence: 2 givenname: Robert C. surname: Brown fullname: Brown, Robert C. organization: Iowa State University, Ames, IA – sequence: 3 givenname: James E. surname: Amonette fullname: Amonette, James E. organization: Pacific Northwest National Laboratory, Richland, WA – sequence: 4 givenname: Johannes surname: Lehmann fullname: Lehmann, Johannes organization: Cornell University, Ithaca, NY |
BookMark | eNqF0E9PwjAYBvDGYCKg8SvspAcz7N-NHQUVjUQTo-Ct6dZWqmOd7RD37R0Z4WA0Xp73Pfzy5s3TA53CFgqAYwQHCEJ8nqbpAEXJHuiihOAQQYI6u52-HICe928QsohR1gWXj-rTqHVgdVAtVFDWzua1Nz4oc1Fp65ZBE0FmS2flKjPFa5AaG1qTB6KQmz1bCHcI9rXIvTrazj54vr56Gt-E04fJ7fhiGmaUkSREjCkohxBpnEIUY4ykjDHSQyEppATTGAksI6k1jEQMVZyKiCUyYSLVdEgR6YOT9m7zzcdK-Yovjc9UnotC2ZXnhCaEUEj-hRgOCWJN9EHYwsxZ753SPDOVqIwtKidMzhHkm1J5UypvSm386Q9fOrMUrv5FnrVybXJV_8X4aDRq9fYP4yv1tdPCvfMoJjHj8_sJR2Q2uyPjGZ-Tb8IqlQA |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_115166 crossref_primary_10_1016_j_jaap_2024_106622 crossref_primary_10_1016_j_eti_2020_101310 crossref_primary_10_1016_j_resconrec_2016_01_007 crossref_primary_10_1016_j_jiec_2015_04_016 crossref_primary_10_3389_fclim_2022_842650 crossref_primary_10_1016_j_jclepro_2018_08_252 crossref_primary_10_1016_j_jclepro_2019_119714 crossref_primary_10_1007_s42729_019_00075_2 crossref_primary_10_1016_j_jenvman_2015_07_056 crossref_primary_10_1016_S1002_0160_21_60084_X crossref_primary_10_7857_JSGE_2012_17_2_054 crossref_primary_10_1007_s42823_023_00527_x crossref_primary_10_1016_j_cej_2020_125128 crossref_primary_10_1016_j_biombioe_2014_01_049 crossref_primary_10_1007_s12649_015_9459_z crossref_primary_10_1039_c3ta10538e crossref_primary_10_1016_j_fuproc_2017_04_012 crossref_primary_10_1177_0021998319888734 crossref_primary_10_1016_j_scitotenv_2016_08_190 crossref_primary_10_3390_su131810362 crossref_primary_10_1016_j_biortech_2013_08_020 crossref_primary_10_1039_C8TA07563H crossref_primary_10_3390_microbiolres14010018 crossref_primary_10_1186_s42269_019_0222_7 crossref_primary_10_3390_su131911061 crossref_primary_10_1098_rstb_2020_0180 crossref_primary_10_1016_j_biombioe_2017_05_015 crossref_primary_10_7857_JSGE_2015_20_6_127 crossref_primary_10_4236_jsbs_2015_51002 crossref_primary_10_1016_j_jclepro_2024_143133 crossref_primary_10_1016_j_rser_2014_07_197 crossref_primary_10_1021_acs_jpca_0c06037 crossref_primary_10_3934_environsci_2019_5_379 crossref_primary_10_1016_j_jclepro_2018_01_122 crossref_primary_10_1007_s12665_016_5440_9 crossref_primary_10_1016_j_rser_2015_01_050 crossref_primary_10_1021_acsomega_1c00285 crossref_primary_10_1038_s41467_021_21868_z crossref_primary_10_3389_fenrg_2019_00005 crossref_primary_10_1016_j_fuproc_2017_05_034 crossref_primary_10_1080_19443994_2016_1175972 crossref_primary_10_3846_16486897_2017_1319375 crossref_primary_10_1007_s10098_017_1386_1 crossref_primary_10_1016_j_fuel_2021_120533 crossref_primary_10_1016_j_scitotenv_2018_08_412 crossref_primary_10_1088_1755_1315_1201_1_012075 crossref_primary_10_1111_gcbb_12915 crossref_primary_10_1016_j_jenvman_2021_114403 crossref_primary_10_1021_es500073r crossref_primary_10_1080_21622515_2019_1631393 crossref_primary_10_1016_j_catena_2014_07_005 crossref_primary_10_3390_en17194861 crossref_primary_10_1007_s11814_017_0255_2 crossref_primary_10_1039_C5GC01611H crossref_primary_10_1021_acsomega_4c00911 crossref_primary_10_1016_j_fuproc_2015_01_002 crossref_primary_10_53472_jenas_1190980 crossref_primary_10_1016_j_indcrop_2020_113123 crossref_primary_10_4491_eer_2020_592 crossref_primary_10_1016_j_scitotenv_2023_166171 crossref_primary_10_1002_cjce_24472 crossref_primary_10_1016_j_jclepro_2016_11_100 crossref_primary_10_1007_s11368_013_0680_8 crossref_primary_10_1016_j_fuel_2012_05_063 crossref_primary_10_1038_s41598_023_44292_3 crossref_primary_10_3390_en16062865 crossref_primary_10_1016_j_carbon_2017_12_070 crossref_primary_10_1371_journal_pone_0154562 crossref_primary_10_1016_j_jhazmat_2015_08_025 crossref_primary_10_1016_j_mtsust_2022_100209 crossref_primary_10_4236_as_2017_89064 crossref_primary_10_1007_s42773_021_00091_5 crossref_primary_10_1021_acs_iecr_9b05744 crossref_primary_10_1007_s42773_019_00004_7 crossref_primary_10_1016_j_rser_2016_11_189 crossref_primary_10_1088_1742_6596_1519_1_012014 crossref_primary_10_1007_s11368_022_03338_1 crossref_primary_10_1016_j_fuel_2017_09_076 crossref_primary_10_1021_acssuschemeng_9b03098 crossref_primary_10_1016_j_techfore_2023_122704 crossref_primary_10_1016_S2095_3119_16_61578_2 crossref_primary_10_1088_1755_1315_175_1_012020 crossref_primary_10_1021_ef501114v crossref_primary_10_1016_j_tsep_2023_102339 crossref_primary_10_1016_j_envres_2020_109164 crossref_primary_10_2134_jeq2014_09_0385 crossref_primary_10_1016_j_ecoenv_2016_11_029 crossref_primary_10_1007_s12155_011_9133_7 crossref_primary_10_1016_j_scitotenv_2018_06_076 crossref_primary_10_2175_106143016X14609975747441 crossref_primary_10_1007_s42729_024_02179_w crossref_primary_10_1016_j_jclepro_2016_06_144 crossref_primary_10_1007_s11104_011_0771_5 crossref_primary_10_1016_j_ceja_2023_100474 crossref_primary_10_1021_acs_est_9b03261 crossref_primary_10_1080_09583157_2018_1450488 crossref_primary_10_1039_D0RA04607H crossref_primary_10_1016_j_enconman_2025_119511 crossref_primary_10_1063_1_4966696 crossref_primary_10_1016_j_jclepro_2020_123338 crossref_primary_10_1016_j_jenvman_2021_112154 crossref_primary_10_1016_j_scitotenv_2019_06_484 crossref_primary_10_1007_s13399_021_01587_7 crossref_primary_10_1080_15567036_2016_1212292 crossref_primary_10_1016_j_biortech_2014_03_134 crossref_primary_10_1016_j_jhazmat_2016_02_044 crossref_primary_10_1016_j_biombioe_2013_12_010 crossref_primary_10_1007_s13399_022_02842_1 crossref_primary_10_1016_j_biortech_2016_06_114 crossref_primary_10_1021_ef501112q crossref_primary_10_1007_s40831_023_00720_2 crossref_primary_10_1007_s11356_015_4348_3 crossref_primary_10_1039_C7EW00132K crossref_primary_10_1039_C5EW00229J crossref_primary_10_1016_j_energy_2024_130338 crossref_primary_10_1016_j_biombioe_2016_02_023 crossref_primary_10_2134_jeq2011_0077 crossref_primary_10_1007_s42773_024_00323_4 crossref_primary_10_3390_plants13060851 crossref_primary_10_1016_j_rser_2014_10_074 crossref_primary_10_1111_gcbb_12314 crossref_primary_10_1002_aic_13705 crossref_primary_10_1080_19443994_2014_981227 crossref_primary_10_1080_00194506_2020_1845987 crossref_primary_10_36953_ECJ_22862589 crossref_primary_10_1016_j_jhazmat_2016_05_088 crossref_primary_10_1016_j_isci_2024_110812 crossref_primary_10_1080_01904167_2021_1943675 crossref_primary_10_1021_acs_iecr_8b01527 crossref_primary_10_1016_j_apenergy_2012_11_057 crossref_primary_10_1016_j_rser_2019_109343 crossref_primary_10_1039_C6GC02335E crossref_primary_10_1021_ie201309r crossref_primary_10_1016_j_scitotenv_2018_07_402 crossref_primary_10_1016_j_rser_2011_07_035 crossref_primary_10_3390_pr10101970 crossref_primary_10_1016_j_chemosphere_2011_07_031 crossref_primary_10_1016_j_chemosphere_2019_03_170 crossref_primary_10_1007_s11356_017_8707_0 crossref_primary_10_3390_c9020049 crossref_primary_10_1039_D4MA00675E crossref_primary_10_3390_agronomy4010052 crossref_primary_10_1007_s13399_021_01391_3 crossref_primary_10_1016_j_rser_2021_111073 crossref_primary_10_1007_s11368_015_1338_5 crossref_primary_10_1016_j_jenvman_2025_124547 crossref_primary_10_1016_j_jclepro_2020_125664 crossref_primary_10_1111_gcbb_12529 crossref_primary_10_1016_j_jaap_2018_11_027 crossref_primary_10_1038_s41598_024_70975_6 crossref_primary_10_3390_su16208838 crossref_primary_10_1016_j_plaphy_2016_03_001 crossref_primary_10_1016_j_fuel_2013_02_065 crossref_primary_10_3390_molecules26185449 crossref_primary_10_1016_j_chemosphere_2018_08_106 crossref_primary_10_1016_j_chemosphere_2015_06_016 crossref_primary_10_1016_j_jclepro_2024_143645 crossref_primary_10_1016_j_scitotenv_2019_03_257 crossref_primary_10_1021_acs_chemrev_5b00195 crossref_primary_10_3390_en14196157 crossref_primary_10_1016_j_jenvman_2023_119745 crossref_primary_10_1063_1_4923442 crossref_primary_10_3390_su13031330 crossref_primary_10_1016_j_jclepro_2021_126825 crossref_primary_10_1016_j_carbon_2018_03_079 crossref_primary_10_1016_j_fuel_2018_03_028 crossref_primary_10_1016_j_fuel_2014_03_025 crossref_primary_10_2136_sssaj2010_0325 crossref_primary_10_1007_s11356_015_5114_2 crossref_primary_10_1016_j_jaap_2012_11_005 crossref_primary_10_1016_j_biteb_2021_100838 crossref_primary_10_1021_am300510u crossref_primary_10_1016_j_still_2021_105126 crossref_primary_10_3390_app9081706 crossref_primary_10_1016_j_jaap_2011_01_001 crossref_primary_10_1016_j_fuel_2020_118792 crossref_primary_10_1016_j_jclepro_2013_04_004 crossref_primary_10_3390_su12197909 crossref_primary_10_1021_acs_energyfuels_5b01020 crossref_primary_10_1016_j_fuel_2023_129283 crossref_primary_10_1039_C5RA13409A crossref_primary_10_1016_j_jclepro_2020_125368 crossref_primary_10_1016_j_jenvman_2021_112457 crossref_primary_10_1007_s10295_017_1958_4 crossref_primary_10_1016_j_jaap_2013_06_016 crossref_primary_10_3390_molecules28104008 crossref_primary_10_1139_cjss_2021_0047 crossref_primary_10_1016_j_apenergy_2017_11_033 crossref_primary_10_1021_acs_energyfuels_9b00531 crossref_primary_10_1007_s11104_011_0948_y crossref_primary_10_1016_j_rser_2019_109548 crossref_primary_10_1016_j_wasman_2014_08_004 crossref_primary_10_1016_j_jclepro_2019_118409 crossref_primary_10_1016_j_energy_2018_12_075 crossref_primary_10_1007_s40003_017_0281_7 crossref_primary_10_1155_2013_354965 crossref_primary_10_3389_fpls_2020_01281 crossref_primary_10_35193_bseufbd_571391 crossref_primary_10_1021_acs_energyfuels_2c04093 crossref_primary_10_1039_C8RA03958E crossref_primary_10_1016_j_fcr_2018_12_013 crossref_primary_10_1016_j_jaap_2014_08_014 crossref_primary_10_1016_j_anres_2017_04_001 crossref_primary_10_3390_su14159626 crossref_primary_10_1016_j_geoderma_2019_07_027 crossref_primary_10_1016_j_wasman_2015_01_022 crossref_primary_10_1016_j_fcr_2018_07_012 crossref_primary_10_1016_j_biombioe_2014_11_016 crossref_primary_10_1039_C6GC02477G crossref_primary_10_3390_agronomy3020294 crossref_primary_10_1039_C7EW00380C crossref_primary_10_1111_j_1365_2389_2011_01377_x crossref_primary_10_1002_er_4383 crossref_primary_10_1007_s11104_013_1639_7 crossref_primary_10_1021_acssuschemeng_8b04253 crossref_primary_10_1080_10643389_2010_507980 crossref_primary_10_3934_agrfood_2021024 crossref_primary_10_1016_j_fuel_2012_02_065 crossref_primary_10_1016_j_susmat_2024_e00831 crossref_primary_10_1021_acs_iecr_7b01548 crossref_primary_10_1016_j_jiec_2016_12_038 crossref_primary_10_1016_j_fuel_2013_04_090 crossref_primary_10_1016_j_jenvman_2023_119305 crossref_primary_10_1039_C2GC36332A crossref_primary_10_1007_s11368_023_03439_5 crossref_primary_10_1016_j_enconman_2018_09_041 crossref_primary_10_1007_s42773_020_00047_1 crossref_primary_10_1007_s11356_024_31936_8 crossref_primary_10_1016_j_jaap_2020_104826 crossref_primary_10_1016_j_jclepro_2014_12_050 crossref_primary_10_3390_land8120179 crossref_primary_10_7857_JSGE_2012_17_2_047 crossref_primary_10_3389_fmicb_2022_862075 crossref_primary_10_1016_j_est_2023_109114 crossref_primary_10_1177_0734242X19838608 crossref_primary_10_3389_fmicb_2017_00589 crossref_primary_10_1016_j_soilbio_2011_11_019 crossref_primary_10_1016_j_eti_2021_102128 crossref_primary_10_1007_s12649_015_9364_5 crossref_primary_10_1016_j_biortech_2017_06_087 crossref_primary_10_1016_j_jia_2024_03_022 crossref_primary_10_1007_s11356_014_2993_6 crossref_primary_10_1016_j_jclepro_2016_07_205 crossref_primary_10_1016_j_fuel_2015_07_039 crossref_primary_10_1002_er_4361 crossref_primary_10_1016_j_wasman_2023_10_031 crossref_primary_10_1021_acsomega_1c00622 crossref_primary_10_1016_j_rser_2020_110649 crossref_primary_10_1007_s42773_019_00021_6 crossref_primary_10_1088_1748_9326_aafcf0 crossref_primary_10_1111_gcbb_12037 crossref_primary_10_1016_j_scitotenv_2020_137775 crossref_primary_10_1016_j_supflu_2021_105329 crossref_primary_10_1007_s11356_017_8500_0 crossref_primary_10_1111_gcbb_12032 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118988 crossref_primary_10_1016_j_jclepro_2017_11_137 crossref_primary_10_3389_fsufs_2018_00054 crossref_primary_10_1016_j_envpol_2020_115549 crossref_primary_10_3390_polym16223102 crossref_primary_10_1016_j_jclepro_2021_126645 crossref_primary_10_1016_j_biortech_2011_10_074 crossref_primary_10_1021_acsenvironau_1c00025 crossref_primary_10_1016_j_spc_2019_03_008 crossref_primary_10_3390_en9070526 crossref_primary_10_1016_j_ecmx_2024_100725 crossref_primary_10_1021_acs_iecr_0c04504 crossref_primary_10_1007_s13399_024_05789_7 crossref_primary_10_1177_0734242X211069741 crossref_primary_10_1016_j_energy_2020_118186 crossref_primary_10_1111_gcbb_12265 crossref_primary_10_1080_17597269_2015_1015312 crossref_primary_10_1002_cctc_202001289 crossref_primary_10_3390_w11071390 crossref_primary_10_1007_s10668_023_04219_4 crossref_primary_10_1021_acs_energyfuels_4c02605 crossref_primary_10_1016_j_meteno_2016_01_005 crossref_primary_10_1007_s10800_014_0726_7 crossref_primary_10_1039_C3EE43585G crossref_primary_10_1002_cssc_201600582 crossref_primary_10_1111_gcbb_12018 crossref_primary_10_1111_gcbb_12137 crossref_primary_10_3923_ijar_2016_13_22 crossref_primary_10_1007_s13399_023_04096_x crossref_primary_10_1111_gcbb_12376 crossref_primary_10_1071_SR10036 crossref_primary_10_1002_bbb_344 crossref_primary_10_1002_slct_201700582 crossref_primary_10_1016_j_egyr_2023_03_111 crossref_primary_10_1021_acs_energyfuels_0c02396 crossref_primary_10_1016_j_conbuildmat_2024_135218 crossref_primary_10_3390_su17052316 crossref_primary_10_1097_SS_0b013e3182171eac crossref_primary_10_1021_acs_energyfuels_7b00545 crossref_primary_10_1016_j_jiec_2014_06_030 crossref_primary_10_1002_cssc_201000052 crossref_primary_10_1016_j_susmat_2024_e01053 crossref_primary_10_1007_s13593_012_0081_1 crossref_primary_10_1111_gcbb_12001 crossref_primary_10_1016_j_biortech_2012_11_114 crossref_primary_10_1002_cjce_22796 crossref_primary_10_1016_j_indcrop_2022_114533 crossref_primary_10_1016_j_jenvman_2014_07_001 crossref_primary_10_1021_acs_est_7b02528 crossref_primary_10_1016_j_pecs_2015_10_002 crossref_primary_10_1016_j_renene_2021_07_104 crossref_primary_10_1021_ef501869e crossref_primary_10_1007_s42452_020_2156_y crossref_primary_10_1016_j_apenergy_2015_03_024 crossref_primary_10_1515_reveh_2018_0007 crossref_primary_10_4081_ija_2016_780 crossref_primary_10_1007_s10295_015_1687_5 crossref_primary_10_1016_j_spc_2021_07_015 crossref_primary_10_1002_bbb_2188 crossref_primary_10_1002_ehs2_1202 crossref_primary_10_1016_j_scitotenv_2019_134847 crossref_primary_10_1016_j_rser_2013_02_038 crossref_primary_10_1007_s10891_010_0393_4 crossref_primary_10_1016_j_scitotenv_2017_05_203 crossref_primary_10_1016_j_jece_2023_109643 crossref_primary_10_1021_acssuschemeng_9b00019 crossref_primary_10_4236_ajcc_2018_71005 crossref_primary_10_1111_jfpe_13585 crossref_primary_10_1002_cjce_22968 crossref_primary_10_1007_s12649_023_02070_2 crossref_primary_10_4236_as_2021_123014 crossref_primary_10_1007_s10098_022_02274_5 crossref_primary_10_1016_j_biortech_2013_07_086 crossref_primary_10_1016_j_jclepro_2022_132057 crossref_primary_10_1016_j_scienta_2014_05_029 crossref_primary_10_1016_j_chemosphere_2015_11_063 crossref_primary_10_1016_j_catena_2020_104587 crossref_primary_10_1021_ez400165g crossref_primary_10_1155_2019_4506314 crossref_primary_10_1016_j_jaap_2022_105460 crossref_primary_10_3390_en16010355 crossref_primary_10_1021_acs_est_5b03548 crossref_primary_10_1016_j_jclepro_2018_12_025 crossref_primary_10_3390_su15021206 crossref_primary_10_1080_01904167_2018_1509092 crossref_primary_10_1007_s00253_014_5991_1 crossref_primary_10_1016_j_biortech_2016_03_077 crossref_primary_10_1016_j_rser_2016_01_088 crossref_primary_10_1016_j_enpol_2009_11_075 crossref_primary_10_1007_s10668_021_01276_5 crossref_primary_10_1016_j_jaap_2011_11_018 crossref_primary_10_1007_s12517_018_4006_4 crossref_primary_10_1016_j_jaap_2015_02_011 crossref_primary_10_3389_fbioe_2021_769667 crossref_primary_10_1021_acs_energyfuels_0c03174 crossref_primary_10_2136_sssaj2013_07_0304nafsc crossref_primary_10_3389_frsus_2024_1417207 crossref_primary_10_1016_j_biortech_2019_121976 crossref_primary_10_1007_s00253_011_3495_9 crossref_primary_10_1007_s10163_018_0769_7 crossref_primary_10_1039_C1GC15619E crossref_primary_10_1007_s42773_019_00020_7 crossref_primary_10_1016_j_rser_2021_111959 crossref_primary_10_1007_s11356_023_27484_2 crossref_primary_10_2136_sssaj2011_0101 crossref_primary_10_1016_j_rser_2014_10_013 crossref_primary_10_1021_acssuschemeng_6b01859 crossref_primary_10_1021_es500474q crossref_primary_10_1111_j_1757_1707_2012_01163_x crossref_primary_10_1111_gcbb_12449 crossref_primary_10_1016_j_rser_2021_111603 crossref_primary_10_1016_j_wasman_2018_04_009 crossref_primary_10_3390_en12050809 crossref_primary_10_1016_j_wasman_2019_06_022 crossref_primary_10_1007_s11356_015_4191_6 crossref_primary_10_3390_pr9050882 crossref_primary_10_1016_j_fuel_2011_06_031 crossref_primary_10_1371_journal_pone_0075932 crossref_primary_10_1016_j_jiec_2016_03_004 crossref_primary_10_1021_acssuschemeng_0c00571 crossref_primary_10_1039_C5EE01633A crossref_primary_10_1002_bbb_254 crossref_primary_10_1007_s11356_015_4115_5 crossref_primary_10_3390_jcs5120312 crossref_primary_10_4028_www_scientific_net_AMR_518_523_807 crossref_primary_10_1016_j_apsoil_2017_07_007 crossref_primary_10_1016_j_jhazmat_2013_10_033 crossref_primary_10_1061__ASCE_EE_1943_7870_0001259 crossref_primary_10_1016_j_crmicr_2024_100237 crossref_primary_10_1016_j_psep_2022_02_061 crossref_primary_10_5433_1679_0359_2021v42n6p3167 crossref_primary_10_1016_j_biortech_2010_06_088 crossref_primary_10_1016_j_rser_2016_09_057 crossref_primary_10_1021_ef101342v crossref_primary_10_3390_agronomy13102455 crossref_primary_10_1016_j_biortech_2012_08_016 crossref_primary_10_1007_s40974_020_00159_1 crossref_primary_10_1016_j_fuel_2024_133065 crossref_primary_10_1080_14620316_2017_1407679 crossref_primary_10_1016_j_jaap_2021_105405 crossref_primary_10_1071_SR13186 crossref_primary_10_3390_en11113115 crossref_primary_10_1021_acs_iecr_7b05137 crossref_primary_10_1007_s10705_023_10281_1 crossref_primary_10_1016_j_cec_2022_100006 crossref_primary_10_1021_ef200915s crossref_primary_10_1016_j_biortech_2017_07_150 crossref_primary_10_3390_pr9020190 crossref_primary_10_1007_s10668_023_03984_6 crossref_primary_10_1016_j_chemosphere_2018_04_107 crossref_primary_10_3390_pr12061111 crossref_primary_10_4081_ija_2018_1136 crossref_primary_10_1371_journal_pone_0203475 crossref_primary_10_1016_j_resconrec_2016_03_022 crossref_primary_10_3390_app9193980 crossref_primary_10_1029_2021EF002583 crossref_primary_10_1016_j_geoderma_2016_11_025 crossref_primary_10_1071_CP14247 crossref_primary_10_5937_jpea27_43553 crossref_primary_10_1007_s11356_019_05181_3 crossref_primary_10_3390_molecules24122250 crossref_primary_10_1111_sum_12285 crossref_primary_10_1002_cjce_23915 crossref_primary_10_1016_j_jclepro_2018_06_142 crossref_primary_10_3390_agriculture12101704 crossref_primary_10_1021_ef401705g crossref_primary_10_1177_0734242X211045004 crossref_primary_10_1002_adsu_201700102 crossref_primary_10_1016_j_indcrop_2018_09_050 crossref_primary_10_1039_C7EE00682A crossref_primary_10_1016_j_jclepro_2018_05_101 crossref_primary_10_1016_j_fcr_2017_08_018 crossref_primary_10_1039_c2ee21855k crossref_primary_10_1007_s10098_014_0721_z crossref_primary_10_1016_j_biombioe_2013_07_019 crossref_primary_10_1016_j_biombioe_2014_09_024 crossref_primary_10_1016_j_seppur_2024_129049 crossref_primary_10_1080_10643389_2016_1239975 crossref_primary_10_1016_j_rser_2020_110143 crossref_primary_10_1016_j_envint_2015_10_018 crossref_primary_10_1016_j_scitotenv_2020_144351 crossref_primary_10_1016_j_diamond_2021_108530 crossref_primary_10_1016_j_biombioe_2024_107293 crossref_primary_10_1016_j_jclepro_2015_11_073 crossref_primary_10_1016_j_fuproc_2017_09_025 crossref_primary_10_3390_app9071365 crossref_primary_10_1007_s12517_020_05586_2 crossref_primary_10_1111_sum_12102 crossref_primary_10_1007_s12649_019_00797_5 crossref_primary_10_3390_en16145464 crossref_primary_10_1080_10643389_2015_1096880 crossref_primary_10_1016_j_jaap_2016_06_011 crossref_primary_10_1016_j_chemosphere_2013_12_024 crossref_primary_10_1016_j_jwpe_2025_107458 crossref_primary_10_1063_1_3663846 crossref_primary_10_1080_19443994_2013_792546 crossref_primary_10_3390_su13094628 crossref_primary_10_1007_s12155_015_9692_0 crossref_primary_10_1016_j_jenvman_2011_05_013 crossref_primary_10_1016_j_enconman_2016_09_031 crossref_primary_10_1021_es401756h crossref_primary_10_1016_j_rser_2020_110046 crossref_primary_10_1016_j_cherd_2021_01_008 crossref_primary_10_1039_C5RA22870K crossref_primary_10_2134_jeq2016_04_0156 crossref_primary_10_1016_j_biombioe_2021_106245 crossref_primary_10_1016_j_rser_2017_03_136 crossref_primary_10_1186_s13068_019_1529_1 crossref_primary_10_1016_j_geoderma_2010_05_013 crossref_primary_10_1016_j_scitotenv_2015_03_060 crossref_primary_10_1080_23311916_2024_2307201 crossref_primary_10_1002_jctb_6591 crossref_primary_10_1016_j_scitotenv_2021_149296 crossref_primary_10_1016_j_energy_2018_07_117 crossref_primary_10_1016_j_jhazmat_2010_12_105 crossref_primary_10_1007_s12649_023_02256_8 crossref_primary_10_1016_j_biombioe_2017_06_022 crossref_primary_10_1016_j_jenvman_2016_06_063 crossref_primary_10_1007_s10661_021_09107_w crossref_primary_10_1039_C9EE00206E crossref_primary_10_1016_j_coche_2017_08_005 crossref_primary_10_1016_j_resconrec_2019_01_024 crossref_primary_10_1111_gcbb_12052 crossref_primary_10_3390_molecules27228107 crossref_primary_10_1016_j_jpowsour_2025_236471 crossref_primary_10_3390_f12111495 crossref_primary_10_1016_j_energy_2020_119325 crossref_primary_10_1039_D2GC03172H crossref_primary_10_1111_j_1757_1707_2010_01055_x crossref_primary_10_3390_soilsystems4040069 crossref_primary_10_15446_rev_colomb_quim_v49n2_83231 crossref_primary_10_1016_j_rser_2016_09_110 crossref_primary_10_1016_j_rser_2022_112715 crossref_primary_10_1016_j_fuel_2014_01_085 crossref_primary_10_1186_s40643_021_00364_8 crossref_primary_10_1007_s12649_021_01471_5 crossref_primary_10_1016_j_chemosphere_2022_133954 |
Cites_doi | 10.1007/s11027-005-9006-5 10.1007/s11244-008-9159-z 10.1111/j.1747-0765.2006.00065.x 10.1002/bbb.73 10.1007/s001140000193 10.1111/j.1467-8306.1980.tb01332.x 10.2134/agronj2007.0161 10.1071/EA97143 10.1016/j.biombioe.2005.07.011 10.1007/s11104-004-5485-5 10.1016/j.rser.2006.07.014 10.1016/j.biortech.2006.09.038 10.1097/00010694-200111000-00010 10.1016/S1003-9953(08)60001-8 10.1017/S0033822200041242 10.2136/sssaj2002.1249 10.1046/j.1365-2389.1999.00236.x 10.1002/bbb.25 10.1016/j.biombioe.2007.01.012 10.1016/j.pecs.2006.12.001 10.1007/s11104-007-9391-5 10.1016/j.rser.2008.01.004 10.2503/jjshs.63.529 10.1016/j.still.2006.11.007 10.1021/es071451n 10.1016/j.fuel.2007.07.026 10.1002/bbb.92 10.2136/sssaj2005.0383 10.1029/95GB02742 10.1016/j.ecolecon.2007.07.012 10.2172/894989 10.1016/j.powtec.2007.05.012 10.1007/s00374-003-0707-1 10.5194/bg-3-397-2006 10.2134/agronj2004.1000a 10.1126/science.1151861 10.1073/pnas.0704243104 10.1016/0038-0717(80)90057-7 10.1016/j.geoderma.2007.10.025 10.1007/s00374-002-0466-4 10.1016/0016-2361(95)00165-2 10.1016/j.soilbio.2008.10.016 10.2134/agronj2007.0150 10.2136/sssaj2005.0096 10.1016/j.jaap.2005.03.005 10.2134/agronj2008.0087 10.2136/1990.humicsubstances.c8 10.1016/j.forpol.2006.01.001 10.1016/j.cattod.2006.08.071 10.1023/A:1022833116184 10.1016/S0146-6380(99)00120-5 10.1007/s00374-004-0801-z 10.2135/cropsci2006.06.0406 10.1016/j.biortech.2005.12.005 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.1007/s11104-008-9573-9 10.1016/j.gca.2008.01.010 |
ContentType | Journal Article |
Copyright | This article is the US Government work and is in the public domain in the USA. Published in 2009 by John Wiley & Sons, Ltd. |
Copyright_xml | – notice: This article is the US Government work and is in the public domain in the USA. Published in 2009 by John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7QO 7TV 8FD C1K FR3 P64 7TB KR7 |
DOI | 10.1002/bbb.169 |
DatabaseName | Istex CrossRef Biotechnology Research Abstracts Pollution Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Mechanical & Transportation Engineering Abstracts Civil Engineering Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Pollution Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Engineering Research Database CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1932-1031 |
EndPage | 562 |
ExternalDocumentID | 10_1002_bbb_169 BBB169 ark_67375_WNG_13VVK3CV_W |
Genre | reviewArticle |
GeographicLocations | USA |
GeographicLocations_xml | – name: USA |
GroupedDBID | 05W 0R~ 1OC 23N 31~ 33P 3SF 4.4 52U 52V 5DZ 5GY 66C 8-1 8UM A00 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM EBS ECGQY EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 L8X LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABJIA AEYWJ AGHNM AGQPQ AGYGG CITATION 7QO 7TV 8FD C1K FR3 P64 7TB KR7 |
ID | FETCH-LOGICAL-c4539-155e0d801f2b017221dd721f8ad40432471a2d6dff06a70e7ba659d95abf48413 |
IEDL.DBID | DR2 |
ISSN | 1932-104X |
IngestDate | Fri Jul 11 07:43:57 EDT 2025 Fri Jul 11 07:41:57 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Tue Jul 01 01:58:30 EDT 2025 Wed Jan 22 16:24:03 EST 2025 Wed Oct 30 09:47:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4539-155e0d801f2b017221dd721f8ad40432471a2d6dff06a70e7ba659d95abf48413 |
Notes | This article is the US Government work and is in the public domain in the USA. ArticleID:BBB169 ark:/67375/WNG-13VVK3CV-W istex:A83AC1E34F2831B3E90BDE43F3B7A83F2DE65533 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 20831508 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_34933403 proquest_miscellaneous_20831508 crossref_citationtrail_10_1002_bbb_169 crossref_primary_10_1002_bbb_169 wiley_primary_10_1002_bbb_169_BBB169 istex_primary_ark_67375_WNG_13VVK3CV_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September/October 2009 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: September/October 2009 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Biofuels, bioproducts and biorefining |
PublicationTitleAlternate | Biofuels, Bioprod. Bioref |
PublicationYear | 2009 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Fowles M, Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg 31:426-432:(2007). DeLuca TH, MacKenzie MD, Gundale MJ and Holben WE, Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448-453:(2006). Lehmann J, Bio-energy in the black. Frontiers Ecol Envir 5:381-387:(2007). Lu YJ and Lee T, Influence of the feed gas composition on the Fischer-Tropsch synthesis in commercial operations. J Natural Gas Chem 16:329-341:(2007). Heggenstaller AH, Anex RP, Liebman M, Sundberg DN and Gibson LR, Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron J 100:1740-1748:(2008). Ishii T and Kadoya K, Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J Jap Soc Hortic Sci 63:529-535:(1994). Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I and Xu XL, Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210-219:(2009). Keech O, Carcaillet C and Nilsson MC, Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291-300:(2005). Namaalwa J, Sankhayan PL and Hofstad O, A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy Econ 9:479-495:(2007). Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luiza FJ, Petersen J and Neves EG, Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719-1730:(2006). Wardle DA, Nilsson MC and Zackrisson O, Fire-derived charcoal causes loss of forest humus. Science 320:629(2008). Oguntunde PG, Fosu M, Ajayi AE and van de Giesen ND, Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soils 39:295-299:(2004). Preston CM and Schmidt MWI, Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397-420:(2006). Wright MM, Brown RC and Boateng AA, Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels, Bioprod Bioref 2:229-238:(2008). Goyal HB, Seal D and Saxena RC, Bio-fuels from thermochemical conversion of renewable resources: A review. Renew Sustain Energy Rev 12:504-517:(2008). Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzer C, Gingrich S, Lucht W and Fischer-Kowalski M, Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci 104:12942-12947:(2007). Glaser B, Haumaier L, Guggenberger G and Zech W, The [Terra Preta] phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37-41:(2001). Swift RS, Sequestration of carbon by soil. Soil Sci 166:858-871:(2001). Badger PC and Fransham P, Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs-A preliminary assessment. Biomass Bioenerg 30:321-325:(2006). Ioannidou O, Zabaniotou A, Antonakou EV, Papazisi KM, Lappas AA and Athanassiou C, Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sustain Energy Rev 13:750-762:(2009). Wilhelm WW, Johnson JMF, Karlen DL and Lightle DT, Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665-1667:(2007). Laird DA, The Charcoal Vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178-181:(2008). Tagoe SO, Horiuchi T and Matsui T, Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybeans. Plant Soil 306:211-220:(2008). Boateng AA, Hicks KB and Vogel KP, Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity. J Anal Appl Pyrolysis 75:55-64:(2006). Donnis B, Egeberg RG, Blom P and Knudsen KG, Hydroprocessing of bio-oils and oxygenates to oydrocarbons. Understanding the reaction routes. Topics Catalysis 52:229-240:(2009). Smith NJH, Anthrosols and human carrying capacity in Amazonia. Ann Assoc Am Geog 70:553-566:(1980). Garnett E, Jonsson LM, Dighton J and Murnen K, Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds. Biology Fertility Soils 40:421-426:(2004). Lal R, Is crop residue a waste? J Soil Water Conser 59:136-139:(2004). Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W and Glaser B, Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343-357:(2003). Schmidt MWI, Skjemstad JO, Gehrt E and Kögel-Knabner I, Charred organic carbon in German chernozemic soils. Euro J Soil Sci 50:351-365:(1999). Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu TH, Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238-1240:(2008). Rhodes AH, Carlin A and Semple KT, Impact of black carbon in the extraction and mineralization of phenanthrene in soil more options. Env Sci Tech 42:740-745:(2008). Koutcheiko S, Monreal CM, Kodama H, McCracken T and Kotlyar L, Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Biores Technol 98:2459-2464:(2007). Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM, The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87:1230-1240:(2008). Di Blasi C, Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust Sci 34:47-90:(2008). Babu BV, Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioprod Bioref 2:393-414:(2008). Skjemstad JO, Janik LJ and Taylor JA, Non-living soil organic matter: What do we know about it? Aust J Exp Agr 38:667-680:(1998). Lehmann J, Gaunt J and Rondon M, Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change 11:403-427:(2006). Marjenah MS, Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jap Forestry Soc 76:462-464:(1994). Tsai WT, Lee MK and Chang YM, Fast pyrolysis of rice husk: Product yields and compositions. Biores Technol 9822-28:(2007). Krausmann F, Erb KH, Gingrich S, Lauk C and Haberl H, Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol Econ 65:471-487:(2008). Bridgwater AV, Meier D and Radlein D, An overview of fast pyrolysis of biomass. Organic Geochem 30:1479-1493:(1999). Skjemstad JO, Reicosky DC, Wilts AR and McGowan JA, Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249-1255:(2002). Leibold H, Hornunga A and Seiferta H, HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis. Powder Technology 180:265-270:(2008). Benallal B, Roy C, Pakdel H, Chabot S and Poirier MA, Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tires - Comparison with petroleum naphtha. Fuel 74:1589-1594:(1995). Glaser B, Lehmann J and Zech W, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol Fertil Soils 35:219-230:(2002). Wilhelm WW, Johnson JF, Hatfield JL, Voorhees WB and Linden DR, Crop and soil productivity response to corn residue removal: A Literature Review. Agron J 96:1-17:(2004). Laird DA, Chappell MA, Martens DA, Wershaw RL and Thompson ML, Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115-122:(2008). Wright M and Brown RC, Establishing the optimal sizes of different kinds of biorefineries, Biofuels Bioproces Bioref 1:191-200:(2007). Cheng CH, Lehmann J and Engelhard MH, Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598-1610:(2008). Kuhlbusch TAJ and Crutzen PJ, Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochemical Cycles 9:491-501:(1995). Iswaran V, Jauhri KS and Sen A, Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191-192:(1980). Lal R and Pimentel D, Biofuels from crop residues. Soil Tillage Res 93:237-238:(2007). Anex RP, Lynd LR, Laser MS, Heggenstaller AH and Liebman M, Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Sci 47:1327-1335:(2007). Czernik S, Evans R and French R, Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catalysis Today 129:265-268:(2007). Warnock DD, Lehmann J, Kuyper TW and Rillig MC, Mycorrhizal responses to biochar in soil - concepts and mechanisms. Plant Soil 300:9-20:(2007). Kishimoto S and Sugiura G, Charcoal as a soil conditioner. Int Achieve Future 5:12-23:(1985). Yamato M, Okimori Y, Wibowo IF, Anshiori S and Ogawa M, Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489-495:(2006). Pessenda LCR, Gouveia SEM and Aravena R, Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43:595-601:(2001). 2006; 70 1995; 74 2007; 104 2007; 300 2006; 30 2009; 41 2006; 75 2008; 306 2008; 34 2001; 88 2008; 72 2007; 31 2008; 2 2008; 100 2008; 143 1994; 63 2001; 43 2009; 13 2009; 52 2003; 249 1990 2000 2004; 39 2008; 319 2007; 9 2008; 65 2007; 5 1999; 50 2007; 1 1994; 76 2001; 166 1995; 9 2007; 129 2006; 52 2005; 272 2004; 40 1985; 5 2006; 11 2002; 35 2009 2008 1997 2008; 12 2007 1995 2006 2005 2007; 93 2006; 3 1980; 70 2007; 98 2007; 99 2007; 16 1998; 38 2008; 180 2004; 96 2004; 59 1980; 12 2002; 66 2008; 87 1999; 30 2008; 42 2007; 47 1966 e_1_2_1_41_2 e_1_2_1_64_2 e_1_2_1_66_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_62_2 e_1_2_1_49_2 Lehmann J (e_1_2_1_50_2) 2006 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_68_2 cr-split#-e_1_2_1_60_2.1 e_1_2_1_28_2 cr-split#-e_1_2_1_60_2.2 Suarez DL (e_1_2_1_57_2) 2000 Wardle DA (e_1_2_1_53_2) 2008 e_1_2_1_6_2 e_1_2_1_54_2 e_1_2_1_75_2 e_1_2_1_4_2 e_1_2_1_56_2 e_1_2_1_2_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_52_2 e_1_2_1_73_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_58_2 e_1_2_1_8_2 e_1_2_1_18_2 e_1_2_1_39_2 Marjenah MS (e_1_2_1_69_2) 1994; 76 Kishimoto S (e_1_2_1_71_2) 1985; 5 e_1_2_1_40_2 e_1_2_1_65_2 e_1_2_1_67_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_61_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_63_2 e_1_2_1_27_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_29_2 Mbagwu JSC (e_1_2_1_70_2) 1997 e_1_2_1_30_2 e_1_2_1_76_2 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_72_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_74_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_19_2 Lal R (e_1_2_1_26_2) 2004; 59 e_1_2_1_17_2 e_1_2_1_59_2 e_1_2_1_9_2 |
References_xml | – reference: Heggenstaller AH, Anex RP, Liebman M, Sundberg DN and Gibson LR, Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron J 100:1740-1748:(2008). – reference: Laird DA, Chappell MA, Martens DA, Wershaw RL and Thompson ML, Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115-122:(2008). – reference: Leibold H, Hornunga A and Seiferta H, HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis. Powder Technology 180:265-270:(2008). – reference: Di Blasi C, Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust Sci 34:47-90:(2008). – reference: Fowles M, Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg 31:426-432:(2007). – reference: Pessenda LCR, Gouveia SEM and Aravena R, Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43:595-601:(2001). – reference: Cheng CH, Lehmann J and Engelhard MH, Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598-1610:(2008). – reference: Bridgwater AV, Meier D and Radlein D, An overview of fast pyrolysis of biomass. Organic Geochem 30:1479-1493:(1999). – reference: Donnis B, Egeberg RG, Blom P and Knudsen KG, Hydroprocessing of bio-oils and oxygenates to oydrocarbons. Understanding the reaction routes. Topics Catalysis 52:229-240:(2009). – reference: Oguntunde PG, Fosu M, Ajayi AE and van de Giesen ND, Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soils 39:295-299:(2004). – reference: Koutcheiko S, Monreal CM, Kodama H, McCracken T and Kotlyar L, Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Biores Technol 98:2459-2464:(2007). – reference: Iswaran V, Jauhri KS and Sen A, Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191-192:(1980). – reference: Boateng AA, Hicks KB and Vogel KP, Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity. J Anal Appl Pyrolysis 75:55-64:(2006). – reference: Skjemstad JO, Reicosky DC, Wilts AR and McGowan JA, Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249-1255:(2002). – reference: Anex RP, Lynd LR, Laser MS, Heggenstaller AH and Liebman M, Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Sci 47:1327-1335:(2007). – reference: Warnock DD, Lehmann J, Kuyper TW and Rillig MC, Mycorrhizal responses to biochar in soil - concepts and mechanisms. Plant Soil 300:9-20:(2007). – reference: Marjenah MS, Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jap Forestry Soc 76:462-464:(1994). – reference: Skjemstad JO, Janik LJ and Taylor JA, Non-living soil organic matter: What do we know about it? Aust J Exp Agr 38:667-680:(1998). – reference: Czernik S, Evans R and French R, Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catalysis Today 129:265-268:(2007). – reference: Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I and Xu XL, Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210-219:(2009). – reference: Wardle DA, Nilsson MC and Zackrisson O, Fire-derived charcoal causes loss of forest humus. Science 320:629(2008). – reference: Garnett E, Jonsson LM, Dighton J and Murnen K, Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds. Biology Fertility Soils 40:421-426:(2004). – reference: Namaalwa J, Sankhayan PL and Hofstad O, A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy Econ 9:479-495:(2007). – reference: Lu YJ and Lee T, Influence of the feed gas composition on the Fischer-Tropsch synthesis in commercial operations. J Natural Gas Chem 16:329-341:(2007). – reference: Wilhelm WW, Johnson JMF, Karlen DL and Lightle DT, Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665-1667:(2007). – reference: Tsai WT, Lee MK and Chang YM, Fast pyrolysis of rice husk: Product yields and compositions. Biores Technol 9822-28:(2007). – reference: Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W and Glaser B, Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343-357:(2003). – reference: Swift RS, Sequestration of carbon by soil. Soil Sci 166:858-871:(2001). – reference: Badger PC and Fransham P, Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs-A preliminary assessment. Biomass Bioenerg 30:321-325:(2006). – reference: Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luiza FJ, Petersen J and Neves EG, Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719-1730:(2006). – reference: Lehmann J, Bio-energy in the black. Frontiers Ecol Envir 5:381-387:(2007). – reference: Rhodes AH, Carlin A and Semple KT, Impact of black carbon in the extraction and mineralization of phenanthrene in soil more options. Env Sci Tech 42:740-745:(2008). – reference: Lal R and Pimentel D, Biofuels from crop residues. Soil Tillage Res 93:237-238:(2007). – reference: Glaser B, Haumaier L, Guggenberger G and Zech W, The [Terra Preta] phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37-41:(2001). – reference: Ishii T and Kadoya K, Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J Jap Soc Hortic Sci 63:529-535:(1994). – reference: Goyal HB, Seal D and Saxena RC, Bio-fuels from thermochemical conversion of renewable resources: A review. Renew Sustain Energy Rev 12:504-517:(2008). – reference: Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu TH, Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238-1240:(2008). – reference: Schmidt MWI, Skjemstad JO, Gehrt E and Kögel-Knabner I, Charred organic carbon in German chernozemic soils. Euro J Soil Sci 50:351-365:(1999). – reference: Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzer C, Gingrich S, Lucht W and Fischer-Kowalski M, Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci 104:12942-12947:(2007). – reference: Kuhlbusch TAJ and Crutzen PJ, Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochemical Cycles 9:491-501:(1995). – reference: Benallal B, Roy C, Pakdel H, Chabot S and Poirier MA, Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tires - Comparison with petroleum naphtha. Fuel 74:1589-1594:(1995). – reference: Lal R, Is crop residue a waste? J Soil Water Conser 59:136-139:(2004). – reference: Yamato M, Okimori Y, Wibowo IF, Anshiori S and Ogawa M, Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489-495:(2006). – reference: Glaser B, Lehmann J and Zech W, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol Fertil Soils 35:219-230:(2002). – reference: Wright MM, Brown RC and Boateng AA, Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels, Bioprod Bioref 2:229-238:(2008). – reference: Wilhelm WW, Johnson JF, Hatfield JL, Voorhees WB and Linden DR, Crop and soil productivity response to corn residue removal: A Literature Review. Agron J 96:1-17:(2004). – reference: Lehmann J, Gaunt J and Rondon M, Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change 11:403-427:(2006). – reference: Smith NJH, Anthrosols and human carrying capacity in Amazonia. Ann Assoc Am Geog 70:553-566:(1980). – reference: Keech O, Carcaillet C and Nilsson MC, Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291-300:(2005). – reference: Laird DA, The Charcoal Vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178-181:(2008). – reference: Tagoe SO, Horiuchi T and Matsui T, Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybeans. Plant Soil 306:211-220:(2008). – reference: Babu BV, Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioprod Bioref 2:393-414:(2008). – reference: Preston CM and Schmidt MWI, Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397-420:(2006). – reference: Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM, The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87:1230-1240:(2008). – reference: Kishimoto S and Sugiura G, Charcoal as a soil conditioner. Int Achieve Future 5:12-23:(1985). – reference: Ioannidou O, Zabaniotou A, Antonakou EV, Papazisi KM, Lappas AA and Athanassiou C, Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sustain Energy Rev 13:750-762:(2009). – reference: DeLuca TH, MacKenzie MD, Gundale MJ and Holben WE, Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448-453:(2006). – reference: Krausmann F, Erb KH, Gingrich S, Lauk C and Haberl H, Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol Econ 65:471-487:(2008). – reference: Wright M and Brown RC, Establishing the optimal sizes of different kinds of biorefineries, Biofuels Bioproces Bioref 1:191-200:(2007). – year: (2005) – volume: 12 start-page: 504 year: 2008 end-page: 517 article-title: Bio‐fuels from thermochemical conversion of renewable resources: A review publication-title: Renew Sustain Energy Rev – volume: 3 start-page: 397 year: 2006 end-page: 420 article-title: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions publication-title: Biogeosciences – volume: 74 start-page: 1589 year: 1995 end-page: 1594 article-title: Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tires – Comparison with petroleum naphtha publication-title: Fuel – start-page: 187 year: 1990 end-page: 202 – year: 1966 – volume: 100 start-page: 1740 year: 2008 end-page: 1748 article-title: Productivity and nutrient dynamics in bioenergy double‐cropping systems publication-title: Agron J – start-page: 127 year: 2009 end-page: 146 – start-page: 320 year: 2008 end-page: 629 article-title: Fire‐derived charcoal causes loss of forest humus publication-title: Science – year: (2006) – volume: 72 start-page: 1598 year: 2008 end-page: 1610 article-title: Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence publication-title: Geochim Cosmochim Acta – year: (1995) – volume: 43 start-page: 595 year: 2001 end-page: 601 article-title: Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal publication-title: Radiocarbon – volume: 30 start-page: 1479 year: 1999 end-page: 1493 article-title: An overview of fast pyrolysis of biomass publication-title: Organic Geochem – volume: 34 start-page: 47 year: 2008 end-page: 90 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Prog Energ Combust Sci – start-page: 921 year: 1997 end-page: 925 – volume: 16 start-page: 329 year: 2007 end-page: 341 article-title: Influence of the feed gas composition on the Fischer‐Tropsch synthesis in commercial operations publication-title: J Natural Gas Chem – volume: 104 start-page: 12942 year: 2007 end-page: 12947 article-title: Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems publication-title: Proc Natl Acad Sci – year: (2007) – volume: 98 start-page: 2459 year: 2007 end-page: 2464 article-title: Preparation and characterization of activated carbon derived from the thermo‐chemical conversion of chicken manure publication-title: Biores Technol – volume: 306 start-page: 211 year: 2008 end-page: 220 article-title: Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybeans publication-title: Plant Soil – volume: 319 start-page: 1238 year: 2008 end-page: 1240 article-title: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change publication-title: Science – volume: 70 start-page: 1719 year: 2006 end-page: 1730 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci Soc Am J – volume: 66 start-page: 1249 year: 2002 end-page: 1255 article-title: Charcoal carbon in U.S. agricultural soils publication-title: Soil Sci Soc Am J – volume: 300 start-page: 9 year: 2007 end-page: 20 article-title: Mycorrhizal responses to biochar in soil – concepts and mechanisms publication-title: Plant Soil – volume: 9 start-page: 491 year: 1995 end-page: 501 article-title: Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2 publication-title: Global Biogeochemical Cycles – volume: 42 start-page: 740 year: 2008 end-page: 745 article-title: Impact of black carbon in the extraction and mineralization of phenanthrene in soil more options publication-title: Env Sci Tech – volume: 75 start-page: 55 year: 2006 end-page: 64 article-title: Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity publication-title: J Anal Appl Pyrolysis – volume: 5 start-page: 12 year: 1985 end-page: 23 article-title: Charcoal as a soil conditioner publication-title: Int Achieve Future – volume: 39 start-page: 295 year: 2004 end-page: 299 article-title: Effects of charcoal production on maize yield, chemical properties and texture of soil publication-title: Biol Fert Soils – volume: 143 start-page: 115 year: 2008 end-page: 122 article-title: Distinguishing black carbon from biogenic humic substances in soil clay fractions publication-title: Geoderma – volume: 30 start-page: 321 year: 2006 end-page: 325 article-title: Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment publication-title: Biomass Bioenerg – volume: 70 start-page: 553 year: 1980 end-page: 566 article-title: Anthrosols and human carrying capacity in Amazonia publication-title: Ann Assoc Am Geog – volume: 76 start-page: 462 year: 1994 end-page: 464 article-title: Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation publication-title: J Jap Forestry Soc – volume: 40 start-page: 421 year: 2004 end-page: 426 article-title: Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds publication-title: Biology Fertility Soils – volume: 2 start-page: 229 year: 2008 end-page: 238 article-title: Distributed processing of biomass to bio‐oil for subsequent production of Fischer‐Tropsch liquids publication-title: Biofuels, Bioprod Bioref – volume: 180 start-page: 265 year: 2008 end-page: 270 article-title: HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis publication-title: Powder Technology – volume: 93 start-page: 237 year: 2007 end-page: 238 article-title: Biofuels from crop residues publication-title: Soil Tillage Res – volume: 59 start-page: 136 year: 2004 end-page: 139 article-title: Is crop residue a waste? publication-title: J Soil Water Conser – volume: 47 start-page: 1327 year: 2007 end-page: 1335 article-title: Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems publication-title: Crop Sci – year: (2000) – volume: 50 start-page: 351 year: 1999 end-page: 365 article-title: Charred organic carbon in German chernozemic soils publication-title: Euro J Soil Sci – volume: 1 start-page: 191 year: 2007 end-page: 200 article-title: Establishing the optimal sizes of different kinds of biorefineries, publication-title: Biofuels Bioproces Bioref – volume: 98 start-page: 22 year: 2007 end-page: 28 article-title: Fast pyrolysis of rice husk: Product yields and compositions publication-title: Biores Technol – volume: 38 start-page: 667 year: 1998 end-page: 680 article-title: Non‐living soil organic matter: What do we know about it? publication-title: Aust J Exp Agr – volume: 52 start-page: 229 year: 2009 end-page: 240 article-title: Hydroprocessing of bio‐oils and oxygenates to oydrocarbons. Understanding the reaction routes publication-title: Topics Catalysis – volume: 88 start-page: 37 year: 2001 end-page: 41 article-title: The [Terra Preta] phenomenon: a model for sustainable agriculture in the humid tropics publication-title: Naturwissenschaften – start-page: 397 year: 2006 end-page: 420 – volume: 5 start-page: 381 year: 2007 end-page: 387 article-title: Bio‐energy in the black publication-title: Frontiers Ecol Envir – volume: 99 start-page: 1665 year: 2007 end-page: 1667 article-title: Corn stover to sustain soil organic carbon further constrains biomass supply publication-title: Agron J – volume: 166 start-page: 858 year: 2001 end-page: 871 article-title: Sequestration of carbon by soil publication-title: Soil Sci – volume: 9 start-page: 479 year: 2007 end-page: 495 article-title: A dynamic bio‐economic model for analyzing deforestation and degradation: An application to woodlands in Uganda publication-title: Forest Policy Econ – volume: 70 start-page: 448 year: 2006 end-page: 453 article-title: Wildfire‐produced charcoal directly influences nitrogen cycling in ponderosa pine forests publication-title: Soil Sci Soc Am J – volume: 31 start-page: 426 year: 2007 end-page: 432 article-title: Black carbon sequestration as an alternative to bioenergy publication-title: Biomass Bioenerg – volume: 41 start-page: 210 year: 2009 end-page: 219 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling publication-title: Soil Biol Biochem – volume: 65 start-page: 471 year: 2008 end-page: 487 article-title: Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints publication-title: Ecol Econ – volume: 35 start-page: 219 year: 2002 end-page: 230 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review publication-title: Biol Fertil Soils – volume: 2 start-page: 393 year: 2008 end-page: 414 article-title: Biomass pyrolysis: a state‐of‐the‐art review publication-title: Biofuels, Bioprod Bioref – volume: 96 start-page: 1 year: 2004 end-page: 17 article-title: Crop and soil productivity response to corn residue removal: A Literature Review publication-title: Agron J – year: (2008) – volume: 13 start-page: 750 year: 2009 end-page: 762 article-title: Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non‐catalytic and catalytic pyrolysis in two reactor configurations publication-title: Renew Sustain Energy Rev – volume: 63 start-page: 529 year: 1994 end-page: 535 article-title: Effects of charcoal as a soil conditioner on citrus growth and vesicular–arbuscular mycorrhizal development publication-title: J Jap Soc Hortic Sci – volume: 12 start-page: 191 year: 1980 end-page: 192 article-title: Effect of charcoal, coal and peat on the yield of moong, soybean and pea publication-title: Soil Biol Biochem – start-page: 665 year: (2008) end-page: 5 – volume: 87 start-page: 1230 year: 2008 end-page: 1240 article-title: The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability publication-title: Fuel – volume: 11 start-page: 403 year: 2006 end-page: 427 article-title: Bio‐char sequestration in terrestrial ecosystems – A review publication-title: Mitigation and Adaptation Strategies for Global Change – volume: 129 start-page: 265 year: 2007 end-page: 268 article-title: Hydrogen from biomass‐production by steam reforming of biomass pyrolysis oil publication-title: Catalysis Today – volume: 52 start-page: 489 year: 2006 end-page: 495 article-title: Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia publication-title: Soil Sci Plant Nutr – volume: 249 start-page: 343 year: 2003 end-page: 357 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil – volume: 100 start-page: 178 year: 2008 end-page: 181 article-title: The Charcoal Vision: A win‐win‐win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality publication-title: Agron J – volume: 272 start-page: 291 year: 2005 end-page: 300 article-title: Adsorption of allelopathic compounds by wood‐derived charcoal: the role of wood porosity publication-title: Plant Soil – ident: e_1_2_1_11_2 – ident: e_1_2_1_59_2 doi: 10.1007/s11027-005-9006-5 – ident: e_1_2_1_25_2 – ident: e_1_2_1_21_2 doi: 10.1007/s11244-008-9159-z – ident: e_1_2_1_72_2 doi: 10.1111/j.1747-0765.2006.00065.x – ident: e_1_2_1_17_2 doi: 10.1002/bbb.73 – ident: e_1_2_1_33_2 doi: 10.1007/s001140000193 – ident: e_1_2_1_32_2 doi: 10.1111/j.1467-8306.1980.tb01332.x – ident: e_1_2_1_24_2 doi: 10.2134/agronj2007.0161 – ident: e_1_2_1_46_2 doi: 10.1071/EA97143 – ident: #cr-split#-e_1_2_1_60_2.2 – ident: e_1_2_1_15_2 doi: 10.1016/j.biombioe.2005.07.011 – ident: e_1_2_1_66_2 doi: 10.1007/s11104-004-5485-5 – ident: e_1_2_1_74_2 – ident: e_1_2_1_8_2 doi: 10.1016/j.rser.2006.07.014 – volume-title: Global Climate Change and Pedogenic Carbonates year: 2000 ident: e_1_2_1_57_2 – ident: e_1_2_1_7_2 – ident: e_1_2_1_64_2 doi: 10.1016/j.biortech.2006.09.038 – ident: e_1_2_1_47_2 doi: 10.1097/00010694-200111000-00010 – ident: e_1_2_1_20_2 doi: 10.1016/S1003-9953(08)60001-8 – ident: e_1_2_1_48_2 doi: 10.1017/S0033822200041242 – ident: e_1_2_1_37_2 doi: 10.2136/sssaj2002.1249 – ident: e_1_2_1_45_2 doi: 10.1046/j.1365-2389.1999.00236.x – ident: e_1_2_1_76_2 doi: 10.1002/bbb.25 – ident: e_1_2_1_55_2 doi: 10.1016/j.biombioe.2007.01.012 – ident: e_1_2_1_4_2 doi: 10.1016/j.pecs.2006.12.001 – ident: e_1_2_1_41_2 doi: 10.1007/s11104-007-9391-5 – ident: e_1_2_1_3_2 doi: 10.1016/j.rser.2008.01.004 – ident: e_1_2_1_35_2 doi: 10.2503/jjshs.63.529 – ident: e_1_2_1_31_2 – ident: e_1_2_1_28_2 doi: 10.1016/j.still.2006.11.007 – ident: e_1_2_1_65_2 doi: 10.1021/es071451n – ident: e_1_2_1_10_2 doi: 10.1016/j.fuel.2007.07.026 – start-page: 921 volume-title: The role of humic substances in the ecosystems and in environmental protection year: 1997 ident: e_1_2_1_70_2 – ident: e_1_2_1_61_2 – ident: e_1_2_1_5_2 doi: 10.1002/bbb.92 – ident: e_1_2_1_40_2 doi: 10.2136/sssaj2005.0383 – ident: e_1_2_1_58_2 doi: 10.1029/95GB02742 – ident: e_1_2_1_62_2 doi: 10.1016/j.ecolecon.2007.07.012 – ident: e_1_2_1_75_2 doi: 10.2172/894989 – ident: e_1_2_1_19_2 doi: 10.1016/j.powtec.2007.05.012 – ident: e_1_2_1_13_2 – ident: e_1_2_1_36_2 doi: 10.1007/s00374-003-0707-1 – ident: e_1_2_1_49_2 doi: 10.5194/bg-3-397-2006 – ident: e_1_2_1_27_2 doi: 10.2134/agronj2004.1000a – start-page: 320 year: 2008 ident: e_1_2_1_53_2 article-title: Fire‐derived charcoal causes loss of forest humus publication-title: Science – ident: e_1_2_1_56_2 doi: 10.1126/science.1151861 – ident: e_1_2_1_63_2 doi: 10.1073/pnas.0704243104 – ident: e_1_2_1_68_2 doi: 10.1016/0038-0717(80)90057-7 – ident: e_1_2_1_38_2 doi: 10.1016/j.geoderma.2007.10.025 – ident: e_1_2_1_44_2 – ident: e_1_2_1_22_2 doi: 10.1007/s00374-002-0466-4 – ident: e_1_2_1_12_2 doi: 10.1016/0016-2361(95)00165-2 – volume: 59 start-page: 136 year: 2004 ident: e_1_2_1_26_2 article-title: Is crop residue a waste? publication-title: J Soil Water Conser – ident: e_1_2_1_54_2 doi: 10.1016/j.soilbio.2008.10.016 – ident: e_1_2_1_14_2 doi: 10.2134/agronj2007.0150 – ident: e_1_2_1_42_2 doi: 10.2136/sssaj2005.0096 – ident: e_1_2_1_9_2 doi: 10.1016/j.jaap.2005.03.005 – ident: e_1_2_1_30_2 doi: 10.2134/agronj2008.0087 – ident: e_1_2_1_39_2 doi: 10.2136/1990.humicsubstances.c8 – start-page: 397 volume-title: Biochar for Environmental Management year: 2006 ident: e_1_2_1_50_2 – ident: e_1_2_1_43_2 – ident: e_1_2_1_6_2 doi: 10.1016/j.forpol.2006.01.001 – ident: e_1_2_1_16_2 doi: 10.1016/j.cattod.2006.08.071 – ident: e_1_2_1_34_2 doi: 10.1023/A:1022833116184 – volume: 76 start-page: 462 year: 1994 ident: e_1_2_1_69_2 article-title: Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation publication-title: J Jap Forestry Soc – ident: e_1_2_1_2_2 doi: 10.1016/S0146-6380(99)00120-5 – ident: #cr-split#-e_1_2_1_60_2.1 – ident: e_1_2_1_67_2 doi: 10.1007/s00374-004-0801-z – ident: e_1_2_1_29_2 doi: 10.2135/cropsci2006.06.0406 – ident: e_1_2_1_18_2 doi: 10.1016/j.biortech.2005.12.005 – ident: e_1_2_1_23_2 doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – ident: e_1_2_1_51_2 doi: 10.1007/s11104-008-9573-9 – ident: e_1_2_1_52_2 doi: 10.1016/j.gca.2008.01.010 – ident: e_1_2_1_73_2 – volume: 5 start-page: 12 year: 1985 ident: e_1_2_1_71_2 article-title: Charcoal as a soil conditioner publication-title: Int Achieve Future |
SSID | ssj0056545 |
Score | 2.4641414 |
SecondaryResourceType | review_article |
Snippet | Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio‐oil, biochar, and syngas. The robust... Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 547 |
SubjectTerms | agriculture bio-oil biochar biomass carbon sequestration pyrolysis soil quality Terra Preta |
Title | Review of the pyrolysis platform for coproducing bio-oil and biochar |
URI | https://api.istex.fr/ark:/67375/WNG-13VVK3CV-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbbb.169 https://www.proquest.com/docview/20831508 https://www.proquest.com/docview/34933403 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQXMqBUh4ipS0-IG4b9uF9HQlqQEXlUJGHuFh-VlGi3SgPqXDiJ_Q38kuY8W7SAEKquOzK2rHk9dieb-zxN4Qcg5HKbay1l5o48ZgBB0X4OSyGKlNWZcyGAvchf14nlx32ox_3V1J9VfwQyw03nBluvcYJLuT09B9pqJSyGSR4dQ8jtRAO_VoSRwFKcemJEZ3AQsP61XVZrHla13tmhzawS_88A5mrUNXZmvZHcrtoZRViMmzOZ7Kp7l8QOL7rN7bJVo1A6Vk1ZD6RNVPskM2z35OahcNAaYWlcJe0q_MDWloKaJGO7yal4zGh45GYIeal8KCqHDvyWKhC5aB8fPhbDkZUFBpLeLdrj3Ta32_OL706_YKnWBzlHiAN42uwYDaU6CmGgdbgL9pMaOaI_NJAhDrR1vqJSH2TSpHEuc5jIS3LwDjuk_WiLMwBoalKfJvGxgRKAf7SmQitiTI_lCoVOsga5GShDK5qbnJMkTHiFatyyKGbOHRTg9Cl4Lii43gtcuK0ufwuJkOMXktj3ru-4EHU7V5F513ea5Cjhbo5zCk8KBGFKedTHmL6NUCub0tELI8i5kcNcuyU-1ZjeKvVgtfn_xM7JB-qwyoMYftC1meTufkKmGcmv7nh_QSBUv8j |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0q7QJY8EaEV2dRunNqj8evBYumJaSkzQK1aXbDPFHVyI7SRFBWfALfwa_wF3wJd8ZOaEGV2HTBxtbIY2s89zHnzuNcgA0cpAqbaB1kJkkDZjBAEWGBzlDlyqqcWSrcPOTBIO0dsXejZLQC3xdnYWp-iOWEm7MM76-dgbsJ6a3frKFSynaUFs2Gyr45_4Th2tnrvV2U7StKu28Od3pBk1EgUCyJiwAHTxNqdMqWShf80EhrDIFsLjTz3HRZJKhOtbVhKrLQZFKkSaGLREjLcvT3-N0bsObyhzue_t33S6oqxEU-IbLDQ-ja2Kg-oOuautU09NLIt-aE-PkSrL0Ijv3o1r0LPxb9Um9qOW3PZ7KtvvxBGfl_dNw9uNOAbLJdW8V9WDHlA7i9_XHaEI0YLF0gYnwI3XqJhFSWICAmk_Np5alayGQsZg7WE7wQVU08Py6-QuRJ9fPrt-pkTESpXckdX3sER9fyW49htaxK8wRIptLQZokxkVIIMXUuqDVxHlKpMqGjvAWbC-lz1dCvuywgY14TR1OOYuEolhaQZcVJzTjyd5VNrz7L52J66jboZQk_HrzlUTwc9uOdIT9uwfpCvzi6DbcWJEpTzc84dRnmEJxfXSNmRRyzMG7BhtemqxrDO50O3p7-W7V1uNk7PNjn-3uD_jO4Va_NuR17z2F1Np2bFwjxZvKlty0CH65bJ38BWUFbEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qrYRgwRuRttBZlO6c2uPxa8GiaQgtgQghmmY3zLOqGtlWmoiWVT-B3-BX-Ay-hDu2E1pQJTZdsLE18tgaz33MufM4F2ATB6nMRlp7iYlijxkMUISfoTNUqbIqZZYKNw_5fhDvHbC3o2i0BN_nZ2FqfojFhJuzjMpfOwMvtd3-TRoqpWwHcdbsp-yb8y8YrZ2-2u-iaF9S2nv9aXfPaxIKeIpFYebh2Gl8jT7ZUuliHxpojRGQTYVmFTVdEgiqY22tH4vEN4kUcZTpLBLSshTdPX73Fqyw2M9clojuxwVTFcKiKh-yg0Po2dioPp_rmrrdNPTKwLfiZHh2BdVexsbV4Na7Dz_m3VLvaTlpz6ayrb7-wRj5X_TbA7jXQGyyU9vEQ1gy-SO4u3M0aWhGDJYu0TA-hl69QEIKSxAOk_J8UlRELaQci6kD9QQvRBVlxY6LrxB5XPy8-FYcj4nItSu5w2tP4OBGfuspLOdFbp4BSVTs2yQyJlAKAaZOBbUmTH0qVSJ0kLZgay58rhrydZcDZMxr2mjKUSwcxdICsqhY1nwjf1fZqrRn8VxMTtz2vCTih4M3PAiHw364O-SHLdiYqxdHp-FWgkRuitkppy6_HELz62uELAtD5oct2KyU6brG8E6ng7fVf6u2Abc_dHv83f6gvwZ36oU5t11vHZank5l5jvhuKl9UlkXg802r5C_V4FnC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+pyrolysis+platform+for+coproducing+bio-oil+and+biochar&rft.jtitle=Biofuels%2C+bioproducts+and+biorefining&rft.au=Laird%2C+David+A&rft.au=Brown%2C+Robert+C&rft.au=Amonette%2C+James+E&rft.au=Lehmann%2C+Johannes&rft.date=2009-09-01&rft.issn=1932-104X&rft.volume=3&rft.issue=5&rft.spage=547&rft.epage=562&rft_id=info:doi/10.1002%2Fbbb.169&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-104X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-104X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-104X&client=summon |