Absolute cerebral blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood
Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF...
Saved in:
Published in | Magnetic resonance in medicine Vol. 67; no. 6; pp. 1556 - 1565 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T1a) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T1a and correct ASL measurements of CBF during hyperoxia on a per‐subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T1a in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T1a for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. |
---|---|
AbstractList | Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T1a) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T1a and correct ASL measurements of CBF during hyperoxia on a per‐subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T1a in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T1a for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood ( T 1a ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T 1a and correct ASL measurements of CBF during hyperoxia on a per‐subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T 1a in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T 1a for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures.Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. |
Author | Reddy, Ravinder Hiraki, Teruyuki Greenberg, Joel H. Pilkinton, David T. Detre, John A. |
AuthorAffiliation | 1 Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA 2 Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA 3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA 4 Center for Function Neuroimaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA |
AuthorAffiliation_xml | – name: 3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA – name: 4 Center for Function Neuroimaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA – name: 1 Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA – name: 2 Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA |
Author_xml | – sequence: 1 givenname: David T. surname: Pilkinton fullname: Pilkinton, David T. email: davt@mail.med.upenn.edu organization: Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA – sequence: 2 givenname: Teruyuki surname: Hiraki fullname: Hiraki, Teruyuki organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA – sequence: 3 givenname: John A. surname: Detre fullname: Detre, John A. organization: Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA – sequence: 4 givenname: Joel H. surname: Greenberg fullname: Greenberg, Joel H. organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA – sequence: 5 givenname: Ravinder surname: Reddy fullname: Reddy, Ravinder organization: Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22135087$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstu1DAUhi1URKeFBS-AvIRFWl-SSbJBqkZlitQpCHGR2FiOczJjcOyp7TCdx-PN8FwFCFa2fL7__4-Ozxk6sc4CQs8puaCEsMve9xeMU14-QiNaMJaxos5P0IiUOck4rfNTdBbCN0JIXZf5E3TKGOUFqcoR-nnVBGeGCFiBh8ZLgxvjXIs741b4fpA26k4rGbWzeKXjAi8HE6DF0kfwOuFhqS02sgGj7Ry3g98ci_USvHvQEivnPaiYFFt1XAAOuh9MlBbcEHAPMgweerARu25bN87OdRxabZO9ByMfdvFR97BhjtHbTp-ix51MLT3bn-fo05vrj5Ob7Pbd9O3k6jZTecHLTNWskR2plGzGJO_qoqygBkl4W1LVKD6uEpZX6TFdOsYVlelZFYxLWqhxxc_R653vcmh6aFVqOE1LLL3upV8LJ7X4s2L1QszdD8GTBx-zZPByb-Dd_QAhil4HBcbsJiEooTmljFY0oS9-zzqGHP4tAZc7QHkXgodOKB23U0rR2iQvsdkMkTZDbDcjKV79pTiY_ovdu6-0gfX_QTH7MDsosp1ChwgPR4X038W45GUhvtxNxdfZ5PPdlN6I9_wXnl_e7Q |
CitedBy_id | crossref_primary_10_1177_0271678X221077332 crossref_primary_10_1016_j_neuroimage_2013_03_068 crossref_primary_10_1002_jmri_27938 crossref_primary_10_1016_j_neuroimage_2023_120491 crossref_primary_10_1016_j_neuroimage_2016_03_040 crossref_primary_10_1016_j_neuroimage_2018_09_035 crossref_primary_10_1177_0271678X19867276 crossref_primary_10_1002_mrm_29315 crossref_primary_10_1002_mrm_26069 crossref_primary_10_1016_j_neuroimage_2014_03_027 crossref_primary_10_1177_0271678X211064572 crossref_primary_10_1016_j_neuroimage_2013_01_039 crossref_primary_10_1016_j_nicl_2016_05_003 crossref_primary_10_1002_nbm_3411 crossref_primary_10_1002_nbm_3555 crossref_primary_10_2463_mrms_11_265 crossref_primary_10_1007_s10334_022_01009_3 crossref_primary_10_1016_j_neuroimage_2018_05_066 crossref_primary_10_1016_j_nicl_2017_05_009 crossref_primary_10_1002_jmri_24878 crossref_primary_10_1002_mrm_25027 crossref_primary_10_1016_j_neurad_2023_01_005 crossref_primary_10_1371_journal_pone_0163071 crossref_primary_10_1002_nbm_4625 crossref_primary_10_1371_journal_pone_0174932 crossref_primary_10_1016_j_ctro_2022_100563 |
Cites_doi | 10.1002/jmri.21096 10.1016/j.acra.2006.04.016 10.1016/j.neuroimage.2008.11.037 10.1016/j.neuroimage.2007.05.033 10.1002/mrm.21342 10.1002/mrm.20823 10.1152/japplphysiol.00303.2003 10.1002/jmri.1880070134 10.1016/j.neuroimage.2004.12.010 10.1152/jappl.2000.88.4.1381 10.1002/(SICI)1522-2594(199908)42:2<258::AID-MRM7>3.0.CO;2-E 10.1006/nimg.2001.0890 10.1002/mrm.1910400308 10.3174/ajnr.A0896 10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X 10.1002/nbm.1940080109 10.1038/sj.jcbfm.9600319 10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L 10.1002/mrm.20178 10.1002/1522-2594(200101)45:1<61::AID-MRM1010>3.0.CO;2-8 10.1161/01.ATV.12.8.963 10.1002/mrm.21792 10.1038/jcbfm.2008.56 10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N 10.1002/jmri.21243 10.1002/mrm.10215 10.1002/mrm.1910390506 10.1002/mrm.21072 10.1016/j.mri.2009.04.002 10.1097/01.WCB.0000054755.93668.20 10.1002/jmri.21045 10.1016/S0730-725X(02)00534-9 10.1002/jmri.20462 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley‐Liss, Inc. Copyright © 2011 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. – notice: Copyright © 2011 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/mrm.23137 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1565 |
ExternalDocumentID | PMC3523362 22135087 10_1002_mrm_23137 MRM23137 ark_67375_WNG_ZMCVNG1H_P |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Center for Research Resources Biomedical Technology Research Center funderid: RR 02305 – fundername: National Institutes of Health Research funderid: R01 EB004349 – fundername: National Institute of Neurological Disorders and Stroke Training funderid: T32 NS054575AQ – fundername: NCRR NIH HHS grantid: P41 RR002305 – fundername: NCRR NIH HHS grantid: RR 02305 – fundername: NINDS NIH HHS grantid: T32 NS054575AQ – fundername: NINDS NIH HHS grantid: T32 NS054575 – fundername: NIBIB NIH HHS grantid: R01 EB004349 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB004349-04 || EB |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4537-c92baf08cab604f9578e9ea03d71cbc368453488e9845f23c1acbcc523a15c683 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:27:40 EDT 2025 Fri Jul 11 02:34:15 EDT 2025 Mon Jul 21 06:07:32 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Tue Jul 01 01:20:49 EDT 2025 Wed Jan 22 16:39:33 EST 2025 Wed Oct 30 09:49:47 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright © 2011 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4537-c92baf08cab604f9578e9ea03d71cbc368453488e9845f23c1acbcc523a15c683 |
Notes | istex:7C6FBFA0878390AD1E4EC579B31508E8F6F4B2CA National Center for Research Resources Biomedical Technology Research Center - No. RR 02305 ark:/67375/WNG-ZMCVNG1H-P ArticleID:MRM23137 National Institute of Neurological Disorders and Stroke Training - No. T32 NS054575AQ National Institutes of Health Research - No. R01 EB004349 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3523362 |
PMID | 22135087 |
PQID | 1014112181 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3523362 proquest_miscellaneous_1014112181 pubmed_primary_22135087 crossref_citationtrail_10_1002_mrm_23137 crossref_primary_10_1002_mrm_23137 wiley_primary_10_1002_mrm_23137_MRM23137 istex_primary_ark_67375_WNG_ZMCVNG1H_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2012 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: June 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magnetic Resonance Medicine |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Buxton RB. Quantifying CBF with arterial spin labeling. J Magn Reson Imaging 2005; 22: 723-726. Santosh C, Brennan D, McCabe C, Macrae IM, Holmes WM, Graham DI, Gallagher L, Condon B, Hadley DM, Muir KW, Gsell W. Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab 2008; 28: 1742-1753. Frank LR, Wong EC, Haseler LJ, Buxton RB. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn Reson Med 1999; 42: 258-267. Zaharchuk G, Busse RF, Rosenthal G, Manley GT, Glenn OA, Dillon WP. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging. Acad Radiol 2006; 13: 1016-1024. Zaharchuk G, Martin AJ, Dillon WP. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. Am J Neuroradiol 2008; 29: 663-667. Thomas DL, Lythgoe MF, Gadian DG, Ordidge RJ. In vivo measurement of the longitudinal relaxation time of arterial blood (T-1a) in the mouse using a pulsed arterial spin labeling approach. Magn Reson Med 2006; 55: 943-947. Nichols MB, Paschal CB. Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based and regional gradient analyses. J Magn Reson Imaging 2008; 27: 224-228. Duong TQ, Iadecola C, Kim SG. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magn Reson Med 2001; 45: 61-70. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson in Med 1999; 41: 1246-1254. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 1997; xxxiii, 78 p. of plates p. Lu J, Dai G, Egi Y, Huang S, Kwon SJ, Lo EH, Kim YR. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage 2009; 45: 1126-1134. Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging 1997; 7: 220-225. Cavusoglu M, Pfeuffer J, Ugurbil K, Uludag K. Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. Magn Reson Imaging 2009; 27: 1039-1045. Demchenko IT, Boso AE, O'Neill TJ, Bennett PB, Piantadosi CA. Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J Appl Physiol 2000; 88: 1381-1389. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237-249. Rostrup E, Larsson HBW, Toft PB, Garde K, Henriksen O. Signal changes in gradient-echo images of human brain induced by hypoxia and hyperoxia. NMR Biomed 1995; 8: 41-47. Anzai Y, Ishikawa M, Shaw DWW, Artru A, Yarnykh V, Maravilla KR. Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid-attenuated inversion recovery MR images. Am J Neuroradiol 2004; 25: 274-279. Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 2005; 25: 850-858. Kalisch R, Elbel GK, Gossl C, Czisch M, Auer DP. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 tesla: implications for pharmacologic MRI. Neuroimage 2001; 14: 891-898. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 2007; 27: 69-75. Lu HZ, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T-1) of blood at 3.0 Tesla. Magn Reson Med 2004; 52: 679-682. Wegener S, Wu WC, Perthen JE, Wong EC. Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging. J Magn Reson Imaging 2007; 26: 855-862. Wansapura JP, Holland SK, Dunn RS, Ball WS. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9: 531-538. Floyd TF, Clark JM, Gelfand R, Detre JA, Ratcliffe S, Guvakov D, Lambertsen CJ, Eckenhoff RG. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol 2003; 95: 2453-2461. Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 2003; 23: 472-481. Bulte D, Chiarelli P, Wise R, Jezzard P. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J Magn Reson Imaging 2007; 26: 894-899. Donahue MJ, Lu HZ, Jones CK, Edden RAE, Pekar JJ, van Zijl PCM. Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 2006; 56: 1261-1273. Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 1999; 9: 814-820. Kolbitsch C, Lorenz IH, Hormann C, Hinteregger M, Lockinger A, Moser PL, Kremser C, Schocke M, Felber S, Pfeiffer KP, Benzer A. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers. Magn Reson Imaging 2002; 20: 535-541. Blockley NP, Jiang L, Gardener AG, Ludman CN, Francis ST, Gowland PA. Field strength dependence of R-1 and R-2* Relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin. Magn Reson Med 2008; 60: 1313-1320. Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 2007; 37: 808-820. Kohler TR, Jawien A. Flow affects development of intimal hyperplasia after arterial injury in rats. Arterioscler Thromb 1992; 12: 963-971. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383-396. Losert C, Peller M, Schneider P, Reiser M. Oxygen-enhanced MRI of the brain. Magn Reson Med 2002; 48: 271-277. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708. Zhao JM, Clingman CS, Narvainen MJ, Kauppinen RA, van Zijl PCM. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 2007; 58: 592-597. 2009; 45 2006; 56 2006; 13 2006; 55 2004; 25 2000; 88 1997 1999; 42 1999; 41 1998; 40 2001; 45 2003; 95 1992; 12 2005; 22 2009; 27 2007; 58 1995; 8 1997; 7 2007; 37 2005; 25 1999; 9 2004; 52 2002; 48 1998; 39 2002; 20 1997; 10 2008; 29 2008; 27 2008; 28 2001; 14 2008; 60 2007; 26 2007; 27 2003; 23 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 Paxinos G (e_1_2_6_34_2) 1997 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 Anzai Y (e_1_2_6_4_2) 2004; 25 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Santosh C, Brennan D, McCabe C, Macrae IM, Holmes WM, Graham DI, Gallagher L, Condon B, Hadley DM, Muir KW, Gsell W. Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab 2008; 28: 1742-1753. – reference: Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 2007; 27: 69-75. – reference: Kolbitsch C, Lorenz IH, Hormann C, Hinteregger M, Lockinger A, Moser PL, Kremser C, Schocke M, Felber S, Pfeiffer KP, Benzer A. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers. Magn Reson Imaging 2002; 20: 535-541. – reference: Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson in Med 1999; 41: 1246-1254. – reference: Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383-396. – reference: Blockley NP, Jiang L, Gardener AG, Ludman CN, Francis ST, Gowland PA. Field strength dependence of R-1 and R-2* Relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin. Magn Reson Med 2008; 60: 1313-1320. – reference: Zaharchuk G, Martin AJ, Dillon WP. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. Am J Neuroradiol 2008; 29: 663-667. – reference: Rostrup E, Larsson HBW, Toft PB, Garde K, Henriksen O. Signal changes in gradient-echo images of human brain induced by hypoxia and hyperoxia. NMR Biomed 1995; 8: 41-47. – reference: Anzai Y, Ishikawa M, Shaw DWW, Artru A, Yarnykh V, Maravilla KR. Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid-attenuated inversion recovery MR images. Am J Neuroradiol 2004; 25: 274-279. – reference: Wansapura JP, Holland SK, Dunn RS, Ball WS. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9: 531-538. – reference: Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 2007; 37: 808-820. – reference: Zaharchuk G, Busse RF, Rosenthal G, Manley GT, Glenn OA, Dillon WP. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging. Acad Radiol 2006; 13: 1016-1024. – reference: Buxton RB. Quantifying CBF with arterial spin labeling. J Magn Reson Imaging 2005; 22: 723-726. – reference: Demchenko IT, Boso AE, O'Neill TJ, Bennett PB, Piantadosi CA. Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J Appl Physiol 2000; 88: 1381-1389. – reference: Wegener S, Wu WC, Perthen JE, Wong EC. Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging. J Magn Reson Imaging 2007; 26: 855-862. – reference: Zhao JM, Clingman CS, Narvainen MJ, Kauppinen RA, van Zijl PCM. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 2007; 58: 592-597. – reference: Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 1997; xxxiii, 78 p. of plates p. – reference: Losert C, Peller M, Schneider P, Reiser M. Oxygen-enhanced MRI of the brain. Magn Reson Med 2002; 48: 271-277. – reference: Lu J, Dai G, Egi Y, Huang S, Kwon SJ, Lo EH, Kim YR. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage 2009; 45: 1126-1134. – reference: Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging 1997; 7: 220-225. – reference: Thomas DL, Lythgoe MF, Gadian DG, Ordidge RJ. In vivo measurement of the longitudinal relaxation time of arterial blood (T-1a) in the mouse using a pulsed arterial spin labeling approach. Magn Reson Med 2006; 55: 943-947. – reference: Frank LR, Wong EC, Haseler LJ, Buxton RB. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn Reson Med 1999; 42: 258-267. – reference: Duong TQ, Iadecola C, Kim SG. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magn Reson Med 2001; 45: 61-70. – reference: Nichols MB, Paschal CB. Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based and regional gradient analyses. J Magn Reson Imaging 2008; 27: 224-228. – reference: Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 2003; 23: 472-481. – reference: Kohler TR, Jawien A. Flow affects development of intimal hyperplasia after arterial injury in rats. Arterioscler Thromb 1992; 12: 963-971. – reference: Kalisch R, Elbel GK, Gossl C, Czisch M, Auer DP. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 tesla: implications for pharmacologic MRI. Neuroimage 2001; 14: 891-898. – reference: Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708. – reference: Floyd TF, Clark JM, Gelfand R, Detre JA, Ratcliffe S, Guvakov D, Lambertsen CJ, Eckenhoff RG. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol 2003; 95: 2453-2461. – reference: Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237-249. – reference: Lu HZ, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T-1) of blood at 3.0 Tesla. Magn Reson Med 2004; 52: 679-682. – reference: Bulte D, Chiarelli P, Wise R, Jezzard P. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J Magn Reson Imaging 2007; 26: 894-899. – reference: Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 2005; 25: 850-858. – reference: Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 1999; 9: 814-820. – reference: Cavusoglu M, Pfeuffer J, Ugurbil K, Uludag K. Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. Magn Reson Imaging 2009; 27: 1039-1045. – reference: Donahue MJ, Lu HZ, Jones CK, Edden RAE, Pekar JJ, van Zijl PCM. Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 2006; 56: 1261-1273. – volume: 45 start-page: 1126 year: 2009 end-page: 1134 article-title: Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat publication-title: Neuroimage – volume: 26 start-page: 894 year: 2007 end-page: 899 article-title: Measurement of cerebral blood volume in humans using hyperoxic MRI contrast publication-title: J Magn Reson Imaging – volume: 25 start-page: 850 year: 2005 end-page: 858 article-title: Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus‐evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals publication-title: Neuroimage – volume: 23 start-page: 472 year: 2003 end-page: 481 article-title: Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies publication-title: J Cereb Blood Flow Metab – volume: 27 start-page: 69 year: 2007 end-page: 75 article-title: Cerebral perfusion response to hyperoxia publication-title: J Cereb Blood Flow Metab – volume: 28 start-page: 1742 year: 2008 end-page: 1753 article-title: Potential use of oxygen as a metabolic biosensor in combination with T2*‐weighted MRI to define the ischemic penumbra publication-title: J Cereb Blood Flow Metab – volume: 9 start-page: 814 year: 1999 end-page: 820 article-title: Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure publication-title: J Magn Reson Imaging – volume: 48 start-page: 271 year: 2002 end-page: 277 article-title: Oxygen‐enhanced MRI of the brain publication-title: Magn Reson Med – volume: 29 start-page: 663 year: 2008 end-page: 667 article-title: Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin‐labeling MR imaging publication-title: Am J Neuroradiol – volume: 27 start-page: 1039 year: 2009 end-page: 1045 article-title: Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification publication-title: Magn Reson Imaging – volume: 58 start-page: 592 year: 2007 end-page: 597 article-title: Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T publication-title: Magn Reson Med – volume: 37 start-page: 808 year: 2007 end-page: 820 article-title: A calibration method for quantitative BOLD fMRI based on hyperoxia publication-title: Neuroimage – volume: 7 start-page: 220 year: 1997 end-page: 225 article-title: Effect of oxygen inhalation on relaxation times in various tissues publication-title: J Magn Reson Imaging – start-page: xxxiii year: 1997 – volume: 25 start-page: 274 year: 2004 end-page: 279 article-title: Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid‐attenuated inversion recovery MR images publication-title: Am J Neuroradiol – volume: 26 start-page: 855 year: 2007 end-page: 862 article-title: Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging publication-title: J Magn Reson Imaging – volume: 55 start-page: 943 year: 2006 end-page: 947 article-title: In vivo measurement of the longitudinal relaxation time of arterial blood (T‐1a) in the mouse using a pulsed arterial spin labeling approach publication-title: Magn Reson Med – volume: 12 start-page: 963 year: 1992 end-page: 971 article-title: Flow affects development of intimal hyperplasia after arterial injury in rats publication-title: Arterioscler Thromb – volume: 10 start-page: 237 year: 1997 end-page: 249 article-title: Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling publication-title: NMR Biomed – volume: 40 start-page: 383 year: 1998 end-page: 396 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn Reson Med – volume: 41 start-page: 1246 year: 1999 end-page: 1254 article-title: QUIPSS II with thin‐slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling publication-title: Magn Reson in Med – volume: 56 start-page: 1261 year: 2006 end-page: 1273 article-title: Theoretical and experimental investigation of the VASO contrast mechanism publication-title: Magn Reson Med – volume: 52 start-page: 679 year: 2004 end-page: 682 article-title: Determining the longitudinal relaxation time (T‐1) of blood at 3.0 Tesla publication-title: Magn Reson Med – volume: 8 start-page: 41 year: 1995 end-page: 47 article-title: Signal changes in gradient‐echo images of human brain induced by hypoxia and hyperoxia publication-title: NMR Biomed – volume: 13 start-page: 1016 year: 2006 end-page: 1024 article-title: Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging publication-title: Acad Radiol – volume: 95 start-page: 2453 year: 2003 end-page: 2461 article-title: Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA publication-title: J Appl Physiol – volume: 60 start-page: 1313 year: 2008 end-page: 1320 article-title: Field strength dependence of R‐1 and R‐2* Relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin publication-title: Magn Reson Med – volume: 20 start-page: 535 year: 2002 end-page: 541 article-title: The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers publication-title: Magn Reson Imaging – volume: 14 start-page: 891 year: 2001 end-page: 898 article-title: Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 tesla: implications for pharmacologic MRI publication-title: Neuroimage – volume: 42 start-page: 258 year: 1999 end-page: 267 article-title: Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling publication-title: Magn Reson Med – volume: 88 start-page: 1381 year: 2000 end-page: 1389 article-title: Nitric oxide and cerebral blood flow responses to hyperbaric oxygen publication-title: J Appl Physiol – volume: 22 start-page: 723 year: 2005 end-page: 726 article-title: Quantifying CBF with arterial spin labeling publication-title: J Magn Reson Imaging – volume: 39 start-page: 702 year: 1998 end-page: 708 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn Reson Med – volume: 45 start-page: 61 year: 2001 end-page: 70 article-title: Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow publication-title: Magn Reson Med – volume: 9 start-page: 531 year: 1999 end-page: 538 article-title: NMR relaxation times in the human brain at 3.0 tesla publication-title: J Magn Reson Imaging – volume: 27 start-page: 224 year: 2008 end-page: 228 article-title: Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue‐based and regional gradient analyses publication-title: J Magn Reson Imaging – ident: e_1_2_6_7_2 doi: 10.1002/jmri.21096 – ident: e_1_2_6_8_2 doi: 10.1016/j.acra.2006.04.016 – ident: e_1_2_6_12_2 doi: 10.1016/j.neuroimage.2008.11.037 – ident: e_1_2_6_6_2 doi: 10.1016/j.neuroimage.2007.05.033 – start-page: xxxiii volume-title: The rat brain in stereotaxic coordinates year: 1997 ident: e_1_2_6_34_2 – ident: e_1_2_6_32_2 doi: 10.1002/mrm.21342 – ident: e_1_2_6_20_2 doi: 10.1002/mrm.20823 – ident: e_1_2_6_15_2 doi: 10.1152/japplphysiol.00303.2003 – ident: e_1_2_6_5_2 doi: 10.1002/jmri.1880070134 – ident: e_1_2_6_13_2 doi: 10.1016/j.neuroimage.2004.12.010 – ident: e_1_2_6_14_2 doi: 10.1152/jappl.2000.88.4.1381 – ident: e_1_2_6_28_2 doi: 10.1002/(SICI)1522-2594(199908)42:2<258::AID-MRM7>3.0.CO;2-E – ident: e_1_2_6_21_2 doi: 10.1006/nimg.2001.0890 – ident: e_1_2_6_19_2 doi: 10.1002/mrm.1910400308 – ident: e_1_2_6_16_2 doi: 10.3174/ajnr.A0896 – ident: e_1_2_6_24_2 doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X – ident: e_1_2_6_2_2 doi: 10.1002/nbm.1940080109 – ident: e_1_2_6_10_2 doi: 10.1038/sj.jcbfm.9600319 – ident: e_1_2_6_18_2 doi: 10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5 – ident: e_1_2_6_31_2 doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L – ident: e_1_2_6_36_2 doi: 10.1002/mrm.20178 – ident: e_1_2_6_37_2 doi: 10.1002/1522-2594(200101)45:1<61::AID-MRM1010>3.0.CO;2-8 – ident: e_1_2_6_26_2 doi: 10.1161/01.ATV.12.8.963 – ident: e_1_2_6_33_2 doi: 10.1002/mrm.21792 – ident: e_1_2_6_9_2 doi: 10.1038/jcbfm.2008.56 – ident: e_1_2_6_23_2 doi: 10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N – ident: e_1_2_6_35_2 doi: 10.1002/jmri.21243 – ident: e_1_2_6_3_2 doi: 10.1002/mrm.10215 – volume: 25 start-page: 274 year: 2004 ident: e_1_2_6_4_2 article-title: Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid‐attenuated inversion recovery MR images publication-title: Am J Neuroradiol – ident: e_1_2_6_22_2 doi: 10.1002/mrm.1910390506 – ident: e_1_2_6_30_2 doi: 10.1002/mrm.21072 – ident: e_1_2_6_29_2 doi: 10.1016/j.mri.2009.04.002 – ident: e_1_2_6_17_2 doi: 10.1097/01.WCB.0000054755.93668.20 – ident: e_1_2_6_25_2 doi: 10.1002/jmri.21045 – ident: e_1_2_6_11_2 doi: 10.1016/S0730-725X(02)00534-9 – ident: e_1_2_6_27_2 doi: 10.1002/jmri.20462 |
SSID | ssj0009974 |
Score | 2.1855273 |
Snippet | Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1556 |
SubjectTerms | Algorithms Animals arterial spin labeling Cerebral Arteries - pathology Cerebral Arteries - physiopathology cerebral blood flow Cerebrovascular Circulation hyperoxia Hyperoxia - pathology Hyperoxia - physiopathology Image Enhancement - methods Image Interpretation, Computer-Assisted - methods longitudinal relaxation time Magnetic Resonance Angiography - methods Male molecular oxygen Rats Rats, Sprague-Dawley Reproducibility of Results Sensitivity and Specificity Spin Labels |
Title | Absolute cerebral blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood |
URI | https://api.istex.fr/ark:/67375/WNG-ZMCVNG1H-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23137 https://www.ncbi.nlm.nih.gov/pubmed/22135087 https://www.proquest.com/docview/1014112181 https://pubmed.ncbi.nlm.nih.gov/PMC3523362 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIRAvXMat3GQQQrykS2InqcXTNLFVSKnQxGBCSJHtOFq0NilNIwr_jn_GOXaTUhgS4i1qTuo4PrY_29_5DiEvomKko0JoLzfSeLzgoadiWKXAetlnuRImt2k600k8PuVvz6KzHfK6i4Vx-hD9hhv2DDteYweXqtnfiIbOFrMhgBOGkeTI1UJAdLKRjhLCKTAnHMcZwTtVIT_c75_cmouu4GddXQY0_-RL_opj7UR0dJN87qrg-CcXw3aphvr7b-qO_1nHW-TGGqDSA-dRt8mOqfbItXR9BL9HrlrOqG7ukB8Hyjquodos8Px5Si0NnhbT-iv90krHQ7JNT3G_l85bmIhzammk4Pe0mZcVBTe0MfHURUzS82-oXb4qJdWYOUQDJHZPA1SlTYkMSFmZum3obLO_SevC3p_WmH-pzTHXF8U4nZUrflnODNr0Rds3vUtOj968Pxx764wQnuYRSzwtQiULf6Slin1eCBhujDASvCoJtNIsHoEZDElGwEURMh1I-FnDYlsGkY5H7B7ZrerKPCA0UCwB-JfwSAqw9RUeEcaKRZKxICiSAXnV-Uam13LpmLVjmjmh5zCDxsls4wzI89507jRCLjN6aR2st5CLCyTVJVH2cXKcfUoPP0yOg3H2bkCedR6YQVfH8xv3VZGNxwEeAyYbkPvOI_t_C8OAAdaGYpItX-0NUEZ8-05Vnls5cYDgDGAMVNi64t-rkKUnqb14-O-mj8h1gJihI9c9JrvLRWueAIxbqqe2v_4EDaZKCQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJhgvXAaDcjUIIV7SJXEujcTLNLEVWCo0bWxCQpbtOFq0NiltIwr_jn_GOXaTUhgS4i1KTuLY_mx_to-_Q8iLMO-pME-Uk2mhnSAPfEdGMEuB-bLLMpnozITpTAdR_yR4dxaerZHXzVkYqw_RLrhhyzD9NTZwXJDeWaqGjiajLrATFl8hGxjR20yojpbiUUliNZjjAHuaJGh0hVx_p311ZTTawIKdX0Y1__SY_JXJmqFo_yb53GTCeqBcdOuZ7Krvv-k7_m8ub5EbC45Kdy2obpM1XW6Ra-liF36LXDVuo2p6h_zYlQa7mio9wS3oITWe8DQfVl_pl1pYVyRT-xSXfOm4hrE4o8aTFKBPp-OipIBEcyye2kOT9PwbypfPC0EVBg9RwIrt28BW6bRAJ0hR6qqe0tFyiZNWuXk-rDAEU51huC-KR3XmNvlZMdJo0yZt_vQuOdl_c7zXdxZBIRwVhCx2VOJLkbs9JWTkBnkCPY5OtABgxZ6SikU9MINeSSdwkftMeQJuK5hvCy9UUY9tk_WyKvV9Qj3JYmCAcRCKBGxdibuEkWShYMzz8rhDXjXg4GqhmI6BO4bcaj37HCqHm8rpkOet6djKhFxm9NIgrLUQkwv0q4tDfjo44J_SvY-DA6_PP3TIswaCHFo7buHYUkWHvAAYMtCyDrlnIdl-zfc9BnQbkolXwNoaoJL46pOyODeK4sDCGTAZyLDB4t-zwNOj1Fw8-HfTp2Szf5we8sO3g_cPyXVgnL71tXtE1meTWj8GVjeTT0zj_QloY04k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJiZeuIxbuRqEEC_pkti5WDxNG125pJomBhNCsmzH0aq1SWkbUfh3_DOO7SalMCTEW5ScxLH92f5sH38HoWdRkaqoYMrLtdAeLWjoyRhmKTBf9kkumc5tmM5sEPdP6JvT6HQDvWzOwjh9iHbBzbQM21-bBj7Ji92VaOh4Ou4COSHJJbRFYz81kD44XmlHMeYkmBNqOhpGG1khP9xtX10bjLZMuS4uYpp_Okz-SmTtSNS7hj43eXAOKOfdei676vtv8o7_mcnr6OqSoeI9B6kbaEOXO2g7W-7B76DL1mlUzW6iH3vSIldjpadmA3qErR88LkbVV_ylFs4RydY9Ngu-eFLDSJxj60cKwMezybDEgEN7KB67I5P47JsRL18MBVYmdIgCTuzeBq6KZ0PjAilKXdUzPF4tcOKqsM9HlQnAVOcm2Bc2B3UWLvn5cKyNTZu0_dNb6KT36v1-31uGhPAUjUjiKRZKUfipEjL2acGgv9FMC4BVEiipSJyCGfRJmsFFERIVCLitYLYtgkjFKbmNNsuq1HcRDiRJgP8lNBIMbH1p9ghjSSJBSBAUSQe9aLDB1VIv3YTtGHGn9BxyqBxuK6eDnramEycScpHRcwuw1kJMz41XXRLxj4ND_inb_zA4DPr8qIOeNAjk0NbNBo4rVeOOR4EfAynroDsOke3XwjAgQLYhmWQNq62B0RFff1IOz6yeOHBwAjwGMmyh-Pcs8Ow4sxf3_t30Mdo-Oujxd68Hb--jK0A3Q-do9wBtzqe1fgiUbi4f2ab7E3gBTNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absolute+cerebral+blood+flow+quantification+with+pulsed+arterial+spin+labeling+during+hyperoxia+corrected+with+the+simultaneous+measurement+of+the+longitudinal+relaxation+time+of+arterial+blood&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pilkinton%2C+David+T.&rft.au=Hiraki%2C+Teruyuki&rft.au=Detre%2C+John+A.&rft.au=Greenberg%2C+Joel+H.&rft.date=2012-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=67&rft.issue=6&rft.spage=1556&rft.epage=1565&rft_id=info:doi/10.1002%2Fmrm.23137&rft.externalDBID=10.1002%252Fmrm.23137&rft.externalDocID=MRM23137 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |