Absolute cerebral blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood

Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 67; no. 6; pp. 1556 - 1565
Main Authors Pilkinton, David T., Hiraki, Teruyuki, Detre, John A., Greenberg, Joel H., Reddy, Ravinder
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T1a) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T1a and correct ASL measurements of CBF during hyperoxia on a per‐subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T1a in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T1a for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
AbstractList Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T1a) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T1a and correct ASL measurements of CBF during hyperoxia on a per‐subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T1a in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T1a for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood ( T 1a ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T 1a and correct ASL measurements of CBF during hyperoxia on a per‐subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T 1a in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T 1a for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures.
Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures.Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures.
Author Reddy, Ravinder
Hiraki, Teruyuki
Greenberg, Joel H.
Pilkinton, David T.
Detre, John A.
AuthorAffiliation 1 Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
2 Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
4 Center for Function Neuroimaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
AuthorAffiliation_xml – name: 3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
– name: 4 Center for Function Neuroimaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
– name: 1 Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
– name: 2 Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
Author_xml – sequence: 1
  givenname: David T.
  surname: Pilkinton
  fullname: Pilkinton, David T.
  email: davt@mail.med.upenn.edu
  organization: Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 2
  givenname: Teruyuki
  surname: Hiraki
  fullname: Hiraki, Teruyuki
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 3
  givenname: John A.
  surname: Detre
  fullname: Detre, John A.
  organization: Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 4
  givenname: Joel H.
  surname: Greenberg
  fullname: Greenberg, Joel H.
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 5
  givenname: Ravinder
  surname: Reddy
  fullname: Reddy, Ravinder
  organization: Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22135087$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhi1URKeFBS-AvIRFWl-SSbJBqkZlitQpCHGR2FiOczJjcOyp7TCdx-PN8FwFCFa2fL7__4-Ozxk6sc4CQs8puaCEsMve9xeMU14-QiNaMJaxos5P0IiUOck4rfNTdBbCN0JIXZf5E3TKGOUFqcoR-nnVBGeGCFiBh8ZLgxvjXIs741b4fpA26k4rGbWzeKXjAi8HE6DF0kfwOuFhqS02sgGj7Ry3g98ci_USvHvQEivnPaiYFFt1XAAOuh9MlBbcEHAPMgweerARu25bN87OdRxabZO9ByMfdvFR97BhjtHbTp-ix51MLT3bn-fo05vrj5Ob7Pbd9O3k6jZTecHLTNWskR2plGzGJO_qoqygBkl4W1LVKD6uEpZX6TFdOsYVlelZFYxLWqhxxc_R653vcmh6aFVqOE1LLL3upV8LJ7X4s2L1QszdD8GTBx-zZPByb-Dd_QAhil4HBcbsJiEooTmljFY0oS9-zzqGHP4tAZc7QHkXgodOKB23U0rR2iQvsdkMkTZDbDcjKV79pTiY_ovdu6-0gfX_QTH7MDsosp1ChwgPR4X038W45GUhvtxNxdfZ5PPdlN6I9_wXnl_e7Q
CitedBy_id crossref_primary_10_1177_0271678X221077332
crossref_primary_10_1016_j_neuroimage_2013_03_068
crossref_primary_10_1002_jmri_27938
crossref_primary_10_1016_j_neuroimage_2023_120491
crossref_primary_10_1016_j_neuroimage_2016_03_040
crossref_primary_10_1016_j_neuroimage_2018_09_035
crossref_primary_10_1177_0271678X19867276
crossref_primary_10_1002_mrm_29315
crossref_primary_10_1002_mrm_26069
crossref_primary_10_1016_j_neuroimage_2014_03_027
crossref_primary_10_1177_0271678X211064572
crossref_primary_10_1016_j_neuroimage_2013_01_039
crossref_primary_10_1016_j_nicl_2016_05_003
crossref_primary_10_1002_nbm_3411
crossref_primary_10_1002_nbm_3555
crossref_primary_10_2463_mrms_11_265
crossref_primary_10_1007_s10334_022_01009_3
crossref_primary_10_1016_j_neuroimage_2018_05_066
crossref_primary_10_1016_j_nicl_2017_05_009
crossref_primary_10_1002_jmri_24878
crossref_primary_10_1002_mrm_25027
crossref_primary_10_1016_j_neurad_2023_01_005
crossref_primary_10_1371_journal_pone_0163071
crossref_primary_10_1002_nbm_4625
crossref_primary_10_1371_journal_pone_0174932
crossref_primary_10_1016_j_ctro_2022_100563
Cites_doi 10.1002/jmri.21096
10.1016/j.acra.2006.04.016
10.1016/j.neuroimage.2008.11.037
10.1016/j.neuroimage.2007.05.033
10.1002/mrm.21342
10.1002/mrm.20823
10.1152/japplphysiol.00303.2003
10.1002/jmri.1880070134
10.1016/j.neuroimage.2004.12.010
10.1152/jappl.2000.88.4.1381
10.1002/(SICI)1522-2594(199908)42:2<258::AID-MRM7>3.0.CO;2-E
10.1006/nimg.2001.0890
10.1002/mrm.1910400308
10.3174/ajnr.A0896
10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
10.1002/nbm.1940080109
10.1038/sj.jcbfm.9600319
10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5
10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
10.1002/mrm.20178
10.1002/1522-2594(200101)45:1<61::AID-MRM1010>3.0.CO;2-8
10.1161/01.ATV.12.8.963
10.1002/mrm.21792
10.1038/jcbfm.2008.56
10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
10.1002/jmri.21243
10.1002/mrm.10215
10.1002/mrm.1910390506
10.1002/mrm.21072
10.1016/j.mri.2009.04.002
10.1097/01.WCB.0000054755.93668.20
10.1002/jmri.21045
10.1016/S0730-725X(02)00534-9
10.1002/jmri.20462
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mrm.23137
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1565
ExternalDocumentID PMC3523362
22135087
10_1002_mrm_23137
MRM23137
ark_67375_WNG_ZMCVNG1H_P
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Center for Research Resources Biomedical Technology Research Center
  funderid: RR 02305
– fundername: National Institutes of Health Research
  funderid: R01 EB004349
– fundername: National Institute of Neurological Disorders and Stroke Training
  funderid: T32 NS054575AQ
– fundername: NCRR NIH HHS
  grantid: P41 RR002305
– fundername: NCRR NIH HHS
  grantid: RR 02305
– fundername: NINDS NIH HHS
  grantid: T32 NS054575AQ
– fundername: NINDS NIH HHS
  grantid: T32 NS054575
– fundername: NIBIB NIH HHS
  grantid: R01 EB004349
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB004349-04 || EB
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4537-c92baf08cab604f9578e9ea03d71cbc368453488e9845f23c1acbcc523a15c683
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:27:40 EDT 2025
Fri Jul 11 02:34:15 EDT 2025
Mon Jul 21 06:07:32 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Tue Jul 01 01:20:49 EDT 2025
Wed Jan 22 16:39:33 EST 2025
Wed Oct 30 09:49:47 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4537-c92baf08cab604f9578e9ea03d71cbc368453488e9845f23c1acbcc523a15c683
Notes istex:7C6FBFA0878390AD1E4EC579B31508E8F6F4B2CA
National Center for Research Resources Biomedical Technology Research Center - No. RR 02305
ark:/67375/WNG-ZMCVNG1H-P
ArticleID:MRM23137
National Institute of Neurological Disorders and Stroke Training - No. T32 NS054575AQ
National Institutes of Health Research - No. R01 EB004349
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3523362
PMID 22135087
PQID 1014112181
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3523362
proquest_miscellaneous_1014112181
pubmed_primary_22135087
crossref_citationtrail_10_1002_mrm_23137
crossref_primary_10_1002_mrm_23137
wiley_primary_10_1002_mrm_23137_MRM23137
istex_primary_ark_67375_WNG_ZMCVNG1H_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magnetic Resonance Medicine
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Buxton RB. Quantifying CBF with arterial spin labeling. J Magn Reson Imaging 2005; 22: 723-726.
Santosh C, Brennan D, McCabe C, Macrae IM, Holmes WM, Graham DI, Gallagher L, Condon B, Hadley DM, Muir KW, Gsell W. Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab 2008; 28: 1742-1753.
Frank LR, Wong EC, Haseler LJ, Buxton RB. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn Reson Med 1999; 42: 258-267.
Zaharchuk G, Busse RF, Rosenthal G, Manley GT, Glenn OA, Dillon WP. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging. Acad Radiol 2006; 13: 1016-1024.
Zaharchuk G, Martin AJ, Dillon WP. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. Am J Neuroradiol 2008; 29: 663-667.
Thomas DL, Lythgoe MF, Gadian DG, Ordidge RJ. In vivo measurement of the longitudinal relaxation time of arterial blood (T-1a) in the mouse using a pulsed arterial spin labeling approach. Magn Reson Med 2006; 55: 943-947.
Nichols MB, Paschal CB. Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based and regional gradient analyses. J Magn Reson Imaging 2008; 27: 224-228.
Duong TQ, Iadecola C, Kim SG. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magn Reson Med 2001; 45: 61-70.
Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson in Med 1999; 41: 1246-1254.
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 1997; xxxiii, 78 p. of plates p.
Lu J, Dai G, Egi Y, Huang S, Kwon SJ, Lo EH, Kim YR. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage 2009; 45: 1126-1134.
Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging 1997; 7: 220-225.
Cavusoglu M, Pfeuffer J, Ugurbil K, Uludag K. Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. Magn Reson Imaging 2009; 27: 1039-1045.
Demchenko IT, Boso AE, O'Neill TJ, Bennett PB, Piantadosi CA. Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J Appl Physiol 2000; 88: 1381-1389.
Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237-249.
Rostrup E, Larsson HBW, Toft PB, Garde K, Henriksen O. Signal changes in gradient-echo images of human brain induced by hypoxia and hyperoxia. NMR Biomed 1995; 8: 41-47.
Anzai Y, Ishikawa M, Shaw DWW, Artru A, Yarnykh V, Maravilla KR. Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid-attenuated inversion recovery MR images. Am J Neuroradiol 2004; 25: 274-279.
Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 2005; 25: 850-858.
Kalisch R, Elbel GK, Gossl C, Czisch M, Auer DP. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 tesla: implications for pharmacologic MRI. Neuroimage 2001; 14: 891-898.
Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 2007; 27: 69-75.
Lu HZ, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T-1) of blood at 3.0 Tesla. Magn Reson Med 2004; 52: 679-682.
Wegener S, Wu WC, Perthen JE, Wong EC. Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging. J Magn Reson Imaging 2007; 26: 855-862.
Wansapura JP, Holland SK, Dunn RS, Ball WS. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9: 531-538.
Floyd TF, Clark JM, Gelfand R, Detre JA, Ratcliffe S, Guvakov D, Lambertsen CJ, Eckenhoff RG. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol 2003; 95: 2453-2461.
Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 2003; 23: 472-481.
Bulte D, Chiarelli P, Wise R, Jezzard P. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J Magn Reson Imaging 2007; 26: 894-899.
Donahue MJ, Lu HZ, Jones CK, Edden RAE, Pekar JJ, van Zijl PCM. Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 2006; 56: 1261-1273.
Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 1999; 9: 814-820.
Kolbitsch C, Lorenz IH, Hormann C, Hinteregger M, Lockinger A, Moser PL, Kremser C, Schocke M, Felber S, Pfeiffer KP, Benzer A. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers. Magn Reson Imaging 2002; 20: 535-541.
Blockley NP, Jiang L, Gardener AG, Ludman CN, Francis ST, Gowland PA. Field strength dependence of R-1 and R-2* Relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin. Magn Reson Med 2008; 60: 1313-1320.
Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 2007; 37: 808-820.
Kohler TR, Jawien A. Flow affects development of intimal hyperplasia after arterial injury in rats. Arterioscler Thromb 1992; 12: 963-971.
Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383-396.
Losert C, Peller M, Schneider P, Reiser M. Oxygen-enhanced MRI of the brain. Magn Reson Med 2002; 48: 271-277.
Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708.
Zhao JM, Clingman CS, Narvainen MJ, Kauppinen RA, van Zijl PCM. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 2007; 58: 592-597.
2009; 45
2006; 56
2006; 13
2006; 55
2004; 25
2000; 88
1997
1999; 42
1999; 41
1998; 40
2001; 45
2003; 95
1992; 12
2005; 22
2009; 27
2007; 58
1995; 8
1997; 7
2007; 37
2005; 25
1999; 9
2004; 52
2002; 48
1998; 39
2002; 20
1997; 10
2008; 29
2008; 27
2008; 28
2001; 14
2008; 60
2007; 26
2007; 27
2003; 23
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
Paxinos G (e_1_2_6_34_2) 1997
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
Anzai Y (e_1_2_6_4_2) 2004; 25
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Santosh C, Brennan D, McCabe C, Macrae IM, Holmes WM, Graham DI, Gallagher L, Condon B, Hadley DM, Muir KW, Gsell W. Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab 2008; 28: 1742-1753.
– reference: Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 2007; 27: 69-75.
– reference: Kolbitsch C, Lorenz IH, Hormann C, Hinteregger M, Lockinger A, Moser PL, Kremser C, Schocke M, Felber S, Pfeiffer KP, Benzer A. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers. Magn Reson Imaging 2002; 20: 535-541.
– reference: Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson in Med 1999; 41: 1246-1254.
– reference: Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383-396.
– reference: Blockley NP, Jiang L, Gardener AG, Ludman CN, Francis ST, Gowland PA. Field strength dependence of R-1 and R-2* Relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin. Magn Reson Med 2008; 60: 1313-1320.
– reference: Zaharchuk G, Martin AJ, Dillon WP. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. Am J Neuroradiol 2008; 29: 663-667.
– reference: Rostrup E, Larsson HBW, Toft PB, Garde K, Henriksen O. Signal changes in gradient-echo images of human brain induced by hypoxia and hyperoxia. NMR Biomed 1995; 8: 41-47.
– reference: Anzai Y, Ishikawa M, Shaw DWW, Artru A, Yarnykh V, Maravilla KR. Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid-attenuated inversion recovery MR images. Am J Neuroradiol 2004; 25: 274-279.
– reference: Wansapura JP, Holland SK, Dunn RS, Ball WS. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9: 531-538.
– reference: Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 2007; 37: 808-820.
– reference: Zaharchuk G, Busse RF, Rosenthal G, Manley GT, Glenn OA, Dillon WP. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging. Acad Radiol 2006; 13: 1016-1024.
– reference: Buxton RB. Quantifying CBF with arterial spin labeling. J Magn Reson Imaging 2005; 22: 723-726.
– reference: Demchenko IT, Boso AE, O'Neill TJ, Bennett PB, Piantadosi CA. Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J Appl Physiol 2000; 88: 1381-1389.
– reference: Wegener S, Wu WC, Perthen JE, Wong EC. Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging. J Magn Reson Imaging 2007; 26: 855-862.
– reference: Zhao JM, Clingman CS, Narvainen MJ, Kauppinen RA, van Zijl PCM. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 2007; 58: 592-597.
– reference: Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 1997; xxxiii, 78 p. of plates p.
– reference: Losert C, Peller M, Schneider P, Reiser M. Oxygen-enhanced MRI of the brain. Magn Reson Med 2002; 48: 271-277.
– reference: Lu J, Dai G, Egi Y, Huang S, Kwon SJ, Lo EH, Kim YR. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage 2009; 45: 1126-1134.
– reference: Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging 1997; 7: 220-225.
– reference: Thomas DL, Lythgoe MF, Gadian DG, Ordidge RJ. In vivo measurement of the longitudinal relaxation time of arterial blood (T-1a) in the mouse using a pulsed arterial spin labeling approach. Magn Reson Med 2006; 55: 943-947.
– reference: Frank LR, Wong EC, Haseler LJ, Buxton RB. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn Reson Med 1999; 42: 258-267.
– reference: Duong TQ, Iadecola C, Kim SG. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magn Reson Med 2001; 45: 61-70.
– reference: Nichols MB, Paschal CB. Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based and regional gradient analyses. J Magn Reson Imaging 2008; 27: 224-228.
– reference: Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 2003; 23: 472-481.
– reference: Kohler TR, Jawien A. Flow affects development of intimal hyperplasia after arterial injury in rats. Arterioscler Thromb 1992; 12: 963-971.
– reference: Kalisch R, Elbel GK, Gossl C, Czisch M, Auer DP. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 tesla: implications for pharmacologic MRI. Neuroimage 2001; 14: 891-898.
– reference: Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708.
– reference: Floyd TF, Clark JM, Gelfand R, Detre JA, Ratcliffe S, Guvakov D, Lambertsen CJ, Eckenhoff RG. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol 2003; 95: 2453-2461.
– reference: Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237-249.
– reference: Lu HZ, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T-1) of blood at 3.0 Tesla. Magn Reson Med 2004; 52: 679-682.
– reference: Bulte D, Chiarelli P, Wise R, Jezzard P. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J Magn Reson Imaging 2007; 26: 894-899.
– reference: Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 2005; 25: 850-858.
– reference: Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 1999; 9: 814-820.
– reference: Cavusoglu M, Pfeuffer J, Ugurbil K, Uludag K. Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. Magn Reson Imaging 2009; 27: 1039-1045.
– reference: Donahue MJ, Lu HZ, Jones CK, Edden RAE, Pekar JJ, van Zijl PCM. Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 2006; 56: 1261-1273.
– volume: 45
  start-page: 1126
  year: 2009
  end-page: 1134
  article-title: Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat
  publication-title: Neuroimage
– volume: 26
  start-page: 894
  year: 2007
  end-page: 899
  article-title: Measurement of cerebral blood volume in humans using hyperoxic MRI contrast
  publication-title: J Magn Reson Imaging
– volume: 25
  start-page: 850
  year: 2005
  end-page: 858
  article-title: Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus‐evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals
  publication-title: Neuroimage
– volume: 23
  start-page: 472
  year: 2003
  end-page: 481
  article-title: Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies
  publication-title: J Cereb Blood Flow Metab
– volume: 27
  start-page: 69
  year: 2007
  end-page: 75
  article-title: Cerebral perfusion response to hyperoxia
  publication-title: J Cereb Blood Flow Metab
– volume: 28
  start-page: 1742
  year: 2008
  end-page: 1753
  article-title: Potential use of oxygen as a metabolic biosensor in combination with T2*‐weighted MRI to define the ischemic penumbra
  publication-title: J Cereb Blood Flow Metab
– volume: 9
  start-page: 814
  year: 1999
  end-page: 820
  article-title: Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure
  publication-title: J Magn Reson Imaging
– volume: 48
  start-page: 271
  year: 2002
  end-page: 277
  article-title: Oxygen‐enhanced MRI of the brain
  publication-title: Magn Reson Med
– volume: 29
  start-page: 663
  year: 2008
  end-page: 667
  article-title: Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin‐labeling MR imaging
  publication-title: Am J Neuroradiol
– volume: 27
  start-page: 1039
  year: 2009
  end-page: 1045
  article-title: Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification
  publication-title: Magn Reson Imaging
– volume: 58
  start-page: 592
  year: 2007
  end-page: 597
  article-title: Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T
  publication-title: Magn Reson Med
– volume: 37
  start-page: 808
  year: 2007
  end-page: 820
  article-title: A calibration method for quantitative BOLD fMRI based on hyperoxia
  publication-title: Neuroimage
– volume: 7
  start-page: 220
  year: 1997
  end-page: 225
  article-title: Effect of oxygen inhalation on relaxation times in various tissues
  publication-title: J Magn Reson Imaging
– start-page: xxxiii
  year: 1997
– volume: 25
  start-page: 274
  year: 2004
  end-page: 279
  article-title: Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid‐attenuated inversion recovery MR images
  publication-title: Am J Neuroradiol
– volume: 26
  start-page: 855
  year: 2007
  end-page: 862
  article-title: Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging
  publication-title: J Magn Reson Imaging
– volume: 55
  start-page: 943
  year: 2006
  end-page: 947
  article-title: In vivo measurement of the longitudinal relaxation time of arterial blood (T‐1a) in the mouse using a pulsed arterial spin labeling approach
  publication-title: Magn Reson Med
– volume: 12
  start-page: 963
  year: 1992
  end-page: 971
  article-title: Flow affects development of intimal hyperplasia after arterial injury in rats
  publication-title: Arterioscler Thromb
– volume: 10
  start-page: 237
  year: 1997
  end-page: 249
  article-title: Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling
  publication-title: NMR Biomed
– volume: 40
  start-page: 383
  year: 1998
  end-page: 396
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 41
  start-page: 1246
  year: 1999
  end-page: 1254
  article-title: QUIPSS II with thin‐slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling
  publication-title: Magn Reson in Med
– volume: 56
  start-page: 1261
  year: 2006
  end-page: 1273
  article-title: Theoretical and experimental investigation of the VASO contrast mechanism
  publication-title: Magn Reson Med
– volume: 52
  start-page: 679
  year: 2004
  end-page: 682
  article-title: Determining the longitudinal relaxation time (T‐1) of blood at 3.0 Tesla
  publication-title: Magn Reson Med
– volume: 8
  start-page: 41
  year: 1995
  end-page: 47
  article-title: Signal changes in gradient‐echo images of human brain induced by hypoxia and hyperoxia
  publication-title: NMR Biomed
– volume: 13
  start-page: 1016
  year: 2006
  end-page: 1024
  article-title: Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging
  publication-title: Acad Radiol
– volume: 95
  start-page: 2453
  year: 2003
  end-page: 2461
  article-title: Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA
  publication-title: J Appl Physiol
– volume: 60
  start-page: 1313
  year: 2008
  end-page: 1320
  article-title: Field strength dependence of R‐1 and R‐2* Relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin
  publication-title: Magn Reson Med
– volume: 20
  start-page: 535
  year: 2002
  end-page: 541
  article-title: The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers
  publication-title: Magn Reson Imaging
– volume: 14
  start-page: 891
  year: 2001
  end-page: 898
  article-title: Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 tesla: implications for pharmacologic MRI
  publication-title: Neuroimage
– volume: 42
  start-page: 258
  year: 1999
  end-page: 267
  article-title: Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 88
  start-page: 1381
  year: 2000
  end-page: 1389
  article-title: Nitric oxide and cerebral blood flow responses to hyperbaric oxygen
  publication-title: J Appl Physiol
– volume: 22
  start-page: 723
  year: 2005
  end-page: 726
  article-title: Quantifying CBF with arterial spin labeling
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 702
  year: 1998
  end-page: 708
  article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II)
  publication-title: Magn Reson Med
– volume: 45
  start-page: 61
  year: 2001
  end-page: 70
  article-title: Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow
  publication-title: Magn Reson Med
– volume: 9
  start-page: 531
  year: 1999
  end-page: 538
  article-title: NMR relaxation times in the human brain at 3.0 tesla
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 224
  year: 2008
  end-page: 228
  article-title: Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue‐based and regional gradient analyses
  publication-title: J Magn Reson Imaging
– ident: e_1_2_6_7_2
  doi: 10.1002/jmri.21096
– ident: e_1_2_6_8_2
  doi: 10.1016/j.acra.2006.04.016
– ident: e_1_2_6_12_2
  doi: 10.1016/j.neuroimage.2008.11.037
– ident: e_1_2_6_6_2
  doi: 10.1016/j.neuroimage.2007.05.033
– start-page: xxxiii
  volume-title: The rat brain in stereotaxic coordinates
  year: 1997
  ident: e_1_2_6_34_2
– ident: e_1_2_6_32_2
  doi: 10.1002/mrm.21342
– ident: e_1_2_6_20_2
  doi: 10.1002/mrm.20823
– ident: e_1_2_6_15_2
  doi: 10.1152/japplphysiol.00303.2003
– ident: e_1_2_6_5_2
  doi: 10.1002/jmri.1880070134
– ident: e_1_2_6_13_2
  doi: 10.1016/j.neuroimage.2004.12.010
– ident: e_1_2_6_14_2
  doi: 10.1152/jappl.2000.88.4.1381
– ident: e_1_2_6_28_2
  doi: 10.1002/(SICI)1522-2594(199908)42:2<258::AID-MRM7>3.0.CO;2-E
– ident: e_1_2_6_21_2
  doi: 10.1006/nimg.2001.0890
– ident: e_1_2_6_19_2
  doi: 10.1002/mrm.1910400308
– ident: e_1_2_6_16_2
  doi: 10.3174/ajnr.A0896
– ident: e_1_2_6_24_2
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
– ident: e_1_2_6_2_2
  doi: 10.1002/nbm.1940080109
– ident: e_1_2_6_10_2
  doi: 10.1038/sj.jcbfm.9600319
– ident: e_1_2_6_18_2
  doi: 10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5
– ident: e_1_2_6_31_2
  doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
– ident: e_1_2_6_36_2
  doi: 10.1002/mrm.20178
– ident: e_1_2_6_37_2
  doi: 10.1002/1522-2594(200101)45:1<61::AID-MRM1010>3.0.CO;2-8
– ident: e_1_2_6_26_2
  doi: 10.1161/01.ATV.12.8.963
– ident: e_1_2_6_33_2
  doi: 10.1002/mrm.21792
– ident: e_1_2_6_9_2
  doi: 10.1038/jcbfm.2008.56
– ident: e_1_2_6_23_2
  doi: 10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
– ident: e_1_2_6_35_2
  doi: 10.1002/jmri.21243
– ident: e_1_2_6_3_2
  doi: 10.1002/mrm.10215
– volume: 25
  start-page: 274
  year: 2004
  ident: e_1_2_6_4_2
  article-title: Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid‐attenuated inversion recovery MR images
  publication-title: Am J Neuroradiol
– ident: e_1_2_6_22_2
  doi: 10.1002/mrm.1910390506
– ident: e_1_2_6_30_2
  doi: 10.1002/mrm.21072
– ident: e_1_2_6_29_2
  doi: 10.1016/j.mri.2009.04.002
– ident: e_1_2_6_17_2
  doi: 10.1097/01.WCB.0000054755.93668.20
– ident: e_1_2_6_25_2
  doi: 10.1002/jmri.21045
– ident: e_1_2_6_11_2
  doi: 10.1016/S0730-725X(02)00534-9
– ident: e_1_2_6_27_2
  doi: 10.1002/jmri.20462
SSID ssj0009974
Score 2.1855273
Snippet Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1556
SubjectTerms Algorithms
Animals
arterial spin labeling
Cerebral Arteries - pathology
Cerebral Arteries - physiopathology
cerebral blood flow
Cerebrovascular Circulation
hyperoxia
Hyperoxia - pathology
Hyperoxia - physiopathology
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
longitudinal relaxation time
Magnetic Resonance Angiography - methods
Male
molecular oxygen
Rats
Rats, Sprague-Dawley
Reproducibility of Results
Sensitivity and Specificity
Spin Labels
Title Absolute cerebral blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood
URI https://api.istex.fr/ark:/67375/WNG-ZMCVNG1H-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23137
https://www.ncbi.nlm.nih.gov/pubmed/22135087
https://www.proquest.com/docview/1014112181
https://pubmed.ncbi.nlm.nih.gov/PMC3523362
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIRAvXMat3GQQQrykS2InqcXTNLFVSKnQxGBCSJHtOFq0NilNIwr_jn_GOXaTUhgS4i1qTuo4PrY_29_5DiEvomKko0JoLzfSeLzgoadiWKXAetlnuRImt2k600k8PuVvz6KzHfK6i4Vx-hD9hhv2DDteYweXqtnfiIbOFrMhgBOGkeTI1UJAdLKRjhLCKTAnHMcZwTtVIT_c75_cmouu4GddXQY0_-RL_opj7UR0dJN87qrg-CcXw3aphvr7b-qO_1nHW-TGGqDSA-dRt8mOqfbItXR9BL9HrlrOqG7ukB8Hyjquodos8Px5Si0NnhbT-iv90krHQ7JNT3G_l85bmIhzammk4Pe0mZcVBTe0MfHURUzS82-oXb4qJdWYOUQDJHZPA1SlTYkMSFmZum3obLO_SevC3p_WmH-pzTHXF8U4nZUrflnODNr0Rds3vUtOj968Pxx764wQnuYRSzwtQiULf6Slin1eCBhujDASvCoJtNIsHoEZDElGwEURMh1I-FnDYlsGkY5H7B7ZrerKPCA0UCwB-JfwSAqw9RUeEcaKRZKxICiSAXnV-Uam13LpmLVjmjmh5zCDxsls4wzI89507jRCLjN6aR2st5CLCyTVJVH2cXKcfUoPP0yOg3H2bkCedR6YQVfH8xv3VZGNxwEeAyYbkPvOI_t_C8OAAdaGYpItX-0NUEZ8-05Vnls5cYDgDGAMVNi64t-rkKUnqb14-O-mj8h1gJihI9c9JrvLRWueAIxbqqe2v_4EDaZKCQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJhgvXAaDcjUIIV7SJXEujcTLNLEVWCo0bWxCQpbtOFq0NiltIwr_jn_GOXaTUhgS4i1KTuLY_mx_to-_Q8iLMO-pME-Uk2mhnSAPfEdGMEuB-bLLMpnozITpTAdR_yR4dxaerZHXzVkYqw_RLrhhyzD9NTZwXJDeWaqGjiajLrATFl8hGxjR20yojpbiUUliNZjjAHuaJGh0hVx_p311ZTTawIKdX0Y1__SY_JXJmqFo_yb53GTCeqBcdOuZ7Krvv-k7_m8ub5EbC45Kdy2obpM1XW6Ra-liF36LXDVuo2p6h_zYlQa7mio9wS3oITWe8DQfVl_pl1pYVyRT-xSXfOm4hrE4o8aTFKBPp-OipIBEcyye2kOT9PwbypfPC0EVBg9RwIrt28BW6bRAJ0hR6qqe0tFyiZNWuXk-rDAEU51huC-KR3XmNvlZMdJo0yZt_vQuOdl_c7zXdxZBIRwVhCx2VOJLkbs9JWTkBnkCPY5OtABgxZ6SikU9MINeSSdwkftMeQJuK5hvCy9UUY9tk_WyKvV9Qj3JYmCAcRCKBGxdibuEkWShYMzz8rhDXjXg4GqhmI6BO4bcaj37HCqHm8rpkOet6djKhFxm9NIgrLUQkwv0q4tDfjo44J_SvY-DA6_PP3TIswaCHFo7buHYUkWHvAAYMtCyDrlnIdl-zfc9BnQbkolXwNoaoJL46pOyODeK4sDCGTAZyLDB4t-zwNOj1Fw8-HfTp2Szf5we8sO3g_cPyXVgnL71tXtE1meTWj8GVjeTT0zj_QloY04k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJiZeuIxbuRqEEC_pkti5WDxNG125pJomBhNCsmzH0aq1SWkbUfh3_DOO7SalMCTEW5ScxLH92f5sH38HoWdRkaqoYMrLtdAeLWjoyRhmKTBf9kkumc5tmM5sEPdP6JvT6HQDvWzOwjh9iHbBzbQM21-bBj7Ji92VaOh4Ou4COSHJJbRFYz81kD44XmlHMeYkmBNqOhpGG1khP9xtX10bjLZMuS4uYpp_Okz-SmTtSNS7hj43eXAOKOfdei676vtv8o7_mcnr6OqSoeI9B6kbaEOXO2g7W-7B76DL1mlUzW6iH3vSIldjpadmA3qErR88LkbVV_ylFs4RydY9Ngu-eFLDSJxj60cKwMezybDEgEN7KB67I5P47JsRL18MBVYmdIgCTuzeBq6KZ0PjAilKXdUzPF4tcOKqsM9HlQnAVOcm2Bc2B3UWLvn5cKyNTZu0_dNb6KT36v1-31uGhPAUjUjiKRZKUfipEjL2acGgv9FMC4BVEiipSJyCGfRJmsFFERIVCLitYLYtgkjFKbmNNsuq1HcRDiRJgP8lNBIMbH1p9ghjSSJBSBAUSQe9aLDB1VIv3YTtGHGn9BxyqBxuK6eDnramEycScpHRcwuw1kJMz41XXRLxj4ND_inb_zA4DPr8qIOeNAjk0NbNBo4rVeOOR4EfAynroDsOke3XwjAgQLYhmWQNq62B0RFff1IOz6yeOHBwAjwGMmyh-Pcs8Ow4sxf3_t30Mdo-Oujxd68Hb--jK0A3Q-do9wBtzqe1fgiUbi4f2ab7E3gBTNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absolute+cerebral+blood+flow+quantification+with+pulsed+arterial+spin+labeling+during+hyperoxia+corrected+with+the+simultaneous+measurement+of+the+longitudinal+relaxation+time+of+arterial+blood&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pilkinton%2C+David+T.&rft.au=Hiraki%2C+Teruyuki&rft.au=Detre%2C+John+A.&rft.au=Greenberg%2C+Joel+H.&rft.date=2012-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=67&rft.issue=6&rft.spage=1556&rft.epage=1565&rft_id=info:doi/10.1002%2Fmrm.23137&rft.externalDBID=10.1002%252Fmrm.23137&rft.externalDocID=MRM23137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon