Implicit co-simulation methods: Stability and convergence analysis for solver coupling approaches with algebraic constraints

The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Mechanik Vol. 96; no. 8; pp. 986 - 1012
Main Authors Schweizer, Bernhard, Li, Pu, Lu, Daixing
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.08.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single‐mass oscillator, a linear two‐mass oscillator is used here for analyzing the stability of co‐simulation methods. The two‐mass co‐simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co‐simulation test model with a linear co‐simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis. The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model.
AbstractList The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single‐mass oscillator, a linear two‐mass oscillator is used here for analyzing the stability of co‐simulation methods. The two‐mass co‐simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co‐simulation test model with a linear co‐simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis.
The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single‐mass oscillator, a linear two‐mass oscillator is used here for analyzing the stability of co‐simulation methods. The two‐mass co‐simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co‐simulation test model with a linear co‐simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis. The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model.
The analysis of the numerical stability of co-simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well-known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force-, force/displacement- and displacement/displacement-decomposition. The stability analysis of co-simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single-mass oscillator, a linear two-mass oscillator is used here for analyzing the stability of co-simulation methods. The two-mass co-simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co-simulation test model with a linear co-simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis. The analysis of the numerical stability of co-simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well-known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force-, force/displacement- and displacement/displacement-decomposition. The stability analysis of co-simulation methods with algebraic constraints is inherently related to the definition of a test model.
Author Schweizer, Bernhard
Lu, Daixing
Li, Pu
Author_xml – sequence: 1
  givenname: Bernhard
  surname: Schweizer
  fullname: Schweizer, Bernhard
  email: schweizer@sds.tu-darmstadt.de
  organization: Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University Darmstadt, Germany
– sequence: 2
  givenname: Pu
  surname: Li
  fullname: Li, Pu
  organization: Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University Darmstadt, Germany
– sequence: 3
  givenname: Daixing
  surname: Lu
  fullname: Lu, Daixing
  organization: Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University Darmstadt, Germany
BookMark eNqFkUtv1DAURi1UJKaFLetIbNhksGMnttmVqgxFnYLES2JjOc7NjIsTD7ZDGdQfXw9TVagSsLq27jnXj-8QHYx-BISeEjwnGFcvfulhmFeYMIyx4A_QjNQVKfOOHKAZxoyVVdXwR-gwxsuMEEnoDF2fDRtnjU2F8WW0w-R0sn4sBkhr38WXxYekW-ts2hZ67DI0_oCwgtFA3mu3jTYWvQ9F9C43cn_K48ZVoTeb4LVZQyyubFoX2q2gDdqa3YiY8mpM8TF62GsX4cltPUKfXp9-PHlTnr9bnJ0cn5eG1ZSXNZesp71sSGcA6k4K2kquhaCihaYDRtu6MqB7yXNhXVXVRILo-ibr0FF6hJ7v5-Y7fZ8gJjXYaMA5PYKfoiKC1rXMFs_os3vopZ9CfmlUFWlwwwWT_6SIwFxwgjnO1HxPmeBjDNCrTbCDDltFsNpFpnaRqbvIssDuCTmY33nsPsz9XZN77co62P7nEPX1eLn80y33ro0Jft65OnxTDae8Vl8uFqpZssXb9_izekVvAD4CvwA
CitedBy_id crossref_primary_10_1007_s11044_018_9632_9
crossref_primary_10_1007_s11044_020_09727_z
crossref_primary_10_1007_s11044_022_09824_1
crossref_primary_10_1007_s11044_022_09825_0
crossref_primary_10_1080_23248378_2019_1642152
crossref_primary_10_1002_pamm_201710047
crossref_primary_10_1007_s11044_022_09817_0
crossref_primary_10_1016_j_mechmachtheory_2022_104740
crossref_primary_10_1142_S1793962317500556
crossref_primary_10_1007_s00366_022_01610_z
crossref_primary_10_1007_s11044_022_09829_w
crossref_primary_10_1007_s11044_019_09696_y
crossref_primary_10_1115_1_4031287
Cites_doi 10.4271/2011-01-0516
10.1016/0045-7825(72)90018-7
10.1002/zamm.201300191
10.1504/IJVSMT.2012.045308
10.1016/S1270-9638(03)00016-6
10.1007/s00419-011-0586-0
10.1109/92.609870
10.1007/BF01934907
10.1016/S0045-7825(97)00140-0
10.1016/j.cam.2007.09.005
10.1115/PVP2006-ICPVT-11-93184
10.1016/S0045-7825(02)00518-2
10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S
10.1023/A:1009824327480
10.1115/1.4028503
10.1115/1.1648307
10.1007/s11044-010-9234-7
10.4271/2013-01-1191
10.1007/s11044-014-9422-y
10.1076/1387-3954(200006)6:2;1-M;FT093
10.1063/2.1301305
10.2478/v10180-011-0016-4
10.1115/1.4030508
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/zamm.201400087
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1521-4001
EndPage 1012
ExternalDocumentID 4133783591
10_1002_zamm_201400087
ZAMM201400087
ark_67375_WNG_6M4GJP0V_B
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RJQFR
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4537-5794f3f961dcee5d983b97a8838be6de43b52ceaf972ce4d22519e8df6453ed33
IEDL.DBID DR2
ISSN 0044-2267
IngestDate Fri Jul 11 11:19:24 EDT 2025
Fri Jul 25 12:13:51 EDT 2025
Fri Jul 25 10:45:58 EDT 2025
Tue Jul 01 00:21:06 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Wed Jan 22 16:54:11 EST 2025
Wed Oct 30 10:05:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4537-5794f3f961dcee5d983b97a8838be6de43b52ceaf972ce4d22519e8df6453ed33
Notes istex:9542960335001959D9F9D878DE1C6F0DD2BD5498
ark:/67375/WNG-6M4GJP0V-B
ArticleID:ZAMM201400087
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1807871070
PQPubID 2032056
PageCount 27
ParticipantIDs proquest_miscellaneous_1835592517
proquest_journals_2160678497
proquest_journals_1807871070
crossref_primary_10_1002_zamm_201400087
crossref_citationtrail_10_1002_zamm_201400087
wiley_primary_10_1002_zamm_201400087_ZAMM201400087
istex_primary_ark_67375_WNG_6M4GJP0V_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Zeitschrift für angewandte Mathematik und Mechanik
PublicationTitleAlternate Z. Angew. Math. Mech
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng. 1, 1-16 (1972).
J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo, Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments, Multibody Syst. Dyn. 4, 55-73 (2000).
V. Carstens, R. Kemme, and S. Schmitt, Coupled simulation of flow-structure interaction in turbomachinery, Aerosp. Sci. Technol. 7, 298-306 (2003).
J. Ambrosio, J. Pombo, M. Pereira, P. Antunes, and A. Mosca, A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains, J. Theor. Appl. Mech. 50/3, 681-699 (2012), Warsaw.
F. Gonzalez, M. A. Naya, A. Luaces, and M. Gonzalez, On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics, Multibody Syst. Dyn. 2(4), 461-483 (2011).
B. Gu and H. H. Asada, Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models, J. Dyn. Syst. Meas. Control 126, 1-13 (2004), DOI: 10.1115/1.1648307.
Y. G. Liao and H. I. Du, Co-simulation of multi-body-based vehicle dynamics and an electric power steering control system, Proc. Inst. Mech. Eng. K, J. Multibody Dyn. 215, 141-151 (2001).
F. Spreng, P. Eberhard, and F. Fleissner, An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms, Theor. Appl. Mech. Lett. 3(1), 8-013005 (2013).
C. W. Gear and D. R. Wells, Multirate linear multistep methods, BIT 24, 484-502 (1984).
A. Verhoeven, B. Tasic, T. G. J. Beelen, E. J. W. ter Maten, and R. M. M. Mattheij, BDF Compound-Fast Multirate Transient Analysis with Adaptive Stepsize Control, J. Numer. Anal. Ind. Appl. Math. 3(3-4), 275-297 (2008).
R. Kübler and W. Schiehlen, Two methods of simulator coupling, Math. Comput. Model. Dyn. Syst. 6, 93-113 (2000).
M. R. Dörfel and B. Simeon, Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme, Numer. Math. Adv. Appl., pp. 307-315 (2010).
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, 2010).
V. Savcenco, Comparison of the asymptotic stability properties for two multirate strategies, J. Comput. Appl. Math. 220, 508-524 (2008).
S. Wuensche, C. Clauß, P. Schwarz, and F. Winkler, Electro-thermal circuit simulation using simulator coupling, IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 5, 277-282 (1997).
M. Busch and B. Schweizer, Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach, Arch. Appl. Mech. 82(6), 723-741 (2012).
W. J. T. Daniel, A partial velocity approach to subcycling structural dynamics, Comput. Methods Appl. Mech. Engrg. 192, 375-394 (2003).
B. Schweizer and D. Lu, Predictor/Corrector co-simulation approaches for solver coupling with algebraic constraints, ZAMM - J. Appl. Math. Mech. 95, 911-938 (2015).
M. Naya, J. Cuadrado, D. Dopico, and U. Lugris, An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison with Simplified and Co-Integration Approaches, Arch. Mech. Eng. LVIII, 223-243 (2011).
M. Datar, I. Stanciulescu, and D. Negrut, A co-simulation environment for high-fidelity virtual prototyping of vehicle systems, Int. J. Veh. Syst. Model. Test. 7, 54-72 (2012).
E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 3rd ed. (Springer, 2009).
N. Negrut, D. Melanz, H. Mazhar, D. Lamb, and P. Jayakumar, Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain, SAE Int, JPasseng. Cars - Mech. Syst. 6, 369-381, DOI: 10.4271/2013-01-1191, 2013.
W. J. T. Daniel, A study of the stability of subcycling algorithms in structural dynamics, Comput. Methods Appl. Mech. Engrg. 156, 1-13 (1998).
W. J. T. Daniel, Analysis and implementation of a new constant acceleration subcycling algorithm, Int. J. Numer. Methods Eng. 40, 2841-2855 (1997).
2012; 82
1997; 40
2013; 3
2004; 126
2011; 2
2000; 6
2011
2010
2000; 4
2015; 95
1984; 24
2009
2008
2003; 192
2006
2005
2008; 3
1997; 5
2008; 220
1998; 156
2013; 6
1972; 1
2012; 50/3
2001
2000
2003; 7
2015
2014
2011; LVIII
2012; 7
2001; 215
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Schmoll R. (e_1_2_6_34_1) 2011
Hairer E. (e_1_2_6_22_1) 2009
Verhoeven A. (e_1_2_6_44_1) 2008; 3
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
Liao Y. G. (e_1_2_6_28_1) 2001; 215
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Hippmann G. (e_1_2_6_25_1) 2005
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
Helduser S. (e_1_2_6_24_1) 2001
e_1_2_6_41_1
e_1_2_6_40_1
Ambrosio J. (e_1_2_6_3_1) 2012; 50
Hairer E. (e_1_2_6_23_1) 2010
e_1_2_6_9_1
e_1_2_6_8_1
Ambrosio J. (e_1_2_6_2_1) 2009
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Dörfel M. R. (e_1_2_6_15_1) 2010
e_1_2_6_29_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: V. Savcenco, Comparison of the asymptotic stability properties for two multirate strategies, J. Comput. Appl. Math. 220, 508-524 (2008).
– reference: J. Ambrosio, J. Pombo, M. Pereira, P. Antunes, and A. Mosca, A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains, J. Theor. Appl. Mech. 50/3, 681-699 (2012), Warsaw.
– reference: F. Gonzalez, M. A. Naya, A. Luaces, and M. Gonzalez, On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics, Multibody Syst. Dyn. 2(4), 461-483 (2011).
– reference: B. Gu and H. H. Asada, Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models, J. Dyn. Syst. Meas. Control 126, 1-13 (2004), DOI: 10.1115/1.1648307.
– reference: W. J. T. Daniel, Analysis and implementation of a new constant acceleration subcycling algorithm, Int. J. Numer. Methods Eng. 40, 2841-2855 (1997).
– reference: V. Carstens, R. Kemme, and S. Schmitt, Coupled simulation of flow-structure interaction in turbomachinery, Aerosp. Sci. Technol. 7, 298-306 (2003).
– reference: E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, 2010).
– reference: M. Datar, I. Stanciulescu, and D. Negrut, A co-simulation environment for high-fidelity virtual prototyping of vehicle systems, Int. J. Veh. Syst. Model. Test. 7, 54-72 (2012).
– reference: F. Spreng, P. Eberhard, and F. Fleissner, An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms, Theor. Appl. Mech. Lett. 3(1), 8-013005 (2013).
– reference: S. Wuensche, C. Clauß, P. Schwarz, and F. Winkler, Electro-thermal circuit simulation using simulator coupling, IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 5, 277-282 (1997).
– reference: R. Kübler and W. Schiehlen, Two methods of simulator coupling, Math. Comput. Model. Dyn. Syst. 6, 93-113 (2000).
– reference: J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo, Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments, Multibody Syst. Dyn. 4, 55-73 (2000).
– reference: B. Schweizer and D. Lu, Predictor/Corrector co-simulation approaches for solver coupling with algebraic constraints, ZAMM - J. Appl. Math. Mech. 95, 911-938 (2015).
– reference: W. J. T. Daniel, A study of the stability of subcycling algorithms in structural dynamics, Comput. Methods Appl. Mech. Engrg. 156, 1-13 (1998).
– reference: W. J. T. Daniel, A partial velocity approach to subcycling structural dynamics, Comput. Methods Appl. Mech. Engrg. 192, 375-394 (2003).
– reference: N. Negrut, D. Melanz, H. Mazhar, D. Lamb, and P. Jayakumar, Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain, SAE Int, JPasseng. Cars - Mech. Syst. 6, 369-381, DOI: 10.4271/2013-01-1191, 2013.
– reference: M. Naya, J. Cuadrado, D. Dopico, and U. Lugris, An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison with Simplified and Co-Integration Approaches, Arch. Mech. Eng. LVIII, 223-243 (2011).
– reference: C. W. Gear and D. R. Wells, Multirate linear multistep methods, BIT 24, 484-502 (1984).
– reference: E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 3rd ed. (Springer, 2009).
– reference: Y. G. Liao and H. I. Du, Co-simulation of multi-body-based vehicle dynamics and an electric power steering control system, Proc. Inst. Mech. Eng. K, J. Multibody Dyn. 215, 141-151 (2001).
– reference: M. Busch and B. Schweizer, Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach, Arch. Appl. Mech. 82(6), 723-741 (2012).
– reference: J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng. 1, 1-16 (1972).
– reference: M. R. Dörfel and B. Simeon, Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme, Numer. Math. Adv. Appl., pp. 307-315 (2010).
– reference: A. Verhoeven, B. Tasic, T. G. J. Beelen, E. J. W. ter Maten, and R. M. M. Mattheij, BDF Compound-Fast Multirate Transient Analysis with Adaptive Stepsize Control, J. Numer. Anal. Ind. Appl. Math. 3(3-4), 275-297 (2008).
– start-page: 49
  year: 2001
  end-page: 56
– year: 2011
– year: 2009
– year: 2010
  article-title: Numerical stability and accuracy of different co‐simulation techniques: Analytical investigations based on a 2‐DOF test model
– start-page: 27
  year: 2009
  end-page: 29
  article-title: Using SPH in a Co‐Simulation Approach to Simulate Sloshing in Tank Vehicles
– year: 2014
  article-title: Stabilized index‐2 co‐simulation approach for solver coupling with algebraic constraints
– year: 2014
  article-title: Semi‐Implicit Co‐Simulation Approach for Solver Coupling
– volume: 215
  start-page: 141
  year: 2001
  end-page: 151
  article-title: Co‐simulation of multi‐body‐based vehicle dynamics and an electric power steering control system
  publication-title: Proc. Inst. Mech. Eng. K, J. Multibody Dyn.
– year: 2014
  article-title: Explicit and implicit co‐simulation methods: stability and convergence analysis for different solver coupling approaches
– year: 2011
  article-title: A Co‐Simulation Framework for Full Vehicle Analysis
– year: 2015
  article-title: Stabilized Implicit Co‐Simulation Methods: Solver Coupling Based on Constitutive Laws
– volume: 2
  start-page: 461
  issue: 4
  year: 2011
  end-page: 483
  article-title: On the effect of multirate co‐simulation techniques in the efficiency and accuracy of multibody system dynamics
  publication-title: Multibody Syst. Dyn.
– volume: 192
  start-page: 375
  year: 2003
  end-page: 394
  article-title: A partial velocity approach to subcycling structural dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 1
  start-page: 1
  year: 1972
  end-page: 16
  article-title: Stabilization of constraints and integrals of motion in dynamical systems
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 1
  year: 2005
  end-page: 18
– volume: 3
  start-page: 275
  issue: 3–4
  year: 2008
  end-page: 297
  article-title: BDF Compound‐Fast Multirate Transient Analysis with Adaptive Stepsize Control
  publication-title: J. Numer. Anal. Ind. Appl. Math.
– year: 2008
  article-title: A Discrete Element Material Model Used in a Co‐simulated Charpy Impact Test and for Heat Transfer
– volume: 3
  start-page: 8
  issue: 1
  year: 2013
  end-page: 013005
  article-title: An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms
  publication-title: Theor. Appl. Mech. Lett.
– year: 2010
  article-title: A parallel co‐simulation for mechatronic systems
– year: 2011
  article-title: An explicit approach for controlling the macro‐step size of co‐simulation methods
– year: 2010
– start-page: 307
  year: 2010
  end-page: 315
  article-title: Analysis and Acceleration of a Fluid‐Structure Interaction Coupling Scheme
  publication-title: Numer. Math. Adv. Appl.
– year: 2015
  article-title: Stabilized implicit co‐simulation method: solver coupling with algebraic constraints for multibody systems
– volume: 40
  start-page: 2841
  year: 1997
  end-page: 2855
  article-title: Analysis and implementation of a new constant acceleration subcycling algorithm
  publication-title: Int. J. Numer. Methods Eng.
– volume: LVIII
  start-page: 223
  year: 2011
  end-page: 243
  article-title: An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison with Simplified and Co‐Integration Approaches
  publication-title: Arch. Mech. Eng.
– year: 2015
  article-title: Co‐simulation method for solver coupling with algebraic constraints incorporating relaxation techniques
– year: 2009
  article-title: Weak coupling of multibody dynamics and block diagram simulation tools
– volume: 5
  start-page: 277
  year: 1997
  end-page: 282
  article-title: Electro‐thermal circuit simulation using simulator coupling
  publication-title: IEEE Trans. Very Large Scale Integ. (VLSI) Syst.
– volume: 82
  start-page: 723
  issue: 6
  year: 2012
  end-page: 741
  article-title: Coupled simulation of multibody and finite element systems: an efficient and robust semi‐implicit coupling approach
  publication-title: Arch. Appl. Mech.
– year: 2006
  article-title: Implicit Partitioned Fluid‐Structure Interaction Coupling
– volume: 6
  start-page: 369
  year: 2013
  end-page: 381
  article-title: Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain
  publication-title: SAE Int, JPasseng. Cars ‐ Mech. Syst.
– volume: 156
  start-page: 1
  year: 1998
  end-page: 13
  article-title: A study of the stability of subcycling algorithms in structural dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 50/3
  start-page: 681
  year: 2012
  end-page: 699
  article-title: A computational procedure for the dynamic analysis of the catenary‐pantograph interaction in high‐speed trains
  publication-title: J. Theor. Appl. Mech.
– volume: 24
  start-page: 484
  year: 1984
  end-page: 502
  article-title: Multirate linear multistep methods
  publication-title: BIT
– year: 2000
  article-title: Coupling Algorithms for the Numerical Simulation of Fluid‐Structure‐Interaction Problems
– volume: 220
  start-page: 508
  year: 2008
  end-page: 524
  article-title: Comparison of the asymptotic stability properties for two multirate strategies
  publication-title: J. Comput. Appl. Math.
– volume: 6
  start-page: 93
  year: 2000
  end-page: 113
  article-title: Two methods of simulator coupling
  publication-title: Math. Comput. Model. Dyn. Syst.
– volume: 95
  start-page: 911
  year: 2015
  end-page: 938
  article-title: Predictor/Corrector co‐simulation approaches for solver coupling with algebraic constraints
  publication-title: ZAMM ‐ J. Appl. Math. Mech.
– year: 2014
  article-title: Co‐Simulation Methods for Solver Coupling with Algebraic Constraints: Semi‐Implicit Coupling Techniques
– volume: 7
  start-page: 298
  year: 2003
  end-page: 306
  article-title: Coupled simulation of flow‐structure interaction in turbomachinery
  publication-title: Aerosp. Sci. Technol.
– volume: 126
  start-page: 1
  year: 2004
  end-page: 13
  article-title: Co‐simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models
  publication-title: J. Dyn. Syst. Meas. Control
– volume: 7
  start-page: 54
  year: 2012
  end-page: 72
  article-title: A co‐simulation environment for high‐fidelity virtual prototyping of vehicle systems
  publication-title: Int. J. Veh. Syst. Model. Test.
– volume: 4
  start-page: 55
  year: 2000
  end-page: 73
  article-title: Intelligent Simulation of Multibody Dynamics: Space‐State and Descriptor Methods in Sequential and Parallel Computing Environments
  publication-title: Multibody Syst. Dyn.
– ident: e_1_2_6_13_1
  doi: 10.4271/2011-01-0516
– ident: e_1_2_6_4_1
  doi: 10.1016/0045-7825(72)90018-7
– volume-title: Solving Ordinary Differential Equations II: Stiff and Differential‐Algebraic Problems
  year: 2010
  ident: e_1_2_6_23_1
– ident: e_1_2_6_35_1
  doi: 10.1002/zamm.201300191
– ident: e_1_2_6_14_1
  doi: 10.1504/IJVSMT.2012.045308
– ident: e_1_2_6_40_1
– ident: e_1_2_6_42_1
– start-page: 49
  volume-title: Power Transmission and Motion Control 2001
  year: 2001
  ident: e_1_2_6_24_1
– ident: e_1_2_6_29_1
– ident: e_1_2_6_37_1
– ident: e_1_2_6_8_1
  doi: 10.1016/S1270-9638(03)00016-6
– ident: e_1_2_6_6_1
  doi: 10.1007/s00419-011-0586-0
– ident: e_1_2_6_7_1
– ident: e_1_2_6_36_1
– ident: e_1_2_6_45_1
  doi: 10.1109/92.609870
– ident: e_1_2_6_18_1
  doi: 10.1007/BF01934907
– volume: 3
  start-page: 275
  issue: 3
  year: 2008
  ident: e_1_2_6_44_1
  article-title: BDF Compound‐Fast Multirate Transient Analysis with Adaptive Stepsize Control
  publication-title: J. Numer. Anal. Ind. Appl. Math.
– ident: e_1_2_6_11_1
  doi: 10.1016/S0045-7825(97)00140-0
– ident: e_1_2_6_17_1
– volume-title: Multibody Dynamics: Computational Methods and Applications
  year: 2009
  ident: e_1_2_6_2_1
– ident: e_1_2_6_32_1
  doi: 10.1016/j.cam.2007.09.005
– ident: e_1_2_6_33_1
  doi: 10.1115/PVP2006-ICPVT-11-93184
– ident: e_1_2_6_19_1
– volume: 50
  start-page: 681
  year: 2012
  ident: e_1_2_6_3_1
  article-title: A computational procedure for the dynamic analysis of the catenary‐pantograph interaction in high‐speed trains
  publication-title: J. Theor. Appl. Mech.
– ident: e_1_2_6_5_1
– ident: e_1_2_6_12_1
  doi: 10.1016/S0045-7825(02)00518-2
– volume-title: Solving Ordinary Differential Equations I: Nonstiff Problems
  year: 2009
  ident: e_1_2_6_22_1
– ident: e_1_2_6_27_1
– ident: e_1_2_6_10_1
  doi: 10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S
– volume: 215
  start-page: 141
  year: 2001
  ident: e_1_2_6_28_1
  article-title: Co‐simulation of multi‐body‐based vehicle dynamics and an electric power steering control system
  publication-title: Proc. Inst. Mech. Eng. K, J. Multibody Dyn.
– ident: e_1_2_6_9_1
  doi: 10.1023/A:1009824327480
– start-page: 307
  year: 2010
  ident: e_1_2_6_15_1
  article-title: Analysis and Acceleration of a Fluid‐Structure Interaction Coupling Scheme
  publication-title: Numer. Math. Adv. Appl.
– ident: e_1_2_6_16_1
– ident: e_1_2_6_39_1
  doi: 10.1115/1.4028503
– ident: e_1_2_6_21_1
  doi: 10.1115/1.1648307
– volume-title: Multibody Dynamics 2011, ECCOMAS Thematic Conference
  year: 2011
  ident: e_1_2_6_34_1
– ident: e_1_2_6_20_1
  doi: 10.1007/s11044-010-9234-7
– ident: e_1_2_6_31_1
  doi: 10.4271/2013-01-1191
– ident: e_1_2_6_38_1
  doi: 10.1007/s11044-014-9422-y
– ident: e_1_2_6_26_1
  doi: 10.1076/1387-3954(200006)6:2;1-M;FT093
– ident: e_1_2_6_43_1
  doi: 10.1063/2.1301305
– start-page: 1
  volume-title: Proceedings of ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics
  year: 2005
  ident: e_1_2_6_25_1
– ident: e_1_2_6_30_1
  doi: 10.2478/v10180-011-0016-4
– ident: e_1_2_6_41_1
  doi: 10.1115/1.4030508
SSID ssj0001913
Score 2.1807525
Snippet The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling...
The analysis of the numerical stability of co-simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 986
SubjectTerms 04A25
Algebra
algebraic constraints
Approximation
Co-simulation
Computer simulation
Constraint modelling
Constraints
Convergence
Coupling
Decomposition
Displacement
Eigenvalues
implicit
Mathematical analysis
Mathematical models
Methods
Model testing
Numerical stability
Simulation
solver coupling
Stability
Stability analysis
subcycling
Subsystems
Time integration
Title Implicit co-simulation methods: Stability and convergence analysis for solver coupling approaches with algebraic constraints
URI https://api.istex.fr/ark:/67375/WNG-6M4GJP0V-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.201400087
https://www.proquest.com/docview/1807871070
https://www.proquest.com/docview/2160678497
https://www.proquest.com/docview/1835592517
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucABykssLchICE5ud-NnuBVEWyqlQohCxcWyEwetSrNVk5VKD4if0N_YX8KM8-guAiHBKbH8iB9j-3M88w0hz3wwWhSFZLnjkonUl8wFYZjyPHU6OKnjRXu2r3YPxN6hPFyw4m_5IYYfbjgz4nqNE9z5evOKNPTcHaMlORwQkFYNFmFU2EJU9P6KPwoOI90Vs2CAM3TP2jhONpezL-1K17GDz5Yg5yJwjTvP9m3i-jq3CidHG_PGb-Tnv9A5_k-jVsmtDpbSrVaO7pBrobpLbi6QFUIoGxhe63vk-9uoij5taD67_HFRT487P2C09Uldv6SAY6Pm7TfqqoJG9fZo6Rkg3DKhUEDMFIQfIiB-jsbBX2jPch5qij-JKToigSZNcyyiji4tmvo-Odh-8-H1Lut8ObBcSK4ZjnnJy1RNCtiWZZEa7lPtjOHGB1UEwb1M8uDKVMNDFAla1AZTlAqyh4LzB2SlmlXhIaFCOcAkk7HXpRHSpEbBI8cx1k5zpUeE9WNp847oHCv31bYUzYnFXrZDL4_IiyH9SUvx8ceUz6NoDMnc6REqxmlpP-3vWJWJnb1344_21Yis97JjuzWhthOk9gdAp8e_jU4mCpGDSOEzT4domOx4g-OqMJtjEQAPU2SZG5EkytFfamw_b2XZEHr0L5nWyA14V63S4zpZaU7n4TEAscY_iZPtJzPjLPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V7QE48I9YKGAkfk5pdxPHdpA4FEq72zYrhFpacTFO4qBVaRY1u4L2gHgEXoVX4RF4Emacn3YRCAmpB06RYzux7Bn7sz3zDcCDxCrJsyz0UhOEHo-S3DOWK08kQWSkNaF0F-3xUPR3-MZeuDcH3xpfmIofoj1wI81w8zUpOB1IL5-whh6bA3Ilxx0C8arVdpWb9ugj7trKp4NVHOKHvr_2Yvt536sDC3gpDwPpUQPyII9EL8M1IswiFSSRNEoFKrEiszxIQj-1Jo8kPnjmk3unVVkusLrN6AwUZ_0FCiNOdP2rr04Yq3D7U19qcw-RjWx4Irv-8mx7Z9bBBRrSTzMg9zRUdmvd2iX43vRSZeKyvzSdJEvp8S8Ekv9VN16GizXyZiuVqlyBOVtchQun-BgxFbcktuU1-Dxw1vajCUvHP758LUcHdagzVoXdLp8whOrOuPiImSJjzoLfObNaTFdkLww3BQz1GzMwf0r-z-9YQ-RuS0bn4IxirWAfjlL6ROmidkzK67BzJt1xA-aLcWFvAuPCIOzqdROZKx6qSAl8pCRU0shAyA54jfDotOZyp8a91xULta9pVHU7qh143Jb_ULGY_LHkIyeLbTFzuE-2fzLUu8N1LWK-vvGy-1o_68BiI6y6nvZK3aPoBYhZZfe32X5PEDjiEf7mfpuN8xldUpnCjqf0CUTAERHpdcB3gvuXFus3K3Hcpm79S6V7cK6_HW_prcFw8zacx_eisvFchPnJ4dTeQdw5Se46TWfw9qx14icVb4vg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqVkJw4B-xpYCR-DmlzSaO7SBxKCzbbsuuKkRpxcU4sVOtSrNVkxW0B8Qj8Ci8Cq_AkzDj_LSLQEhIPXCKHDuxZc_Yn-2Zbwh5mFgpmDGRl-ow8licZJ62THo8CWMtrI6Eu2gfjvj6NtvYjXbnyLfGF6bih2gP3FAz3HyNCn5ospVT0tATfYCe5LBBQFq12qxy0x5_hE1b8WzQgxF-FAT9l29erHt1XAEvZVEoPKw_C7OYdw0sEZGJZZjEQksZysRyY1mYREFqdRYLeDAToHenlSbj8Lk1eAQKk_4C436MwSJ6r08Jq2D3U99pMw-AjWhoIv1gZba9M8vgAo7opxmMexYpu6Wuf4V8bzqpsnDZX56WyXJ68gt_5P_Ui1fJ5Rp309VKUa6ROZtfJ5fOsDFCathS2BY3yOeBs7UflzSd_PjytRgf1IHOaBV0u3hKAag70-JjqnNDnf2-c2W1kK6oXihsCShoN2RA_hS9n_doQ-NuC4qn4BQjrUAXjlP8ReFidpTFTbJ9Lt1xi8znk9zeJpRxDaCr6ycikyySseTwSFGmhBYhFx3iNbKj0prJHRv3QVUc1IHCUVXtqHbIk7b8YcVh8seSj50otsX00T5a_olI7YzWFB-ytY0t_6163iFLjayqetIrVBdjFwBiFf5vs4MuR2jEYqjmQZsNsxleUencTqb4C8C_MdLodUjg5PYvLVbvVofDNrX4Lx_dJxe2en31ajDavEMuwmteGXgukfnyaGrvAugsk3tOzyl5f94q8RPVLYqP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicit+co-simulation+methods%3A+Stability+and+convergence+analysis+for+solver+coupling+approaches+with+algebraic+constraints&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Schweizer%2C+Bernhard&rft.au=Li%2C+Pu&rft.au=Lu%2C+Daixing&rft.date=2016-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=96&rft.issue=8&rft.spage=986&rft.epage=1012&rft_id=info:doi/10.1002%2Fzamm.201400087&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6M4GJP0V_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon