Implicit co-simulation methods: Stability and convergence analysis for solver coupling approaches with algebraic constraints
The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Mechanik Vol. 96; no. 8; pp. 986 - 1012 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.08.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single‐mass oscillator, a linear two‐mass oscillator is used here for analyzing the stability of co‐simulation methods. The two‐mass co‐simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co‐simulation test model with a linear co‐simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis.
The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. |
---|---|
AbstractList | The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single‐mass oscillator, a linear two‐mass oscillator is used here for analyzing the stability of co‐simulation methods. The two‐mass co‐simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co‐simulation test model with a linear co‐simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis. The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single‐mass oscillator, a linear two‐mass oscillator is used here for analyzing the stability of co‐simulation methods. The two‐mass co‐simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co‐simulation test model with a linear co‐simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis. The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well‐known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force‐, force/displacement‐ and displacement/displacement‐decomposition. The stability analysis of co‐simulation methods with algebraic constraints is inherently related to the definition of a test model. The analysis of the numerical stability of co-simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well-known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force-, force/displacement- and displacement/displacement-decomposition. The stability analysis of co-simulation methods with algebraic constraints is inherently related to the definition of a test model. Bearing in mind the stability definition for numerical time integration schemes, i.e. Dahlquist's stability theory based on the linear single-mass oscillator, a linear two-mass oscillator is used here for analyzing the stability of co-simulation methods. The two-mass co-simulation test model may be regarded as two Dahlquist equations, coupled by an algebraic constraint equation. By discretizing the co-simulation test model with a linear co-simulation approach, a linear system of recurrence equations is obtained. The stability of the recurrence system, which reflects the stability of the underlying coupling method, can simply be determined by an eigenvalue analysis. The analysis of the numerical stability of co-simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling schemes are investigated. The first method is based on the well-known Baumgarte stabilization technique. Basis of the second coupling method is a weighted multiplier approach. Within the third method, a classical projection technique is applied. The three methods are discussed for different approximation orders. Concerning the decomposition of the overall system into subsystems, we consider all three possible approaches, i.e. force/force-, force/displacement- and displacement/displacement-decomposition. The stability analysis of co-simulation methods with algebraic constraints is inherently related to the definition of a test model. |
Author | Schweizer, Bernhard Lu, Daixing Li, Pu |
Author_xml | – sequence: 1 givenname: Bernhard surname: Schweizer fullname: Schweizer, Bernhard email: schweizer@sds.tu-darmstadt.de organization: Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University Darmstadt, Germany – sequence: 2 givenname: Pu surname: Li fullname: Li, Pu organization: Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University Darmstadt, Germany – sequence: 3 givenname: Daixing surname: Lu fullname: Lu, Daixing organization: Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University Darmstadt, Germany |
BookMark | eNqFkUtv1DAURi1UJKaFLetIbNhksGMnttmVqgxFnYLES2JjOc7NjIsTD7ZDGdQfXw9TVagSsLq27jnXj-8QHYx-BISeEjwnGFcvfulhmFeYMIyx4A_QjNQVKfOOHKAZxoyVVdXwR-gwxsuMEEnoDF2fDRtnjU2F8WW0w-R0sn4sBkhr38WXxYekW-ts2hZ67DI0_oCwgtFA3mu3jTYWvQ9F9C43cn_K48ZVoTeb4LVZQyyubFoX2q2gDdqa3YiY8mpM8TF62GsX4cltPUKfXp9-PHlTnr9bnJ0cn5eG1ZSXNZesp71sSGcA6k4K2kquhaCihaYDRtu6MqB7yXNhXVXVRILo-ibr0FF6hJ7v5-Y7fZ8gJjXYaMA5PYKfoiKC1rXMFs_os3vopZ9CfmlUFWlwwwWT_6SIwFxwgjnO1HxPmeBjDNCrTbCDDltFsNpFpnaRqbvIssDuCTmY33nsPsz9XZN77co62P7nEPX1eLn80y33ro0Jft65OnxTDae8Vl8uFqpZssXb9_izekVvAD4CvwA |
CitedBy_id | crossref_primary_10_1007_s11044_018_9632_9 crossref_primary_10_1007_s11044_020_09727_z crossref_primary_10_1007_s11044_022_09824_1 crossref_primary_10_1007_s11044_022_09825_0 crossref_primary_10_1080_23248378_2019_1642152 crossref_primary_10_1002_pamm_201710047 crossref_primary_10_1007_s11044_022_09817_0 crossref_primary_10_1016_j_mechmachtheory_2022_104740 crossref_primary_10_1142_S1793962317500556 crossref_primary_10_1007_s00366_022_01610_z crossref_primary_10_1007_s11044_022_09829_w crossref_primary_10_1007_s11044_019_09696_y crossref_primary_10_1115_1_4031287 |
Cites_doi | 10.4271/2011-01-0516 10.1016/0045-7825(72)90018-7 10.1002/zamm.201300191 10.1504/IJVSMT.2012.045308 10.1016/S1270-9638(03)00016-6 10.1007/s00419-011-0586-0 10.1109/92.609870 10.1007/BF01934907 10.1016/S0045-7825(97)00140-0 10.1016/j.cam.2007.09.005 10.1115/PVP2006-ICPVT-11-93184 10.1016/S0045-7825(02)00518-2 10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S 10.1023/A:1009824327480 10.1115/1.4028503 10.1115/1.1648307 10.1007/s11044-010-9234-7 10.4271/2013-01-1191 10.1007/s11044-014-9422-y 10.1076/1387-3954(200006)6:2;1-M;FT093 10.1063/2.1301305 10.2478/v10180-011-0016-4 10.1115/1.4030508 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/zamm.201400087 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1521-4001 |
EndPage | 1012 |
ExternalDocumentID | 4133783591 10_1002_zamm_201400087 ZAMM201400087 ark_67375_WNG_6M4GJP0V_B |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCQX ABCUV ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEIGN AEIMD AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EDO EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RJQFR RWI RX1 SAMSI SUPJJ TN5 UB1 V2E VOH W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c4537-5794f3f961dcee5d983b97a8838be6de43b52ceaf972ce4d22519e8df6453ed33 |
IEDL.DBID | DR2 |
ISSN | 0044-2267 |
IngestDate | Fri Jul 11 11:19:24 EDT 2025 Fri Jul 25 12:13:51 EDT 2025 Fri Jul 25 10:45:58 EDT 2025 Tue Jul 01 00:21:06 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Jan 22 16:54:11 EST 2025 Wed Oct 30 10:05:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4537-5794f3f961dcee5d983b97a8838be6de43b52ceaf972ce4d22519e8df6453ed33 |
Notes | istex:9542960335001959D9F9D878DE1C6F0DD2BD5498 ark:/67375/WNG-6M4GJP0V-B ArticleID:ZAMM201400087 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1807871070 |
PQPubID | 2032056 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_1835592517 proquest_journals_2160678497 proquest_journals_1807871070 crossref_primary_10_1002_zamm_201400087 crossref_citationtrail_10_1002_zamm_201400087 wiley_primary_10_1002_zamm_201400087_ZAMM201400087 istex_primary_ark_67375_WNG_6M4GJP0V_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Zeitschrift für angewandte Mathematik und Mechanik |
PublicationTitleAlternate | Z. Angew. Math. Mech |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng. 1, 1-16 (1972). J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo, Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments, Multibody Syst. Dyn. 4, 55-73 (2000). V. Carstens, R. Kemme, and S. Schmitt, Coupled simulation of flow-structure interaction in turbomachinery, Aerosp. Sci. Technol. 7, 298-306 (2003). J. Ambrosio, J. Pombo, M. Pereira, P. Antunes, and A. Mosca, A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains, J. Theor. Appl. Mech. 50/3, 681-699 (2012), Warsaw. F. Gonzalez, M. A. Naya, A. Luaces, and M. Gonzalez, On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics, Multibody Syst. Dyn. 2(4), 461-483 (2011). B. Gu and H. H. Asada, Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models, J. Dyn. Syst. Meas. Control 126, 1-13 (2004), DOI: 10.1115/1.1648307. Y. G. Liao and H. I. Du, Co-simulation of multi-body-based vehicle dynamics and an electric power steering control system, Proc. Inst. Mech. Eng. K, J. Multibody Dyn. 215, 141-151 (2001). F. Spreng, P. Eberhard, and F. Fleissner, An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms, Theor. Appl. Mech. Lett. 3(1), 8-013005 (2013). C. W. Gear and D. R. Wells, Multirate linear multistep methods, BIT 24, 484-502 (1984). A. Verhoeven, B. Tasic, T. G. J. Beelen, E. J. W. ter Maten, and R. M. M. Mattheij, BDF Compound-Fast Multirate Transient Analysis with Adaptive Stepsize Control, J. Numer. Anal. Ind. Appl. Math. 3(3-4), 275-297 (2008). R. Kübler and W. Schiehlen, Two methods of simulator coupling, Math. Comput. Model. Dyn. Syst. 6, 93-113 (2000). M. R. Dörfel and B. Simeon, Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme, Numer. Math. Adv. Appl., pp. 307-315 (2010). E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, 2010). V. Savcenco, Comparison of the asymptotic stability properties for two multirate strategies, J. Comput. Appl. Math. 220, 508-524 (2008). S. Wuensche, C. Clauß, P. Schwarz, and F. Winkler, Electro-thermal circuit simulation using simulator coupling, IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 5, 277-282 (1997). M. Busch and B. Schweizer, Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach, Arch. Appl. Mech. 82(6), 723-741 (2012). W. J. T. Daniel, A partial velocity approach to subcycling structural dynamics, Comput. Methods Appl. Mech. Engrg. 192, 375-394 (2003). B. Schweizer and D. Lu, Predictor/Corrector co-simulation approaches for solver coupling with algebraic constraints, ZAMM - J. Appl. Math. Mech. 95, 911-938 (2015). M. Naya, J. Cuadrado, D. Dopico, and U. Lugris, An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison with Simplified and Co-Integration Approaches, Arch. Mech. Eng. LVIII, 223-243 (2011). M. Datar, I. Stanciulescu, and D. Negrut, A co-simulation environment for high-fidelity virtual prototyping of vehicle systems, Int. J. Veh. Syst. Model. Test. 7, 54-72 (2012). E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 3rd ed. (Springer, 2009). N. Negrut, D. Melanz, H. Mazhar, D. Lamb, and P. Jayakumar, Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain, SAE Int, JPasseng. Cars - Mech. Syst. 6, 369-381, DOI: 10.4271/2013-01-1191, 2013. W. J. T. Daniel, A study of the stability of subcycling algorithms in structural dynamics, Comput. Methods Appl. Mech. Engrg. 156, 1-13 (1998). W. J. T. Daniel, Analysis and implementation of a new constant acceleration subcycling algorithm, Int. J. Numer. Methods Eng. 40, 2841-2855 (1997). 2012; 82 1997; 40 2013; 3 2004; 126 2011; 2 2000; 6 2011 2010 2000; 4 2015; 95 1984; 24 2009 2008 2003; 192 2006 2005 2008; 3 1997; 5 2008; 220 1998; 156 2013; 6 1972; 1 2012; 50/3 2001 2000 2003; 7 2015 2014 2011; LVIII 2012; 7 2001; 215 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 Schmoll R. (e_1_2_6_34_1) 2011 Hairer E. (e_1_2_6_22_1) 2009 Verhoeven A. (e_1_2_6_44_1) 2008; 3 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 Liao Y. G. (e_1_2_6_28_1) 2001; 215 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Hippmann G. (e_1_2_6_25_1) 2005 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 Helduser S. (e_1_2_6_24_1) 2001 e_1_2_6_41_1 e_1_2_6_40_1 Ambrosio J. (e_1_2_6_3_1) 2012; 50 Hairer E. (e_1_2_6_23_1) 2010 e_1_2_6_9_1 e_1_2_6_8_1 Ambrosio J. (e_1_2_6_2_1) 2009 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 Dörfel M. R. (e_1_2_6_15_1) 2010 e_1_2_6_29_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: V. Savcenco, Comparison of the asymptotic stability properties for two multirate strategies, J. Comput. Appl. Math. 220, 508-524 (2008). – reference: J. Ambrosio, J. Pombo, M. Pereira, P. Antunes, and A. Mosca, A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains, J. Theor. Appl. Mech. 50/3, 681-699 (2012), Warsaw. – reference: F. Gonzalez, M. A. Naya, A. Luaces, and M. Gonzalez, On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics, Multibody Syst. Dyn. 2(4), 461-483 (2011). – reference: B. Gu and H. H. Asada, Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models, J. Dyn. Syst. Meas. Control 126, 1-13 (2004), DOI: 10.1115/1.1648307. – reference: W. J. T. Daniel, Analysis and implementation of a new constant acceleration subcycling algorithm, Int. J. Numer. Methods Eng. 40, 2841-2855 (1997). – reference: V. Carstens, R. Kemme, and S. Schmitt, Coupled simulation of flow-structure interaction in turbomachinery, Aerosp. Sci. Technol. 7, 298-306 (2003). – reference: E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, 2010). – reference: M. Datar, I. Stanciulescu, and D. Negrut, A co-simulation environment for high-fidelity virtual prototyping of vehicle systems, Int. J. Veh. Syst. Model. Test. 7, 54-72 (2012). – reference: F. Spreng, P. Eberhard, and F. Fleissner, An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms, Theor. Appl. Mech. Lett. 3(1), 8-013005 (2013). – reference: S. Wuensche, C. Clauß, P. Schwarz, and F. Winkler, Electro-thermal circuit simulation using simulator coupling, IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 5, 277-282 (1997). – reference: R. Kübler and W. Schiehlen, Two methods of simulator coupling, Math. Comput. Model. Dyn. Syst. 6, 93-113 (2000). – reference: J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo, Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments, Multibody Syst. Dyn. 4, 55-73 (2000). – reference: B. Schweizer and D. Lu, Predictor/Corrector co-simulation approaches for solver coupling with algebraic constraints, ZAMM - J. Appl. Math. Mech. 95, 911-938 (2015). – reference: W. J. T. Daniel, A study of the stability of subcycling algorithms in structural dynamics, Comput. Methods Appl. Mech. Engrg. 156, 1-13 (1998). – reference: W. J. T. Daniel, A partial velocity approach to subcycling structural dynamics, Comput. Methods Appl. Mech. Engrg. 192, 375-394 (2003). – reference: N. Negrut, D. Melanz, H. Mazhar, D. Lamb, and P. Jayakumar, Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain, SAE Int, JPasseng. Cars - Mech. Syst. 6, 369-381, DOI: 10.4271/2013-01-1191, 2013. – reference: M. Naya, J. Cuadrado, D. Dopico, and U. Lugris, An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison with Simplified and Co-Integration Approaches, Arch. Mech. Eng. LVIII, 223-243 (2011). – reference: C. W. Gear and D. R. Wells, Multirate linear multistep methods, BIT 24, 484-502 (1984). – reference: E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 3rd ed. (Springer, 2009). – reference: Y. G. Liao and H. I. Du, Co-simulation of multi-body-based vehicle dynamics and an electric power steering control system, Proc. Inst. Mech. Eng. K, J. Multibody Dyn. 215, 141-151 (2001). – reference: M. Busch and B. Schweizer, Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach, Arch. Appl. Mech. 82(6), 723-741 (2012). – reference: J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng. 1, 1-16 (1972). – reference: M. R. Dörfel and B. Simeon, Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme, Numer. Math. Adv. Appl., pp. 307-315 (2010). – reference: A. Verhoeven, B. Tasic, T. G. J. Beelen, E. J. W. ter Maten, and R. M. M. Mattheij, BDF Compound-Fast Multirate Transient Analysis with Adaptive Stepsize Control, J. Numer. Anal. Ind. Appl. Math. 3(3-4), 275-297 (2008). – start-page: 49 year: 2001 end-page: 56 – year: 2011 – year: 2009 – year: 2010 article-title: Numerical stability and accuracy of different co‐simulation techniques: Analytical investigations based on a 2‐DOF test model – start-page: 27 year: 2009 end-page: 29 article-title: Using SPH in a Co‐Simulation Approach to Simulate Sloshing in Tank Vehicles – year: 2014 article-title: Stabilized index‐2 co‐simulation approach for solver coupling with algebraic constraints – year: 2014 article-title: Semi‐Implicit Co‐Simulation Approach for Solver Coupling – volume: 215 start-page: 141 year: 2001 end-page: 151 article-title: Co‐simulation of multi‐body‐based vehicle dynamics and an electric power steering control system publication-title: Proc. Inst. Mech. Eng. K, J. Multibody Dyn. – year: 2014 article-title: Explicit and implicit co‐simulation methods: stability and convergence analysis for different solver coupling approaches – year: 2011 article-title: A Co‐Simulation Framework for Full Vehicle Analysis – year: 2015 article-title: Stabilized Implicit Co‐Simulation Methods: Solver Coupling Based on Constitutive Laws – volume: 2 start-page: 461 issue: 4 year: 2011 end-page: 483 article-title: On the effect of multirate co‐simulation techniques in the efficiency and accuracy of multibody system dynamics publication-title: Multibody Syst. Dyn. – volume: 192 start-page: 375 year: 2003 end-page: 394 article-title: A partial velocity approach to subcycling structural dynamics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 1 start-page: 1 year: 1972 end-page: 16 article-title: Stabilization of constraints and integrals of motion in dynamical systems publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 1 year: 2005 end-page: 18 – volume: 3 start-page: 275 issue: 3–4 year: 2008 end-page: 297 article-title: BDF Compound‐Fast Multirate Transient Analysis with Adaptive Stepsize Control publication-title: J. Numer. Anal. Ind. Appl. Math. – year: 2008 article-title: A Discrete Element Material Model Used in a Co‐simulated Charpy Impact Test and for Heat Transfer – volume: 3 start-page: 8 issue: 1 year: 2013 end-page: 013005 article-title: An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms publication-title: Theor. Appl. Mech. Lett. – year: 2010 article-title: A parallel co‐simulation for mechatronic systems – year: 2011 article-title: An explicit approach for controlling the macro‐step size of co‐simulation methods – year: 2010 – start-page: 307 year: 2010 end-page: 315 article-title: Analysis and Acceleration of a Fluid‐Structure Interaction Coupling Scheme publication-title: Numer. Math. Adv. Appl. – year: 2015 article-title: Stabilized implicit co‐simulation method: solver coupling with algebraic constraints for multibody systems – volume: 40 start-page: 2841 year: 1997 end-page: 2855 article-title: Analysis and implementation of a new constant acceleration subcycling algorithm publication-title: Int. J. Numer. Methods Eng. – volume: LVIII start-page: 223 year: 2011 end-page: 243 article-title: An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison with Simplified and Co‐Integration Approaches publication-title: Arch. Mech. Eng. – year: 2015 article-title: Co‐simulation method for solver coupling with algebraic constraints incorporating relaxation techniques – year: 2009 article-title: Weak coupling of multibody dynamics and block diagram simulation tools – volume: 5 start-page: 277 year: 1997 end-page: 282 article-title: Electro‐thermal circuit simulation using simulator coupling publication-title: IEEE Trans. Very Large Scale Integ. (VLSI) Syst. – volume: 82 start-page: 723 issue: 6 year: 2012 end-page: 741 article-title: Coupled simulation of multibody and finite element systems: an efficient and robust semi‐implicit coupling approach publication-title: Arch. Appl. Mech. – year: 2006 article-title: Implicit Partitioned Fluid‐Structure Interaction Coupling – volume: 6 start-page: 369 year: 2013 end-page: 381 article-title: Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain publication-title: SAE Int, JPasseng. Cars ‐ Mech. Syst. – volume: 156 start-page: 1 year: 1998 end-page: 13 article-title: A study of the stability of subcycling algorithms in structural dynamics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 50/3 start-page: 681 year: 2012 end-page: 699 article-title: A computational procedure for the dynamic analysis of the catenary‐pantograph interaction in high‐speed trains publication-title: J. Theor. Appl. Mech. – volume: 24 start-page: 484 year: 1984 end-page: 502 article-title: Multirate linear multistep methods publication-title: BIT – year: 2000 article-title: Coupling Algorithms for the Numerical Simulation of Fluid‐Structure‐Interaction Problems – volume: 220 start-page: 508 year: 2008 end-page: 524 article-title: Comparison of the asymptotic stability properties for two multirate strategies publication-title: J. Comput. Appl. Math. – volume: 6 start-page: 93 year: 2000 end-page: 113 article-title: Two methods of simulator coupling publication-title: Math. Comput. Model. Dyn. Syst. – volume: 95 start-page: 911 year: 2015 end-page: 938 article-title: Predictor/Corrector co‐simulation approaches for solver coupling with algebraic constraints publication-title: ZAMM ‐ J. Appl. Math. Mech. – year: 2014 article-title: Co‐Simulation Methods for Solver Coupling with Algebraic Constraints: Semi‐Implicit Coupling Techniques – volume: 7 start-page: 298 year: 2003 end-page: 306 article-title: Coupled simulation of flow‐structure interaction in turbomachinery publication-title: Aerosp. Sci. Technol. – volume: 126 start-page: 1 year: 2004 end-page: 13 article-title: Co‐simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models publication-title: J. Dyn. Syst. Meas. Control – volume: 7 start-page: 54 year: 2012 end-page: 72 article-title: A co‐simulation environment for high‐fidelity virtual prototyping of vehicle systems publication-title: Int. J. Veh. Syst. Model. Test. – volume: 4 start-page: 55 year: 2000 end-page: 73 article-title: Intelligent Simulation of Multibody Dynamics: Space‐State and Descriptor Methods in Sequential and Parallel Computing Environments publication-title: Multibody Syst. Dyn. – ident: e_1_2_6_13_1 doi: 10.4271/2011-01-0516 – ident: e_1_2_6_4_1 doi: 10.1016/0045-7825(72)90018-7 – volume-title: Solving Ordinary Differential Equations II: Stiff and Differential‐Algebraic Problems year: 2010 ident: e_1_2_6_23_1 – ident: e_1_2_6_35_1 doi: 10.1002/zamm.201300191 – ident: e_1_2_6_14_1 doi: 10.1504/IJVSMT.2012.045308 – ident: e_1_2_6_40_1 – ident: e_1_2_6_42_1 – start-page: 49 volume-title: Power Transmission and Motion Control 2001 year: 2001 ident: e_1_2_6_24_1 – ident: e_1_2_6_29_1 – ident: e_1_2_6_37_1 – ident: e_1_2_6_8_1 doi: 10.1016/S1270-9638(03)00016-6 – ident: e_1_2_6_6_1 doi: 10.1007/s00419-011-0586-0 – ident: e_1_2_6_7_1 – ident: e_1_2_6_36_1 – ident: e_1_2_6_45_1 doi: 10.1109/92.609870 – ident: e_1_2_6_18_1 doi: 10.1007/BF01934907 – volume: 3 start-page: 275 issue: 3 year: 2008 ident: e_1_2_6_44_1 article-title: BDF Compound‐Fast Multirate Transient Analysis with Adaptive Stepsize Control publication-title: J. Numer. Anal. Ind. Appl. Math. – ident: e_1_2_6_11_1 doi: 10.1016/S0045-7825(97)00140-0 – ident: e_1_2_6_17_1 – volume-title: Multibody Dynamics: Computational Methods and Applications year: 2009 ident: e_1_2_6_2_1 – ident: e_1_2_6_32_1 doi: 10.1016/j.cam.2007.09.005 – ident: e_1_2_6_33_1 doi: 10.1115/PVP2006-ICPVT-11-93184 – ident: e_1_2_6_19_1 – volume: 50 start-page: 681 year: 2012 ident: e_1_2_6_3_1 article-title: A computational procedure for the dynamic analysis of the catenary‐pantograph interaction in high‐speed trains publication-title: J. Theor. Appl. Mech. – ident: e_1_2_6_5_1 – ident: e_1_2_6_12_1 doi: 10.1016/S0045-7825(02)00518-2 – volume-title: Solving Ordinary Differential Equations I: Nonstiff Problems year: 2009 ident: e_1_2_6_22_1 – ident: e_1_2_6_27_1 – ident: e_1_2_6_10_1 doi: 10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S – volume: 215 start-page: 141 year: 2001 ident: e_1_2_6_28_1 article-title: Co‐simulation of multi‐body‐based vehicle dynamics and an electric power steering control system publication-title: Proc. Inst. Mech. Eng. K, J. Multibody Dyn. – ident: e_1_2_6_9_1 doi: 10.1023/A:1009824327480 – start-page: 307 year: 2010 ident: e_1_2_6_15_1 article-title: Analysis and Acceleration of a Fluid‐Structure Interaction Coupling Scheme publication-title: Numer. Math. Adv. Appl. – ident: e_1_2_6_16_1 – ident: e_1_2_6_39_1 doi: 10.1115/1.4028503 – ident: e_1_2_6_21_1 doi: 10.1115/1.1648307 – volume-title: Multibody Dynamics 2011, ECCOMAS Thematic Conference year: 2011 ident: e_1_2_6_34_1 – ident: e_1_2_6_20_1 doi: 10.1007/s11044-010-9234-7 – ident: e_1_2_6_31_1 doi: 10.4271/2013-01-1191 – ident: e_1_2_6_38_1 doi: 10.1007/s11044-014-9422-y – ident: e_1_2_6_26_1 doi: 10.1076/1387-3954(200006)6:2;1-M;FT093 – ident: e_1_2_6_43_1 doi: 10.1063/2.1301305 – start-page: 1 volume-title: Proceedings of ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics year: 2005 ident: e_1_2_6_25_1 – ident: e_1_2_6_30_1 doi: 10.2478/v10180-011-0016-4 – ident: e_1_2_6_41_1 doi: 10.1115/1.4030508 |
SSID | ssj0001913 |
Score | 2.1807525 |
Snippet | The analysis of the numerical stability of co‐simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling... The analysis of the numerical stability of co-simulation methods with algebraic constraints is subject of this manuscript. Three different implicit coupling... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 986 |
SubjectTerms | 04A25 Algebra algebraic constraints Approximation Co-simulation Computer simulation Constraint modelling Constraints Convergence Coupling Decomposition Displacement Eigenvalues implicit Mathematical analysis Mathematical models Methods Model testing Numerical stability Simulation solver coupling Stability Stability analysis subcycling Subsystems Time integration |
Title | Implicit co-simulation methods: Stability and convergence analysis for solver coupling approaches with algebraic constraints |
URI | https://api.istex.fr/ark:/67375/WNG-6M4GJP0V-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.201400087 https://www.proquest.com/docview/1807871070 https://www.proquest.com/docview/2160678497 https://www.proquest.com/docview/1835592517 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucABykssLchICE5ud-NnuBVEWyqlQohCxcWyEwetSrNVk5VKD4if0N_YX8KM8-guAiHBKbH8iB9j-3M88w0hz3wwWhSFZLnjkonUl8wFYZjyPHU6OKnjRXu2r3YPxN6hPFyw4m_5IYYfbjgz4nqNE9z5evOKNPTcHaMlORwQkFYNFmFU2EJU9P6KPwoOI90Vs2CAM3TP2jhONpezL-1K17GDz5Yg5yJwjTvP9m3i-jq3CidHG_PGb-Tnv9A5_k-jVsmtDpbSrVaO7pBrobpLbi6QFUIoGxhe63vk-9uoij5taD67_HFRT487P2C09Uldv6SAY6Pm7TfqqoJG9fZo6Rkg3DKhUEDMFIQfIiB-jsbBX2jPch5qij-JKToigSZNcyyiji4tmvo-Odh-8-H1Lut8ObBcSK4ZjnnJy1RNCtiWZZEa7lPtjOHGB1UEwb1M8uDKVMNDFAla1AZTlAqyh4LzB2SlmlXhIaFCOcAkk7HXpRHSpEbBI8cx1k5zpUeE9WNp847oHCv31bYUzYnFXrZDL4_IiyH9SUvx8ceUz6NoDMnc6REqxmlpP-3vWJWJnb1344_21Yis97JjuzWhthOk9gdAp8e_jU4mCpGDSOEzT4domOx4g-OqMJtjEQAPU2SZG5EkytFfamw_b2XZEHr0L5nWyA14V63S4zpZaU7n4TEAscY_iZPtJzPjLPA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V7QE48I9YKGAkfk5pdxPHdpA4FEq72zYrhFpacTFO4qBVaRY1u4L2gHgEXoVX4RF4Emacn3YRCAmpB06RYzux7Bn7sz3zDcCDxCrJsyz0UhOEHo-S3DOWK08kQWSkNaF0F-3xUPR3-MZeuDcH3xpfmIofoj1wI81w8zUpOB1IL5-whh6bA3Ilxx0C8arVdpWb9ugj7trKp4NVHOKHvr_2Yvt536sDC3gpDwPpUQPyII9EL8M1IswiFSSRNEoFKrEiszxIQj-1Jo8kPnjmk3unVVkusLrN6AwUZ_0FCiNOdP2rr04Yq3D7U19qcw-RjWx4Irv-8mx7Z9bBBRrSTzMg9zRUdmvd2iX43vRSZeKyvzSdJEvp8S8Ekv9VN16GizXyZiuVqlyBOVtchQun-BgxFbcktuU1-Dxw1vajCUvHP758LUcHdagzVoXdLp8whOrOuPiImSJjzoLfObNaTFdkLww3BQz1GzMwf0r-z-9YQ-RuS0bn4IxirWAfjlL6ROmidkzK67BzJt1xA-aLcWFvAuPCIOzqdROZKx6qSAl8pCRU0shAyA54jfDotOZyp8a91xULta9pVHU7qh143Jb_ULGY_LHkIyeLbTFzuE-2fzLUu8N1LWK-vvGy-1o_68BiI6y6nvZK3aPoBYhZZfe32X5PEDjiEf7mfpuN8xldUpnCjqf0CUTAERHpdcB3gvuXFus3K3Hcpm79S6V7cK6_HW_prcFw8zacx_eisvFchPnJ4dTeQdw5Se46TWfw9qx14icVb4vg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqVkJw4B-xpYCR-DmlzSaO7SBxKCzbbsuuKkRpxcU4sVOtSrNVkxW0B8Qj8Ci8Cq_AkzDj_LSLQEhIPXCKHDuxZc_Yn-2Zbwh5mFgpmDGRl-ow8licZJ62THo8CWMtrI6Eu2gfjvj6NtvYjXbnyLfGF6bih2gP3FAz3HyNCn5ospVT0tATfYCe5LBBQFq12qxy0x5_hE1b8WzQgxF-FAT9l29erHt1XAEvZVEoPKw_C7OYdw0sEZGJZZjEQksZysRyY1mYREFqdRYLeDAToHenlSbj8Lk1eAQKk_4C436MwSJ6r08Jq2D3U99pMw-AjWhoIv1gZba9M8vgAo7opxmMexYpu6Wuf4V8bzqpsnDZX56WyXJ68gt_5P_Ui1fJ5Rp309VKUa6ROZtfJ5fOsDFCathS2BY3yOeBs7UflzSd_PjytRgf1IHOaBV0u3hKAag70-JjqnNDnf2-c2W1kK6oXihsCShoN2RA_hS9n_doQ-NuC4qn4BQjrUAXjlP8ReFidpTFTbJ9Lt1xi8znk9zeJpRxDaCr6ycikyySseTwSFGmhBYhFx3iNbKj0prJHRv3QVUc1IHCUVXtqHbIk7b8YcVh8seSj50otsX00T5a_olI7YzWFB-ytY0t_6163iFLjayqetIrVBdjFwBiFf5vs4MuR2jEYqjmQZsNsxleUencTqb4C8C_MdLodUjg5PYvLVbvVofDNrX4Lx_dJxe2en31ajDavEMuwmteGXgukfnyaGrvAugsk3tOzyl5f94q8RPVLYqP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicit+co-simulation+methods%3A+Stability+and+convergence+analysis+for+solver+coupling+approaches+with+algebraic+constraints&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Schweizer%2C+Bernhard&rft.au=Li%2C+Pu&rft.au=Lu%2C+Daixing&rft.date=2016-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=96&rft.issue=8&rft.spage=986&rft.epage=1012&rft_id=info:doi/10.1002%2Fzamm.201400087&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6M4GJP0V_B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon |