Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution
Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single at...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 51; pp. 23112 - 23116 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.12.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N2C2/CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N2C2 configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N2C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N2C2/CN catalyst exhibits much better H2 evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N4/CN), and is even superior to the Pt nanoparticle‐loaded CN (PtNP/CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability.
A new Ag single atom in carbon nitride (Ag‐N2C2/CN) photocatalyst with Ag‐N2C2 configuration is developed. It affords fast charge transfer, high Ag loading, and good stability. Noteworthily, the Ag‐N2C2/CN exhibits much better hydrogen evolution activity than Ag‐N4/CN, and even superior to the platinum‐loaded CN. |
---|---|
AbstractList | Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N
2
C
2
/CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N
2
C
2
configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N
2
C
2
can reduce the H
2
evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N
2
C
2
/CN catalyst exhibits much better H
2
evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N
4
/CN), and is even superior to the Pt nanoparticle‐loaded CN (Pt
NP
/CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability. Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N2C2/CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N2C2 configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N2C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N2C2/CN catalyst exhibits much better H2 evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N4/CN), and is even superior to the Pt nanoparticle‐loaded CN (PtNP/CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability. A new Ag single atom in carbon nitride (Ag‐N2C2/CN) photocatalyst with Ag‐N2C2 configuration is developed. It affords fast charge transfer, high Ag loading, and good stability. Noteworthily, the Ag‐N2C2/CN exhibits much better hydrogen evolution activity than Ag‐N4/CN, and even superior to the platinum‐loaded CN. Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag-N2 C2 /CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag-N2 C2 configuration have been identified by aberration-correction high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and extended X-ray absorption. Experiments and DFT calculations further verify that Ag-N2 C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag-N2 C2 /CN catalyst exhibits much better H2 evolution activity than the N-coordinated Ag single atom in CN (Ag-N4 /CN), and is even superior to the Pt nanoparticle-loaded CN (PtNP /CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability.Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag-N2 C2 /CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag-N2 C2 configuration have been identified by aberration-correction high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and extended X-ray absorption. Experiments and DFT calculations further verify that Ag-N2 C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag-N2 C2 /CN catalyst exhibits much better H2 evolution activity than the N-coordinated Ag single atom in CN (Ag-N4 /CN), and is even superior to the Pt nanoparticle-loaded CN (PtNP /CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability. Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N2C2/CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N2C2 configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N2C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N2C2/CN catalyst exhibits much better H2 evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N4/CN), and is even superior to the Pt nanoparticle‐loaded CN (PtNP/CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability. |
Author | Zou, Jian‐Ping Liu, Ling‐Ling Luo, Sheng‐Lian Chen, Bing‐Bing Wu, Fei‐Yao Zhang, Long‐Shuai Wu, Dai‐She Tian, Lei Liu, Hai‐Yan Jiang, Xun‐Heng |
Author_xml | – sequence: 1 givenname: Xun‐Heng surname: Jiang fullname: Jiang, Xun‐Heng organization: Nanchang University – sequence: 2 givenname: Long‐Shuai surname: Zhang fullname: Zhang, Long‐Shuai organization: Nanchang Hangkong University – sequence: 3 givenname: Hai‐Yan surname: Liu fullname: Liu, Hai‐Yan organization: Nanchang Hangkong University – sequence: 4 givenname: Dai‐She surname: Wu fullname: Wu, Dai‐She organization: Nanchang University – sequence: 5 givenname: Fei‐Yao surname: Wu fullname: Wu, Fei‐Yao organization: Nanchang Hangkong University – sequence: 6 givenname: Lei surname: Tian fullname: Tian, Lei organization: Nanchang University – sequence: 7 givenname: Ling‐Ling surname: Liu fullname: Liu, Ling‐Ling organization: Nanchang Hangkong University – sequence: 8 givenname: Jian‐Ping orcidid: 0000-0002-3585-6541 surname: Zou fullname: Zou, Jian‐Ping email: zjp_112@126.com organization: Nanchang University – sequence: 9 givenname: Sheng‐Lian surname: Luo fullname: Luo, Sheng‐Lian organization: Nanchang Hangkong University – sequence: 10 givenname: Bing‐Bing surname: Chen fullname: Chen, Bing‐Bing organization: Nanjing Tech University |
BookMark | eNqFkE1LAzEQhoMoqNWr54AXL1vztbvJsZRqC6KCel6y2aRG0kSTVNl_79aKQkE8zQw8z8zwHoN9H7wG4AyjMUaIXEpv9ZgggjBmotwDR7gkuKB1TfeHnlFa1LzEh-A4pZeB5xxVR6B7sO5dR_hg_dJpOMlhBa2HUxnb4OGtzdF2ehizdH3K0IQI53b57Ho4M8Yqq32G988hB_WFZKvgvO9iWGoPZ-_BrbMN_gQcGOmSPv2uI_B0NXuczoubu-vFdHJTKFbSslCkbAWtMTGMSlNRjqTiou3ajlAqlOpISXhFhTZGMoGx5rpDqqQGtZiITtARuNjufY3hba1TblY2Ke2c9DqsU0MYQ1wIwTfo-Q76EtbRD98NVFVXrOIMDdR4S6kYUoraNK_RrmTsG4yaTejNJvTmJ_RBYDuCslluMshRWve3Jrbah3W6_-dIM7ldzH7dT-YfmSk |
CitedBy_id | crossref_primary_10_1002_ange_202400627 crossref_primary_10_1007_s12274_024_6818_8 crossref_primary_10_1016_j_jhazmat_2022_128419 crossref_primary_10_1039_D1TA04493A crossref_primary_10_1002_adfm_202215245 crossref_primary_10_1002_anie_202205312 crossref_primary_10_1088_1361_6528_ad02a1 crossref_primary_10_1007_s11356_022_23223_1 crossref_primary_10_1007_s12598_024_02997_y crossref_primary_10_1016_j_cclet_2023_109454 crossref_primary_10_1016_j_ijhydene_2022_09_294 crossref_primary_10_1016_j_cej_2022_137127 crossref_primary_10_1016_j_cclet_2022_05_017 crossref_primary_10_1002_ejic_202200003 crossref_primary_10_1039_D2CC01557A crossref_primary_10_1002_ange_202212397 crossref_primary_10_1002_ange_202215782 crossref_primary_10_1016_j_nanoen_2022_107466 crossref_primary_10_1016_j_apcatb_2022_121216 crossref_primary_10_1039_D2TA03269D crossref_primary_10_1002_adfm_202203252 crossref_primary_10_1021_acscatal_4c05510 crossref_primary_10_1016_j_apcatb_2022_121575 crossref_primary_10_1039_D2TA00835A crossref_primary_10_1039_D4CC06290F crossref_primary_10_1016_j_ijhydene_2021_11_252 crossref_primary_10_1063_5_0048186 crossref_primary_10_1002_anie_202318927 crossref_primary_10_1016_j_apcatb_2022_121318 crossref_primary_10_1016_j_apsusc_2022_154760 crossref_primary_10_1021_acs_inorgchem_3c04408 crossref_primary_10_1021_acs_est_3c01200 crossref_primary_10_1021_acs_est_3c05922 crossref_primary_10_1021_acs_est_3c05129 crossref_primary_10_1016_j_mcat_2021_111856 crossref_primary_10_1021_acsaem_4c00521 crossref_primary_10_1021_acs_nanolett_4c03853 crossref_primary_10_1039_D3EY00123G crossref_primary_10_1039_D1TA08252C crossref_primary_10_1002_ange_202109488 crossref_primary_10_1016_j_jcis_2023_07_168 crossref_primary_10_1016_j_cej_2022_138469 crossref_primary_10_1016_j_apcatb_2022_121327 crossref_primary_10_1039_D4SE00076E crossref_primary_10_1039_D3CC00889D crossref_primary_10_1016_j_chemosphere_2024_141948 crossref_primary_10_1016_j_mtchem_2024_102125 crossref_primary_10_1016_j_jhazmat_2022_129724 crossref_primary_10_1016_j_ccr_2024_216254 crossref_primary_10_1021_acsestengg_1c00454 crossref_primary_10_1016_j_cej_2024_158286 crossref_primary_10_1016_j_materresbull_2023_112553 crossref_primary_10_1016_j_ceramint_2024_12_552 crossref_primary_10_1039_D1RA07799F crossref_primary_10_1002_anie_202204326 crossref_primary_10_1021_acsnano_3c03176 crossref_primary_10_1016_j_mtnano_2022_100281 crossref_primary_10_1021_acs_nanolett_3c00810 crossref_primary_10_1002_adfm_202418427 crossref_primary_10_1021_acs_nanolett_3c04978 crossref_primary_10_1016_j_jpowsour_2023_233188 crossref_primary_10_1039_D0CS01032D crossref_primary_10_1016_j_seppur_2024_131099 crossref_primary_10_1039_D3DT03727D crossref_primary_10_1016_j_apcatb_2021_120787 crossref_primary_10_1016_j_materresbull_2022_112040 crossref_primary_10_1039_D1RA07275G crossref_primary_10_1002_adfm_202425056 crossref_primary_10_1002_adma_202414889 crossref_primary_10_1016_j_ccr_2024_215952 crossref_primary_10_1007_s40843_023_2440_6 crossref_primary_10_1016_j_ese_2024_100414 crossref_primary_10_1016_j_jechem_2024_06_028 crossref_primary_10_1016_j_jmst_2024_08_041 crossref_primary_10_1016_S1872_2067_21_63813_5 crossref_primary_10_1016_j_bioactmat_2024_02_018 crossref_primary_10_1016_j_efmat_2023_08_002 crossref_primary_10_1016_j_jes_2023_03_021 crossref_primary_10_1016_j_jes_2023_03_020 crossref_primary_10_1016_j_jtice_2021_03_050 crossref_primary_10_1016_j_cclet_2021_03_018 crossref_primary_10_1038_s41467_024_53941_8 crossref_primary_10_1016_j_cej_2021_131795 crossref_primary_10_1016_S1872_2067_24_60109_9 crossref_primary_10_1021_acsenergylett_4c02190 crossref_primary_10_1021_acs_nanolett_2c04078 crossref_primary_10_1039_D1EE00247C crossref_primary_10_1002_adma_202306895 crossref_primary_10_1002_sus2_229 crossref_primary_10_1007_s11426_021_1063_2 crossref_primary_10_1002_admi_202201413 crossref_primary_10_1016_j_apcatb_2021_120674 crossref_primary_10_1016_j_cej_2024_149309 crossref_primary_10_1039_D4TA01030B crossref_primary_10_1007_s40843_024_2870_1 crossref_primary_10_1007_s12274_022_5181_x crossref_primary_10_1016_j_matre_2024_100285 crossref_primary_10_1016_j_cclet_2022_107903 crossref_primary_10_1016_j_apcatb_2024_124917 crossref_primary_10_1016_j_cej_2022_138015 crossref_primary_10_1002_advs_202302143 crossref_primary_10_1016_j_jcis_2022_04_162 crossref_primary_10_1039_D3RA00775H crossref_primary_10_1002_smll_202107840 crossref_primary_10_1002_adfm_202205119 crossref_primary_10_1039_D1TA07306K crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1002_adma_202403965 crossref_primary_10_1007_s11431_024_2736_x crossref_primary_10_1016_j_apcatb_2022_121896 crossref_primary_10_1002_ange_202308257 crossref_primary_10_1021_acsami_1c23465 crossref_primary_10_1016_j_cej_2023_143155 crossref_primary_10_1021_acsnano_1c05834 crossref_primary_10_1016_j_jhazmat_2021_126029 crossref_primary_10_1021_acscatal_3c02076 crossref_primary_10_1021_jacs_4c04023 crossref_primary_10_1016_j_ijhydene_2022_02_012 crossref_primary_10_1016_j_cej_2021_129829 crossref_primary_10_1016_j_surfin_2023_103717 crossref_primary_10_1002_anie_202314243 crossref_primary_10_1016_j_cej_2025_159640 crossref_primary_10_1016_j_mattod_2021_11_022 crossref_primary_10_1002_adfm_202112452 crossref_primary_10_1021_acs_jpclett_1c01779 crossref_primary_10_1016_j_jcis_2022_04_032 crossref_primary_10_1002_smll_202208002 crossref_primary_10_1002_ange_202304585 crossref_primary_10_1039_D2NR05076E crossref_primary_10_1016_j_apcatb_2022_121523 crossref_primary_10_1016_j_apcatb_2023_123683 crossref_primary_10_1016_j_ceramint_2023_01_084 crossref_primary_10_1002_anie_202308257 crossref_primary_10_1002_anie_202400627 crossref_primary_10_1016_j_apcatb_2021_120212 crossref_primary_10_1016_j_jcis_2024_11_223 crossref_primary_10_1016_j_apcatb_2021_120574 crossref_primary_10_1021_acscatal_3c03018 crossref_primary_10_1021_jacs_4c00475 crossref_primary_10_1016_j_efmat_2022_05_007 crossref_primary_10_3390_nano12101761 crossref_primary_10_1016_j_cclet_2021_12_076 crossref_primary_10_1016_j_surfin_2021_101527 crossref_primary_10_1016_j_jmst_2024_09_048 crossref_primary_10_1016_j_apmt_2022_101498 crossref_primary_10_1002_aenm_202401437 crossref_primary_10_3390_nano13172453 crossref_primary_10_1016_j_cej_2023_148273 crossref_primary_10_1021_acscatal_4c01972 crossref_primary_10_1016_j_apcatb_2024_124267 crossref_primary_10_1039_D1NJ04959C crossref_primary_10_1002_smtd_202400530 crossref_primary_10_1016_j_cej_2024_150769 crossref_primary_10_1039_D3GC00337J crossref_primary_10_1002_adma_202403153 crossref_primary_10_3390_catal13101378 crossref_primary_10_1016_j_seppur_2021_119863 crossref_primary_10_1016_j_cattod_2024_114657 crossref_primary_10_1016_j_jece_2024_114967 crossref_primary_10_1016_j_jcis_2021_12_024 crossref_primary_10_1021_acs_est_2c00706 crossref_primary_10_1002_adma_202204865 crossref_primary_10_1016_j_jcis_2024_10_087 crossref_primary_10_1021_acscatal_1c00455 crossref_primary_10_1002_adfm_202420801 crossref_primary_10_1016_j_ijhydene_2022_07_174 crossref_primary_10_1016_S1872_2067_21_63830_5 crossref_primary_10_1039_D3TA06724F crossref_primary_10_1021_acsami_1c21850 crossref_primary_10_1016_j_jmst_2021_10_030 crossref_primary_10_1007_s12598_022_01984_5 crossref_primary_10_1016_j_vacuum_2023_112469 crossref_primary_10_1002_sstr_202200188 crossref_primary_10_1016_j_apcatb_2023_123429 crossref_primary_10_1002_advs_202303448 crossref_primary_10_1016_j_jcis_2021_03_080 crossref_primary_10_1016_j_apcatb_2022_121502 crossref_primary_10_1016_j_jhazmat_2022_128285 crossref_primary_10_1016_j_efmat_2022_05_001 crossref_primary_10_1021_acscatal_2c04918 crossref_primary_10_1021_acscatal_2c05048 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1016_j_cclet_2022_07_026 crossref_primary_10_1016_j_cclet_2023_108513 crossref_primary_10_1016_j_renene_2023_03_136 crossref_primary_10_1002_adma_202311148 crossref_primary_10_1007_s11426_022_1284_x crossref_primary_10_1016_j_seppur_2022_120829 crossref_primary_10_1016_j_jhazmat_2022_128377 crossref_primary_10_1002_smll_202300460 crossref_primary_10_1002_smll_202306567 crossref_primary_10_1016_j_cclet_2021_08_103 crossref_primary_10_1016_j_apcatb_2022_121612 crossref_primary_10_1016_j_seppur_2024_130181 crossref_primary_10_3390_catal11101168 crossref_primary_10_1016_j_cclet_2022_04_066 crossref_primary_10_1002_anie_202304585 crossref_primary_10_1039_D2GC02770D crossref_primary_10_3390_catal12090946 crossref_primary_10_1016_j_ijhydene_2022_03_259 crossref_primary_10_1126_sciadv_adq2948 crossref_primary_10_1073_pnas_2309102121 crossref_primary_10_1021_acsami_2c07375 crossref_primary_10_1039_D2TA05181H crossref_primary_10_1002_anie_202109488 crossref_primary_10_1016_j_cej_2024_151279 crossref_primary_10_1039_D1TA02251B crossref_primary_10_1016_j_cclet_2021_01_011 crossref_primary_10_1016_j_cej_2022_136207 crossref_primary_10_1016_j_inoche_2021_108993 crossref_primary_10_1016_j_cej_2022_139833 crossref_primary_10_1016_j_coche_2023_100941 crossref_primary_10_1016_j_ijhydene_2021_05_018 crossref_primary_10_2139_ssrn_4150537 crossref_primary_10_1016_j_apcatb_2022_121721 crossref_primary_10_1016_j_jallcom_2025_179678 crossref_primary_10_1002_smll_202302875 crossref_primary_10_2139_ssrn_4110635 crossref_primary_10_1016_j_electacta_2021_138831 crossref_primary_10_1016_j_ccr_2023_215489 crossref_primary_10_1016_j_apcatb_2022_121826 crossref_primary_10_1002_cssc_202400937 crossref_primary_10_1016_j_cclet_2021_09_057 crossref_primary_10_1039_D3SE00454F crossref_primary_10_1016_j_apcatb_2024_123806 crossref_primary_10_3390_catal11121470 crossref_primary_10_1002_ange_202314243 crossref_primary_10_1166_mex_2022_2059 crossref_primary_10_1016_j_cclet_2022_01_066 crossref_primary_10_1016_j_dwt_2024_100385 crossref_primary_10_1016_S1872_2067_21_63892_5 crossref_primary_10_1016_j_jcat_2021_08_035 crossref_primary_10_1002_bte2_20220041 crossref_primary_10_1007_s40820_022_00962_x crossref_primary_10_1039_D0CS00912A crossref_primary_10_1039_D2TA09614E crossref_primary_10_1002_advs_202500313 crossref_primary_10_1016_j_apmt_2021_101177 crossref_primary_10_1016_j_nanoen_2022_107767 crossref_primary_10_1039_D1CS00421B crossref_primary_10_1002_cnma_202300399 crossref_primary_10_1002_cey2_533 crossref_primary_10_1016_j_renene_2022_06_044 crossref_primary_10_1039_D4MH01479K crossref_primary_10_1002_adfm_202405867 crossref_primary_10_1002_chem_202500318 crossref_primary_10_1002_ange_202205312 crossref_primary_10_1016_j_jes_2024_11_026 crossref_primary_10_3390_catal12101223 crossref_primary_10_1039_D4CP00679H crossref_primary_10_1002_advs_202102376 crossref_primary_10_1016_j_jechem_2024_12_011 crossref_primary_10_1016_j_apcatb_2023_123061 crossref_primary_10_1016_j_apcatb_2025_125040 crossref_primary_10_1016_j_cclet_2022_03_049 crossref_primary_10_1002_smll_202205758 crossref_primary_10_1002_advs_202413379 crossref_primary_10_1016_j_apcatb_2021_121000 crossref_primary_10_1016_j_cclet_2022_107861 crossref_primary_10_1016_j_isci_2022_104232 crossref_primary_10_1021_jacsau_3c00088 crossref_primary_10_1016_j_inoche_2024_113613 crossref_primary_10_1016_j_cej_2021_131613 crossref_primary_10_1016_j_cej_2023_145507 crossref_primary_10_1039_D2CS00806H crossref_primary_10_1016_j_cej_2024_155152 crossref_primary_10_1039_D2TA02066A crossref_primary_10_1039_D1QI01138C crossref_primary_10_1016_j_jcis_2023_08_174 crossref_primary_10_1016_j_jhazmat_2023_132683 crossref_primary_10_1039_D2CY00534D crossref_primary_10_1016_j_jcat_2024_115312 crossref_primary_10_1016_j_joule_2021_12_011 crossref_primary_10_1016_j_apcatb_2023_122626 crossref_primary_10_1021_acs_inorgchem_2c01908 crossref_primary_10_1016_j_ijhydene_2024_03_113 crossref_primary_10_1016_j_inoche_2024_112379 crossref_primary_10_3390_catal12121583 crossref_primary_10_1039_D4NJ05300A crossref_primary_10_1002_eom2_12186 crossref_primary_10_1039_D1GC02962B crossref_primary_10_1016_j_ijhydene_2024_02_372 crossref_primary_10_1002_aoc_6874 crossref_primary_10_1002_adsu_202200009 crossref_primary_10_1002_ange_202111769 crossref_primary_10_1002_ange_202204326 crossref_primary_10_1021_acsami_1c15321 crossref_primary_10_1039_D4TA03163F crossref_primary_10_1016_j_cej_2024_157326 crossref_primary_10_1016_j_nanoen_2022_107938 crossref_primary_10_1007_s11705_022_2295_3 crossref_primary_10_1007_s40820_023_01297_x crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1016_j_jallcom_2023_171194 crossref_primary_10_1002_slct_202202973 crossref_primary_10_1016_j_watres_2022_118839 crossref_primary_10_1002_ange_202318927 crossref_primary_10_1021_jacs_3c00660 crossref_primary_10_1038_s41467_022_34852_y crossref_primary_10_1016_j_apsusc_2021_152174 crossref_primary_10_3390_molecules27175535 crossref_primary_10_1016_j_ceramint_2023_06_245 crossref_primary_10_1021_acsestengg_2c00261 crossref_primary_10_1007_s12274_023_6312_8 crossref_primary_10_1016_j_cclet_2023_109116 crossref_primary_10_1002_anie_202400011 crossref_primary_10_1016_j_jcis_2021_07_113 crossref_primary_10_1002_adma_202105904 crossref_primary_10_1016_j_cej_2022_140759 crossref_primary_10_1002_adfm_202303321 crossref_primary_10_1016_j_jcat_2021_12_027 crossref_primary_10_1016_j_jcis_2025_01_123 crossref_primary_10_1039_D4TA01888E crossref_primary_10_1021_acsnano_1c10003 crossref_primary_10_1039_D4NR02193B crossref_primary_10_1016_j_cej_2024_154726 crossref_primary_10_1039_D1CP05513E crossref_primary_10_1002_adfm_202402797 crossref_primary_10_1016_j_cej_2023_143650 crossref_primary_10_1007_s12274_023_6079_y crossref_primary_10_1016_j_cjsc_2025_100560 crossref_primary_10_1016_j_ijhydene_2022_05_189 crossref_primary_10_1002_smll_202100296 crossref_primary_10_1016_j_ccr_2022_214743 crossref_primary_10_1002_anie_202111769 crossref_primary_10_1002_ange_202400011 crossref_primary_10_1016_j_cclet_2021_10_091 crossref_primary_10_1002_anie_202212397 crossref_primary_10_1007_s12209_021_00295_7 crossref_primary_10_1021_acsnano_3c07724 crossref_primary_10_1016_j_apcatb_2023_122979 crossref_primary_10_1016_j_cclet_2022_03_118 crossref_primary_10_1016_j_cej_2021_134105 crossref_primary_10_1002_anie_202215782 crossref_primary_10_1016_j_apcatb_2022_121900 crossref_primary_10_1016_j_jallcom_2024_177577 crossref_primary_10_1038_s41467_021_27698_3 crossref_primary_10_1016_j_mtcomm_2023_107296 crossref_primary_10_1016_j_apcatb_2022_121106 crossref_primary_10_1016_j_molstruc_2024_140778 crossref_primary_10_1016_j_jcis_2024_09_153 |
Cites_doi | 10.1002/anie.202000324 10.1002/adma.201807540 10.1021/acs.chemmater.6b02002 10.1002/anie.202003623 10.1002/advs.201900796 10.1038/s41929-018-0146-x 10.1038/s41565-019-0518-7 10.1002/ange.201802231 10.1021/acs.chemmater.9b03708 10.1021/jacs.9b02997 10.1002/ange.202003842 10.1002/advs.201900006 10.1002/ange.201706467 10.1002/adma.201601960 10.1021/acs.chemrev.9b00230 10.1002/anie.201914565 10.1002/adma.201903545 10.1002/anie.202001148 10.1016/j.apcatb.2018.03.014 10.1002/adma.202002177 10.1002/ange.202000324 10.1002/ange.202003623 10.1038/s41467-019-13941-5 10.1016/j.nanoen.2020.104833 10.1038/s41467-019-11796-4 10.1038/s41560-019-0517-9 10.1038/s41467-019-11856-9 10.1002/ange.201914565 10.1038/s41560-018-0209-x 10.1021/jacs.9b04569 10.1002/ange.202001148 10.1002/adma.202000896 10.1021/jacs.8b11386 10.1126/science.aaw7515 10.1021/jacs.0c03415 10.1038/s41467-020-14848-2 10.1002/anie.201802231 10.1038/s41565-020-0665-x 10.1002/anie.201706467 10.1038/s41467-019-11794-6 10.1038/s41586-018-0869-5 10.1021/acsnano.5b04210 10.1126/sciadv.aax6322 10.1038/s41929-019-0246-2 10.1002/anie.202003842 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202011495 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 23116 |
ExternalDocumentID | 10_1002_anie_202011495 ANIE202011495 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51878325; 51938007; 51868050; 51622806; 51720105001 – fundername: Natural Science Foundation of Jiangxi Province funderid: 20171ACB20017; 20171BAB206049; 20202BAB213011 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4535-c25b93712f43af6380ac89bdbd2339ccd2528639effa4911e8ed0c53f0b129d93 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:30:01 EDT 2025 Fri Jul 25 10:35:10 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Tue Jul 01 01:17:47 EDT 2025 Wed Jan 22 16:31:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4535-c25b93712f43af6380ac89bdbd2339ccd2528639effa4911e8ed0c53f0b129d93 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3585-6541 |
PQID | 2467646840 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2440899989 proquest_journals_2467646840 crossref_primary_10_1002_anie_202011495 crossref_citationtrail_10_1002_anie_202011495 wiley_primary_10_1002_anie_202011495_ANIE202011495 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 14, 2020 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: December 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 5 2018; 231 2018; 3 2019; 6 2019; 5 2019; 31 2020; 120 2019; 2 2018; 1 2020; 142 2020; 73 2019; 10 2018 2018; 57 130 2019; 14 2020 2020; 59 132 2016; 10 2020; 15 2019; 565 2020; 11 2020; 32 2017 2017; 56 129 2019; 141 2016; 28 2019; 364 e_1_2_2_2_3 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_6_1 e_1_2_2_49_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_41_3 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_45_2 e_1_2_2_8_3 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_36_3 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_15_3 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_3_2 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_29_3 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_14_1 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_35_2 e_1_2_2_50_1 |
References_xml | – volume: 28 start-page: 6959 year: 2016 end-page: 6965 publication-title: Adv. Mater. – volume: 59 132 start-page: 9171 9256 year: 2020 2020 end-page: 9176 9261 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 6122 6178 year: 2020 2020 end-page: 6127 6183 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 5201 year: 2019 end-page: 5210 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 390 year: 2020 end-page: 397 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 773 year: 2018 end-page: 782 publication-title: Nat. Energy – volume: 14 start-page: 851 year: 2019 end-page: 857 publication-title: Nat. Nanotechnol. – volume: 57 130 start-page: 7071 7189 year: 2018 2018 end-page: 7075 7193 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 781 year: 2018 end-page: 786 publication-title: Nat. Catal. – volume: 59 132 start-page: 6827 6894 year: 2020 2020 end-page: 6831 6898 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 start-page: 734 year: 2020 end-page: 743 publication-title: Chem. Mater. – volume: 59 132 start-page: 10651 10738 year: 2020 2020 end-page: 10657 10744 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1029 year: 2020 publication-title: Nat. Commun. – volume: 28 start-page: 7250 year: 2016 end-page: 7256 publication-title: Chem. Mater. – volume: 141 start-page: 7615 year: 2019 end-page: 7621 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3734 year: 2019 publication-title: Nat. Commun. – volume: 141 start-page: 12005 year: 2019 end-page: 12010 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 304 year: 2019 end-page: 313 publication-title: Nat. Catal. – volume: 56 129 start-page: 12191 12359 year: 2017 2017 end-page: 12196 12364 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 3166 year: 2016 end-page: 3175 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 10 start-page: 3787 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 61 year: 2020 end-page: 70 publication-title: Nat. Energy – volume: 11 start-page: 48 year: 2020 publication-title: Nat. Commun. – volume: 231 start-page: 101 year: 2018 end-page: 107 publication-title: Appl. Catal. B – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 364 start-page: 1091 year: 2019 end-page: 1094 publication-title: Science – volume: 59 132 start-page: 7230 7297 year: 2020 2020 end-page: 7234 7301 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 565 start-page: 631 year: 2019 end-page: 635 publication-title: Nature – volume: 10 start-page: 3808 year: 2019 publication-title: Nat. Commun. – volume: 120 start-page: 683 year: 2020 end-page: 733 publication-title: Chem. Rev. – volume: 142 start-page: 12643 year: 2020 end-page: 12650 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_8_2 doi: 10.1002/anie.202000324 – ident: e_1_2_2_49_2 doi: 10.1002/adma.201807540 – ident: e_1_2_2_40_2 doi: 10.1021/acs.chemmater.6b02002 – ident: e_1_2_2_2_2 doi: 10.1002/anie.202003623 – ident: e_1_2_2_46_2 doi: 10.1002/advs.201900796 – ident: e_1_2_2_23_2 doi: 10.1038/s41929-018-0146-x – ident: e_1_2_2_25_2 doi: 10.1038/s41565-019-0518-7 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201802231 – ident: e_1_2_2_38_1 – ident: e_1_2_2_17_2 doi: 10.1021/acs.chemmater.9b03708 – ident: e_1_2_2_16_2 doi: 10.1021/jacs.9b02997 – ident: e_1_2_2_29_3 doi: 10.1002/ange.202003842 – ident: e_1_2_2_13_2 doi: 10.1002/advs.201900006 – ident: e_1_2_2_31_1 – ident: e_1_2_2_36_3 doi: 10.1002/ange.201706467 – ident: e_1_2_2_48_2 doi: 10.1002/adma.201601960 – ident: e_1_2_2_3_2 doi: 10.1021/acs.chemrev.9b00230 – ident: e_1_2_2_41_2 doi: 10.1002/anie.201914565 – ident: e_1_2_2_45_2 doi: 10.1002/adma.201903545 – ident: e_1_2_2_15_2 doi: 10.1002/anie.202001148 – ident: e_1_2_2_43_1 doi: 10.1016/j.apcatb.2018.03.014 – ident: e_1_2_2_7_2 doi: 10.1002/adma.202002177 – ident: e_1_2_2_8_3 doi: 10.1002/ange.202000324 – ident: e_1_2_2_2_3 doi: 10.1002/ange.202003623 – ident: e_1_2_2_12_2 doi: 10.1038/s41467-019-13941-5 – ident: e_1_2_2_39_2 doi: 10.1016/j.nanoen.2020.104833 – ident: e_1_2_2_24_2 doi: 10.1038/s41467-019-11796-4 – ident: e_1_2_2_14_1 – ident: e_1_2_2_22_1 – ident: e_1_2_2_20_2 doi: 10.1038/s41560-019-0517-9 – ident: e_1_2_2_32_2 doi: 10.1038/s41467-019-11856-9 – ident: e_1_2_2_44_1 – ident: e_1_2_2_6_1 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201914565 – ident: e_1_2_2_21_2 doi: 10.1038/s41560-018-0209-x – ident: e_1_2_2_37_2 doi: 10.1021/jacs.9b04569 – ident: e_1_2_2_15_3 doi: 10.1002/ange.202001148 – ident: e_1_2_2_47_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_19_2 doi: 10.1002/adma.202000896 – ident: e_1_2_2_28_2 doi: 10.1021/jacs.8b11386 – ident: e_1_2_2_9_2 doi: 10.1126/science.aaw7515 – ident: e_1_2_2_30_2 doi: 10.1021/jacs.0c03415 – ident: e_1_2_2_50_1 doi: 10.1038/s41467-020-14848-2 – ident: e_1_2_2_34_1 – ident: e_1_2_2_18_1 – ident: e_1_2_2_26_1 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201802231 – ident: e_1_2_2_4_2 doi: 10.1038/s41565-020-0665-x – ident: e_1_2_2_36_2 doi: 10.1002/anie.201706467 – ident: e_1_2_2_33_2 doi: 10.1038/s41467-019-11794-6 – ident: e_1_2_2_11_2 doi: 10.1038/s41586-018-0869-5 – ident: e_1_2_2_42_1 doi: 10.1021/acsnano.5b04210 – ident: e_1_2_2_27_2 doi: 10.1126/sciadv.aax6322 – ident: e_1_2_2_5_2 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_2_10_1 – ident: e_1_2_2_29_2 doi: 10.1002/anie.202003842 |
SSID | ssj0028806 |
Score | 2.691126 |
Snippet | Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23112 |
SubjectTerms | Absorption Atom economy Carbon Carbon nitride Catalysts Catalytic activity Charge transfer co-coordination Configurations Electromagnetic absorption electron transfer Evolution Hydrogen evolution Nanoparticles photocatalysis Platinum Scanning transmission electron microscopy Silver Single atom catalysts single-atom catalyst Transmission electron microscopy |
Title | Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202011495 https://www.proquest.com/docview/2467646840 https://www.proquest.com/docview/2440899989 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEA_ii77oqSeupxJB8Clak7Smj8uysgouoif4VvLJLbe2snYP9v56Z_rlB8jB-dbQpGkzM5lfk8lvCDnyIY2CFRGz4swzqRPLtFWCCe1Uol1kRbWYcz1ORvfy6iF-eHOKv-aH6Bbc0DKq-RoNXJvn01fSUDyBDf936MAA5MMkjAFbiIpuO_4oDspZHy8SgmEW-pa1MeKn75u_90qvUPMtYK08zsU60e271oEmv0_mpTmxfz_QOH7lY76RtQaO0n6tPxtkyeebZGXQZoHbIu5ugrHT9A5c3NTTflk80klOB3pmipyOJ-Vs4jwUS-Q2KSlAYIqhI9MFHVbkFODT6M2voiyqdaIFdENHCzcrQG_p8E-j99_J_cXw52DEmswMzMpYxMzy2CCRHg9S6AAmHIGAU-OM40Kk1joecwXYx4egJUynXnkQeyxCZABfuFRsk-W8yP0OoSH4yCpl0xCUNEHBc8GtOhW55NwK6XuEtZLJbENbjtkzpllNuMwzHLusG7seOe7qP9WEHZ_W3GsFnTWG-5xxcByJRAacHjnsbsOY4z6Kzn0xxzoSN0tTlfYIr6T6j56y_vhy2JV2_6fRD7KK1xhIcyb3yHI5m_t9gEOlOahU_gUs9gKy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7aFcaHmJbQsYCcTJbWo7qXPgsNputUvbFaKt1FtI_BArlgRts6DlX_FX-EXM5FWKhJCQeuDoxEkce8bfeDz-BuCF83HgjQy4kfuOqzQyPDVacplaHaU2MLJy5pxOotGFenMZXq7A9_YsTM0P0TncSDOq-ZoUnBzSe9esoXQEGxd4hGBo5Tdxlcdu-RVXbVevx4c4xC-FOBqeD0a8SSzAjQplyI0IM-KBE17J1KMEBti-OLOZFVLGxlgRCo3Q7bxPFc4GTjtsdSh9kCE8WuJfwll_jdKIE13_4buOsUqgOtQHmqTklPe-5YkMxN7N9t7EwWvj9lcTucK4ow340fZOHdrycXdRZrvm22_Ekf9V923C3cbiZv1aRe7Bisvvw_qgTXT3AOzZlMLD2Rmi-Myxfll8YtOcDdJ5VuRsMi3nU-uwWBJ9S8nQymcUHTNbsmHFv4Gwzd5-KMqicoUt8TNstLTzAlWTDb80qv0QLm7lJx_Bal7k7jEw711gtDax91plXuN70XKwOrDRgZHK9YC3opCYhpmdEoTMkppTWiQ0Vkk3Vj141dX_XHOS_LHmTitZSTM3XSUCsTFSRPLTg-fdbexz2ipKc1csqI6i_eBYxz0QlRj95UtJfzIedqWtf3noGayPzk9PkpPx5Hgb7tB1ihvaVzuwWs4X7glaf2X2tNI3Bu9vW0J_AsfkYI4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRQIu5a0uFDASiFNa13aCc-Cw2od2KawqSqXeQuKHWLFNqm0WtPwq_gr_iJm8SpEQElIPHJ04iWPPzDe2x98APHc-5t5IHhi57wKVRiZIjZaBTK2OUsuNrBZz3s2iybF6cxKebMD39ixMzQ_RLbiRZlT2mhT8zPq9C9JQOoGN8zsCMHTym7DKA7f-ipO289fTIY7wCyHGow-DSdDkFQiMCmUYGBFmRAMnvJKpRwHk2Lw4s5kVUsbGWBEKjcjtvE8VGgOnHTY6lJ5niI6W6JfQ6F9TEY8pWcTwfUdYJVAb6vNMUgaU9r6lieRi73J7L8PghW_7q4dcQdz4FvxoO6eObPm8uyqzXfPtN97I_6n3bsNW42-zfq0gd2DD5XfhxqBNc3cP7NGcgsPZEWL4wrF-WZyyec4G6TIrcjabl8u5dVgsibylZOjjM4qNWazZqGLfQNBmh5-KsqgWwtb4GTZZ22WBislGXxrFvg_HV_KTD2AzL3K3Dcx7x43WJvZeq8xrfC_6DVZzG70yUrkeBK0kJKbhZaf0IIukZpQWCY1V0o1VD1529c9qRpI_1txpBStpLNN5IhAZI0UUPz141t3GPqeNojR3xYrqKNoNjnXcA1FJ0V--lPRn01FXevgvDz2F64fDcfJ2Ojt4BDfpMgUN7asd2CyXK_cYXb8ye1JpG4OPVy2gPwEmNF89 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Single+Atom+in+Carbon+Nitride+Catalyst+for+Highly+Efficient+Photocatalytic+Hydrogen+Evolution&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xun%E2%80%90Heng+Jiang&rft.au=Long%E2%80%90Shuai+Zhang&rft.au=Hai%E2%80%90Yan+Liu&rft.au=Dai%E2%80%90She+Wu&rft.date=2020-12-14&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=23112&rft.epage=23116&rft_id=info:doi/10.1002%2Fanie.202011495&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |