Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution

Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single at...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 51; pp. 23112 - 23116
Main Authors Jiang, Xun‐Heng, Zhang, Long‐Shuai, Liu, Hai‐Yan, Wu, Dai‐She, Wu, Fei‐Yao, Tian, Lei, Liu, Ling‐Ling, Zou, Jian‐Ping, Luo, Sheng‐Lian, Chen, Bing‐Bing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 14.12.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N2C2/CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N2C2 configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N2C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N2C2/CN catalyst exhibits much better H2 evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N4/CN), and is even superior to the Pt nanoparticle‐loaded CN (PtNP/CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability. A new Ag single atom in carbon nitride (Ag‐N2C2/CN) photocatalyst with Ag‐N2C2 configuration is developed. It affords fast charge transfer, high Ag loading, and good stability. Noteworthily, the Ag‐N2C2/CN exhibits much better hydrogen evolution activity than Ag‐N4/CN, and even superior to the platinum‐loaded CN.
AbstractList Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N 2 C 2 /CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N 2 C 2 configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N 2 C 2 can reduce the H 2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N 2 C 2 /CN catalyst exhibits much better H 2 evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N 4 /CN), and is even superior to the Pt nanoparticle‐loaded CN (Pt NP /CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability.
Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N2C2/CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N2C2 configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N2C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N2C2/CN catalyst exhibits much better H2 evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N4/CN), and is even superior to the Pt nanoparticle‐loaded CN (PtNP/CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability. A new Ag single atom in carbon nitride (Ag‐N2C2/CN) photocatalyst with Ag‐N2C2 configuration is developed. It affords fast charge transfer, high Ag loading, and good stability. Noteworthily, the Ag‐N2C2/CN exhibits much better hydrogen evolution activity than Ag‐N4/CN, and even superior to the platinum‐loaded CN.
Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag-N2 C2 /CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag-N2 C2 configuration have been identified by aberration-correction high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and extended X-ray absorption. Experiments and DFT calculations further verify that Ag-N2 C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag-N2 C2 /CN catalyst exhibits much better H2 evolution activity than the N-coordinated Ag single atom in CN (Ag-N4 /CN), and is even superior to the Pt nanoparticle-loaded CN (PtNP /CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability.Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag-N2 C2 /CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag-N2 C2 configuration have been identified by aberration-correction high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and extended X-ray absorption. Experiments and DFT calculations further verify that Ag-N2 C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag-N2 C2 /CN catalyst exhibits much better H2 evolution activity than the N-coordinated Ag single atom in CN (Ag-N4 /CN), and is even superior to the Pt nanoparticle-loaded CN (PtNP /CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability.
Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag‐N2C2/CN) catalyst with a unique coordination. The Ag atomic dispersion and Ag‐N2C2 configuration have been identified by aberration‐correction high‐angle‐annular‐dark‐field scanning transmission electron microscopy (AC‐HAADF‐STEM) and extended X‐ray absorption. Experiments and DFT calculations further verify that Ag‐N2C2 can reduce the H2 evolution barrier, expand the light absorption range, and improve the charge transfer of CN. As a result, the Ag‐N2C2/CN catalyst exhibits much better H2 evolution activity than the N‐coordinated Ag single atom in CN (Ag‐N4/CN), and is even superior to the Pt nanoparticle‐loaded CN (PtNP/CN). This work provides a new idea for the design and synthesis of SACs with novel configurations and excellent catalytic activity and durability.
Author Zou, Jian‐Ping
Liu, Ling‐Ling
Luo, Sheng‐Lian
Chen, Bing‐Bing
Wu, Fei‐Yao
Zhang, Long‐Shuai
Wu, Dai‐She
Tian, Lei
Liu, Hai‐Yan
Jiang, Xun‐Heng
Author_xml – sequence: 1
  givenname: Xun‐Heng
  surname: Jiang
  fullname: Jiang, Xun‐Heng
  organization: Nanchang University
– sequence: 2
  givenname: Long‐Shuai
  surname: Zhang
  fullname: Zhang, Long‐Shuai
  organization: Nanchang Hangkong University
– sequence: 3
  givenname: Hai‐Yan
  surname: Liu
  fullname: Liu, Hai‐Yan
  organization: Nanchang Hangkong University
– sequence: 4
  givenname: Dai‐She
  surname: Wu
  fullname: Wu, Dai‐She
  organization: Nanchang University
– sequence: 5
  givenname: Fei‐Yao
  surname: Wu
  fullname: Wu, Fei‐Yao
  organization: Nanchang Hangkong University
– sequence: 6
  givenname: Lei
  surname: Tian
  fullname: Tian, Lei
  organization: Nanchang University
– sequence: 7
  givenname: Ling‐Ling
  surname: Liu
  fullname: Liu, Ling‐Ling
  organization: Nanchang Hangkong University
– sequence: 8
  givenname: Jian‐Ping
  orcidid: 0000-0002-3585-6541
  surname: Zou
  fullname: Zou, Jian‐Ping
  email: zjp_112@126.com
  organization: Nanchang University
– sequence: 9
  givenname: Sheng‐Lian
  surname: Luo
  fullname: Luo, Sheng‐Lian
  organization: Nanchang Hangkong University
– sequence: 10
  givenname: Bing‐Bing
  surname: Chen
  fullname: Chen, Bing‐Bing
  organization: Nanjing Tech University
BookMark eNqFkE1LAzEQhoMoqNWr54AXL1vztbvJsZRqC6KCel6y2aRG0kSTVNl_79aKQkE8zQw8z8zwHoN9H7wG4AyjMUaIXEpv9ZgggjBmotwDR7gkuKB1TfeHnlFa1LzEh-A4pZeB5xxVR6B7sO5dR_hg_dJpOMlhBa2HUxnb4OGtzdF2ehizdH3K0IQI53b57Ho4M8Yqq32G988hB_WFZKvgvO9iWGoPZ-_BrbMN_gQcGOmSPv2uI_B0NXuczoubu-vFdHJTKFbSslCkbAWtMTGMSlNRjqTiou3ajlAqlOpISXhFhTZGMoGx5rpDqqQGtZiITtARuNjufY3hba1TblY2Ke2c9DqsU0MYQ1wIwTfo-Q76EtbRD98NVFVXrOIMDdR4S6kYUoraNK_RrmTsG4yaTejNJvTmJ_RBYDuCslluMshRWve3Jrbah3W6_-dIM7ldzH7dT-YfmSk
CitedBy_id crossref_primary_10_1002_ange_202400627
crossref_primary_10_1007_s12274_024_6818_8
crossref_primary_10_1016_j_jhazmat_2022_128419
crossref_primary_10_1039_D1TA04493A
crossref_primary_10_1002_adfm_202215245
crossref_primary_10_1002_anie_202205312
crossref_primary_10_1088_1361_6528_ad02a1
crossref_primary_10_1007_s11356_022_23223_1
crossref_primary_10_1007_s12598_024_02997_y
crossref_primary_10_1016_j_cclet_2023_109454
crossref_primary_10_1016_j_ijhydene_2022_09_294
crossref_primary_10_1016_j_cej_2022_137127
crossref_primary_10_1016_j_cclet_2022_05_017
crossref_primary_10_1002_ejic_202200003
crossref_primary_10_1039_D2CC01557A
crossref_primary_10_1002_ange_202212397
crossref_primary_10_1002_ange_202215782
crossref_primary_10_1016_j_nanoen_2022_107466
crossref_primary_10_1016_j_apcatb_2022_121216
crossref_primary_10_1039_D2TA03269D
crossref_primary_10_1002_adfm_202203252
crossref_primary_10_1021_acscatal_4c05510
crossref_primary_10_1016_j_apcatb_2022_121575
crossref_primary_10_1039_D2TA00835A
crossref_primary_10_1039_D4CC06290F
crossref_primary_10_1016_j_ijhydene_2021_11_252
crossref_primary_10_1063_5_0048186
crossref_primary_10_1002_anie_202318927
crossref_primary_10_1016_j_apcatb_2022_121318
crossref_primary_10_1016_j_apsusc_2022_154760
crossref_primary_10_1021_acs_inorgchem_3c04408
crossref_primary_10_1021_acs_est_3c01200
crossref_primary_10_1021_acs_est_3c05922
crossref_primary_10_1021_acs_est_3c05129
crossref_primary_10_1016_j_mcat_2021_111856
crossref_primary_10_1021_acsaem_4c00521
crossref_primary_10_1021_acs_nanolett_4c03853
crossref_primary_10_1039_D3EY00123G
crossref_primary_10_1039_D1TA08252C
crossref_primary_10_1002_ange_202109488
crossref_primary_10_1016_j_jcis_2023_07_168
crossref_primary_10_1016_j_cej_2022_138469
crossref_primary_10_1016_j_apcatb_2022_121327
crossref_primary_10_1039_D4SE00076E
crossref_primary_10_1039_D3CC00889D
crossref_primary_10_1016_j_chemosphere_2024_141948
crossref_primary_10_1016_j_mtchem_2024_102125
crossref_primary_10_1016_j_jhazmat_2022_129724
crossref_primary_10_1016_j_ccr_2024_216254
crossref_primary_10_1021_acsestengg_1c00454
crossref_primary_10_1016_j_cej_2024_158286
crossref_primary_10_1016_j_materresbull_2023_112553
crossref_primary_10_1016_j_ceramint_2024_12_552
crossref_primary_10_1039_D1RA07799F
crossref_primary_10_1002_anie_202204326
crossref_primary_10_1021_acsnano_3c03176
crossref_primary_10_1016_j_mtnano_2022_100281
crossref_primary_10_1021_acs_nanolett_3c00810
crossref_primary_10_1002_adfm_202418427
crossref_primary_10_1021_acs_nanolett_3c04978
crossref_primary_10_1016_j_jpowsour_2023_233188
crossref_primary_10_1039_D0CS01032D
crossref_primary_10_1016_j_seppur_2024_131099
crossref_primary_10_1039_D3DT03727D
crossref_primary_10_1016_j_apcatb_2021_120787
crossref_primary_10_1016_j_materresbull_2022_112040
crossref_primary_10_1039_D1RA07275G
crossref_primary_10_1002_adfm_202425056
crossref_primary_10_1002_adma_202414889
crossref_primary_10_1016_j_ccr_2024_215952
crossref_primary_10_1007_s40843_023_2440_6
crossref_primary_10_1016_j_ese_2024_100414
crossref_primary_10_1016_j_jechem_2024_06_028
crossref_primary_10_1016_j_jmst_2024_08_041
crossref_primary_10_1016_S1872_2067_21_63813_5
crossref_primary_10_1016_j_bioactmat_2024_02_018
crossref_primary_10_1016_j_efmat_2023_08_002
crossref_primary_10_1016_j_jes_2023_03_021
crossref_primary_10_1016_j_jes_2023_03_020
crossref_primary_10_1016_j_jtice_2021_03_050
crossref_primary_10_1016_j_cclet_2021_03_018
crossref_primary_10_1038_s41467_024_53941_8
crossref_primary_10_1016_j_cej_2021_131795
crossref_primary_10_1016_S1872_2067_24_60109_9
crossref_primary_10_1021_acsenergylett_4c02190
crossref_primary_10_1021_acs_nanolett_2c04078
crossref_primary_10_1039_D1EE00247C
crossref_primary_10_1002_adma_202306895
crossref_primary_10_1002_sus2_229
crossref_primary_10_1007_s11426_021_1063_2
crossref_primary_10_1002_admi_202201413
crossref_primary_10_1016_j_apcatb_2021_120674
crossref_primary_10_1016_j_cej_2024_149309
crossref_primary_10_1039_D4TA01030B
crossref_primary_10_1007_s40843_024_2870_1
crossref_primary_10_1007_s12274_022_5181_x
crossref_primary_10_1016_j_matre_2024_100285
crossref_primary_10_1016_j_cclet_2022_107903
crossref_primary_10_1016_j_apcatb_2024_124917
crossref_primary_10_1016_j_cej_2022_138015
crossref_primary_10_1002_advs_202302143
crossref_primary_10_1016_j_jcis_2022_04_162
crossref_primary_10_1039_D3RA00775H
crossref_primary_10_1002_smll_202107840
crossref_primary_10_1002_adfm_202205119
crossref_primary_10_1039_D1TA07306K
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1002_adma_202403965
crossref_primary_10_1007_s11431_024_2736_x
crossref_primary_10_1016_j_apcatb_2022_121896
crossref_primary_10_1002_ange_202308257
crossref_primary_10_1021_acsami_1c23465
crossref_primary_10_1016_j_cej_2023_143155
crossref_primary_10_1021_acsnano_1c05834
crossref_primary_10_1016_j_jhazmat_2021_126029
crossref_primary_10_1021_acscatal_3c02076
crossref_primary_10_1021_jacs_4c04023
crossref_primary_10_1016_j_ijhydene_2022_02_012
crossref_primary_10_1016_j_cej_2021_129829
crossref_primary_10_1016_j_surfin_2023_103717
crossref_primary_10_1002_anie_202314243
crossref_primary_10_1016_j_cej_2025_159640
crossref_primary_10_1016_j_mattod_2021_11_022
crossref_primary_10_1002_adfm_202112452
crossref_primary_10_1021_acs_jpclett_1c01779
crossref_primary_10_1016_j_jcis_2022_04_032
crossref_primary_10_1002_smll_202208002
crossref_primary_10_1002_ange_202304585
crossref_primary_10_1039_D2NR05076E
crossref_primary_10_1016_j_apcatb_2022_121523
crossref_primary_10_1016_j_apcatb_2023_123683
crossref_primary_10_1016_j_ceramint_2023_01_084
crossref_primary_10_1002_anie_202308257
crossref_primary_10_1002_anie_202400627
crossref_primary_10_1016_j_apcatb_2021_120212
crossref_primary_10_1016_j_jcis_2024_11_223
crossref_primary_10_1016_j_apcatb_2021_120574
crossref_primary_10_1021_acscatal_3c03018
crossref_primary_10_1021_jacs_4c00475
crossref_primary_10_1016_j_efmat_2022_05_007
crossref_primary_10_3390_nano12101761
crossref_primary_10_1016_j_cclet_2021_12_076
crossref_primary_10_1016_j_surfin_2021_101527
crossref_primary_10_1016_j_jmst_2024_09_048
crossref_primary_10_1016_j_apmt_2022_101498
crossref_primary_10_1002_aenm_202401437
crossref_primary_10_3390_nano13172453
crossref_primary_10_1016_j_cej_2023_148273
crossref_primary_10_1021_acscatal_4c01972
crossref_primary_10_1016_j_apcatb_2024_124267
crossref_primary_10_1039_D1NJ04959C
crossref_primary_10_1002_smtd_202400530
crossref_primary_10_1016_j_cej_2024_150769
crossref_primary_10_1039_D3GC00337J
crossref_primary_10_1002_adma_202403153
crossref_primary_10_3390_catal13101378
crossref_primary_10_1016_j_seppur_2021_119863
crossref_primary_10_1016_j_cattod_2024_114657
crossref_primary_10_1016_j_jece_2024_114967
crossref_primary_10_1016_j_jcis_2021_12_024
crossref_primary_10_1021_acs_est_2c00706
crossref_primary_10_1002_adma_202204865
crossref_primary_10_1016_j_jcis_2024_10_087
crossref_primary_10_1021_acscatal_1c00455
crossref_primary_10_1002_adfm_202420801
crossref_primary_10_1016_j_ijhydene_2022_07_174
crossref_primary_10_1016_S1872_2067_21_63830_5
crossref_primary_10_1039_D3TA06724F
crossref_primary_10_1021_acsami_1c21850
crossref_primary_10_1016_j_jmst_2021_10_030
crossref_primary_10_1007_s12598_022_01984_5
crossref_primary_10_1016_j_vacuum_2023_112469
crossref_primary_10_1002_sstr_202200188
crossref_primary_10_1016_j_apcatb_2023_123429
crossref_primary_10_1002_advs_202303448
crossref_primary_10_1016_j_jcis_2021_03_080
crossref_primary_10_1016_j_apcatb_2022_121502
crossref_primary_10_1016_j_jhazmat_2022_128285
crossref_primary_10_1016_j_efmat_2022_05_001
crossref_primary_10_1021_acscatal_2c04918
crossref_primary_10_1021_acscatal_2c05048
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1016_j_cclet_2022_07_026
crossref_primary_10_1016_j_cclet_2023_108513
crossref_primary_10_1016_j_renene_2023_03_136
crossref_primary_10_1002_adma_202311148
crossref_primary_10_1007_s11426_022_1284_x
crossref_primary_10_1016_j_seppur_2022_120829
crossref_primary_10_1016_j_jhazmat_2022_128377
crossref_primary_10_1002_smll_202300460
crossref_primary_10_1002_smll_202306567
crossref_primary_10_1016_j_cclet_2021_08_103
crossref_primary_10_1016_j_apcatb_2022_121612
crossref_primary_10_1016_j_seppur_2024_130181
crossref_primary_10_3390_catal11101168
crossref_primary_10_1016_j_cclet_2022_04_066
crossref_primary_10_1002_anie_202304585
crossref_primary_10_1039_D2GC02770D
crossref_primary_10_3390_catal12090946
crossref_primary_10_1016_j_ijhydene_2022_03_259
crossref_primary_10_1126_sciadv_adq2948
crossref_primary_10_1073_pnas_2309102121
crossref_primary_10_1021_acsami_2c07375
crossref_primary_10_1039_D2TA05181H
crossref_primary_10_1002_anie_202109488
crossref_primary_10_1016_j_cej_2024_151279
crossref_primary_10_1039_D1TA02251B
crossref_primary_10_1016_j_cclet_2021_01_011
crossref_primary_10_1016_j_cej_2022_136207
crossref_primary_10_1016_j_inoche_2021_108993
crossref_primary_10_1016_j_cej_2022_139833
crossref_primary_10_1016_j_coche_2023_100941
crossref_primary_10_1016_j_ijhydene_2021_05_018
crossref_primary_10_2139_ssrn_4150537
crossref_primary_10_1016_j_apcatb_2022_121721
crossref_primary_10_1016_j_jallcom_2025_179678
crossref_primary_10_1002_smll_202302875
crossref_primary_10_2139_ssrn_4110635
crossref_primary_10_1016_j_electacta_2021_138831
crossref_primary_10_1016_j_ccr_2023_215489
crossref_primary_10_1016_j_apcatb_2022_121826
crossref_primary_10_1002_cssc_202400937
crossref_primary_10_1016_j_cclet_2021_09_057
crossref_primary_10_1039_D3SE00454F
crossref_primary_10_1016_j_apcatb_2024_123806
crossref_primary_10_3390_catal11121470
crossref_primary_10_1002_ange_202314243
crossref_primary_10_1166_mex_2022_2059
crossref_primary_10_1016_j_cclet_2022_01_066
crossref_primary_10_1016_j_dwt_2024_100385
crossref_primary_10_1016_S1872_2067_21_63892_5
crossref_primary_10_1016_j_jcat_2021_08_035
crossref_primary_10_1002_bte2_20220041
crossref_primary_10_1007_s40820_022_00962_x
crossref_primary_10_1039_D0CS00912A
crossref_primary_10_1039_D2TA09614E
crossref_primary_10_1002_advs_202500313
crossref_primary_10_1016_j_apmt_2021_101177
crossref_primary_10_1016_j_nanoen_2022_107767
crossref_primary_10_1039_D1CS00421B
crossref_primary_10_1002_cnma_202300399
crossref_primary_10_1002_cey2_533
crossref_primary_10_1016_j_renene_2022_06_044
crossref_primary_10_1039_D4MH01479K
crossref_primary_10_1002_adfm_202405867
crossref_primary_10_1002_chem_202500318
crossref_primary_10_1002_ange_202205312
crossref_primary_10_1016_j_jes_2024_11_026
crossref_primary_10_3390_catal12101223
crossref_primary_10_1039_D4CP00679H
crossref_primary_10_1002_advs_202102376
crossref_primary_10_1016_j_jechem_2024_12_011
crossref_primary_10_1016_j_apcatb_2023_123061
crossref_primary_10_1016_j_apcatb_2025_125040
crossref_primary_10_1016_j_cclet_2022_03_049
crossref_primary_10_1002_smll_202205758
crossref_primary_10_1002_advs_202413379
crossref_primary_10_1016_j_apcatb_2021_121000
crossref_primary_10_1016_j_cclet_2022_107861
crossref_primary_10_1016_j_isci_2022_104232
crossref_primary_10_1021_jacsau_3c00088
crossref_primary_10_1016_j_inoche_2024_113613
crossref_primary_10_1016_j_cej_2021_131613
crossref_primary_10_1016_j_cej_2023_145507
crossref_primary_10_1039_D2CS00806H
crossref_primary_10_1016_j_cej_2024_155152
crossref_primary_10_1039_D2TA02066A
crossref_primary_10_1039_D1QI01138C
crossref_primary_10_1016_j_jcis_2023_08_174
crossref_primary_10_1016_j_jhazmat_2023_132683
crossref_primary_10_1039_D2CY00534D
crossref_primary_10_1016_j_jcat_2024_115312
crossref_primary_10_1016_j_joule_2021_12_011
crossref_primary_10_1016_j_apcatb_2023_122626
crossref_primary_10_1021_acs_inorgchem_2c01908
crossref_primary_10_1016_j_ijhydene_2024_03_113
crossref_primary_10_1016_j_inoche_2024_112379
crossref_primary_10_3390_catal12121583
crossref_primary_10_1039_D4NJ05300A
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1039_D1GC02962B
crossref_primary_10_1016_j_ijhydene_2024_02_372
crossref_primary_10_1002_aoc_6874
crossref_primary_10_1002_adsu_202200009
crossref_primary_10_1002_ange_202111769
crossref_primary_10_1002_ange_202204326
crossref_primary_10_1021_acsami_1c15321
crossref_primary_10_1039_D4TA03163F
crossref_primary_10_1016_j_cej_2024_157326
crossref_primary_10_1016_j_nanoen_2022_107938
crossref_primary_10_1007_s11705_022_2295_3
crossref_primary_10_1007_s40820_023_01297_x
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1016_j_jallcom_2023_171194
crossref_primary_10_1002_slct_202202973
crossref_primary_10_1016_j_watres_2022_118839
crossref_primary_10_1002_ange_202318927
crossref_primary_10_1021_jacs_3c00660
crossref_primary_10_1038_s41467_022_34852_y
crossref_primary_10_1016_j_apsusc_2021_152174
crossref_primary_10_3390_molecules27175535
crossref_primary_10_1016_j_ceramint_2023_06_245
crossref_primary_10_1021_acsestengg_2c00261
crossref_primary_10_1007_s12274_023_6312_8
crossref_primary_10_1016_j_cclet_2023_109116
crossref_primary_10_1002_anie_202400011
crossref_primary_10_1016_j_jcis_2021_07_113
crossref_primary_10_1002_adma_202105904
crossref_primary_10_1016_j_cej_2022_140759
crossref_primary_10_1002_adfm_202303321
crossref_primary_10_1016_j_jcat_2021_12_027
crossref_primary_10_1016_j_jcis_2025_01_123
crossref_primary_10_1039_D4TA01888E
crossref_primary_10_1021_acsnano_1c10003
crossref_primary_10_1039_D4NR02193B
crossref_primary_10_1016_j_cej_2024_154726
crossref_primary_10_1039_D1CP05513E
crossref_primary_10_1002_adfm_202402797
crossref_primary_10_1016_j_cej_2023_143650
crossref_primary_10_1007_s12274_023_6079_y
crossref_primary_10_1016_j_cjsc_2025_100560
crossref_primary_10_1016_j_ijhydene_2022_05_189
crossref_primary_10_1002_smll_202100296
crossref_primary_10_1016_j_ccr_2022_214743
crossref_primary_10_1002_anie_202111769
crossref_primary_10_1002_ange_202400011
crossref_primary_10_1016_j_cclet_2021_10_091
crossref_primary_10_1002_anie_202212397
crossref_primary_10_1007_s12209_021_00295_7
crossref_primary_10_1021_acsnano_3c07724
crossref_primary_10_1016_j_apcatb_2023_122979
crossref_primary_10_1016_j_cclet_2022_03_118
crossref_primary_10_1016_j_cej_2021_134105
crossref_primary_10_1002_anie_202215782
crossref_primary_10_1016_j_apcatb_2022_121900
crossref_primary_10_1016_j_jallcom_2024_177577
crossref_primary_10_1038_s41467_021_27698_3
crossref_primary_10_1016_j_mtcomm_2023_107296
crossref_primary_10_1016_j_apcatb_2022_121106
crossref_primary_10_1016_j_molstruc_2024_140778
crossref_primary_10_1016_j_jcis_2024_09_153
Cites_doi 10.1002/anie.202000324
10.1002/adma.201807540
10.1021/acs.chemmater.6b02002
10.1002/anie.202003623
10.1002/advs.201900796
10.1038/s41929-018-0146-x
10.1038/s41565-019-0518-7
10.1002/ange.201802231
10.1021/acs.chemmater.9b03708
10.1021/jacs.9b02997
10.1002/ange.202003842
10.1002/advs.201900006
10.1002/ange.201706467
10.1002/adma.201601960
10.1021/acs.chemrev.9b00230
10.1002/anie.201914565
10.1002/adma.201903545
10.1002/anie.202001148
10.1016/j.apcatb.2018.03.014
10.1002/adma.202002177
10.1002/ange.202000324
10.1002/ange.202003623
10.1038/s41467-019-13941-5
10.1016/j.nanoen.2020.104833
10.1038/s41467-019-11796-4
10.1038/s41560-019-0517-9
10.1038/s41467-019-11856-9
10.1002/ange.201914565
10.1038/s41560-018-0209-x
10.1021/jacs.9b04569
10.1002/ange.202001148
10.1002/adma.202000896
10.1021/jacs.8b11386
10.1126/science.aaw7515
10.1021/jacs.0c03415
10.1038/s41467-020-14848-2
10.1002/anie.201802231
10.1038/s41565-020-0665-x
10.1002/anie.201706467
10.1038/s41467-019-11794-6
10.1038/s41586-018-0869-5
10.1021/acsnano.5b04210
10.1126/sciadv.aax6322
10.1038/s41929-019-0246-2
10.1002/anie.202003842
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202011495
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 23116
ExternalDocumentID 10_1002_anie_202011495
ANIE202011495
Genre shortCommunication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51878325; 51938007; 51868050; 51622806; 51720105001
– fundername: Natural Science Foundation of Jiangxi Province
  funderid: 20171ACB20017; 20171BAB206049; 20202BAB213011
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4535-c25b93712f43af6380ac89bdbd2339ccd2528639effa4911e8ed0c53f0b129d93
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:30:01 EDT 2025
Fri Jul 25 10:35:10 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Tue Jul 01 01:17:47 EDT 2025
Wed Jan 22 16:31:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4535-c25b93712f43af6380ac89bdbd2339ccd2528639effa4911e8ed0c53f0b129d93
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3585-6541
PQID 2467646840
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2440899989
proquest_journals_2467646840
crossref_primary_10_1002_anie_202011495
crossref_citationtrail_10_1002_anie_202011495
wiley_primary_10_1002_anie_202011495_ANIE202011495
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 14, 2020
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: December 14, 2020
  day: 14
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 5
2018; 231
2018; 3
2019; 6
2019; 5
2019; 31
2020; 120
2019; 2
2018; 1
2020; 142
2020; 73
2019; 10
2018 2018; 57 130
2019; 14
2020 2020; 59 132
2016; 10
2020; 15
2019; 565
2020; 11
2020; 32
2017 2017; 56 129
2019; 141
2016; 28
2019; 364
e_1_2_2_2_3
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_6_1
e_1_2_2_49_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_41_3
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_45_2
e_1_2_2_8_3
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_36_3
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_15_3
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_3
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_14_1
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_35_2
e_1_2_2_50_1
References_xml – volume: 28
  start-page: 6959
  year: 2016
  end-page: 6965
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 9171 9256
  year: 2020 2020
  end-page: 9176 9261
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 6122 6178
  year: 2020 2020
  end-page: 6127 6183
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 5201
  year: 2019
  end-page: 5210
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 390
  year: 2020
  end-page: 397
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 773
  year: 2018
  end-page: 782
  publication-title: Nat. Energy
– volume: 14
  start-page: 851
  year: 2019
  end-page: 857
  publication-title: Nat. Nanotechnol.
– volume: 57 130
  start-page: 7071 7189
  year: 2018 2018
  end-page: 7075 7193
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 781
  year: 2018
  end-page: 786
  publication-title: Nat. Catal.
– volume: 59 132
  start-page: 6827 6894
  year: 2020 2020
  end-page: 6831 6898
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  start-page: 734
  year: 2020
  end-page: 743
  publication-title: Chem. Mater.
– volume: 59 132
  start-page: 10651 10738
  year: 2020 2020
  end-page: 10657 10744
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1029
  year: 2020
  publication-title: Nat. Commun.
– volume: 28
  start-page: 7250
  year: 2016
  end-page: 7256
  publication-title: Chem. Mater.
– volume: 141
  start-page: 7615
  year: 2019
  end-page: 7621
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3734
  year: 2019
  publication-title: Nat. Commun.
– volume: 141
  start-page: 12005
  year: 2019
  end-page: 12010
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 304
  year: 2019
  end-page: 313
  publication-title: Nat. Catal.
– volume: 56 129
  start-page: 12191 12359
  year: 2017 2017
  end-page: 12196 12364
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 3166
  year: 2016
  end-page: 3175
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 10
  start-page: 3787
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 61
  year: 2020
  end-page: 70
  publication-title: Nat. Energy
– volume: 11
  start-page: 48
  year: 2020
  publication-title: Nat. Commun.
– volume: 231
  start-page: 101
  year: 2018
  end-page: 107
  publication-title: Appl. Catal. B
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 364
  start-page: 1091
  year: 2019
  end-page: 1094
  publication-title: Science
– volume: 59 132
  start-page: 7230 7297
  year: 2020 2020
  end-page: 7234 7301
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 565
  start-page: 631
  year: 2019
  end-page: 635
  publication-title: Nature
– volume: 10
  start-page: 3808
  year: 2019
  publication-title: Nat. Commun.
– volume: 120
  start-page: 683
  year: 2020
  end-page: 733
  publication-title: Chem. Rev.
– volume: 142
  start-page: 12643
  year: 2020
  end-page: 12650
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.202000324
– ident: e_1_2_2_49_2
  doi: 10.1002/adma.201807540
– ident: e_1_2_2_40_2
  doi: 10.1021/acs.chemmater.6b02002
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.202003623
– ident: e_1_2_2_46_2
  doi: 10.1002/advs.201900796
– ident: e_1_2_2_23_2
  doi: 10.1038/s41929-018-0146-x
– ident: e_1_2_2_25_2
  doi: 10.1038/s41565-019-0518-7
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201802231
– ident: e_1_2_2_38_1
– ident: e_1_2_2_17_2
  doi: 10.1021/acs.chemmater.9b03708
– ident: e_1_2_2_16_2
  doi: 10.1021/jacs.9b02997
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.202003842
– ident: e_1_2_2_13_2
  doi: 10.1002/advs.201900006
– ident: e_1_2_2_31_1
– ident: e_1_2_2_36_3
  doi: 10.1002/ange.201706467
– ident: e_1_2_2_48_2
  doi: 10.1002/adma.201601960
– ident: e_1_2_2_3_2
  doi: 10.1021/acs.chemrev.9b00230
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201914565
– ident: e_1_2_2_45_2
  doi: 10.1002/adma.201903545
– ident: e_1_2_2_15_2
  doi: 10.1002/anie.202001148
– ident: e_1_2_2_43_1
  doi: 10.1016/j.apcatb.2018.03.014
– ident: e_1_2_2_7_2
  doi: 10.1002/adma.202002177
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.202000324
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.202003623
– ident: e_1_2_2_12_2
  doi: 10.1038/s41467-019-13941-5
– ident: e_1_2_2_39_2
  doi: 10.1016/j.nanoen.2020.104833
– ident: e_1_2_2_24_2
  doi: 10.1038/s41467-019-11796-4
– ident: e_1_2_2_14_1
– ident: e_1_2_2_22_1
– ident: e_1_2_2_20_2
  doi: 10.1038/s41560-019-0517-9
– ident: e_1_2_2_32_2
  doi: 10.1038/s41467-019-11856-9
– ident: e_1_2_2_44_1
– ident: e_1_2_2_6_1
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201914565
– ident: e_1_2_2_21_2
  doi: 10.1038/s41560-018-0209-x
– ident: e_1_2_2_37_2
  doi: 10.1021/jacs.9b04569
– ident: e_1_2_2_15_3
  doi: 10.1002/ange.202001148
– ident: e_1_2_2_47_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_19_2
  doi: 10.1002/adma.202000896
– ident: e_1_2_2_28_2
  doi: 10.1021/jacs.8b11386
– ident: e_1_2_2_9_2
  doi: 10.1126/science.aaw7515
– ident: e_1_2_2_30_2
  doi: 10.1021/jacs.0c03415
– ident: e_1_2_2_50_1
  doi: 10.1038/s41467-020-14848-2
– ident: e_1_2_2_34_1
– ident: e_1_2_2_18_1
– ident: e_1_2_2_26_1
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201802231
– ident: e_1_2_2_4_2
  doi: 10.1038/s41565-020-0665-x
– ident: e_1_2_2_36_2
  doi: 10.1002/anie.201706467
– ident: e_1_2_2_33_2
  doi: 10.1038/s41467-019-11794-6
– ident: e_1_2_2_11_2
  doi: 10.1038/s41586-018-0869-5
– ident: e_1_2_2_42_1
  doi: 10.1021/acsnano.5b04210
– ident: e_1_2_2_27_2
  doi: 10.1126/sciadv.aax6322
– ident: e_1_2_2_5_2
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_2_10_1
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.202003842
SSID ssj0028806
Score 2.691126
Snippet Single atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23112
SubjectTerms Absorption
Atom economy
Carbon
Carbon nitride
Catalysts
Catalytic activity
Charge transfer
co-coordination
Configurations
Electromagnetic absorption
electron transfer
Evolution
Hydrogen evolution
Nanoparticles
photocatalysis
Platinum
Scanning transmission electron microscopy
Silver
Single atom catalysts
single-atom catalyst
Transmission electron microscopy
Title Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202011495
https://www.proquest.com/docview/2467646840
https://www.proquest.com/docview/2440899989
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEA_ii77oqSeupxJB8Clak7Smj8uysgouoif4VvLJLbe2snYP9v56Z_rlB8jB-dbQpGkzM5lfk8lvCDnyIY2CFRGz4swzqRPLtFWCCe1Uol1kRbWYcz1ORvfy6iF-eHOKv-aH6Bbc0DKq-RoNXJvn01fSUDyBDf936MAA5MMkjAFbiIpuO_4oDspZHy8SgmEW-pa1MeKn75u_90qvUPMtYK08zsU60e271oEmv0_mpTmxfz_QOH7lY76RtQaO0n6tPxtkyeebZGXQZoHbIu5ugrHT9A5c3NTTflk80klOB3pmipyOJ-Vs4jwUS-Q2KSlAYIqhI9MFHVbkFODT6M2voiyqdaIFdENHCzcrQG_p8E-j99_J_cXw52DEmswMzMpYxMzy2CCRHg9S6AAmHIGAU-OM40Kk1joecwXYx4egJUynXnkQeyxCZABfuFRsk-W8yP0OoSH4yCpl0xCUNEHBc8GtOhW55NwK6XuEtZLJbENbjtkzpllNuMwzHLusG7seOe7qP9WEHZ_W3GsFnTWG-5xxcByJRAacHjnsbsOY4z6Kzn0xxzoSN0tTlfYIr6T6j56y_vhy2JV2_6fRD7KK1xhIcyb3yHI5m_t9gEOlOahU_gUs9gKy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7aFcaHmJbQsYCcTJbWo7qXPgsNputUvbFaKt1FtI_BArlgRts6DlX_FX-EXM5FWKhJCQeuDoxEkce8bfeDz-BuCF83HgjQy4kfuOqzQyPDVacplaHaU2MLJy5pxOotGFenMZXq7A9_YsTM0P0TncSDOq-ZoUnBzSe9esoXQEGxd4hGBo5Tdxlcdu-RVXbVevx4c4xC-FOBqeD0a8SSzAjQplyI0IM-KBE17J1KMEBti-OLOZFVLGxlgRCo3Q7bxPFc4GTjtsdSh9kCE8WuJfwll_jdKIE13_4buOsUqgOtQHmqTklPe-5YkMxN7N9t7EwWvj9lcTucK4ow340fZOHdrycXdRZrvm22_Ekf9V923C3cbiZv1aRe7Bisvvw_qgTXT3AOzZlMLD2Rmi-Myxfll8YtOcDdJ5VuRsMi3nU-uwWBJ9S8nQymcUHTNbsmHFv4Gwzd5-KMqicoUt8TNstLTzAlWTDb80qv0QLm7lJx_Bal7k7jEw711gtDax91plXuN70XKwOrDRgZHK9YC3opCYhpmdEoTMkppTWiQ0Vkk3Vj141dX_XHOS_LHmTitZSTM3XSUCsTFSRPLTg-fdbexz2ipKc1csqI6i_eBYxz0QlRj95UtJfzIedqWtf3noGayPzk9PkpPx5Hgb7tB1ihvaVzuwWs4X7glaf2X2tNI3Bu9vW0J_AsfkYI4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRQIu5a0uFDASiFNa13aCc-Cw2od2KawqSqXeQuKHWLFNqm0WtPwq_gr_iJm8SpEQElIPHJ04iWPPzDe2x98APHc-5t5IHhi57wKVRiZIjZaBTK2OUsuNrBZz3s2iybF6cxKebMD39ixMzQ_RLbiRZlT2mhT8zPq9C9JQOoGN8zsCMHTym7DKA7f-ipO289fTIY7wCyHGow-DSdDkFQiMCmUYGBFmRAMnvJKpRwHk2Lw4s5kVUsbGWBEKjcjtvE8VGgOnHTY6lJ5niI6W6JfQ6F9TEY8pWcTwfUdYJVAb6vNMUgaU9r6lieRi73J7L8PghW_7q4dcQdz4FvxoO6eObPm8uyqzXfPtN97I_6n3bsNW42-zfq0gd2DD5XfhxqBNc3cP7NGcgsPZEWL4wrF-WZyyec4G6TIrcjabl8u5dVgsibylZOjjM4qNWazZqGLfQNBmh5-KsqgWwtb4GTZZ22WBislGXxrFvg_HV_KTD2AzL3K3Dcx7x43WJvZeq8xrfC_6DVZzG70yUrkeBK0kJKbhZaf0IIukZpQWCY1V0o1VD1529c9qRpI_1txpBStpLNN5IhAZI0UUPz141t3GPqeNojR3xYrqKNoNjnXcA1FJ0V--lPRn01FXevgvDz2F64fDcfJ2Ojt4BDfpMgUN7asd2CyXK_cYXb8ye1JpG4OPVy2gPwEmNF89
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Single+Atom+in+Carbon+Nitride+Catalyst+for+Highly+Efficient+Photocatalytic+Hydrogen+Evolution&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xun%E2%80%90Heng+Jiang&rft.au=Long%E2%80%90Shuai+Zhang&rft.au=Hai%E2%80%90Yan+Liu&rft.au=Dai%E2%80%90She+Wu&rft.date=2020-12-14&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=23112&rft.epage=23116&rft_id=info:doi/10.1002%2Fanie.202011495&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon