De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport

The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frame...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 36; pp. e2001284 - n/a
Main Authors He, Xueyi, Yang, Yi, Wu, Hong, He, Guangwei, Xu, Zhongxing, Kong, Yan, Cao, Li, Shi, Benbing, Zhang, Zhenjie, Tongsh, Chasen, Jiao, Kui, Zhu, Kongying, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm−1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes. The de novo design of covalent organic frameworks (COFs) affords a dense and ordered alignment of quaternary ammonium‐functionalized side chains along the intrinsic channels within the frameworks, rendering one of the highest hydroxide conductivities among the reported anion‐exchange membranes (AEMs), and demonstrating the feasibility of COFs as the building blocks for high‐performance AEMs.
AbstractList The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm−1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.
The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm-1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm-1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.
The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm−1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes. The de novo design of covalent organic frameworks (COFs) affords a dense and ordered alignment of quaternary ammonium‐functionalized side chains along the intrinsic channels within the frameworks, rendering one of the highest hydroxide conductivities among the reported anion‐exchange membranes (AEMs), and demonstrating the feasibility of COFs as the building blocks for high‐performance AEMs.
The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm −1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.
Author Zhang, Zhenjie
Jiang, Zhongyi
Wu, Hong
Tongsh, Chasen
Kong, Yan
He, Guangwei
Zhu, Kongying
He, Xueyi
Shi, Benbing
Cao, Li
Jiao, Kui
Xu, Zhongxing
Yang, Yi
Author_xml – sequence: 1
  givenname: Xueyi
  surname: He
  fullname: He, Xueyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 2
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: Nankai University
– sequence: 3
  givenname: Hong
  surname: Wu
  fullname: Wu, Hong
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 4
  givenname: Guangwei
  surname: He
  fullname: He, Guangwei
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 5
  givenname: Zhongxing
  surname: Xu
  fullname: Xu, Zhongxing
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 6
  givenname: Yan
  surname: Kong
  fullname: Kong, Yan
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 7
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 8
  givenname: Benbing
  surname: Shi
  fullname: Shi, Benbing
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 9
  givenname: Zhenjie
  surname: Zhang
  fullname: Zhang, Zhenjie
  organization: Nankai University
– sequence: 10
  givenname: Chasen
  surname: Tongsh
  fullname: Tongsh, Chasen
  organization: Tianjin University
– sequence: 11
  givenname: Kui
  surname: Jiao
  fullname: Jiao, Kui
  organization: Tianjin University
– sequence: 12
  givenname: Kongying
  surname: Zhu
  fullname: Zhu, Kongying
  organization: Tianjin University
– sequence: 13
  givenname: Zhongyi
  orcidid: 0000-0002-0048-8849
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: International Campus of Tianjin University
BookMark eNqFkMFPwjAUhxuDiYhePTfx4mX42rVjOxIQNQG5QDwuXdeS4dZiOyD895ZgNCExnvqSft97v_yuUcdYoxC6I9AnAPRRlI3oU6AAhKbsAnUJpyRikPEO6kIW8yhLWHqFrr1fA0CWQNJF72OF3-zO4rHy1cpgq_HI7kStTIvnbiVMJfHEiUbtrfvAM9UUThjlcWv3wpV4WbdOaOFbPDSVNXgRfv3GuvYGXWpRe3X7_fbQcvK0GL1E0_nz62g4jSTjMYskYRkLSRiNeal5QnQshI4LXia8SFMW60JlWjKQSmalFoLxQsYDqRMFZRrGHno47d04-7lVvs2byktV1yGl3fqcMjrgJB1QFtD7M3Rtt86EdIFikEBKaBKo_omSznrvlM43rmqEO-QE8mPP-bHn_KfnILAzQVataEMboZqq_lvLTtq-qtXhnyP5cDwb_rpfKwaUow
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_169000
crossref_primary_10_1002_ange_202418435
crossref_primary_10_1016_j_memlet_2021_100008
crossref_primary_10_1021_acsami_1c08789
crossref_primary_10_1002_smll_202407260
crossref_primary_10_1002_ange_202116910
crossref_primary_10_1021_acsaem_4c01209
crossref_primary_10_3390_nano12203615
crossref_primary_10_1016_j_advmem_2024_100111
crossref_primary_10_1016_j_advmem_2024_100110
crossref_primary_10_1016_j_cej_2024_158745
crossref_primary_10_1007_s11426_022_1379_y
crossref_primary_10_1002_advs_202407073
crossref_primary_10_1002_chem_202100671
crossref_primary_10_1039_D4TA04614E
crossref_primary_10_1016_j_seppur_2024_126881
crossref_primary_10_1016_j_electacta_2021_139770
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1002_anie_202210466
crossref_primary_10_1002_ange_202419257
crossref_primary_10_1016_j_memsci_2021_119404
crossref_primary_10_1016_j_memsci_2021_119800
crossref_primary_10_1021_acsami_1c06891
crossref_primary_10_1016_j_jhazmat_2022_128705
crossref_primary_10_1021_acsami_4c19321
crossref_primary_10_1039_D1TA06439H
crossref_primary_10_1002_anie_202110695
crossref_primary_10_1016_j_apsusc_2022_154363
crossref_primary_10_1016_j_cej_2024_156390
crossref_primary_10_1016_j_cej_2023_142304
crossref_primary_10_1016_j_memsci_2022_120451
crossref_primary_10_1002_anie_202410417
crossref_primary_10_1002_smll_202500927
crossref_primary_10_1016_j_matt_2021_06_045
crossref_primary_10_1016_j_cej_2021_133550
crossref_primary_10_1002_anie_202104106
crossref_primary_10_1016_j_enchem_2022_100079
crossref_primary_10_1039_D4EE02428A
crossref_primary_10_1021_acs_iecr_1c00418
crossref_primary_10_3390_molecules29102189
crossref_primary_10_1016_j_esci_2022_03_004
crossref_primary_10_1016_j_seppur_2024_129903
crossref_primary_10_1002_adma_202211004
crossref_primary_10_1002_ange_202105725
crossref_primary_10_1016_j_ijhydene_2023_03_429
crossref_primary_10_1002_aic_17731
crossref_primary_10_1002_anie_202102965
crossref_primary_10_1016_j_desal_2022_116202
crossref_primary_10_1021_acs_chemmater_3c02552
crossref_primary_10_1002_aenm_202405045
crossref_primary_10_1002_app_56130
crossref_primary_10_1038_s41467_023_42584_w
crossref_primary_10_1002_smll_202402822
crossref_primary_10_1039_D2RA03449B
crossref_primary_10_1038_s41467_024_54844_4
crossref_primary_10_1002_adfm_202009970
crossref_primary_10_1021_acsnano_5c00165
crossref_primary_10_1021_acsami_2c01701
crossref_primary_10_1016_j_ccr_2022_214431
crossref_primary_10_1002_anie_202216549
crossref_primary_10_1016_j_matt_2021_03_017
crossref_primary_10_1016_j_enchem_2023_100101
crossref_primary_10_1039_D1CS00889G
crossref_primary_10_1016_j_advmem_2021_100008
crossref_primary_10_1016_j_pmatsci_2024_101324
crossref_primary_10_1021_acsami_0c20203
crossref_primary_10_1039_D2TA06228C
crossref_primary_10_1002_adma_202413022
crossref_primary_10_1002_anie_202105725
crossref_primary_10_1002_anie_202112271
crossref_primary_10_1021_jacs_3c08220
crossref_primary_10_1016_j_cej_2022_141094
crossref_primary_10_1021_acsnano_1c08804
crossref_primary_10_1021_acsami_2c07753
crossref_primary_10_1038_s41893_024_01364_0
crossref_primary_10_1002_ange_202501472
crossref_primary_10_1016_j_ijhydene_2023_03_332
crossref_primary_10_1002_marc_202200393
crossref_primary_10_1002_asia_202401454
crossref_primary_10_1002_ange_202105190
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1021_acsenergylett_2c01681
crossref_primary_10_1016_j_memsci_2023_122120
crossref_primary_10_1002_ange_202410417
crossref_primary_10_1007_s12274_024_6902_4
crossref_primary_10_1021_acs_inorgchem_1c02741
crossref_primary_10_1021_jacs_2c00584
crossref_primary_10_1039_D1TA10506J
crossref_primary_10_1002_ange_202210466
crossref_primary_10_1002_anie_202501472
crossref_primary_10_1002_ange_202112271
crossref_primary_10_1002_smll_202206041
crossref_primary_10_1016_j_cej_2023_147403
crossref_primary_10_1021_acsapm_2c01209
crossref_primary_10_1002_anie_202105190
crossref_primary_10_1016_j_jiec_2021_08_016
crossref_primary_10_1002_smll_202401635
crossref_primary_10_1002_batt_202400580
crossref_primary_10_1002_anie_202411535
crossref_primary_10_1007_s40242_022_1448_8
crossref_primary_10_1021_acsapm_3c01939
crossref_primary_10_1016_j_advmem_2022_100028
crossref_primary_10_1039_D4TA02087A
crossref_primary_10_1021_acsnano_2c04273
crossref_primary_10_1002_adma_202405744
crossref_primary_10_1039_D1TA06579C
crossref_primary_10_1021_acsami_4c03736
crossref_primary_10_1021_acsnano_3c06142
crossref_primary_10_1038_s44221_024_00379_3
crossref_primary_10_1007_s40242_022_1474_6
crossref_primary_10_1002_anie_202116910
crossref_primary_10_1021_jacs_3c10832
crossref_primary_10_1021_accountsmr_1c00083
crossref_primary_10_1021_acs_analchem_3c01637
crossref_primary_10_1038_s41467_024_52487_z
crossref_primary_10_1021_jacs_2c03959
crossref_primary_10_1002_ange_202102373
crossref_primary_10_1002_adfm_202306202
crossref_primary_10_1002_adfm_202109210
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1016_j_seppur_2023_123463
crossref_primary_10_1016_j_cis_2024_103269
crossref_primary_10_1002_adma_202306675
crossref_primary_10_1021_acsaem_2c03348
crossref_primary_10_1002_ange_202113141
crossref_primary_10_1002_admt_202300829
crossref_primary_10_1002_ange_202216549
crossref_primary_10_1021_acsami_2c09503
crossref_primary_10_1002_adfm_202100083
crossref_primary_10_1002_advs_202100284
crossref_primary_10_1002_cjoc_202100929
crossref_primary_10_1002_adma_202305755
crossref_primary_10_1002_ange_202400764
crossref_primary_10_1002_ange_202402943
crossref_primary_10_1007_s40242_022_1507_1
crossref_primary_10_1039_D0CS01347A
crossref_primary_10_1016_j_cartre_2025_100451
crossref_primary_10_1039_D3EE00142C
crossref_primary_10_1038_s41467_022_31183_w
crossref_primary_10_1016_j_memsci_2023_121610
crossref_primary_10_1039_D1TA03019A
crossref_primary_10_1002_smll_202303757
crossref_primary_10_1021_jacs_4c16029
crossref_primary_10_1016_j_isci_2021_102369
crossref_primary_10_1039_D1PY00776A
crossref_primary_10_3390_molecules27185853
crossref_primary_10_1002_anie_202102373
crossref_primary_10_1002_ange_202411535
crossref_primary_10_1002_ange_202104106
crossref_primary_10_1002_ange_202102965
crossref_primary_10_1016_j_trac_2025_118167
crossref_primary_10_1038_s41893_022_00870_3
crossref_primary_10_1002_anie_202113141
crossref_primary_10_1002_anie_202418435
crossref_primary_10_1002_aic_18571
crossref_primary_10_1039_D1TC02985A
crossref_primary_10_1002_smll_202310791
crossref_primary_10_1021_accountsmr_4c00156
crossref_primary_10_1039_D1TA08771A
crossref_primary_10_1021_acs_iecr_3c02384
crossref_primary_10_1039_D0TA12486A
crossref_primary_10_1016_j_ccr_2021_213873
crossref_primary_10_1021_acssuschemeng_2c01071
crossref_primary_10_1016_j_memsci_2022_120754
crossref_primary_10_1039_D4CS00409D
crossref_primary_10_1021_acsaem_1c01233
crossref_primary_10_1016_j_eurpolymj_2023_111939
crossref_primary_10_1039_D4CE00995A
crossref_primary_10_1002_anie_202400764
crossref_primary_10_1002_anie_202402943
crossref_primary_10_1016_j_ijhydene_2022_06_255
crossref_primary_10_1002_ange_202110695
crossref_primary_10_1002_anie_202419257
crossref_primary_10_1002_adma_202104404
crossref_primary_10_1002_advs_202103814
crossref_primary_10_1038_s41467_022_28643_8
Cites_doi 10.1039/C8CS00376A
10.1021/acs.chemrev.9b00157
10.1038/nnano.2016.265
10.1038/s41557-018-0141-5
10.1021/jacs.5b11951
10.1039/c2cs35115c
10.1021/jacs.8b07670
10.7554/eLife.41741
10.1016/j.memsci.2018.07.055
10.1038/s41560-019-0372-8
10.1016/j.elecom.2018.01.021
10.1002/adma.201501406
10.1039/C9CS00827F
10.1021/acsami.8b14671
10.1002/cssc.201402223
10.1039/C8CP02211A
10.1039/C6EE03079C
10.1016/j.jpowsour.2016.01.091
10.1021/acsami.7b06424
10.1126/science.aax4608
10.1021/la102703b
10.1039/C8CS00919H
10.1126/science.1120411
10.1038/s41586-018-0511-6
10.1021/ja9015765
10.1039/C4PY01588F
10.1021/acs.chemrev.6b00586
10.1038/natrevmats.2016.68
10.1002/anie.201710190
10.1016/j.memsci.2016.04.027
10.1016/j.jpowsour.2017.07.117
10.1126/science.aal1585
10.1039/C7EE00294G
10.1039/C4EE01303D
10.1039/C8EE01419A
10.1039/D0CS00278J
10.1039/C9CS00322C
10.1039/C8TA02193G
10.1021/acs.chemmater.7b01494
10.1126/science.aaa7484
10.1039/C8EE00122G
10.1039/C8EE02071J
10.1039/C9EE00832B
10.1002/adma.201902009
10.1021/acs.chemrev.6b00159
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202001284
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202001284
ADMA202001284
Genre article
GrantInformation_xml – fundername: Program of Introducing Talents of Discipline to Universities
  funderid: B06006
– fundername: National Natural Science Foundation of China
  funderid: 21621004; 21576189; 21490583
– fundername: Natural Science Foundation of Tianjin
  funderid: 16JCZDJC36500
– fundername: National Science Fund for Distinguished Young Scholars
  funderid: 21125627
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4534-c14949604235df561f3aaf3b5d65b8843fbe9fc40cec9dfaa45bc37cf6e0d8bc3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:19:13 EDT 2025
Thu Jul 03 03:45:11 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Tue Jul 01 02:32:50 EDT 2025
Wed Jan 22 16:32:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4534-c14949604235df561f3aaf3b5d65b8843fbe9fc40cec9dfaa45bc37cf6e0d8bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0048-8849
PQID 2440608126
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2427518724
proquest_journals_2440608126
crossref_primary_10_1002_adma_202001284
crossref_citationtrail_10_1002_adma_202001284
wiley_primary_10_1002_adma_202001284_ADMA202001284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 4
2018 2016 2018; 375 309 11
2005; 310
2017 2016; 355 1
2018; 564
2017; 29
2015; 349
2009; 131
2020 2019 2019 2020; 32 48 48 49
2019 2019; 365 12
2018; 88
2018; 20
2017; 9
2017; 117
2016; 11
2018; 6
2010; 26
2015; 27
2018 2020; 10 49
2016; 514
2014 2015; 7 6
2017; 10
2019 2018; 8 561
2019; 119
2016; 138
2019 2018; 48 57
2018; 11
2014; 7
2018 2019; 10 141
2012; 41
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_25_2
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_21_2
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_14_2
e_1_2_5_15_1
e_1_2_5_13_2
e_1_2_5_14_1
e_1_2_5_16_2
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_31_2
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_31_3
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_2
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_18_2
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_18_4
e_1_2_5_18_3
e_1_2_5_19_2
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 11
  start-page: 1020
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 349
  start-page: 647
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 1320
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10 141
  start-page: 1227
  year: 2018 2019
  publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc.
– volume: 365 12
  start-page: 367 3313
  year: 2019 2019
  publication-title: Science Energy Environ. Sci.
– volume: 514
  start-page: 125
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 32 48 48 49
  start-page: 3811 2665 708
  year: 2020 2019 2019 2020
  publication-title: Adv. Mater. Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 29
  start-page: 5321
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 392
  year: 2019
  publication-title: Nat. Energy
– volume: 11
  start-page: 2696
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 26
  year: 2010
  publication-title: Langmuir
– volume: 41
  start-page: 5969
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 375 309 11
  start-page: 158 141 551
  year: 2018 2016 2018
  publication-title: J. Power Sources J. Power Sources Energy Environ. Sci.
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 275
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 131
  start-page: 8875
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 48 57
  start-page: 488 4850
  year: 2019 2018
  publication-title: Chem. Soc. Rev. Angew. Chem., Int. Ed.
– volume: 119
  year: 2019
  publication-title: Chem. Rev.
– volume: 7 6
  start-page: 2621 1986
  year: 2014 2015
  publication-title: ChemSusChem Polym. Chem.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  start-page: 4759
  year: 2017
  publication-title: Chem. Rev.
– volume: 355 1
  year: 2017 2016
  publication-title: Science Nat. Rev. Mater.
– volume: 8 561
  start-page: 343
  year: 2019 2018
  publication-title: eLife Nature
– volume: 11
  start-page: 3472
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 88
  start-page: 109
  year: 2018
  publication-title: Electrochem. Commun.
– volume: 27
  start-page: 5280
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3135
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 10 49
  start-page: 1180 4135
  year: 2018 2020
  publication-title: Nat. Chem. Chem. Soc. Rev.
– volume: 564
  start-page: 428
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 138
  start-page: 991
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 987
  year: 2017
  publication-title: Chem. Rev.
– ident: e_1_2_5_16_1
  doi: 10.1039/C8CS00376A
– ident: e_1_2_5_30_1
  doi: 10.1021/acs.chemrev.9b00157
– ident: e_1_2_5_5_1
  doi: 10.1038/nnano.2016.265
– ident: e_1_2_5_19_1
  doi: 10.1038/s41557-018-0141-5
– ident: e_1_2_5_29_1
  doi: 10.1021/jacs.5b11951
– ident: e_1_2_5_11_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_5_21_2
  doi: 10.1021/jacs.8b07670
– ident: e_1_2_5_13_1
  doi: 10.7554/eLife.41741
– ident: e_1_2_5_9_1
  doi: 10.1016/j.memsci.2018.07.055
– ident: e_1_2_5_1_1
  doi: 10.1038/s41560-019-0372-8
– ident: e_1_2_5_33_1
  doi: 10.1016/j.elecom.2018.01.021
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.201501406
– ident: e_1_2_5_18_4
  doi: 10.1039/C9CS00827F
– ident: e_1_2_5_21_1
  doi: 10.1021/acsami.8b14671
– ident: e_1_2_5_25_1
  doi: 10.1002/cssc.201402223
– ident: e_1_2_5_26_1
  doi: 10.1039/C8CP02211A
– ident: e_1_2_5_8_1
  doi: 10.1039/C6EE03079C
– ident: e_1_2_5_31_2
  doi: 10.1016/j.jpowsour.2016.01.091
– ident: e_1_2_5_27_1
  doi: 10.1021/acsami.7b06424
– ident: e_1_2_5_2_1
  doi: 10.1126/science.aax4608
– ident: e_1_2_5_20_1
  doi: 10.1021/la102703b
– ident: e_1_2_5_18_3
  doi: 10.1039/C8CS00919H
– ident: e_1_2_5_15_1
  doi: 10.1126/science.1120411
– ident: e_1_2_5_13_2
  doi: 10.1038/s41586-018-0511-6
– ident: e_1_2_5_17_1
  doi: 10.1021/ja9015765
– ident: e_1_2_5_25_2
  doi: 10.1039/C4PY01588F
– ident: e_1_2_5_10_1
  doi: 10.1021/acs.chemrev.6b00586
– ident: e_1_2_5_14_2
  doi: 10.1038/natrevmats.2016.68
– ident: e_1_2_5_16_2
  doi: 10.1002/anie.201710190
– ident: e_1_2_5_24_1
  doi: 10.1016/j.memsci.2016.04.027
– ident: e_1_2_5_31_1
  doi: 10.1016/j.jpowsour.2017.07.117
– ident: e_1_2_5_14_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_5_4_1
  doi: 10.1039/C7EE00294G
– ident: e_1_2_5_6_1
  doi: 10.1039/C4EE01303D
– ident: e_1_2_5_3_1
  doi: 10.1039/C8EE01419A
– ident: e_1_2_5_19_2
  doi: 10.1039/D0CS00278J
– ident: e_1_2_5_18_2
  doi: 10.1039/C9CS00322C
– ident: e_1_2_5_32_1
  doi: 10.1039/C8TA02193G
– ident: e_1_2_5_7_1
  doi: 10.1021/acs.chemmater.7b01494
– ident: e_1_2_5_12_1
  doi: 10.1126/science.aaa7484
– ident: e_1_2_5_31_3
  doi: 10.1039/C8EE00122G
– ident: e_1_2_5_28_1
  doi: 10.1039/C8EE02071J
– ident: e_1_2_5_2_2
  doi: 10.1039/C9EE00832B
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201902009
– ident: e_1_2_5_22_1
  doi: 10.1021/acs.chemrev.6b00159
SSID ssj0009606
Score 2.654955
Snippet The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy...
The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2001284
SubjectTerms Anion exchanging
anion transport
covalent organic framework membranes
de novo design
Energy conversion
Energy storage
Ion exchange
Membranes
phase‐transfer polymerization
side‐chain engineering
Title De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001284
https://www.proquest.com/docview/2440608126
https://www.proquest.com/docview/2427518724
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeDeNKD7-J0SgTBU7c2bdL0WDbHELaDONyt5PXiXGXrPPjpTdKXbYIIemtp0qbJ8yT_Nk9-AeBOBYpTIxw8XzIL1Q4Cj2OFvERjTijWSLr1FaMxGU6ixymebqziL_kQzQ836xmuv7YOzviyu4aGMum4QchNBlkgqA3Ysqroac2PsvLcwfZC7CUkojW10Ufd7ezbo9Jaam4KVjfiDA4Bq8taBpq8dlYF74jPbxjH_7zMETio5ChMS_s5BjtqfgL2NyCFp-Clr-A4_8hh3wV7wFzDXm7s04xWsFzJKeCgDvGCI_VmymH6T1i4gFw4mRULptmygOnc2ABsaOpnYDJ4eO4NvWo7Bk9EOIw8EViSDbGBNFhqo7t0yJgOOZYEc0qjUHOVaBH5QolEasYizEUYC02UL6k5PAe783yuLgBUmklhegNJsYhoEHIZxMoXGpnvlTjGsgW8ujkyUbHK7ZYZs6ykLKPMVljWVFgL3Dfp30tKx48p23XrZpW3LjMjcXxitBEiLXDbXDZ-ZidPTJXlK5sG2RmqGJlbINeUvzwpS_ujtDm7_EumK7Bnj8uQtjbYLRYrdW00UMFvnJ1_AQEn_Z4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFMefOAZg4EaU00hITCmJYyfpWFGqcrQDagVb5HOhNKhNGfj02E6TAhJCgi2HnTj2s_2P_fwzwLkKFE-McPB8ySxUOwg8ThX2GpryKKEaS7e-otuLOgNy-0RLb0K7FqbgQ1QDbrZmuPbaVnA7IH05p4Yy6cBB2M0GkUVYttt6W3x-62FOkLIC3eH2Quo1IpKU3EYfX36N_7VfmovNz5LV9TntDeBlagtXk-f6NOd18f4N5Pivz9mE9ZkiRc3ChLZgQY22Ye0Tp3AHHlsK9bK3DLWcvwfKNLrKjImaDgsVizkFapdeXqirXkxCTBOKcueTiwbDfMw0m-SoOTJmgCqg-i4M2tf9q44325HBE4SGxBOBhdlE1peGSm2klw4Z0yGnMqI8SUiouWpoQXyhRENqxgjlIoyFjpQvE3O4B0ujbKT2ASnNpDANgkyoIEkQchnEyhcam1-WOKayBl5ZHqmY4crtrhnDtAAt49RmWFplWA0uqvCvBajjx5BHZfGmswo7SY3K8SMjj3BUg7Pqtqlqdv7EZFk2tWGwnaSKsXkEdmX5y5vSZqvbrM4O_hLpFFY6_e59en_TuzuEVXu98HA7gqV8PFXHRhLl_MQZ_QfjWgHJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefoEgTOwD7JQoFPGnSTtkSx3aSY9VQFViraVpFb5F_XjaaqU134K_Hdpq0nTQhwS0_nMSx37O_iZ8_BjjTkRapFQ5BqLiDakdRIKjGQWaoYCk1WPn5FeMJG03J9xmdbc3ir_kQ7Q835xm-vXYO_qDM5QYaypXnBmE_GERewivCwswt3pDfbABSTp972l5Mg4yRtME2hvhy9_rdbmmjNbcVq-9yhm-BN5mtI03uLlaVuJC_n3Ac_-dt3sGbtR5F_dqADuCFnh_C_hal8Ah-5hpNyscS5T7aA5UGDUproLa7QvVUTomGTYwXGutfNh-2AUWVj8hF0_tqwQ1fVqg_t0aAWpz6MUyHX28Ho2C9HkMgCY1JICOHsmEukoYqY4WXiTk3saCKUZGmJDZCZ0aSUGqZKcM5oULGiTRMhyq1myfQmZdz_R6QNlxJ2xyolEqSRrFQUaJDabD9YEkSqroQNNVRyDWs3K2ZcV_UmGVcuAIr2gLrwnmb_qHGdDybstfUbrF212VhNU7IrDjCrAun7WnraG70xBZZuXJpsBuiSrC9BfZV-ZcnFf183G_3PvzLRV9g7zofFlffJj8-wmt3uA5v60GnWqz0J6uHKvHZm_wf1oMAeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+Novo+Design+of+Covalent+Organic+Framework+Membranes+toward+Ultrafast+Anion+Transport&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Xueyi&rft.au=Yang%2C+Yi&rft.au=Wu%2C+Hong&rft.au=He%2C+Guangwei&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=36&rft_id=info:doi/10.1002%2Fadma.202001284&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon