De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport
The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frame...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 36; pp. e2001284 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm−1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.
The de novo design of covalent organic frameworks (COFs) affords a dense and ordered alignment of quaternary ammonium‐functionalized side chains along the intrinsic channels within the frameworks, rendering one of the highest hydroxide conductivities among the reported anion‐exchange membranes (AEMs), and demonstrating the feasibility of COFs as the building blocks for high‐performance AEMs. |
---|---|
AbstractList | The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm−1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes. The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm-1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm-1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes. The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm−1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes. The de novo design of covalent organic frameworks (COFs) affords a dense and ordered alignment of quaternary ammonium‐functionalized side chains along the intrinsic channels within the frameworks, rendering one of the highest hydroxide conductivities among the reported anion‐exchange membranes (AEMs), and demonstrating the feasibility of COFs as the building blocks for high‐performance AEMs. The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase‐transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium‐functionalized side chains along the channels within the frameworks. The resultant self‐standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm −1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all‐organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes. |
Author | Zhang, Zhenjie Jiang, Zhongyi Wu, Hong Tongsh, Chasen Kong, Yan He, Guangwei Zhu, Kongying He, Xueyi Shi, Benbing Cao, Li Jiao, Kui Xu, Zhongxing Yang, Yi |
Author_xml | – sequence: 1 givenname: Xueyi surname: He fullname: He, Xueyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 2 givenname: Yi surname: Yang fullname: Yang, Yi organization: Nankai University – sequence: 3 givenname: Hong surname: Wu fullname: Wu, Hong organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 4 givenname: Guangwei surname: He fullname: He, Guangwei organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 5 givenname: Zhongxing surname: Xu fullname: Xu, Zhongxing organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 6 givenname: Yan surname: Kong fullname: Kong, Yan organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 7 givenname: Li surname: Cao fullname: Cao, Li organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 8 givenname: Benbing surname: Shi fullname: Shi, Benbing organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 9 givenname: Zhenjie surname: Zhang fullname: Zhang, Zhenjie organization: Nankai University – sequence: 10 givenname: Chasen surname: Tongsh fullname: Tongsh, Chasen organization: Tianjin University – sequence: 11 givenname: Kui surname: Jiao fullname: Jiao, Kui organization: Tianjin University – sequence: 12 givenname: Kongying surname: Zhu fullname: Zhu, Kongying organization: Tianjin University – sequence: 13 givenname: Zhongyi orcidid: 0000-0002-0048-8849 surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: International Campus of Tianjin University |
BookMark | eNqFkMFPwjAUhxuDiYhePTfx4mX42rVjOxIQNQG5QDwuXdeS4dZiOyD895ZgNCExnvqSft97v_yuUcdYoxC6I9AnAPRRlI3oU6AAhKbsAnUJpyRikPEO6kIW8yhLWHqFrr1fA0CWQNJF72OF3-zO4rHy1cpgq_HI7kStTIvnbiVMJfHEiUbtrfvAM9UUThjlcWv3wpV4WbdOaOFbPDSVNXgRfv3GuvYGXWpRe3X7_fbQcvK0GL1E0_nz62g4jSTjMYskYRkLSRiNeal5QnQshI4LXia8SFMW60JlWjKQSmalFoLxQsYDqRMFZRrGHno47d04-7lVvs2byktV1yGl3fqcMjrgJB1QFtD7M3Rtt86EdIFikEBKaBKo_omSznrvlM43rmqEO-QE8mPP-bHn_KfnILAzQVataEMboZqq_lvLTtq-qtXhnyP5cDwb_rpfKwaUow |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_169000 crossref_primary_10_1002_ange_202418435 crossref_primary_10_1016_j_memlet_2021_100008 crossref_primary_10_1021_acsami_1c08789 crossref_primary_10_1002_smll_202407260 crossref_primary_10_1002_ange_202116910 crossref_primary_10_1021_acsaem_4c01209 crossref_primary_10_3390_nano12203615 crossref_primary_10_1016_j_advmem_2024_100111 crossref_primary_10_1016_j_advmem_2024_100110 crossref_primary_10_1016_j_cej_2024_158745 crossref_primary_10_1007_s11426_022_1379_y crossref_primary_10_1002_advs_202407073 crossref_primary_10_1002_chem_202100671 crossref_primary_10_1039_D4TA04614E crossref_primary_10_1016_j_seppur_2024_126881 crossref_primary_10_1016_j_electacta_2021_139770 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1002_anie_202210466 crossref_primary_10_1002_ange_202419257 crossref_primary_10_1016_j_memsci_2021_119404 crossref_primary_10_1016_j_memsci_2021_119800 crossref_primary_10_1021_acsami_1c06891 crossref_primary_10_1016_j_jhazmat_2022_128705 crossref_primary_10_1021_acsami_4c19321 crossref_primary_10_1039_D1TA06439H crossref_primary_10_1002_anie_202110695 crossref_primary_10_1016_j_apsusc_2022_154363 crossref_primary_10_1016_j_cej_2024_156390 crossref_primary_10_1016_j_cej_2023_142304 crossref_primary_10_1016_j_memsci_2022_120451 crossref_primary_10_1002_anie_202410417 crossref_primary_10_1002_smll_202500927 crossref_primary_10_1016_j_matt_2021_06_045 crossref_primary_10_1016_j_cej_2021_133550 crossref_primary_10_1002_anie_202104106 crossref_primary_10_1016_j_enchem_2022_100079 crossref_primary_10_1039_D4EE02428A crossref_primary_10_1021_acs_iecr_1c00418 crossref_primary_10_3390_molecules29102189 crossref_primary_10_1016_j_esci_2022_03_004 crossref_primary_10_1016_j_seppur_2024_129903 crossref_primary_10_1002_adma_202211004 crossref_primary_10_1002_ange_202105725 crossref_primary_10_1016_j_ijhydene_2023_03_429 crossref_primary_10_1002_aic_17731 crossref_primary_10_1002_anie_202102965 crossref_primary_10_1016_j_desal_2022_116202 crossref_primary_10_1021_acs_chemmater_3c02552 crossref_primary_10_1002_aenm_202405045 crossref_primary_10_1002_app_56130 crossref_primary_10_1038_s41467_023_42584_w crossref_primary_10_1002_smll_202402822 crossref_primary_10_1039_D2RA03449B crossref_primary_10_1038_s41467_024_54844_4 crossref_primary_10_1002_adfm_202009970 crossref_primary_10_1021_acsnano_5c00165 crossref_primary_10_1021_acsami_2c01701 crossref_primary_10_1016_j_ccr_2022_214431 crossref_primary_10_1002_anie_202216549 crossref_primary_10_1016_j_matt_2021_03_017 crossref_primary_10_1016_j_enchem_2023_100101 crossref_primary_10_1039_D1CS00889G crossref_primary_10_1016_j_advmem_2021_100008 crossref_primary_10_1016_j_pmatsci_2024_101324 crossref_primary_10_1021_acsami_0c20203 crossref_primary_10_1039_D2TA06228C crossref_primary_10_1002_adma_202413022 crossref_primary_10_1002_anie_202105725 crossref_primary_10_1002_anie_202112271 crossref_primary_10_1021_jacs_3c08220 crossref_primary_10_1016_j_cej_2022_141094 crossref_primary_10_1021_acsnano_1c08804 crossref_primary_10_1021_acsami_2c07753 crossref_primary_10_1038_s41893_024_01364_0 crossref_primary_10_1002_ange_202501472 crossref_primary_10_1016_j_ijhydene_2023_03_332 crossref_primary_10_1002_marc_202200393 crossref_primary_10_1002_asia_202401454 crossref_primary_10_1002_ange_202105190 crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1021_acsenergylett_2c01681 crossref_primary_10_1016_j_memsci_2023_122120 crossref_primary_10_1002_ange_202410417 crossref_primary_10_1007_s12274_024_6902_4 crossref_primary_10_1021_acs_inorgchem_1c02741 crossref_primary_10_1021_jacs_2c00584 crossref_primary_10_1039_D1TA10506J crossref_primary_10_1002_ange_202210466 crossref_primary_10_1002_anie_202501472 crossref_primary_10_1002_ange_202112271 crossref_primary_10_1002_smll_202206041 crossref_primary_10_1016_j_cej_2023_147403 crossref_primary_10_1021_acsapm_2c01209 crossref_primary_10_1002_anie_202105190 crossref_primary_10_1016_j_jiec_2021_08_016 crossref_primary_10_1002_smll_202401635 crossref_primary_10_1002_batt_202400580 crossref_primary_10_1002_anie_202411535 crossref_primary_10_1007_s40242_022_1448_8 crossref_primary_10_1021_acsapm_3c01939 crossref_primary_10_1016_j_advmem_2022_100028 crossref_primary_10_1039_D4TA02087A crossref_primary_10_1021_acsnano_2c04273 crossref_primary_10_1002_adma_202405744 crossref_primary_10_1039_D1TA06579C crossref_primary_10_1021_acsami_4c03736 crossref_primary_10_1021_acsnano_3c06142 crossref_primary_10_1038_s44221_024_00379_3 crossref_primary_10_1007_s40242_022_1474_6 crossref_primary_10_1002_anie_202116910 crossref_primary_10_1021_jacs_3c10832 crossref_primary_10_1021_accountsmr_1c00083 crossref_primary_10_1021_acs_analchem_3c01637 crossref_primary_10_1038_s41467_024_52487_z crossref_primary_10_1021_jacs_2c03959 crossref_primary_10_1002_ange_202102373 crossref_primary_10_1002_adfm_202306202 crossref_primary_10_1002_adfm_202109210 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1016_j_seppur_2023_123463 crossref_primary_10_1016_j_cis_2024_103269 crossref_primary_10_1002_adma_202306675 crossref_primary_10_1021_acsaem_2c03348 crossref_primary_10_1002_ange_202113141 crossref_primary_10_1002_admt_202300829 crossref_primary_10_1002_ange_202216549 crossref_primary_10_1021_acsami_2c09503 crossref_primary_10_1002_adfm_202100083 crossref_primary_10_1002_advs_202100284 crossref_primary_10_1002_cjoc_202100929 crossref_primary_10_1002_adma_202305755 crossref_primary_10_1002_ange_202400764 crossref_primary_10_1002_ange_202402943 crossref_primary_10_1007_s40242_022_1507_1 crossref_primary_10_1039_D0CS01347A crossref_primary_10_1016_j_cartre_2025_100451 crossref_primary_10_1039_D3EE00142C crossref_primary_10_1038_s41467_022_31183_w crossref_primary_10_1016_j_memsci_2023_121610 crossref_primary_10_1039_D1TA03019A crossref_primary_10_1002_smll_202303757 crossref_primary_10_1021_jacs_4c16029 crossref_primary_10_1016_j_isci_2021_102369 crossref_primary_10_1039_D1PY00776A crossref_primary_10_3390_molecules27185853 crossref_primary_10_1002_anie_202102373 crossref_primary_10_1002_ange_202411535 crossref_primary_10_1002_ange_202104106 crossref_primary_10_1002_ange_202102965 crossref_primary_10_1016_j_trac_2025_118167 crossref_primary_10_1038_s41893_022_00870_3 crossref_primary_10_1002_anie_202113141 crossref_primary_10_1002_anie_202418435 crossref_primary_10_1002_aic_18571 crossref_primary_10_1039_D1TC02985A crossref_primary_10_1002_smll_202310791 crossref_primary_10_1021_accountsmr_4c00156 crossref_primary_10_1039_D1TA08771A crossref_primary_10_1021_acs_iecr_3c02384 crossref_primary_10_1039_D0TA12486A crossref_primary_10_1016_j_ccr_2021_213873 crossref_primary_10_1021_acssuschemeng_2c01071 crossref_primary_10_1016_j_memsci_2022_120754 crossref_primary_10_1039_D4CS00409D crossref_primary_10_1021_acsaem_1c01233 crossref_primary_10_1016_j_eurpolymj_2023_111939 crossref_primary_10_1039_D4CE00995A crossref_primary_10_1002_anie_202400764 crossref_primary_10_1002_anie_202402943 crossref_primary_10_1016_j_ijhydene_2022_06_255 crossref_primary_10_1002_ange_202110695 crossref_primary_10_1002_anie_202419257 crossref_primary_10_1002_adma_202104404 crossref_primary_10_1002_advs_202103814 crossref_primary_10_1038_s41467_022_28643_8 |
Cites_doi | 10.1039/C8CS00376A 10.1021/acs.chemrev.9b00157 10.1038/nnano.2016.265 10.1038/s41557-018-0141-5 10.1021/jacs.5b11951 10.1039/c2cs35115c 10.1021/jacs.8b07670 10.7554/eLife.41741 10.1016/j.memsci.2018.07.055 10.1038/s41560-019-0372-8 10.1016/j.elecom.2018.01.021 10.1002/adma.201501406 10.1039/C9CS00827F 10.1021/acsami.8b14671 10.1002/cssc.201402223 10.1039/C8CP02211A 10.1039/C6EE03079C 10.1016/j.jpowsour.2016.01.091 10.1021/acsami.7b06424 10.1126/science.aax4608 10.1021/la102703b 10.1039/C8CS00919H 10.1126/science.1120411 10.1038/s41586-018-0511-6 10.1021/ja9015765 10.1039/C4PY01588F 10.1021/acs.chemrev.6b00586 10.1038/natrevmats.2016.68 10.1002/anie.201710190 10.1016/j.memsci.2016.04.027 10.1016/j.jpowsour.2017.07.117 10.1126/science.aal1585 10.1039/C7EE00294G 10.1039/C4EE01303D 10.1039/C8EE01419A 10.1039/D0CS00278J 10.1039/C9CS00322C 10.1039/C8TA02193G 10.1021/acs.chemmater.7b01494 10.1126/science.aaa7484 10.1039/C8EE00122G 10.1039/C8EE02071J 10.1039/C9EE00832B 10.1002/adma.201902009 10.1021/acs.chemrev.6b00159 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202001284 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202001284 ADMA202001284 |
Genre | article |
GrantInformation_xml | – fundername: Program of Introducing Talents of Discipline to Universities funderid: B06006 – fundername: National Natural Science Foundation of China funderid: 21621004; 21576189; 21490583 – fundername: Natural Science Foundation of Tianjin funderid: 16JCZDJC36500 – fundername: National Science Fund for Distinguished Young Scholars funderid: 21125627 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4534-c14949604235df561f3aaf3b5d65b8843fbe9fc40cec9dfaa45bc37cf6e0d8bc3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:19:13 EDT 2025 Thu Jul 03 03:45:11 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Tue Jul 01 02:32:50 EDT 2025 Wed Jan 22 16:32:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4534-c14949604235df561f3aaf3b5d65b8843fbe9fc40cec9dfaa45bc37cf6e0d8bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0048-8849 |
PQID | 2440608126 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2427518724 proquest_journals_2440608126 crossref_primary_10_1002_adma_202001284 crossref_citationtrail_10_1002_adma_202001284 wiley_primary_10_1002_adma_202001284_ADMA202001284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 4 2018 2016 2018; 375 309 11 2005; 310 2017 2016; 355 1 2018; 564 2017; 29 2015; 349 2009; 131 2020 2019 2019 2020; 32 48 48 49 2019 2019; 365 12 2018; 88 2018; 20 2017; 9 2017; 117 2016; 11 2018; 6 2010; 26 2015; 27 2018 2020; 10 49 2016; 514 2014 2015; 7 6 2017; 10 2019 2018; 8 561 2019; 119 2016; 138 2019 2018; 48 57 2018; 11 2014; 7 2018 2019; 10 141 2012; 41 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_25_2 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_21_2 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_14_2 e_1_2_5_15_1 e_1_2_5_13_2 e_1_2_5_14_1 e_1_2_5_16_2 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_31_2 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_31_3 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_2 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_18_2 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_18_4 e_1_2_5_18_3 e_1_2_5_19_2 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 11 start-page: 1020 year: 2016 publication-title: Nat. Nanotechnol. – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 349 start-page: 647 year: 2015 publication-title: Science – volume: 10 start-page: 1320 year: 2017 publication-title: Energy Environ. Sci. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 141 start-page: 1227 year: 2018 2019 publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc. – volume: 365 12 start-page: 367 3313 year: 2019 2019 publication-title: Science Energy Environ. Sci. – volume: 514 start-page: 125 year: 2016 publication-title: J. Membr. Sci. – volume: 32 48 48 49 start-page: 3811 2665 708 year: 2020 2019 2019 2020 publication-title: Adv. Mater. Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 29 start-page: 5321 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 392 year: 2019 publication-title: Nat. Energy – volume: 11 start-page: 2696 year: 2018 publication-title: Energy Environ. Sci. – volume: 26 year: 2010 publication-title: Langmuir – volume: 41 start-page: 5969 year: 2012 publication-title: Chem. Soc. Rev. – volume: 375 309 11 start-page: 158 141 551 year: 2018 2016 2018 publication-title: J. Power Sources J. Power Sources Energy Environ. Sci. – volume: 20 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 275 year: 2017 publication-title: Energy Environ. Sci. – volume: 131 start-page: 8875 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 48 57 start-page: 488 4850 year: 2019 2018 publication-title: Chem. Soc. Rev. Angew. Chem., Int. Ed. – volume: 119 year: 2019 publication-title: Chem. Rev. – volume: 7 6 start-page: 2621 1986 year: 2014 2015 publication-title: ChemSusChem Polym. Chem. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 117 start-page: 4759 year: 2017 publication-title: Chem. Rev. – volume: 355 1 year: 2017 2016 publication-title: Science Nat. Rev. Mater. – volume: 8 561 start-page: 343 year: 2019 2018 publication-title: eLife Nature – volume: 11 start-page: 3472 year: 2018 publication-title: Energy Environ. Sci. – volume: 88 start-page: 109 year: 2018 publication-title: Electrochem. Commun. – volume: 27 start-page: 5280 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 3135 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 49 start-page: 1180 4135 year: 2018 2020 publication-title: Nat. Chem. Chem. Soc. Rev. – volume: 564 start-page: 428 year: 2018 publication-title: J. Membr. Sci. – volume: 138 start-page: 991 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 987 year: 2017 publication-title: Chem. Rev. – ident: e_1_2_5_16_1 doi: 10.1039/C8CS00376A – ident: e_1_2_5_30_1 doi: 10.1021/acs.chemrev.9b00157 – ident: e_1_2_5_5_1 doi: 10.1038/nnano.2016.265 – ident: e_1_2_5_19_1 doi: 10.1038/s41557-018-0141-5 – ident: e_1_2_5_29_1 doi: 10.1021/jacs.5b11951 – ident: e_1_2_5_11_1 doi: 10.1039/c2cs35115c – ident: e_1_2_5_21_2 doi: 10.1021/jacs.8b07670 – ident: e_1_2_5_13_1 doi: 10.7554/eLife.41741 – ident: e_1_2_5_9_1 doi: 10.1016/j.memsci.2018.07.055 – ident: e_1_2_5_1_1 doi: 10.1038/s41560-019-0372-8 – ident: e_1_2_5_33_1 doi: 10.1016/j.elecom.2018.01.021 – ident: e_1_2_5_23_1 doi: 10.1002/adma.201501406 – ident: e_1_2_5_18_4 doi: 10.1039/C9CS00827F – ident: e_1_2_5_21_1 doi: 10.1021/acsami.8b14671 – ident: e_1_2_5_25_1 doi: 10.1002/cssc.201402223 – ident: e_1_2_5_26_1 doi: 10.1039/C8CP02211A – ident: e_1_2_5_8_1 doi: 10.1039/C6EE03079C – ident: e_1_2_5_31_2 doi: 10.1016/j.jpowsour.2016.01.091 – ident: e_1_2_5_27_1 doi: 10.1021/acsami.7b06424 – ident: e_1_2_5_2_1 doi: 10.1126/science.aax4608 – ident: e_1_2_5_20_1 doi: 10.1021/la102703b – ident: e_1_2_5_18_3 doi: 10.1039/C8CS00919H – ident: e_1_2_5_15_1 doi: 10.1126/science.1120411 – ident: e_1_2_5_13_2 doi: 10.1038/s41586-018-0511-6 – ident: e_1_2_5_17_1 doi: 10.1021/ja9015765 – ident: e_1_2_5_25_2 doi: 10.1039/C4PY01588F – ident: e_1_2_5_10_1 doi: 10.1021/acs.chemrev.6b00586 – ident: e_1_2_5_14_2 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_5_16_2 doi: 10.1002/anie.201710190 – ident: e_1_2_5_24_1 doi: 10.1016/j.memsci.2016.04.027 – ident: e_1_2_5_31_1 doi: 10.1016/j.jpowsour.2017.07.117 – ident: e_1_2_5_14_1 doi: 10.1126/science.aal1585 – ident: e_1_2_5_4_1 doi: 10.1039/C7EE00294G – ident: e_1_2_5_6_1 doi: 10.1039/C4EE01303D – ident: e_1_2_5_3_1 doi: 10.1039/C8EE01419A – ident: e_1_2_5_19_2 doi: 10.1039/D0CS00278J – ident: e_1_2_5_18_2 doi: 10.1039/C9CS00322C – ident: e_1_2_5_32_1 doi: 10.1039/C8TA02193G – ident: e_1_2_5_7_1 doi: 10.1021/acs.chemmater.7b01494 – ident: e_1_2_5_12_1 doi: 10.1126/science.aaa7484 – ident: e_1_2_5_31_3 doi: 10.1039/C8EE00122G – ident: e_1_2_5_28_1 doi: 10.1039/C8EE02071J – ident: e_1_2_5_2_2 doi: 10.1039/C9EE00832B – ident: e_1_2_5_18_1 doi: 10.1002/adma.201902009 – ident: e_1_2_5_22_1 doi: 10.1021/acs.chemrev.6b00159 |
SSID | ssj0009606 |
Score | 2.654955 |
Snippet | The emergence of all‐organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy... The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2001284 |
SubjectTerms | Anion exchanging anion transport covalent organic framework membranes de novo design Energy conversion Energy storage Ion exchange Membranes phase‐transfer polymerization side‐chain engineering |
Title | De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001284 https://www.proquest.com/docview/2440608126 https://www.proquest.com/docview/2427518724 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeDeNKD7-J0SgTBU7c2bdL0WDbHELaDONyt5PXiXGXrPPjpTdKXbYIIemtp0qbJ8yT_Nk9-AeBOBYpTIxw8XzIL1Q4Cj2OFvERjTijWSLr1FaMxGU6ixymebqziL_kQzQ836xmuv7YOzviyu4aGMum4QchNBlkgqA3Ysqroac2PsvLcwfZC7CUkojW10Ufd7ezbo9Jaam4KVjfiDA4Bq8taBpq8dlYF74jPbxjH_7zMETio5ChMS_s5BjtqfgL2NyCFp-Clr-A4_8hh3wV7wFzDXm7s04xWsFzJKeCgDvGCI_VmymH6T1i4gFw4mRULptmygOnc2ABsaOpnYDJ4eO4NvWo7Bk9EOIw8EViSDbGBNFhqo7t0yJgOOZYEc0qjUHOVaBH5QolEasYizEUYC02UL6k5PAe783yuLgBUmklhegNJsYhoEHIZxMoXGpnvlTjGsgW8ujkyUbHK7ZYZs6ykLKPMVljWVFgL3Dfp30tKx48p23XrZpW3LjMjcXxitBEiLXDbXDZ-ZidPTJXlK5sG2RmqGJlbINeUvzwpS_ujtDm7_EumK7Bnj8uQtjbYLRYrdW00UMFvnJ1_AQEn_Z4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFMefOAZg4EaU00hITCmJYyfpWFGqcrQDagVb5HOhNKhNGfj02E6TAhJCgi2HnTj2s_2P_fwzwLkKFE-McPB8ySxUOwg8ThX2GpryKKEaS7e-otuLOgNy-0RLb0K7FqbgQ1QDbrZmuPbaVnA7IH05p4Yy6cBB2M0GkUVYttt6W3x-62FOkLIC3eH2Quo1IpKU3EYfX36N_7VfmovNz5LV9TntDeBlagtXk-f6NOd18f4N5Pivz9mE9ZkiRc3ChLZgQY22Ye0Tp3AHHlsK9bK3DLWcvwfKNLrKjImaDgsVizkFapdeXqirXkxCTBOKcueTiwbDfMw0m-SoOTJmgCqg-i4M2tf9q44325HBE4SGxBOBhdlE1peGSm2klw4Z0yGnMqI8SUiouWpoQXyhRENqxgjlIoyFjpQvE3O4B0ujbKT2ASnNpDANgkyoIEkQchnEyhcam1-WOKayBl5ZHqmY4crtrhnDtAAt49RmWFplWA0uqvCvBajjx5BHZfGmswo7SY3K8SMjj3BUg7Pqtqlqdv7EZFk2tWGwnaSKsXkEdmX5y5vSZqvbrM4O_hLpFFY6_e59en_TuzuEVXu98HA7gqV8PFXHRhLl_MQZ_QfjWgHJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefoEgTOwD7JQoFPGnSTtkSx3aSY9VQFViraVpFb5F_XjaaqU134K_Hdpq0nTQhwS0_nMSx37O_iZ8_BjjTkRapFQ5BqLiDakdRIKjGQWaoYCk1WPn5FeMJG03J9xmdbc3ir_kQ7Q835xm-vXYO_qDM5QYaypXnBmE_GERewivCwswt3pDfbABSTp972l5Mg4yRtME2hvhy9_rdbmmjNbcVq-9yhm-BN5mtI03uLlaVuJC_n3Ac_-dt3sGbtR5F_dqADuCFnh_C_hal8Ah-5hpNyscS5T7aA5UGDUproLa7QvVUTomGTYwXGutfNh-2AUWVj8hF0_tqwQ1fVqg_t0aAWpz6MUyHX28Ho2C9HkMgCY1JICOHsmEukoYqY4WXiTk3saCKUZGmJDZCZ0aSUGqZKcM5oULGiTRMhyq1myfQmZdz_R6QNlxJ2xyolEqSRrFQUaJDabD9YEkSqroQNNVRyDWs3K2ZcV_UmGVcuAIr2gLrwnmb_qHGdDybstfUbrF212VhNU7IrDjCrAun7WnraG70xBZZuXJpsBuiSrC9BfZV-ZcnFf183G_3PvzLRV9g7zofFlffJj8-wmt3uA5v60GnWqz0J6uHKvHZm_wf1oMAeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+Novo+Design+of+Covalent+Organic+Framework+Membranes+toward+Ultrafast+Anion+Transport&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Xueyi&rft.au=Yang%2C+Yi&rft.au=Wu%2C+Hong&rft.au=He%2C+Guangwei&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=36&rft_id=info:doi/10.1002%2Fadma.202001284&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |