Metal–Organic Frameworks Based on Group 3 and 4 Metals

Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within thes...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 44; pp. e2004414 - n/a
Main Authors Feng, Liang, Pang, Jiandong, She, Ping, Li, Jia‐Luo, Qin, Jun‐Sheng, Du, Dong‐Ying, Zhou, Hong‐Cai
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications. Metal–organic frameworks (MOFs) based on group 3 and 4 metals with high chemical stability, structural diversity, and various interesting properties are reviewed. Cluster and framework chemistry of group 3 and 4 metals are expected to provide a timely summary on MOF development, which shall guide the discovery and development of stable and functional MOFs for practical applications.
AbstractList Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.
Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications. Metal–organic frameworks (MOFs) based on group 3 and 4 metals with high chemical stability, structural diversity, and various interesting properties are reviewed. Cluster and framework chemistry of group 3 and 4 metals are expected to provide a timely summary on MOF development, which shall guide the discovery and development of stable and functional MOFs for practical applications.
Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.
Author Feng, Liang
Li, Jia‐Luo
Du, Dong‐Ying
Zhou, Hong‐Cai
She, Ping
Pang, Jiandong
Qin, Jun‐Sheng
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0001-9693-1595
  surname: Feng
  fullname: Feng, Liang
  organization: Texas A&M University
– sequence: 2
  givenname: Jiandong
  surname: Pang
  fullname: Pang, Jiandong
  organization: Texas A&M University
– sequence: 3
  givenname: Ping
  surname: She
  fullname: She, Ping
  organization: Jilin University
– sequence: 4
  givenname: Jia‐Luo
  surname: Li
  fullname: Li, Jia‐Luo
  organization: Texas A&M University
– sequence: 5
  givenname: Jun‐Sheng
  orcidid: 0000-0003-2531-552X
  surname: Qin
  fullname: Qin, Jun‐Sheng
  email: qin@jlu.edu.cn
  organization: Jilin University
– sequence: 6
  givenname: Dong‐Ying
  surname: Du
  fullname: Du, Dong‐Ying
  organization: Northeast Normal University
– sequence: 7
  givenname: Hong‐Cai
  surname: Zhou
  fullname: Zhou, Hong‐Cai
  email: zhou@chem.tamu.edu
  organization: Texas A&M University
BookMark eNqFkL1OwzAUhS1UJEphZbbEwpJiO_6Jx1JoQWrVBWbLSWyUktjFTlV14x14Q56ElCKQKiGms3zf0b3nFPScdwaAC4yGGCFyrctGDwkiCFGK6RHoY0ZwQpFkPdBHMmWJ5DQ7AacxLhFCkiPeB9nctLr-eHtfhGftqgJOgm7MxoeXCG90NCX0Dk6DX69gCrUrIYVfRjwDx7YLc_6dA_A0uXsc3yezxfRhPJolBWUpTXLBiCSSWpMXpZUEZ2WOrGDCWG7zDBNRiqzgOjelxoYYXpQZxRnjkudCEJsOwNW-dxX869rEVjVVLExda2f8OirSPUuYwJJ26OUBuvTr4LrrOopxIVjKUUfRPVUEH2MwVhVVq9vKuzboqlYYqd2cajen-pmz04YH2ipUjQ7bvwW5FzZVbbb_0Gp0Ox_9up9ia4h9
CitedBy_id crossref_primary_10_1002_smll_202102903
crossref_primary_10_1016_j_ccr_2021_214011
crossref_primary_10_1002_ange_202011653
crossref_primary_10_1039_D2SC05915K
crossref_primary_10_1016_j_cscm_2024_e03586
crossref_primary_10_1016_j_ccr_2023_215427
crossref_primary_10_1002_adfm_202404126
crossref_primary_10_1002_adma_202305611
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1021_acs_inorgchem_2c00660
crossref_primary_10_1039_D0TC04154H
crossref_primary_10_1002_ange_202306360
crossref_primary_10_1021_acs_inorgchem_2c00023
crossref_primary_10_1016_j_ccr_2021_213886
crossref_primary_10_1002_smll_202310742
crossref_primary_10_1038_s41467_022_30345_0
crossref_primary_10_1002_ange_202017042
crossref_primary_10_1039_D1RA03106F
crossref_primary_10_1039_D2SC02683J
crossref_primary_10_1039_D2CY00421F
crossref_primary_10_1002_smll_202308743
crossref_primary_10_1021_jacs_0c11546
crossref_primary_10_1021_acs_cgd_4c00030
crossref_primary_10_1021_acs_inorgchem_1c02078
crossref_primary_10_1039_D1DT01477C
crossref_primary_10_1021_acs_iecr_4c00458
crossref_primary_10_1016_j_ccr_2023_215235
crossref_primary_10_1002_adma_202300177
crossref_primary_10_1002_anie_202422517
crossref_primary_10_1002_anie_202011653
crossref_primary_10_1039_D2SC05037D
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1002_anie_202306360
crossref_primary_10_1021_acsami_2c01671
crossref_primary_10_1155_2023_4991015
crossref_primary_10_1021_acs_inorgchem_1c01191
crossref_primary_10_1002_chem_202005151
crossref_primary_10_4028_p_fdqs03
crossref_primary_10_1021_jacs_4c02327
crossref_primary_10_1002_ange_202216269
crossref_primary_10_1039_D1MA01027A
crossref_primary_10_1039_D4SC03946G
crossref_primary_10_1002_anie_202017042
crossref_primary_10_1021_jacs_4c06088
crossref_primary_10_1039_D4QM00187G
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1021_acs_jpcc_0c11187
crossref_primary_10_1021_acsmaterialslett_4c01957
crossref_primary_10_1021_cbe_4c00009
crossref_primary_10_1021_jacsau_2c00635
crossref_primary_10_1039_D3CE01022H
crossref_primary_10_1002_chem_202301760
crossref_primary_10_1016_j_cej_2024_152818
crossref_primary_10_1016_j_jcat_2021_11_017
crossref_primary_10_1021_acssensors_3c02069
crossref_primary_10_1002_cptc_202300031
crossref_primary_10_1002_ange_202422517
crossref_primary_10_1002_cjoc_202200218
crossref_primary_10_1002_smsc_202400369
crossref_primary_10_1016_j_jcis_2024_10_133
crossref_primary_10_1021_acsami_1c21663
crossref_primary_10_1039_D4DT00021H
crossref_primary_10_1039_D3TC04365G
crossref_primary_10_1039_D4RA05183A
crossref_primary_10_1016_j_poly_2024_116879
crossref_primary_10_1039_D2CC03090J
crossref_primary_10_1016_j_inoche_2022_109611
crossref_primary_10_1021_acs_inorgchem_1c02257
crossref_primary_10_1021_acs_inorgchem_1c03466
crossref_primary_10_1002_anie_202216269
crossref_primary_10_1002_smm2_1016
crossref_primary_10_1007_s10904_024_03397_6
crossref_primary_10_1007_s10570_021_04267_x
crossref_primary_10_1021_acs_cgd_2c00635
crossref_primary_10_1134_S0965544122050127
crossref_primary_10_1039_D3DT01028G
crossref_primary_10_1021_acsami_1c03083
crossref_primary_10_1002_adma_202407435
crossref_primary_10_1134_S0022476623060148
crossref_primary_10_1016_j_rser_2021_111362
crossref_primary_10_1016_j_ccr_2023_215175
crossref_primary_10_1039_D2CC06948B
crossref_primary_10_1021_acs_inorgchem_3c01079
crossref_primary_10_1021_acsami_2c15440
crossref_primary_10_1021_acs_cgd_4c01056
crossref_primary_10_1021_acs_chemrev_2c00879
crossref_primary_10_1021_acs_inorgchem_4c04488
crossref_primary_10_1016_j_inoche_2021_108896
crossref_primary_10_1007_s40843_022_2209_9
crossref_primary_10_3390_molecules26165044
crossref_primary_10_1021_acsami_4c04219
Cites_doi 10.1021/acs.chemmater.9b02462
10.1021/ja512311a
10.1002/adma.201806445
10.1016/j.poly.2019.114276
10.1021/ja8057953
10.1021/cr300014x
10.1038/ncomms8575
10.1021/acsami.8b09333
10.1021/acs.cgd.9b00635
10.1021/acscatal.6b02923
10.1002/chem.201700493
10.1039/C5CS00837A
10.1039/C8TA01060A
10.1021/acs.cgd.6b00698
10.1039/C9DT01056D
10.1038/s41467-019-11912-4
10.1021/jacs.6b03263
10.1016/j.poly.2018.10.011
10.1007/s11706-018-0444-x
10.1016/j.cej.2019.123343
10.1021/jacs.8b12530
10.1021/acs.inorgchem.9b03639
10.1021/acsami.9b05091
10.1021/acs.chemmater.9b00524
10.1039/C8NJ04231D
10.1039/C8SC00752G
10.1016/j.dyepig.2019.107862
10.1002/anie.201901786
10.1080/00958972.2019.1599870
10.1021/jacs.9b00122
10.1039/C9SC01241A
10.1016/j.ccr.2018.09.009
10.1021/acsanm.9b00188
10.1039/C8SC03168A
10.1021/acscentsci.8b00073
10.1021/jacs.8b04745
10.1021/jacs.9b13070
10.1021/jacs.9b04915
10.1021/jacs.6b04501
10.1039/C9NJ02059D
10.1039/C9CE01730E
10.1021/acs.cgd.8b01779
10.1039/C8QI01166D
10.1039/c3cc48381a
10.1021/acssuschemeng.9b00062
10.1039/C9CS00250B
10.1021/jacs.0c01895
10.1038/s41929-019-0405-5
10.1021/acs.inorgchem.8b00465
10.1126/science.1137975
10.1021/jacs.9b11260
10.1039/C8TC03036G
10.1021/acsami.0c06672
10.1039/C9DT03335A
10.1021/jacs.9b07700
10.1038/nature06599
10.1002/anie.202000702
10.1021/ja406844r
10.1038/s41467-018-07414-4
10.1021/cr2003272
10.1021/jacs.9b05580
10.1021/acs.inorgchem.9b01238
10.1021/jacs.9b02294
10.1021/acs.inorgchem.8b03310
10.1021/acs.inorgchem.9b01205
10.1021/acsami.9b16470
10.1039/C9CC06235A
10.1021/acs.inorgchem.9b02517
10.1038/s41467-018-04152-5
10.1021/acs.cgd.8b01637
10.1039/C8NJ01077C
10.1021/jacs.7b10643
10.1021/jacs.7b10565
10.1002/anie.201802661
10.1039/C4CS00003J
10.1021/acs.jced.9b00207
10.1039/C9DT01454C
10.1021/jacs.9b05964
10.1039/C8NJ04315A
10.1021/jacs.8b08433
10.1039/C8CC03841D
10.1021/ja408084j
10.1021/acs.inorgchem.9b00616
10.1002/ijch.201800095
10.1021/cm403726v
10.1002/anie.201812509
10.1021/jacs.7b13510
10.1126/science.1116275
10.1002/anie.201809762
10.1039/C8NJ04956D
10.1021/acsami.9b06151
10.1021/acs.inorgchem.9b01666
10.1002/anie.201913135
10.1021/jacs.9b01839
10.1016/j.jssc.2019.05.048
10.1021/jacs.6b08176
10.1021/acs.inorgchem.8b03299
10.1021/jacs.9b01920
10.1002/adma.201805871
10.1021/acs.jpcc.8b06198
10.1039/C9SC01301F
10.1021/jacs.8b04277
10.1021/ic4018536
10.1016/j.chempr.2019.10.012
10.1039/C3CC49440C
10.1021/jacs.9b07084
10.1021/acs.inorgchem.8b00505
10.1039/C7QI00658F
10.1021/jacs.8b11042
10.1038/s41467-018-05659-7
10.1002/cssc.202000306
10.1039/C7CS00001D
10.1021/ic300825s
10.1038/s41560-018-0261-6
10.1002/adma.201704303
10.1039/C7DT00159B
10.1039/C8CC03744B
10.1002/anie.201709186
10.1039/C8TC04442B
10.1039/C7DT03179C
10.1021/jacs.5b04695
10.1126/science.1220131
10.1021/acsami.0c03336
10.1021/jacs.8b07411
10.1016/j.ccr.2017.12.013
10.1039/B800489G
10.1016/j.jssc.2017.12.034
10.1002/anie.201910717
10.1002/adma.201704388
10.1002/chem.201901671
10.1016/j.jlumin.2018.09.021
10.1021/acs.inorgchem.9b02951
10.1021/acsami.8b19211
10.1039/C8DT00389K
10.1039/C9TC05471E
10.1016/j.ccr.2019.213065
10.1039/C9DT02032B
10.1021/ja510525s
10.1021/jacs.8b06789
10.1021/acsami.9b17569
10.1016/j.poly.2018.03.002
10.1021/jacs.9b13072
10.1021/jacs.9b02947
10.1021/acs.inorgchem.9b02668
10.1016/j.poly.2017.12.030
10.1038/s41467-019-08434-4
10.1021/jacs.7b09973
10.1039/C7CC09780H
10.1016/j.poly.2018.11.006
10.1039/C9ME00062C
10.1021/ja500330a
10.1039/C8DT04267E
10.1002/anie.201204475
10.1002/advs.201901855
10.1126/science.aam7851
10.1021/jacs.9b06187
10.1080/15421406.2018.1541294
10.1002/ejic.201801284
10.1021/jacs.9b05599
10.1039/C9RA03707A
10.1039/C8DT01844H
10.1039/C9NJ04893F
10.1016/j.chempr.2018.03.001
10.1016/j.trechm.2019.03.010
10.1002/anie.201809961
10.1016/j.jssc.2020.121246
10.1002/advs.201802059
10.1039/C7NJ03153J
10.1021/acs.inorgchem.0c00018
10.1021/jacs.8b07050
10.1016/j.optmat.2017.05.037
10.1016/j.inoche.2018.03.023
10.1021/acsami.8b14118
10.1002/ejic.201900643
10.1021/acs.inorgchem.8b03132
10.1016/j.jssc.2019.120900
10.1021/jacs.9b06711
10.1021/acsami.7b16163
10.1126/science.1230444
10.1021/jacs.9b04737
10.1039/C8DT01477A
10.1039/C9TA01942A
10.1016/j.jssc.2019.01.007
10.1039/C7DT04204C
10.1016/j.ccr.2019.01.017
10.1021/jacs.8b11230
10.1021/ja036832p
10.1021/acsanm.9b01534
10.1126/science.1067208
10.1007/s40843-019-1169-9
10.1039/C8SC04220A
10.1002/anie.201808568
10.1016/j.jssc.2019.05.051
10.1021/acs.inorgchem.8b00919
10.1039/C9SC06500H
10.1039/C9DT04158C
10.1002/slct.201801610
10.1002/anie.201810156
10.1021/acs.inorgchem.9b02238
10.1016/j.matt.2019.02.002
10.1016/j.inoche.2019.107499
10.1021/acs.inorgchem.8b00751
10.1021/jacs.9b06179
10.1002/adma.201802329
10.1016/j.jlumin.2018.06.040
10.1021/acs.inorgchem.8b00586
10.1021/ja903726m
10.1039/C8CC03121E
10.1002/chem.201901610
10.1021/acs.inorgchem.8b03511
10.1016/j.ica.2018.05.027
10.1016/j.micromeso.2018.08.030
10.1016/j.ica.2019.119201
10.1021/ja401429x
10.1039/C8QI00083B
10.1039/C8CE01064A
10.1021/acsami.0c05631
10.1039/C8CC03496F
10.1021/acs.chemmater.9b01258
10.1016/j.inoche.2018.09.019
10.1002/cplu.201600137
10.1016/j.matt.2019.11.002
10.1016/j.ica.2017.06.048
10.1039/C8CC05225E
10.1021/acs.inorgchem.7b02255
10.1021/acs.inorgchem.9b02397
10.1007/s10876-018-01490-8
10.1039/C9SC06009J
10.1038/46248
10.1126/science.aam8743
10.1021/acsami.0c05912
10.1021/acs.inorgchem.9b00293
10.1021/acsami.7b00918
10.1021/acs.cgd.9b00671
10.1021/acs.inorgchem.0c00373
10.1021/ic201482n
10.1021/acs.inorgchem.7b03063
10.1039/C4CS00081A
10.1021/acs.accounts.0c00106
10.1021/ja408959g
10.1039/C8CE00008E
10.1021/acs.inorgchem.8b02123
10.1039/C8DT02609B
10.1039/C8DT04602F
10.1039/C9DT03057C
10.1016/j.inoche.2018.09.013
10.1002/adma.201805088
10.1039/C9TA03126J
10.1021/ja512762r
10.1021/jacs.8b04886
10.1039/C7DT00172J
10.1039/C9DT02419K
10.1007/s10904-018-0869-9
10.1016/j.chempr.2018.05.017
10.1021/ja5006866
10.1016/j.jssc.2020.121224
10.1002/chem.201802627
10.1021/acsami.8b03987
10.1002/ejic.201600394
10.3389/fchem.2019.00036
10.1002/anie.201904347
10.1080/24701556.2019.1569688
10.1016/j.chempr.2019.04.013
10.1021/jacs.6b09113
10.1016/j.jlumin.2019.02.048
10.1002/anie.202000158
10.1038/s41467-018-04034-w
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202004414
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202004414
ADMA202004414
Genre reviewArticle
GrantInformation_xml – fundername: Welch Foundation
  funderid: A‐0030
– fundername: National Natural Science Foundation of China
  funderid: 21901084; 21621001
– fundername: 111 Project
  funderid: B17020
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4534-b7529294febcdf9218db0f757ef6fb8127d78c6abeda1e2e6cd84185696b772f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:47:40 EDT 2025
Fri Jul 25 22:29:16 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Tue Jul 01 02:32:52 EDT 2025
Wed Jan 22 16:33:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4534-b7529294febcdf9218db0f757ef6fb8127d78c6abeda1e2e6cd84185696b772f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2531-552X
0000-0001-9693-1595
PQID 2456775360
PQPubID 2045203
PageCount 31
ParticipantIDs proquest_miscellaneous_2441257194
proquest_journals_2456775360
crossref_citationtrail_10_1002_adma_202004414
crossref_primary_10_1002_adma_202004414
wiley_primary_10_1002_adma_202004414_ADMA202004414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 2019
2019; 11
2019; 10
2020; 285
2018; 203
2019; 19
2016; 2016
2020; 13
2020; 12
2019; 205
2020; 11
2018; 42
2014; 136
2018; 48
2018; 47
2018; 6
2018; 9
2018; 3
2018; 5
2018; 4
2015; 137
2019; 25
2020; 172
2013; 52
2019; 157
2019; 278
2019; 158
2018; 30
2020; 178
2019; 271
2019; 277
2016; 45
2019; 275
2019; 7
2019; 9
2018; 28
2019; 4
2019; 6
2019; 5
2019; 31
2019; 30
2019; 2
2020; 142
2019; 1
2020; 384
2013; 341
2019; 107
2020; 32
2016; 16
2018; 20
2014; 43
2017; 139
2018; 24
2018; 472
2012; 112
2007; 315
2018; 359
2019; 43
2019; 48
2017; 56
2018; 92
2020; 26
2020; 22
2018; 12
2018; 10
2018; 97
2008; 130
2019; 210
2018; 482
2018; 122
2017; 7
2017; 41
2013; 25
2019; 55
2017; 46
2019; 58
2019; 401
2020; 59
2018; 83
1999; 402
2017; 356
2017; 9
2012; 51
2020; 8
2020; 6
2020; 3
2020; 2
2019; 62
2019; 64
2020; 53
2018; 259
2020; 49
2005; 309
2020; 499
2016; 81
2003; 125
2012; 336
2014; 50
2018; 144
2015; 6
2018; 140
2019; 72
2018; 666
2002; 295
2018; 146
2017; 23
2009; 131
2019; 141
2019; 380
2019; 386
2013; 135
2016; 138
2008; 452
2018; 54
2009; 38
2018; 58
2018; 57
e_1_2_10_271_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_272_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_234_1
Zhang Q. (e_1_2_10_185_1) 2020; 285
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
Fernandez‐Garcia G. (e_1_2_10_24_1) 2018; 57
e_1_2_10_261_1
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
Silva I. G. N. (e_1_2_10_72_1) 2019; 210
e_1_2_10_250_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_263_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_32_1
Yuan Y.‐Y. (e_1_2_10_91_1) 2018; 48
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
Yu F. (e_1_2_10_218_1) 2019; 107
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
e_1_2_10_238_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_242_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_227_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_239_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_270_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_232_1
Jiang H. (e_1_2_10_236_1) 2020; 142
Laurikenas A. (e_1_2_10_86_1) 2018; 83
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
Liu C. (e_1_2_10_54_1) 2020; 26
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 359
  start-page: 80
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 4
  start-page: 1000
  year: 2019
  publication-title: Mol. Syst. Des. Eng.
– volume: 57
  start-page: 8850
  year: 2018
  publication-title: Inorg. Chem.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 66
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2260
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 59
  start-page: 4167
  year: 2020
  publication-title: Inorg. Chem.
– volume: 336
  start-page: 1018
  year: 2012
  publication-title: Science
– volume: 9
  start-page: 3353
  year: 2018
  publication-title: Nat. Commun.
– volume: 138
  start-page: 6636
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 673
  year: 2012
  publication-title: Chem. Rev.
– volume: 25
  start-page: 7114
  year: 2019
  publication-title: Chem. ‐ Eur. J.
– volume: 146
  start-page: 161
  year: 2018
  publication-title: Polyhedron
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 488
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 3964
  year: 2020
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 1745
  year: 2018
  publication-title: Nat. Commun.
– volume: 141
  start-page: 6967
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 9642
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8269
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 141
  start-page: 7245
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 6979
  year: 2018
  publication-title: Chem. Commun.
– volume: 9
  year: 2019
  publication-title: RSC Adv.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 2019
  start-page: 3103
  year: 2019
  publication-title: Eur. J. Inorg. Chem.
– volume: 112
  start-page: 724
  year: 2012
  publication-title: Chem. Rev.
– volume: 48
  start-page: 4823
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 58
  start-page: 2736
  year: 2019
  publication-title: Inorg. Chem.
– volume: 72
  start-page: 1560
  year: 2019
  publication-title: J. Coord. Chem.
– volume: 51
  start-page: 6443
  year: 2012
  publication-title: Inorg. Chem.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 915
  year: 2020
  publication-title: CrystEngComm
– volume: 46
  start-page: 3526
  year: 2017
  publication-title: Dalton Trans.
– volume: 259
  start-page: 48
  year: 2018
  publication-title: J. Solid State Chem.
– volume: 38
  start-page: 253
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 6893
  year: 2018
  publication-title: Inorg. Chem.
– volume: 402
  start-page: 276
  year: 1999
  publication-title: Nature
– volume: 125
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 380
  start-page: 230
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 57
  start-page: 5095
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3978
  year: 2020
  publication-title: Chem. Sci.
– volume: 384
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 97
  year: 2020
  publication-title: Chem. Mater.
– volume: 30
  start-page: 337
  year: 2019
  publication-title: J. Cluster Sci.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 48
  year: 2019
  publication-title: Dalton Trans.
– volume: 58
  start-page: 7267
  year: 2019
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 3569
  year: 2019
  publication-title: Inorg. Chem.
– volume: 97
  start-page: 63
  year: 2018
  publication-title: Inorg. Chem. Commun.
– volume: 10
  start-page: 3861
  year: 2019
  publication-title: Nat. Commun.
– volume: 58
  start-page: 3586
  year: 2019
  publication-title: Inorg. Chem.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 985
  year: 2018
  publication-title: Nat. Energy
– volume: 140
  start-page: 993
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 285
  year: 2020
  publication-title: J. Solid State Chem.
– volume: 482
  start-page: 16
  year: 2018
  publication-title: Inorg. Chim. Acta
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 154
  year: 2020
  publication-title: Nat. Catal.
– volume: 45
  start-page: 2327
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 203
  start-page: 105
  year: 2018
  publication-title: J. Lumin.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1022
  year: 2018
  publication-title: Chem
– volume: 43
  start-page: 6097
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 5642
  year: 2018
  publication-title: Inorg. Chem.
– volume: 142
  start-page: 9363
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 6404
  year: 2018
  publication-title: Chem. Commun.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1710
  year: 2020
  publication-title: ChemSusChem
– volume: 47
  year: 2018
  publication-title: Dalton Trans.
– volume: 28
  start-page: 1839
  year: 2018
  publication-title: J. Inorg. Organomet. Polym. Mater.
– volume: 54
  start-page: 9470
  year: 2018
  publication-title: Chem. Commun.
– volume: 278
  year: 2019
  publication-title: J. Solid State Chem.
– volume: 47
  start-page: 2337
  year: 2018
  publication-title: Dalton Trans.
– volume: 62
  start-page: 1655
  year: 2019
  publication-title: Sci. China Mater.
– volume: 9
  start-page: 1660
  year: 2018
  publication-title: Nat. Commun.
– volume: 141
  start-page: 3129
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1918
  year: 2020
  publication-title: Chem. Sci.
– volume: 140
  start-page: 3040
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 9916
  year: 2019
  publication-title: Dalton Trans.
– volume: 172
  year: 2020
  publication-title: Dyes Pigm.
– volume: 20
  start-page: 2043
  year: 2018
  publication-title: CrystEngComm
– volume: 57
  start-page: 6883
  year: 2018
  publication-title: Inorg. Chem.
– volume: 472
  start-page: 276
  year: 2018
  publication-title: Inorg. Chim. Acta
– volume: 31
  start-page: 5550
  year: 2019
  publication-title: Chem. Mater.
– volume: 83
  start-page: 363
  year: 2018
  publication-title: Opt. Mater.
– volume: 142
  start-page: 3174
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 2666
  year: 2020
  publication-title: Dalton Trans.
– volume: 10
  start-page: 733
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 7871
  year: 2018
  publication-title: ChemistrySelect
– volume: 25
  start-page: 5012
  year: 2013
  publication-title: Chem. Mater.
– volume: 141
  start-page: 7498
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 454
  year: 2018
  publication-title: Inorg. Nano‐Met. Chem.
– volume: 51
  start-page: 1336
  year: 2012
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 2834
  year: 2014
  publication-title: Chem. Commun.
– volume: 5
  start-page: 394
  year: 2018
  publication-title: Inorg. Chem. Front.
– volume: 49
  start-page: 983
  year: 2020
  publication-title: Dalton Trans.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 277
  start-page: 139
  year: 2019
  publication-title: J. Solid State Chem.
– volume: 141
  start-page: 2054
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 210
  start-page: 335
  year: 2019
  publication-title: J. Lumin.
– volume: 25
  year: 2019
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 973
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 7118
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 53
  start-page: 1187
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 47
  start-page: 663
  year: 2018
  publication-title: Dalton Trans.
– volume: 275
  start-page: 229
  year: 2019
  publication-title: Microporous Mesoporous Mater.
– volume: 23
  start-page: 6864
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 7
  start-page: 997
  year: 2017
  publication-title: ACS Catal.
– volume: 137
  start-page: 3177
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1186
  year: 2019
  publication-title: Chem. Sci.
– volume: 295
  start-page: 469
  year: 2002
  publication-title: Science
– volume: 58
  start-page: 1320
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 5135
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 140
  start-page: 7710
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 452
  start-page: 301
  year: 2008
  publication-title: Nature
– volume: 10
  start-page: 767
  year: 2019
  publication-title: Nat. Commun.
– volume: 178
  year: 2020
  publication-title: Polyhedron
– volume: 309
  start-page: 2040
  year: 2005
  publication-title: Science
– volume: 47
  start-page: 8158
  year: 2018
  publication-title: Dalton Trans.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 6472
  year: 2018
  publication-title: Chem. Commun.
– volume: 158
  start-page: 365
  year: 2019
  publication-title: Polyhedron
– volume: 138
  start-page: 8912
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2228
  year: 2019
  publication-title: Dalton Trans.
– volume: 58
  start-page: 3698
  year: 2019
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 5801
  year: 2019
  publication-title: Chem. Sci.
– volume: 59
  start-page: 350
  year: 2020
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 1193
  year: 2018
  publication-title: Inorg. Chem. Front.
– volume: 47
  start-page: 8427
  year: 2018
  publication-title: Dalton Trans.
– volume: 386
  start-page: 32
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 1
  start-page: 156
  year: 2019
  publication-title: Matter
– volume: 19
  start-page: 4754
  year: 2019
  publication-title: Cryst. Growth Des.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 7115
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 6098
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 43
  start-page: 5561
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 6700
  year: 2019
  publication-title: Dalton Trans.
– volume: 43
  year: 2019
  publication-title: New J. Chem.
– volume: 9
  start-page: 8099
  year: 2018
  publication-title: Chem. Sci.
– volume: 271
  start-page: 273
  year: 2019
  publication-title: J. Solid State Chem.
– volume: 1
  start-page: 304
  year: 2019
  publication-title: Trends Chem.
– volume: 58
  year: 2019
  publication-title: Inorg. Chem.
– volume: 401
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 19
  start-page: 1509
  year: 2019
  publication-title: Cryst. Growth Des.
– volume: 42
  year: 2018
  publication-title: New J. Chem.
– volume: 31
  start-page: 8629
  year: 2019
  publication-title: Chem. Mater.
– volume: 58
  start-page: 1044
  year: 2018
  publication-title: Isr. J. Chem.
– volume: 43
  start-page: 9934
  year: 2019
  publication-title: New J. Chem.
– volume: 2
  start-page: 440
  year: 2020
  publication-title: Matter
– volume: 356
  start-page: 624
  year: 2017
  publication-title: Science
– volume: 140
  start-page: 8858
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 4181
  year: 2020
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 6022
  year: 2019
  publication-title: Angew. Chem., In. Ed.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 9160
  year: 2019
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 157
  start-page: 177
  year: 2019
  publication-title: Polyhedron
– volume: 59
  start-page: 9319
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 2069
  year: 2019
  publication-title: Cryst. Growth Des.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 205
  start-page: 228
  year: 2019
  publication-title: J. Lumin.
– volume: 4
  start-page: 1911
  year: 2018
  publication-title: Chem
– volume: 2019
  start-page: 2674
  year: 2019
  publication-title: Eur. J. Inorg. Chem.
– volume: 52
  year: 2013
  publication-title: Inorg. Chem.
– volume: 97
  start-page: 125
  year: 2018
  publication-title: Inorg. Chem. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 48
  start-page: 1700
  year: 2019
  publication-title: Dalton Trans.
– volume: 137
  start-page: 2641
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 3431
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 7259
  year: 2018
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 3786
  year: 2014
  publication-title: Chem. Commun.
– volume: 136
  start-page: 4369
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 7660
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1374
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 2016
  start-page: 4310
  year: 2016
  publication-title: Eur. J. Inorg. Chem.
– volume: 142
  start-page: 4732
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 356
  start-page: 430
  year: 2017
  publication-title: Science
– volume: 57
  start-page: 2663
  year: 2018
  publication-title: Inorg. Chem.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 675
  year: 2016
  publication-title: ChemPlusChem
– volume: 341
  year: 2013
  publication-title: Science
– volume: 6
  start-page: 6363
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 4148
  year: 2016
  publication-title: Cryst. Growth Des.
– volume: 41
  year: 2017
  publication-title: New J. Chem.
– volume: 92
  start-page: 18
  year: 2018
  publication-title: Inorg. Chem. Commun.
– volume: 277
  start-page: 93
  year: 2019
  publication-title: J. Solid State Chem.
– volume: 47
  start-page: 9079
  year: 2018
  publication-title: Dalton Trans.
– volume: 4
  start-page: 440
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 7
  start-page: 36
  year: 2019
  publication-title: Front. Chem.
– volume: 54
  start-page: 8088
  year: 2018
  publication-title: Chem. Commun.
– volume: 107
  year: 2019
  publication-title: Inorg. Chem. Commun.
– volume: 315
  start-page: 1828
  year: 2007
  publication-title: Science
– volume: 5
  start-page: 1938
  year: 2019
  publication-title: Chem
– volume: 6
  start-page: 337
  year: 2020
  publication-title: Chem
– volume: 6
  start-page: 550
  year: 2019
  publication-title: Inorg. Chem. Front.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6886
  year: 2019
  publication-title: Chem. Sci.
– volume: 64
  start-page: 3105
  year: 2019
  publication-title: J. Chem. Eng. Data
– volume: 6
  start-page: 7575
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 4937
  year: 2018
  publication-title: Nat. Commun.
– volume: 43
  start-page: 1617
  year: 2019
  publication-title: New J. Chem.
– volume: 12
  start-page: 327
  year: 2018
  publication-title: Front. Mater. Sci.
– volume: 499
  year: 2020
  publication-title: Inorg. Chim. Acta
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 144
  start-page: 101
  year: 2018
  publication-title: Polyhedron
– volume: 9
  start-page: 5021
  year: 2018
  publication-title: Chem. Sci.
– volume: 20
  start-page: 5132
  year: 2018
  publication-title: CrystEngComm
– volume: 19
  start-page: 5686
  year: 2019
  publication-title: Cryst. Growth Des.
– volume: 47
  start-page: 1726
  year: 2018
  publication-title: Dalton Trans.
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 24
  year: 2018
  publication-title: Chem. – Eur. J.
– volume: 58
  start-page: 3021
  year: 2019
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 666
  start-page: 109
  year: 2018
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_10_227_1
  doi: 10.1021/acs.chemmater.9b02462
– ident: e_1_2_10_126_1
  doi: 10.1021/ja512311a
– ident: e_1_2_10_259_1
  doi: 10.1002/adma.201806445
– ident: e_1_2_10_58_1
  doi: 10.1016/j.poly.2019.114276
– ident: e_1_2_10_13_1
  doi: 10.1021/ja8057953
– ident: e_1_2_10_3_1
  doi: 10.1021/cr300014x
– ident: e_1_2_10_230_1
  doi: 10.1038/ncomms8575
– ident: e_1_2_10_240_1
  doi: 10.1021/acsami.8b09333
– ident: e_1_2_10_73_1
  doi: 10.1021/acs.cgd.9b00635
– ident: e_1_2_10_159_1
  doi: 10.1021/acscatal.6b02923
– ident: e_1_2_10_133_1
  doi: 10.1002/chem.201700493
– ident: e_1_2_10_15_1
  doi: 10.1039/C5CS00837A
– ident: e_1_2_10_189_1
  doi: 10.1039/C8TA01060A
– ident: e_1_2_10_206_1
  doi: 10.1021/acs.cgd.6b00698
– ident: e_1_2_10_45_1
  doi: 10.1039/C9DT01056D
– ident: e_1_2_10_212_1
  doi: 10.1038/s41467-019-11912-4
– ident: e_1_2_10_247_1
  doi: 10.1021/jacs.6b03263
– ident: e_1_2_10_56_1
  doi: 10.1016/j.poly.2018.10.011
– ident: e_1_2_10_98_1
  doi: 10.1007/s11706-018-0444-x
– ident: e_1_2_10_167_1
  doi: 10.1016/j.cej.2019.123343
– ident: e_1_2_10_254_1
  doi: 10.1021/jacs.8b12530
– ident: e_1_2_10_129_1
  doi: 10.1021/acs.inorgchem.9b03639
– ident: e_1_2_10_248_1
  doi: 10.1021/acsami.9b05091
– ident: e_1_2_10_169_1
  doi: 10.1021/acs.chemmater.9b00524
– ident: e_1_2_10_31_1
  doi: 10.1039/C8NJ04231D
– ident: e_1_2_10_40_1
  doi: 10.1039/C8SC00752G
– ident: e_1_2_10_103_1
  doi: 10.1016/j.dyepig.2019.107862
– ident: e_1_2_10_132_1
  doi: 10.1002/anie.201901786
– ident: e_1_2_10_81_1
  doi: 10.1080/00958972.2019.1599870
– ident: e_1_2_10_115_1
  doi: 10.1021/jacs.9b00122
– ident: e_1_2_10_50_1
  doi: 10.1039/C9SC01241A
– ident: e_1_2_10_157_1
  doi: 10.1016/j.ccr.2018.09.009
– ident: e_1_2_10_127_1
  doi: 10.1021/acsanm.9b00188
– ident: e_1_2_10_100_1
  doi: 10.1039/C8SC03168A
– ident: e_1_2_10_139_1
  doi: 10.1021/acscentsci.8b00073
– ident: e_1_2_10_114_1
  doi: 10.1021/jacs.8b04745
– ident: e_1_2_10_271_1
  doi: 10.1021/jacs.9b13070
– ident: e_1_2_10_153_1
  doi: 10.1021/jacs.9b04915
– ident: e_1_2_10_179_1
  doi: 10.1021/jacs.6b04501
– ident: e_1_2_10_25_1
  doi: 10.1039/C9NJ02059D
– ident: e_1_2_10_32_1
  doi: 10.1039/C9CE01730E
– ident: e_1_2_10_110_1
  doi: 10.1021/acs.cgd.8b01779
– ident: e_1_2_10_33_1
  doi: 10.1039/C8QI01166D
– ident: e_1_2_10_229_1
  doi: 10.1039/c3cc48381a
– ident: e_1_2_10_183_1
  doi: 10.1021/acssuschemeng.9b00062
– ident: e_1_2_10_9_1
  doi: 10.1039/C9CS00250B
– ident: e_1_2_10_137_1
  doi: 10.1021/jacs.0c01895
– ident: e_1_2_10_27_1
  doi: 10.1038/s41929-019-0405-5
– ident: e_1_2_10_95_1
  doi: 10.1021/acs.inorgchem.8b00465
– ident: e_1_2_10_5_1
  doi: 10.1126/science.1137975
– ident: e_1_2_10_117_1
  doi: 10.1021/jacs.9b11260
– ident: e_1_2_10_220_1
  doi: 10.1039/C8TC03036G
– ident: e_1_2_10_170_1
  doi: 10.1021/acsami.0c06672
– ident: e_1_2_10_36_1
  doi: 10.1039/C9DT03335A
– ident: e_1_2_10_193_1
  doi: 10.1021/jacs.9b07700
– ident: e_1_2_10_260_1
  doi: 10.1038/nature06599
– ident: e_1_2_10_251_1
  doi: 10.1002/anie.202000702
– ident: e_1_2_10_205_1
  doi: 10.1021/ja406844r
– ident: e_1_2_10_164_1
  doi: 10.1038/s41467-018-07414-4
– ident: e_1_2_10_257_1
  doi: 10.1021/cr2003272
– ident: e_1_2_10_249_1
  doi: 10.1021/jacs.9b05580
– ident: e_1_2_10_46_1
  doi: 10.1021/acs.inorgchem.9b01238
– ident: e_1_2_10_235_1
  doi: 10.1021/jacs.9b02294
– ident: e_1_2_10_52_1
  doi: 10.1021/acs.inorgchem.8b03310
– ident: e_1_2_10_231_1
  doi: 10.1021/acs.inorgchem.9b01205
– ident: e_1_2_10_109_1
  doi: 10.1021/acsami.9b16470
– ident: e_1_2_10_53_1
  doi: 10.1039/C9CC06235A
– ident: e_1_2_10_168_1
  doi: 10.1021/acs.inorgchem.9b02517
– ident: e_1_2_10_209_1
  doi: 10.1038/s41467-018-04152-5
– ident: e_1_2_10_250_1
  doi: 10.1021/acs.cgd.8b01637
– ident: e_1_2_10_61_1
  doi: 10.1039/C8NJ01077C
– ident: e_1_2_10_180_1
  doi: 10.1021/jacs.7b10643
– ident: e_1_2_10_67_1
  doi: 10.1021/jacs.7b10565
– ident: e_1_2_10_113_1
  doi: 10.1002/anie.201802661
– ident: e_1_2_10_10_1
  doi: 10.1039/C4CS00003J
– ident: e_1_2_10_92_1
  doi: 10.1021/acs.jced.9b00207
– ident: e_1_2_10_38_1
  doi: 10.1039/C9DT01454C
– ident: e_1_2_10_143_1
  doi: 10.1021/jacs.9b05964
– ident: e_1_2_10_80_1
  doi: 10.1039/C8NJ04315A
– ident: e_1_2_10_224_1
  doi: 10.1021/jacs.8b08433
– ident: e_1_2_10_112_1
  doi: 10.1039/C8CC03841D
– ident: e_1_2_10_204_1
  doi: 10.1021/ja408084j
– ident: e_1_2_10_20_1
  doi: 10.1021/acs.inorgchem.9b00616
– ident: e_1_2_10_97_1
  doi: 10.1002/ijch.201800095
– ident: e_1_2_10_201_1
  doi: 10.1021/cm403726v
– ident: e_1_2_10_41_1
  doi: 10.1002/anie.201812509
– ident: e_1_2_10_151_1
  doi: 10.1021/jacs.7b13510
– ident: e_1_2_10_6_1
  doi: 10.1126/science.1116275
– ident: e_1_2_10_48_1
  doi: 10.1002/anie.201809762
– ident: e_1_2_10_108_1
  doi: 10.1039/C8NJ04956D
– ident: e_1_2_10_222_1
  doi: 10.1021/acsami.9b06151
– ident: e_1_2_10_228_1
  doi: 10.1021/acs.inorgchem.9b01666
– ident: e_1_2_10_145_1
  doi: 10.1002/anie.201913135
– ident: e_1_2_10_163_1
  doi: 10.1021/jacs.9b01839
– ident: e_1_2_10_74_1
  doi: 10.1016/j.jssc.2019.05.048
– ident: e_1_2_10_237_1
  doi: 10.1021/jacs.6b08176
– ident: e_1_2_10_105_1
  doi: 10.1021/acs.inorgchem.8b03299
– ident: e_1_2_10_191_1
  doi: 10.1021/jacs.9b01920
– ident: e_1_2_10_268_1
  doi: 10.1002/adma.201805871
– ident: e_1_2_10_99_1
  doi: 10.1021/acs.jpcc.8b06198
– ident: e_1_2_10_184_1
  doi: 10.1039/C9SC01301F
– ident: e_1_2_10_253_1
  doi: 10.1021/jacs.8b04277
– ident: e_1_2_10_198_1
  doi: 10.1021/ic4018536
– ident: e_1_2_10_258_1
  doi: 10.1016/j.chempr.2019.10.012
– ident: e_1_2_10_150_1
  doi: 10.1039/C3CC49440C
– ident: e_1_2_10_223_1
  doi: 10.1021/jacs.9b07084
– ident: e_1_2_10_18_1
  doi: 10.1021/acs.inorgchem.8b00505
– ident: e_1_2_10_19_1
  doi: 10.1039/C7QI00658F
– ident: e_1_2_10_239_1
  doi: 10.1021/jacs.8b11042
– ident: e_1_2_10_119_1
  doi: 10.1038/s41467-018-05659-7
– ident: e_1_2_10_147_1
  doi: 10.1002/anie.201809762
– ident: e_1_2_10_234_1
  doi: 10.1002/cssc.202000306
– ident: e_1_2_10_141_1
  doi: 10.1039/C7CS00001D
– ident: e_1_2_10_197_1
  doi: 10.1021/ic300825s
– ident: e_1_2_10_213_1
  doi: 10.1038/s41560-018-0261-6
– ident: e_1_2_10_11_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_10_264_1
  doi: 10.1039/C7DT00159B
– ident: e_1_2_10_42_1
  doi: 10.1039/C8CC03744B
– ident: e_1_2_10_207_1
  doi: 10.1002/anie.201709186
– ident: e_1_2_10_76_1
  doi: 10.1039/C8TC04442B
– ident: e_1_2_10_35_1
  doi: 10.1039/C7DT03179C
– ident: e_1_2_10_269_1
  doi: 10.1021/jacs.5b04695
– ident: e_1_2_10_7_1
  doi: 10.1126/science.1220131
– ident: e_1_2_10_162_1
  doi: 10.1021/ja8057953
– ident: e_1_2_10_210_1
  doi: 10.1021/acsami.0c03336
– ident: e_1_2_10_252_1
  doi: 10.1021/jacs.8b07411
– ident: e_1_2_10_138_1
  doi: 10.1016/j.ccr.2017.12.013
– ident: e_1_2_10_154_1
  doi: 10.1039/B800489G
– ident: e_1_2_10_78_1
  doi: 10.1016/j.jssc.2017.12.034
– ident: e_1_2_10_116_1
  doi: 10.1002/anie.201910717
– ident: e_1_2_10_242_1
  doi: 10.1002/adma.201704388
– ident: e_1_2_10_55_1
  doi: 10.1002/chem.201901671
– ident: e_1_2_10_89_1
  doi: 10.1016/j.jlumin.2018.09.021
– ident: e_1_2_10_59_1
  doi: 10.1021/acs.inorgchem.9b02951
– ident: e_1_2_10_261_1
  doi: 10.1021/acsami.8b19211
– ident: e_1_2_10_96_1
  doi: 10.1039/C8DT00389K
– ident: e_1_2_10_104_1
  doi: 10.1039/C9TC05471E
– ident: e_1_2_10_265_1
  doi: 10.1016/j.ccr.2019.213065
– ident: e_1_2_10_66_1
  doi: 10.1039/C9DT02032B
– ident: e_1_2_10_203_1
  doi: 10.1021/ja510525s
– ident: e_1_2_10_233_1
  doi: 10.1021/jacs.8b06789
– ident: e_1_2_10_245_1
  doi: 10.1021/acsami.9b17569
– ident: e_1_2_10_22_1
  doi: 10.1016/j.poly.2018.03.002
– ident: e_1_2_10_178_1
  doi: 10.1021/jacs.9b13072
– ident: e_1_2_10_226_1
  doi: 10.1021/jacs.9b02947
– ident: e_1_2_10_28_1
  doi: 10.1021/acs.inorgchem.9b02668
– ident: e_1_2_10_79_1
  doi: 10.1016/j.poly.2017.12.030
– ident: e_1_2_10_190_1
  doi: 10.1038/s41467-019-08434-4
– ident: e_1_2_10_208_1
  doi: 10.1021/jacs.7b09973
– ident: e_1_2_10_120_1
  doi: 10.1039/C7CC09780H
– ident: e_1_2_10_21_1
  doi: 10.1016/j.poly.2018.11.006
– ident: e_1_2_10_176_1
  doi: 10.1039/C9ME00062C
– ident: e_1_2_10_232_1
  doi: 10.1021/ja500330a
– ident: e_1_2_10_16_1
  doi: 10.1039/C8DT04267E
– ident: e_1_2_10_200_1
  doi: 10.1002/anie.201204475
– ident: e_1_2_10_217_1
  doi: 10.1002/advs.201901855
– ident: e_1_2_10_122_1
  doi: 10.1126/science.aam7851
– ident: e_1_2_10_136_1
  doi: 10.1021/jacs.9b06187
– ident: e_1_2_10_106_1
  doi: 10.1080/15421406.2018.1541294
– ident: e_1_2_10_196_1
  doi: 10.1002/ejic.201801284
– ident: e_1_2_10_43_1
  doi: 10.1021/jacs.9b05599
– ident: e_1_2_10_47_1
  doi: 10.1039/C9RA03707A
– ident: e_1_2_10_64_1
  doi: 10.1039/C8DT01844H
– ident: e_1_2_10_34_1
  doi: 10.1039/C9NJ04893F
– ident: e_1_2_10_214_1
  doi: 10.1016/j.chempr.2018.03.001
– ident: e_1_2_10_161_1
  doi: 10.1016/j.trechm.2019.03.010
– ident: e_1_2_10_68_1
  doi: 10.1002/anie.201809961
– volume: 285
  start-page: 121234
  year: 2020
  ident: e_1_2_10_185_1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2020.121246
– ident: e_1_2_10_262_1
  doi: 10.1002/advs.201802059
– ident: e_1_2_10_140_1
  doi: 10.1039/C7NJ03153J
– ident: e_1_2_10_172_1
  doi: 10.1021/acs.inorgchem.0c00018
– ident: e_1_2_10_181_1
  doi: 10.1021/jacs.8b07050
– volume: 83
  start-page: 363
  year: 2018
  ident: e_1_2_10_86_1
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2017.05.037
– ident: e_1_2_10_102_1
  doi: 10.1016/j.inoche.2018.03.023
– ident: e_1_2_10_165_1
  doi: 10.1021/acsami.8b14118
– ident: e_1_2_10_30_1
  doi: 10.1002/ejic.201900643
– ident: e_1_2_10_243_1
  doi: 10.1021/acs.inorgchem.8b03132
– ident: e_1_2_10_75_1
  doi: 10.1016/j.jssc.2019.120900
– ident: e_1_2_10_187_1
  doi: 10.1021/jacs.9b06711
– ident: e_1_2_10_238_1
  doi: 10.1021/acsami.7b16163
– ident: e_1_2_10_2_1
  doi: 10.1126/science.1230444
– ident: e_1_2_10_124_1
  doi: 10.1021/jacs.9b04737
– ident: e_1_2_10_84_1
  doi: 10.1039/C8DT01477A
– ident: e_1_2_10_146_1
  doi: 10.1039/C9TA01942A
– ident: e_1_2_10_77_1
  doi: 10.1016/j.jssc.2019.01.007
– ident: e_1_2_10_51_1
  doi: 10.1039/C7DT04204C
– ident: e_1_2_10_156_1
  doi: 10.1016/j.ccr.2019.01.017
– ident: e_1_2_10_272_1
  doi: 10.1021/jacs.8b11230
– ident: e_1_2_10_121_1
  doi: 10.1021/ja036832p
– ident: e_1_2_10_194_1
  doi: 10.1021/acsanm.9b01534
– ident: e_1_2_10_8_1
  doi: 10.1126/science.1067208
– ident: e_1_2_10_263_1
  doi: 10.1007/s40843-019-1169-9
– ident: e_1_2_10_215_1
  doi: 10.1039/C8SC04220A
– ident: e_1_2_10_256_1
  doi: 10.1002/anie.201808568
– ident: e_1_2_10_174_1
  doi: 10.1016/j.jssc.2019.05.051
– ident: e_1_2_10_44_1
  doi: 10.1021/acs.inorgchem.8b00919
– ident: e_1_2_10_152_1
  doi: 10.1039/C9SC06500H
– ident: e_1_2_10_131_1
  doi: 10.1039/C9DT04158C
– ident: e_1_2_10_85_1
  doi: 10.1002/slct.201801610
– volume: 57
  start-page: 17089
  year: 2018
  ident: e_1_2_10_24_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810156
– ident: e_1_2_10_62_1
  doi: 10.1021/acs.inorgchem.9b02238
– ident: e_1_2_10_177_1
  doi: 10.1016/j.matt.2019.02.002
– volume: 107
  start-page: 107499
  year: 2019
  ident: e_1_2_10_218_1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2019.107499
– ident: e_1_2_10_57_1
  doi: 10.1021/acs.inorgchem.8b00751
– ident: e_1_2_10_241_1
  doi: 10.1021/jacs.9b06179
– ident: e_1_2_10_246_1
  doi: 10.1002/adma.201802329
– ident: e_1_2_10_101_1
  doi: 10.1016/j.jlumin.2018.06.040
– ident: e_1_2_10_49_1
  doi: 10.1021/acs.inorgchem.8b00586
– ident: e_1_2_10_142_1
  doi: 10.1021/ja903726m
– ident: e_1_2_10_134_1
  doi: 10.1039/C8CC03121E
– ident: e_1_2_10_123_1
  doi: 10.1002/chem.201901610
– ident: e_1_2_10_130_1
  doi: 10.1021/acs.inorgchem.8b03511
– ident: e_1_2_10_60_1
  doi: 10.1016/j.ica.2018.05.027
– ident: e_1_2_10_175_1
  doi: 10.1016/j.micromeso.2018.08.030
– ident: e_1_2_10_26_1
  doi: 10.1016/j.ica.2019.119201
– ident: e_1_2_10_14_1
  doi: 10.1021/ja401429x
– ident: e_1_2_10_118_1
  doi: 10.1039/C8QI00083B
– ident: e_1_2_10_71_1
  doi: 10.1039/C8CE01064A
– ident: e_1_2_10_166_1
  doi: 10.1021/acsami.0c05631
– volume: 26
  start-page: 2666
  year: 2020
  ident: e_1_2_10_54_1
  publication-title: Dalton Trans.
– ident: e_1_2_10_188_1
  doi: 10.1039/C8CC03496F
– ident: e_1_2_10_219_1
  doi: 10.1021/acs.chemmater.9b01258
– ident: e_1_2_10_82_1
  doi: 10.1016/j.inoche.2018.09.019
– ident: e_1_2_10_266_1
  doi: 10.1002/cplu.201600137
– ident: e_1_2_10_65_1
  doi: 10.1016/j.matt.2019.11.002
– ident: e_1_2_10_107_1
  doi: 10.1016/j.ica.2017.06.048
– ident: e_1_2_10_158_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_10_182_1
  doi: 10.1039/C8CC05225E
– ident: e_1_2_10_87_1
  doi: 10.1021/acs.inorgchem.7b02255
– ident: e_1_2_10_221_1
  doi: 10.1021/acs.inorgchem.9b02397
– ident: e_1_2_10_29_1
  doi: 10.1007/s10876-018-01490-8
– ident: e_1_2_10_216_1
  doi: 10.1039/C9SC06009J
– volume: 142
  start-page: 9642
  year: 2020
  ident: e_1_2_10_236_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_10_1_1
  doi: 10.1038/46248
– ident: e_1_2_10_4_1
  doi: 10.1126/science.aam8743
– ident: e_1_2_10_171_1
  doi: 10.1021/acsami.0c05912
– ident: e_1_2_10_63_1
  doi: 10.1021/acs.inorgchem.9b00293
– ident: e_1_2_10_225_1
  doi: 10.1021/acsami.7b00918
– ident: e_1_2_10_128_1
  doi: 10.1021/acs.cgd.9b00671
– ident: e_1_2_10_173_1
  doi: 10.1021/acs.inorgchem.0c00373
– ident: e_1_2_10_135_1
  doi: 10.1021/ic201482n
– ident: e_1_2_10_211_1
  doi: 10.1021/acs.inorgchem.7b03063
– ident: e_1_2_10_12_1
  doi: 10.1039/C4CS00081A
– ident: e_1_2_10_155_1
  doi: 10.1021/acs.accounts.0c00106
– ident: e_1_2_10_199_1
  doi: 10.1021/ja408959g
– ident: e_1_2_10_83_1
  doi: 10.1039/C8CE00008E
– ident: e_1_2_10_93_1
  doi: 10.1021/acs.inorgchem.8b02123
– ident: e_1_2_10_39_1
  doi: 10.1039/C8DT02609B
– ident: e_1_2_10_37_1
  doi: 10.1039/C8DT04602F
– ident: e_1_2_10_69_1
  doi: 10.1039/C9DT03057C
– ident: e_1_2_10_70_1
  doi: 10.1016/j.inoche.2018.09.013
– ident: e_1_2_10_111_1
  doi: 10.1002/adma.201805088
– ident: e_1_2_10_195_1
  doi: 10.1039/C9TA03126J
– ident: e_1_2_10_125_1
  doi: 10.1021/ja512762r
– ident: e_1_2_10_255_1
  doi: 10.1021/jacs.8b04886
– ident: e_1_2_10_23_1
  doi: 10.1039/C7DT00172J
– ident: e_1_2_10_17_1
  doi: 10.1039/C9DT02419K
– ident: e_1_2_10_94_1
  doi: 10.1007/s10904-018-0869-9
– ident: e_1_2_10_186_1
  doi: 10.1016/j.chempr.2018.05.017
– ident: e_1_2_10_270_1
  doi: 10.1021/ja5006866
– ident: e_1_2_10_244_1
  doi: 10.1016/j.jssc.2020.121224
– ident: e_1_2_10_88_1
  doi: 10.1002/chem.201802627
– ident: e_1_2_10_192_1
  doi: 10.1021/acsami.8b03987
– ident: e_1_2_10_160_1
  doi: 10.1002/ejic.201600394
– ident: e_1_2_10_90_1
  doi: 10.3389/fchem.2019.00036
– ident: e_1_2_10_149_1
  doi: 10.1002/anie.201904347
– volume: 48
  start-page: 454
  year: 2018
  ident: e_1_2_10_91_1
  publication-title: Inorg. Nano‐Met. Chem.
  doi: 10.1080/24701556.2019.1569688
– ident: e_1_2_10_267_1
  doi: 10.1016/j.chempr.2019.04.013
– ident: e_1_2_10_202_1
  doi: 10.1021/jacs.6b09113
– volume: 210
  start-page: 335
  year: 2019
  ident: e_1_2_10_72_1
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2019.02.048
– ident: e_1_2_10_148_1
  doi: 10.1002/anie.202000158
– ident: e_1_2_10_144_1
  doi: 10.1038/s41467-018-04034-w
SSID ssj0009606
Score 2.625227
SecondaryResourceType review_article
Snippet Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water...
Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2004414
SubjectTerms Actinides
Adsorbed water
Adsorption
Biomedical materials
Bonding strength
Coordination
group 3 metals
group 4 metals
Lanthanides
Materials science
Metal-organic frameworks
Metals
Structural design
Titanium
Topology
Zirconium
Title Metal–Organic Frameworks Based on Group 3 and 4 Metals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202004414
https://www.proquest.com/docview/2456775360
https://www.proquest.com/docview/2441257194
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcH8aQHd7FaZQTB07RNMktyrEspQj2Ihd7CrBclFdNePPkd_IZ-EmdJ0lYQQW8JmckyMy_vN9v_AXBh3YpJtJKIWOeLcNQTSGAhkJEZy7QFcOlDsozu6XCM7yZksrSLP-hDNANuzjL8_9oZOBdldyEaypXXDXK1HCJZuwVbjooeFvpRDs-92F5CUEZxWqs29uLuavZVr7RAzWVg9R5nsA14_a5hoclTZz4THfn2TcbxPx-zA7YqHIX90H52wZou9sDmkkjhPkhH2gL65_tH2LYp4aBez1XCK-sDFZwW0A9hwQTyQkEMfY7yAIwHt4_XQ1TFW0ASkwQjwUhsaQkbLaQymXX-SvQMI0wbaoQlAaZYKikXWvFIx5pKlTrtG5pRYSHdJIdgvZgW-ghASQS37KB4JhMsE4shjPA4NUqkPIoMawFUl3cuKzFyFxPjOQ8yynHuSiRvSqQFLpv0L0GG48eU7br68socy9zN7jLbMaO9FjhvLltDcrMjvNDTuUuDLeyxKLO3iH1d_fKkvH8z6jdnx3_JdAI23HHY29gG67PXuT61kDMTZ74hfwGIXfGV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFMctBAMwcCMKBYyExOS2Sew4GctRFWg6oFZii3wuoBTRdmHiO_AN-STYztEWCSHBmMTOYfvl_Xz9HwDnxq3oQEmBiHG-CHstjjjmHGkR01gZABcuJEvSD7tDfPdIytWEdi9Mrg9RDbhZy3D_a2vgdkC6OVMNZdIJB9lqdqGsV2xYb9erepgpSFlAd3J7AUFxiKNSt7HlNxfzL_qlGWzOI6vzOZ1NwMu3zZeaPDWmE94Qb9-EHP_1OVtgoyBS2M6b0DZYUtkOWJ_TKdwFUaIMo3--f-Q7NwXslEu6xvDSuEEJRxl0o1gwgCyTEEOXY7wHhp2bwVUXFSEXkMAkwIhT4htgwlpxIXVs_L_kLU0JVTrU3MAAlTQSIeNKMk_5KhQysvI3YRxyw-k62AfL2ShTBwAKwpnBB8liEWARGBKhhPmRljxinqdpDaCywFNR6JHbsBjPaa6k7Ke2RNKqRGrgokr_kitx_JiyXtZfWljkOLUTvNT0zcJWDZxVl40t2QkSlqnR1KbBhveoF5tb-K6yfnlS2r5O2tXR4V8ynYLV7iDppb3b_v0RWLPn862OdbA8eZ2qY8M8E37iWvUXswv1sA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JSwMxFMeDKIge3MVq1QiCp7SzZJKZY7WWurSIWOhtyHpRpsW2F09-B7-hn8Qk05m2ggh6nJlkliRv3i_b_wFwbtyKDpUUKDLOF2Hf44hjzpEWCU2UAXDhQrJ0uqTdw7f9qD-3iz_XhygH3KxluP-1NfCh1PWZaCiTTjfI1rKLZL2CiRfbdt18nAlIWT53anthhBKC40K20Qvqi_kX3dKMNeeJ1bmc1iZgxcvmK02ea5Mxr4m3bzqO__maLbAx5VHYyBvQNlhS2Q5Yn1Mp3AVxRxlC_3z_yPdtCtgqFnSN4KVxghIOMujGsGAIWSYhhi7HaA_0WtdPV200DbiABI5CjDiNAoNLWCsupE6M95fc0zSiShPNDQpQSWNBGFeS-SpQRMjYit-QhHBD6TrcB8vZIFMHAIqIMwMPkiUixCI0HEIjFsRa8pj5vqYVgIryTsVUjdwGxXhJcx3lILUlkpYlUgEXZfphrsPxY8pqUX3p1B5HqZ3epaZnRrwKOCsvG0uy0yMsU4OJTYMN7VE_MbcIXF398qS00ew0yqPDv2Q6BasPzVZ6f9O9OwJr9nS-z7EKlsevE3VsgGfMT1yb_gLpQfRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Frameworks+Based+on+Group+3+and+4+Metals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Feng%2C+Liang&rft.au=Pang%2C+Jiandong&rft.au=She%2C+Ping&rft.au=Li%2C+Jia-Luo&rft.date=2020-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=44&rft.spage=e2004414&rft_id=info:doi/10.1002%2Fadma.202004414&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon