Metal–Organic Frameworks Based on Group 3 and 4 Metals
Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within thes...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 44; pp. e2004414 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.
Metal–organic frameworks (MOFs) based on group 3 and 4 metals with high chemical stability, structural diversity, and various interesting properties are reviewed. Cluster and framework chemistry of group 3 and 4 metals are expected to provide a timely summary on MOF development, which shall guide the discovery and development of stable and functional MOFs for practical applications. |
---|---|
AbstractList | Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications. Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications. Metal–organic frameworks (MOFs) based on group 3 and 4 metals with high chemical stability, structural diversity, and various interesting properties are reviewed. Cluster and framework chemistry of group 3 and 4 metals are expected to provide a timely summary on MOF development, which shall guide the discovery and development of stable and functional MOFs for practical applications. Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications. |
Author | Feng, Liang Li, Jia‐Luo Du, Dong‐Ying Zhou, Hong‐Cai She, Ping Pang, Jiandong Qin, Jun‐Sheng |
Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0001-9693-1595 surname: Feng fullname: Feng, Liang organization: Texas A&M University – sequence: 2 givenname: Jiandong surname: Pang fullname: Pang, Jiandong organization: Texas A&M University – sequence: 3 givenname: Ping surname: She fullname: She, Ping organization: Jilin University – sequence: 4 givenname: Jia‐Luo surname: Li fullname: Li, Jia‐Luo organization: Texas A&M University – sequence: 5 givenname: Jun‐Sheng orcidid: 0000-0003-2531-552X surname: Qin fullname: Qin, Jun‐Sheng email: qin@jlu.edu.cn organization: Jilin University – sequence: 6 givenname: Dong‐Ying surname: Du fullname: Du, Dong‐Ying organization: Northeast Normal University – sequence: 7 givenname: Hong‐Cai surname: Zhou fullname: Zhou, Hong‐Cai email: zhou@chem.tamu.edu organization: Texas A&M University |
BookMark | eNqFkL1OwzAUhS1UJEphZbbEwpJiO_6Jx1JoQWrVBWbLSWyUktjFTlV14x14Q56ElCKQKiGms3zf0b3nFPScdwaAC4yGGCFyrctGDwkiCFGK6RHoY0ZwQpFkPdBHMmWJ5DQ7AacxLhFCkiPeB9nctLr-eHtfhGftqgJOgm7MxoeXCG90NCX0Dk6DX69gCrUrIYVfRjwDx7YLc_6dA_A0uXsc3yezxfRhPJolBWUpTXLBiCSSWpMXpZUEZ2WOrGDCWG7zDBNRiqzgOjelxoYYXpQZxRnjkudCEJsOwNW-dxX869rEVjVVLExda2f8OirSPUuYwJJ26OUBuvTr4LrrOopxIVjKUUfRPVUEH2MwVhVVq9vKuzboqlYYqd2cajen-pmz04YH2ipUjQ7bvwW5FzZVbbb_0Gp0Ox_9up9ia4h9 |
CitedBy_id | crossref_primary_10_1002_smll_202102903 crossref_primary_10_1016_j_ccr_2021_214011 crossref_primary_10_1002_ange_202011653 crossref_primary_10_1039_D2SC05915K crossref_primary_10_1016_j_cscm_2024_e03586 crossref_primary_10_1016_j_ccr_2023_215427 crossref_primary_10_1002_adfm_202404126 crossref_primary_10_1002_adma_202305611 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1021_acs_inorgchem_2c00660 crossref_primary_10_1039_D0TC04154H crossref_primary_10_1002_ange_202306360 crossref_primary_10_1021_acs_inorgchem_2c00023 crossref_primary_10_1016_j_ccr_2021_213886 crossref_primary_10_1002_smll_202310742 crossref_primary_10_1038_s41467_022_30345_0 crossref_primary_10_1002_ange_202017042 crossref_primary_10_1039_D1RA03106F crossref_primary_10_1039_D2SC02683J crossref_primary_10_1039_D2CY00421F crossref_primary_10_1002_smll_202308743 crossref_primary_10_1021_jacs_0c11546 crossref_primary_10_1021_acs_cgd_4c00030 crossref_primary_10_1021_acs_inorgchem_1c02078 crossref_primary_10_1039_D1DT01477C crossref_primary_10_1021_acs_iecr_4c00458 crossref_primary_10_1016_j_ccr_2023_215235 crossref_primary_10_1002_adma_202300177 crossref_primary_10_1002_anie_202422517 crossref_primary_10_1002_anie_202011653 crossref_primary_10_1039_D2SC05037D crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1002_anie_202306360 crossref_primary_10_1021_acsami_2c01671 crossref_primary_10_1155_2023_4991015 crossref_primary_10_1021_acs_inorgchem_1c01191 crossref_primary_10_1002_chem_202005151 crossref_primary_10_4028_p_fdqs03 crossref_primary_10_1021_jacs_4c02327 crossref_primary_10_1002_ange_202216269 crossref_primary_10_1039_D1MA01027A crossref_primary_10_1039_D4SC03946G crossref_primary_10_1002_anie_202017042 crossref_primary_10_1021_jacs_4c06088 crossref_primary_10_1039_D4QM00187G crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1021_acs_jpcc_0c11187 crossref_primary_10_1021_acsmaterialslett_4c01957 crossref_primary_10_1021_cbe_4c00009 crossref_primary_10_1021_jacsau_2c00635 crossref_primary_10_1039_D3CE01022H crossref_primary_10_1002_chem_202301760 crossref_primary_10_1016_j_cej_2024_152818 crossref_primary_10_1016_j_jcat_2021_11_017 crossref_primary_10_1021_acssensors_3c02069 crossref_primary_10_1002_cptc_202300031 crossref_primary_10_1002_ange_202422517 crossref_primary_10_1002_cjoc_202200218 crossref_primary_10_1002_smsc_202400369 crossref_primary_10_1016_j_jcis_2024_10_133 crossref_primary_10_1021_acsami_1c21663 crossref_primary_10_1039_D4DT00021H crossref_primary_10_1039_D3TC04365G crossref_primary_10_1039_D4RA05183A crossref_primary_10_1016_j_poly_2024_116879 crossref_primary_10_1039_D2CC03090J crossref_primary_10_1016_j_inoche_2022_109611 crossref_primary_10_1021_acs_inorgchem_1c02257 crossref_primary_10_1021_acs_inorgchem_1c03466 crossref_primary_10_1002_anie_202216269 crossref_primary_10_1002_smm2_1016 crossref_primary_10_1007_s10904_024_03397_6 crossref_primary_10_1007_s10570_021_04267_x crossref_primary_10_1021_acs_cgd_2c00635 crossref_primary_10_1134_S0965544122050127 crossref_primary_10_1039_D3DT01028G crossref_primary_10_1021_acsami_1c03083 crossref_primary_10_1002_adma_202407435 crossref_primary_10_1134_S0022476623060148 crossref_primary_10_1016_j_rser_2021_111362 crossref_primary_10_1016_j_ccr_2023_215175 crossref_primary_10_1039_D2CC06948B crossref_primary_10_1021_acs_inorgchem_3c01079 crossref_primary_10_1021_acsami_2c15440 crossref_primary_10_1021_acs_cgd_4c01056 crossref_primary_10_1021_acs_chemrev_2c00879 crossref_primary_10_1021_acs_inorgchem_4c04488 crossref_primary_10_1016_j_inoche_2021_108896 crossref_primary_10_1007_s40843_022_2209_9 crossref_primary_10_3390_molecules26165044 crossref_primary_10_1021_acsami_4c04219 |
Cites_doi | 10.1021/acs.chemmater.9b02462 10.1021/ja512311a 10.1002/adma.201806445 10.1016/j.poly.2019.114276 10.1021/ja8057953 10.1021/cr300014x 10.1038/ncomms8575 10.1021/acsami.8b09333 10.1021/acs.cgd.9b00635 10.1021/acscatal.6b02923 10.1002/chem.201700493 10.1039/C5CS00837A 10.1039/C8TA01060A 10.1021/acs.cgd.6b00698 10.1039/C9DT01056D 10.1038/s41467-019-11912-4 10.1021/jacs.6b03263 10.1016/j.poly.2018.10.011 10.1007/s11706-018-0444-x 10.1016/j.cej.2019.123343 10.1021/jacs.8b12530 10.1021/acs.inorgchem.9b03639 10.1021/acsami.9b05091 10.1021/acs.chemmater.9b00524 10.1039/C8NJ04231D 10.1039/C8SC00752G 10.1016/j.dyepig.2019.107862 10.1002/anie.201901786 10.1080/00958972.2019.1599870 10.1021/jacs.9b00122 10.1039/C9SC01241A 10.1016/j.ccr.2018.09.009 10.1021/acsanm.9b00188 10.1039/C8SC03168A 10.1021/acscentsci.8b00073 10.1021/jacs.8b04745 10.1021/jacs.9b13070 10.1021/jacs.9b04915 10.1021/jacs.6b04501 10.1039/C9NJ02059D 10.1039/C9CE01730E 10.1021/acs.cgd.8b01779 10.1039/C8QI01166D 10.1039/c3cc48381a 10.1021/acssuschemeng.9b00062 10.1039/C9CS00250B 10.1021/jacs.0c01895 10.1038/s41929-019-0405-5 10.1021/acs.inorgchem.8b00465 10.1126/science.1137975 10.1021/jacs.9b11260 10.1039/C8TC03036G 10.1021/acsami.0c06672 10.1039/C9DT03335A 10.1021/jacs.9b07700 10.1038/nature06599 10.1002/anie.202000702 10.1021/ja406844r 10.1038/s41467-018-07414-4 10.1021/cr2003272 10.1021/jacs.9b05580 10.1021/acs.inorgchem.9b01238 10.1021/jacs.9b02294 10.1021/acs.inorgchem.8b03310 10.1021/acs.inorgchem.9b01205 10.1021/acsami.9b16470 10.1039/C9CC06235A 10.1021/acs.inorgchem.9b02517 10.1038/s41467-018-04152-5 10.1021/acs.cgd.8b01637 10.1039/C8NJ01077C 10.1021/jacs.7b10643 10.1021/jacs.7b10565 10.1002/anie.201802661 10.1039/C4CS00003J 10.1021/acs.jced.9b00207 10.1039/C9DT01454C 10.1021/jacs.9b05964 10.1039/C8NJ04315A 10.1021/jacs.8b08433 10.1039/C8CC03841D 10.1021/ja408084j 10.1021/acs.inorgchem.9b00616 10.1002/ijch.201800095 10.1021/cm403726v 10.1002/anie.201812509 10.1021/jacs.7b13510 10.1126/science.1116275 10.1002/anie.201809762 10.1039/C8NJ04956D 10.1021/acsami.9b06151 10.1021/acs.inorgchem.9b01666 10.1002/anie.201913135 10.1021/jacs.9b01839 10.1016/j.jssc.2019.05.048 10.1021/jacs.6b08176 10.1021/acs.inorgchem.8b03299 10.1021/jacs.9b01920 10.1002/adma.201805871 10.1021/acs.jpcc.8b06198 10.1039/C9SC01301F 10.1021/jacs.8b04277 10.1021/ic4018536 10.1016/j.chempr.2019.10.012 10.1039/C3CC49440C 10.1021/jacs.9b07084 10.1021/acs.inorgchem.8b00505 10.1039/C7QI00658F 10.1021/jacs.8b11042 10.1038/s41467-018-05659-7 10.1002/cssc.202000306 10.1039/C7CS00001D 10.1021/ic300825s 10.1038/s41560-018-0261-6 10.1002/adma.201704303 10.1039/C7DT00159B 10.1039/C8CC03744B 10.1002/anie.201709186 10.1039/C8TC04442B 10.1039/C7DT03179C 10.1021/jacs.5b04695 10.1126/science.1220131 10.1021/acsami.0c03336 10.1021/jacs.8b07411 10.1016/j.ccr.2017.12.013 10.1039/B800489G 10.1016/j.jssc.2017.12.034 10.1002/anie.201910717 10.1002/adma.201704388 10.1002/chem.201901671 10.1016/j.jlumin.2018.09.021 10.1021/acs.inorgchem.9b02951 10.1021/acsami.8b19211 10.1039/C8DT00389K 10.1039/C9TC05471E 10.1016/j.ccr.2019.213065 10.1039/C9DT02032B 10.1021/ja510525s 10.1021/jacs.8b06789 10.1021/acsami.9b17569 10.1016/j.poly.2018.03.002 10.1021/jacs.9b13072 10.1021/jacs.9b02947 10.1021/acs.inorgchem.9b02668 10.1016/j.poly.2017.12.030 10.1038/s41467-019-08434-4 10.1021/jacs.7b09973 10.1039/C7CC09780H 10.1016/j.poly.2018.11.006 10.1039/C9ME00062C 10.1021/ja500330a 10.1039/C8DT04267E 10.1002/anie.201204475 10.1002/advs.201901855 10.1126/science.aam7851 10.1021/jacs.9b06187 10.1080/15421406.2018.1541294 10.1002/ejic.201801284 10.1021/jacs.9b05599 10.1039/C9RA03707A 10.1039/C8DT01844H 10.1039/C9NJ04893F 10.1016/j.chempr.2018.03.001 10.1016/j.trechm.2019.03.010 10.1002/anie.201809961 10.1016/j.jssc.2020.121246 10.1002/advs.201802059 10.1039/C7NJ03153J 10.1021/acs.inorgchem.0c00018 10.1021/jacs.8b07050 10.1016/j.optmat.2017.05.037 10.1016/j.inoche.2018.03.023 10.1021/acsami.8b14118 10.1002/ejic.201900643 10.1021/acs.inorgchem.8b03132 10.1016/j.jssc.2019.120900 10.1021/jacs.9b06711 10.1021/acsami.7b16163 10.1126/science.1230444 10.1021/jacs.9b04737 10.1039/C8DT01477A 10.1039/C9TA01942A 10.1016/j.jssc.2019.01.007 10.1039/C7DT04204C 10.1016/j.ccr.2019.01.017 10.1021/jacs.8b11230 10.1021/ja036832p 10.1021/acsanm.9b01534 10.1126/science.1067208 10.1007/s40843-019-1169-9 10.1039/C8SC04220A 10.1002/anie.201808568 10.1016/j.jssc.2019.05.051 10.1021/acs.inorgchem.8b00919 10.1039/C9SC06500H 10.1039/C9DT04158C 10.1002/slct.201801610 10.1002/anie.201810156 10.1021/acs.inorgchem.9b02238 10.1016/j.matt.2019.02.002 10.1016/j.inoche.2019.107499 10.1021/acs.inorgchem.8b00751 10.1021/jacs.9b06179 10.1002/adma.201802329 10.1016/j.jlumin.2018.06.040 10.1021/acs.inorgchem.8b00586 10.1021/ja903726m 10.1039/C8CC03121E 10.1002/chem.201901610 10.1021/acs.inorgchem.8b03511 10.1016/j.ica.2018.05.027 10.1016/j.micromeso.2018.08.030 10.1016/j.ica.2019.119201 10.1021/ja401429x 10.1039/C8QI00083B 10.1039/C8CE01064A 10.1021/acsami.0c05631 10.1039/C8CC03496F 10.1021/acs.chemmater.9b01258 10.1016/j.inoche.2018.09.019 10.1002/cplu.201600137 10.1016/j.matt.2019.11.002 10.1016/j.ica.2017.06.048 10.1039/C8CC05225E 10.1021/acs.inorgchem.7b02255 10.1021/acs.inorgchem.9b02397 10.1007/s10876-018-01490-8 10.1039/C9SC06009J 10.1038/46248 10.1126/science.aam8743 10.1021/acsami.0c05912 10.1021/acs.inorgchem.9b00293 10.1021/acsami.7b00918 10.1021/acs.cgd.9b00671 10.1021/acs.inorgchem.0c00373 10.1021/ic201482n 10.1021/acs.inorgchem.7b03063 10.1039/C4CS00081A 10.1021/acs.accounts.0c00106 10.1021/ja408959g 10.1039/C8CE00008E 10.1021/acs.inorgchem.8b02123 10.1039/C8DT02609B 10.1039/C8DT04602F 10.1039/C9DT03057C 10.1016/j.inoche.2018.09.013 10.1002/adma.201805088 10.1039/C9TA03126J 10.1021/ja512762r 10.1021/jacs.8b04886 10.1039/C7DT00172J 10.1039/C9DT02419K 10.1007/s10904-018-0869-9 10.1016/j.chempr.2018.05.017 10.1021/ja5006866 10.1016/j.jssc.2020.121224 10.1002/chem.201802627 10.1021/acsami.8b03987 10.1002/ejic.201600394 10.3389/fchem.2019.00036 10.1002/anie.201904347 10.1080/24701556.2019.1569688 10.1016/j.chempr.2019.04.013 10.1021/jacs.6b09113 10.1016/j.jlumin.2019.02.048 10.1002/anie.202000158 10.1038/s41467-018-04034-w |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202004414 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202004414 ADMA202004414 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Welch Foundation funderid: A‐0030 – fundername: National Natural Science Foundation of China funderid: 21901084; 21621001 – fundername: 111 Project funderid: B17020 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4534-b7529294febcdf9218db0f757ef6fb8127d78c6abeda1e2e6cd84185696b772f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:47:40 EDT 2025 Fri Jul 25 22:29:16 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Tue Jul 01 02:32:52 EDT 2025 Wed Jan 22 16:33:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4534-b7529294febcdf9218db0f757ef6fb8127d78c6abeda1e2e6cd84185696b772f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2531-552X 0000-0001-9693-1595 |
PQID | 2456775360 |
PQPubID | 2045203 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_2441257194 proquest_journals_2456775360 crossref_citationtrail_10_1002_adma_202004414 crossref_primary_10_1002_adma_202004414 wiley_primary_10_1002_adma_202004414_ADMA202004414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 2019 2019; 11 2019; 10 2020; 285 2018; 203 2019; 19 2016; 2016 2020; 13 2020; 12 2019; 205 2020; 11 2018; 42 2014; 136 2018; 48 2018; 47 2018; 6 2018; 9 2018; 3 2018; 5 2018; 4 2015; 137 2019; 25 2020; 172 2013; 52 2019; 157 2019; 278 2019; 158 2018; 30 2020; 178 2019; 271 2019; 277 2016; 45 2019; 275 2019; 7 2019; 9 2018; 28 2019; 4 2019; 6 2019; 5 2019; 31 2019; 30 2019; 2 2020; 142 2019; 1 2020; 384 2013; 341 2019; 107 2020; 32 2016; 16 2018; 20 2014; 43 2017; 139 2018; 24 2018; 472 2012; 112 2007; 315 2018; 359 2019; 43 2019; 48 2017; 56 2018; 92 2020; 26 2020; 22 2018; 12 2018; 10 2018; 97 2008; 130 2019; 210 2018; 482 2018; 122 2017; 7 2017; 41 2013; 25 2019; 55 2017; 46 2019; 58 2019; 401 2020; 59 2018; 83 1999; 402 2017; 356 2017; 9 2012; 51 2020; 8 2020; 6 2020; 3 2020; 2 2019; 62 2019; 64 2020; 53 2018; 259 2020; 49 2005; 309 2020; 499 2016; 81 2003; 125 2012; 336 2014; 50 2018; 144 2015; 6 2018; 140 2019; 72 2018; 666 2002; 295 2018; 146 2017; 23 2009; 131 2019; 141 2019; 380 2019; 386 2013; 135 2016; 138 2008; 452 2018; 54 2009; 38 2018; 58 2018; 57 e_1_2_10_271_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_256_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_272_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_234_1 Zhang Q. (e_1_2_10_185_1) 2020; 285 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 Fernandez‐Garcia G. (e_1_2_10_24_1) 2018; 57 e_1_2_10_261_1 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 Silva I. G. N. (e_1_2_10_72_1) 2019; 210 e_1_2_10_250_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_263_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_252_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_32_1 Yuan Y.‐Y. (e_1_2_10_91_1) 2018; 48 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 Yu F. (e_1_2_10_218_1) 2019; 107 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 e_1_2_10_238_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_242_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 e_1_2_10_227_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_239_1 e_1_2_10_216_1 e_1_2_10_254_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_270_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_232_1 Jiang H. (e_1_2_10_236_1) 2020; 142 Laurikenas A. (e_1_2_10_86_1) 2018; 83 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 Liu C. (e_1_2_10_54_1) 2020; 26 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 359 start-page: 80 year: 2018 publication-title: Coord. Chem. Rev. – volume: 4 start-page: 1000 year: 2019 publication-title: Mol. Syst. Des. Eng. – volume: 57 start-page: 8850 year: 2018 publication-title: Inorg. Chem. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 66 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2260 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 59 start-page: 4167 year: 2020 publication-title: Inorg. Chem. – volume: 336 start-page: 1018 year: 2012 publication-title: Science – volume: 9 start-page: 3353 year: 2018 publication-title: Nat. Commun. – volume: 138 start-page: 6636 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 673 year: 2012 publication-title: Chem. Rev. – volume: 25 start-page: 7114 year: 2019 publication-title: Chem. ‐ Eur. J. – volume: 146 start-page: 161 year: 2018 publication-title: Polyhedron – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 488 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 3964 year: 2020 publication-title: Inorg. Chem. – volume: 9 start-page: 1745 year: 2018 publication-title: Nat. Commun. – volume: 141 start-page: 6967 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 9642 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8269 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 141 start-page: 7245 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 6979 year: 2018 publication-title: Chem. Commun. – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 2019 start-page: 3103 year: 2019 publication-title: Eur. J. Inorg. Chem. – volume: 112 start-page: 724 year: 2012 publication-title: Chem. Rev. – volume: 48 start-page: 4823 year: 2019 publication-title: Chem. Soc. Rev. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 58 start-page: 2736 year: 2019 publication-title: Inorg. Chem. – volume: 72 start-page: 1560 year: 2019 publication-title: J. Coord. Chem. – volume: 51 start-page: 6443 year: 2012 publication-title: Inorg. Chem. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 22 start-page: 915 year: 2020 publication-title: CrystEngComm – volume: 46 start-page: 3526 year: 2017 publication-title: Dalton Trans. – volume: 259 start-page: 48 year: 2018 publication-title: J. Solid State Chem. – volume: 38 start-page: 253 year: 2009 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 6893 year: 2018 publication-title: Inorg. Chem. – volume: 402 start-page: 276 year: 1999 publication-title: Nature – volume: 125 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 380 start-page: 230 year: 2019 publication-title: Coord. Chem. Rev. – volume: 57 start-page: 5095 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3978 year: 2020 publication-title: Chem. Sci. – volume: 384 year: 2020 publication-title: Chem. Eng. J. – volume: 32 start-page: 97 year: 2020 publication-title: Chem. Mater. – volume: 30 start-page: 337 year: 2019 publication-title: J. Cluster Sci. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 48 year: 2019 publication-title: Dalton Trans. – volume: 58 start-page: 7267 year: 2019 publication-title: Inorg. Chem. – volume: 58 start-page: 3569 year: 2019 publication-title: Inorg. Chem. – volume: 97 start-page: 63 year: 2018 publication-title: Inorg. Chem. Commun. – volume: 10 start-page: 3861 year: 2019 publication-title: Nat. Commun. – volume: 58 start-page: 3586 year: 2019 publication-title: Inorg. Chem. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 985 year: 2018 publication-title: Nat. Energy – volume: 140 start-page: 993 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 285 year: 2020 publication-title: J. Solid State Chem. – volume: 482 start-page: 16 year: 2018 publication-title: Inorg. Chim. Acta – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 154 year: 2020 publication-title: Nat. Catal. – volume: 45 start-page: 2327 year: 2016 publication-title: Chem. Soc. Rev. – volume: 203 start-page: 105 year: 2018 publication-title: J. Lumin. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 1022 year: 2018 publication-title: Chem – volume: 43 start-page: 6097 year: 2014 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 5642 year: 2018 publication-title: Inorg. Chem. – volume: 142 start-page: 9363 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 6404 year: 2018 publication-title: Chem. Commun. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 1710 year: 2020 publication-title: ChemSusChem – volume: 47 year: 2018 publication-title: Dalton Trans. – volume: 28 start-page: 1839 year: 2018 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 54 start-page: 9470 year: 2018 publication-title: Chem. Commun. – volume: 278 year: 2019 publication-title: J. Solid State Chem. – volume: 47 start-page: 2337 year: 2018 publication-title: Dalton Trans. – volume: 62 start-page: 1655 year: 2019 publication-title: Sci. China Mater. – volume: 9 start-page: 1660 year: 2018 publication-title: Nat. Commun. – volume: 141 start-page: 3129 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1918 year: 2020 publication-title: Chem. Sci. – volume: 140 start-page: 3040 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 9916 year: 2019 publication-title: Dalton Trans. – volume: 172 year: 2020 publication-title: Dyes Pigm. – volume: 20 start-page: 2043 year: 2018 publication-title: CrystEngComm – volume: 57 start-page: 6883 year: 2018 publication-title: Inorg. Chem. – volume: 472 start-page: 276 year: 2018 publication-title: Inorg. Chim. Acta – volume: 31 start-page: 5550 year: 2019 publication-title: Chem. Mater. – volume: 83 start-page: 363 year: 2018 publication-title: Opt. Mater. – volume: 142 start-page: 3174 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 2666 year: 2020 publication-title: Dalton Trans. – volume: 10 start-page: 733 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 7871 year: 2018 publication-title: ChemistrySelect – volume: 25 start-page: 5012 year: 2013 publication-title: Chem. Mater. – volume: 141 start-page: 7498 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 454 year: 2018 publication-title: Inorg. Nano‐Met. Chem. – volume: 51 start-page: 1336 year: 2012 publication-title: Inorg. Chem. – volume: 50 start-page: 2834 year: 2014 publication-title: Chem. Commun. – volume: 5 start-page: 394 year: 2018 publication-title: Inorg. Chem. Front. – volume: 49 start-page: 983 year: 2020 publication-title: Dalton Trans. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 277 start-page: 139 year: 2019 publication-title: J. Solid State Chem. – volume: 141 start-page: 2054 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 210 start-page: 335 year: 2019 publication-title: J. Lumin. – volume: 25 year: 2019 publication-title: Chem. Eur. J. – volume: 11 start-page: 973 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 7118 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 53 start-page: 1187 year: 2020 publication-title: Acc. Chem. Res. – volume: 47 start-page: 663 year: 2018 publication-title: Dalton Trans. – volume: 275 start-page: 229 year: 2019 publication-title: Microporous Mesoporous Mater. – volume: 23 start-page: 6864 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 7 start-page: 997 year: 2017 publication-title: ACS Catal. – volume: 137 start-page: 3177 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1186 year: 2019 publication-title: Chem. Sci. – volume: 295 start-page: 469 year: 2002 publication-title: Science – volume: 58 start-page: 1320 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 5135 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 140 start-page: 7710 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 452 start-page: 301 year: 2008 publication-title: Nature – volume: 10 start-page: 767 year: 2019 publication-title: Nat. Commun. – volume: 178 year: 2020 publication-title: Polyhedron – volume: 309 start-page: 2040 year: 2005 publication-title: Science – volume: 47 start-page: 8158 year: 2018 publication-title: Dalton Trans. – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 6472 year: 2018 publication-title: Chem. Commun. – volume: 158 start-page: 365 year: 2019 publication-title: Polyhedron – volume: 138 start-page: 8912 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2228 year: 2019 publication-title: Dalton Trans. – volume: 58 start-page: 3698 year: 2019 publication-title: Inorg. Chem. – volume: 10 start-page: 5801 year: 2019 publication-title: Chem. Sci. – volume: 59 start-page: 350 year: 2020 publication-title: Inorg. Chem. – volume: 5 start-page: 1193 year: 2018 publication-title: Inorg. Chem. Front. – volume: 47 start-page: 8427 year: 2018 publication-title: Dalton Trans. – volume: 386 start-page: 32 year: 2019 publication-title: Coord. Chem. Rev. – volume: 1 start-page: 156 year: 2019 publication-title: Matter – volume: 19 start-page: 4754 year: 2019 publication-title: Cryst. Growth Des. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 7115 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 6098 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 43 start-page: 5561 year: 2014 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 6700 year: 2019 publication-title: Dalton Trans. – volume: 43 year: 2019 publication-title: New J. Chem. – volume: 9 start-page: 8099 year: 2018 publication-title: Chem. Sci. – volume: 271 start-page: 273 year: 2019 publication-title: J. Solid State Chem. – volume: 1 start-page: 304 year: 2019 publication-title: Trends Chem. – volume: 58 year: 2019 publication-title: Inorg. Chem. – volume: 401 year: 2019 publication-title: Coord. Chem. Rev. – volume: 19 start-page: 1509 year: 2019 publication-title: Cryst. Growth Des. – volume: 42 year: 2018 publication-title: New J. Chem. – volume: 31 start-page: 8629 year: 2019 publication-title: Chem. Mater. – volume: 58 start-page: 1044 year: 2018 publication-title: Isr. J. Chem. – volume: 43 start-page: 9934 year: 2019 publication-title: New J. Chem. – volume: 2 start-page: 440 year: 2020 publication-title: Matter – volume: 356 start-page: 624 year: 2017 publication-title: Science – volume: 140 start-page: 8858 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 4181 year: 2020 publication-title: Inorg. Chem. – volume: 58 start-page: 6022 year: 2019 publication-title: Angew. Chem., In. Ed. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 9160 year: 2019 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 157 start-page: 177 year: 2019 publication-title: Polyhedron – volume: 59 start-page: 9319 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 2069 year: 2019 publication-title: Cryst. Growth Des. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 205 start-page: 228 year: 2019 publication-title: J. Lumin. – volume: 4 start-page: 1911 year: 2018 publication-title: Chem – volume: 2019 start-page: 2674 year: 2019 publication-title: Eur. J. Inorg. Chem. – volume: 52 year: 2013 publication-title: Inorg. Chem. – volume: 97 start-page: 125 year: 2018 publication-title: Inorg. Chem. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 48 start-page: 1700 year: 2019 publication-title: Dalton Trans. – volume: 137 start-page: 2641 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 3431 year: 2017 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 7259 year: 2018 publication-title: Inorg. Chem. – volume: 50 start-page: 3786 year: 2014 publication-title: Chem. Commun. – volume: 136 start-page: 4369 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 7660 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1374 year: 2020 publication-title: J. Mater. Chem. C – volume: 2016 start-page: 4310 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 142 start-page: 4732 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 356 start-page: 430 year: 2017 publication-title: Science – volume: 57 start-page: 2663 year: 2018 publication-title: Inorg. Chem. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 675 year: 2016 publication-title: ChemPlusChem – volume: 341 year: 2013 publication-title: Science – volume: 6 start-page: 6363 year: 2018 publication-title: J. Mater. Chem. A – volume: 16 start-page: 4148 year: 2016 publication-title: Cryst. Growth Des. – volume: 41 year: 2017 publication-title: New J. Chem. – volume: 92 start-page: 18 year: 2018 publication-title: Inorg. Chem. Commun. – volume: 277 start-page: 93 year: 2019 publication-title: J. Solid State Chem. – volume: 47 start-page: 9079 year: 2018 publication-title: Dalton Trans. – volume: 4 start-page: 440 year: 2018 publication-title: ACS Cent. Sci. – volume: 7 start-page: 36 year: 2019 publication-title: Front. Chem. – volume: 54 start-page: 8088 year: 2018 publication-title: Chem. Commun. – volume: 107 year: 2019 publication-title: Inorg. Chem. Commun. – volume: 315 start-page: 1828 year: 2007 publication-title: Science – volume: 5 start-page: 1938 year: 2019 publication-title: Chem – volume: 6 start-page: 337 year: 2020 publication-title: Chem – volume: 6 start-page: 550 year: 2019 publication-title: Inorg. Chem. Front. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6886 year: 2019 publication-title: Chem. Sci. – volume: 64 start-page: 3105 year: 2019 publication-title: J. Chem. Eng. Data – volume: 6 start-page: 7575 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 4937 year: 2018 publication-title: Nat. Commun. – volume: 43 start-page: 1617 year: 2019 publication-title: New J. Chem. – volume: 12 start-page: 327 year: 2018 publication-title: Front. Mater. Sci. – volume: 499 year: 2020 publication-title: Inorg. Chim. Acta – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 144 start-page: 101 year: 2018 publication-title: Polyhedron – volume: 9 start-page: 5021 year: 2018 publication-title: Chem. Sci. – volume: 20 start-page: 5132 year: 2018 publication-title: CrystEngComm – volume: 19 start-page: 5686 year: 2019 publication-title: Cryst. Growth Des. – volume: 47 start-page: 1726 year: 2018 publication-title: Dalton Trans. – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 24 year: 2018 publication-title: Chem. – Eur. J. – volume: 58 start-page: 3021 year: 2019 – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 666 start-page: 109 year: 2018 publication-title: Mol. Cryst. Liq. Cryst. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_10_227_1 doi: 10.1021/acs.chemmater.9b02462 – ident: e_1_2_10_126_1 doi: 10.1021/ja512311a – ident: e_1_2_10_259_1 doi: 10.1002/adma.201806445 – ident: e_1_2_10_58_1 doi: 10.1016/j.poly.2019.114276 – ident: e_1_2_10_13_1 doi: 10.1021/ja8057953 – ident: e_1_2_10_3_1 doi: 10.1021/cr300014x – ident: e_1_2_10_230_1 doi: 10.1038/ncomms8575 – ident: e_1_2_10_240_1 doi: 10.1021/acsami.8b09333 – ident: e_1_2_10_73_1 doi: 10.1021/acs.cgd.9b00635 – ident: e_1_2_10_159_1 doi: 10.1021/acscatal.6b02923 – ident: e_1_2_10_133_1 doi: 10.1002/chem.201700493 – ident: e_1_2_10_15_1 doi: 10.1039/C5CS00837A – ident: e_1_2_10_189_1 doi: 10.1039/C8TA01060A – ident: e_1_2_10_206_1 doi: 10.1021/acs.cgd.6b00698 – ident: e_1_2_10_45_1 doi: 10.1039/C9DT01056D – ident: e_1_2_10_212_1 doi: 10.1038/s41467-019-11912-4 – ident: e_1_2_10_247_1 doi: 10.1021/jacs.6b03263 – ident: e_1_2_10_56_1 doi: 10.1016/j.poly.2018.10.011 – ident: e_1_2_10_98_1 doi: 10.1007/s11706-018-0444-x – ident: e_1_2_10_167_1 doi: 10.1016/j.cej.2019.123343 – ident: e_1_2_10_254_1 doi: 10.1021/jacs.8b12530 – ident: e_1_2_10_129_1 doi: 10.1021/acs.inorgchem.9b03639 – ident: e_1_2_10_248_1 doi: 10.1021/acsami.9b05091 – ident: e_1_2_10_169_1 doi: 10.1021/acs.chemmater.9b00524 – ident: e_1_2_10_31_1 doi: 10.1039/C8NJ04231D – ident: e_1_2_10_40_1 doi: 10.1039/C8SC00752G – ident: e_1_2_10_103_1 doi: 10.1016/j.dyepig.2019.107862 – ident: e_1_2_10_132_1 doi: 10.1002/anie.201901786 – ident: e_1_2_10_81_1 doi: 10.1080/00958972.2019.1599870 – ident: e_1_2_10_115_1 doi: 10.1021/jacs.9b00122 – ident: e_1_2_10_50_1 doi: 10.1039/C9SC01241A – ident: e_1_2_10_157_1 doi: 10.1016/j.ccr.2018.09.009 – ident: e_1_2_10_127_1 doi: 10.1021/acsanm.9b00188 – ident: e_1_2_10_100_1 doi: 10.1039/C8SC03168A – ident: e_1_2_10_139_1 doi: 10.1021/acscentsci.8b00073 – ident: e_1_2_10_114_1 doi: 10.1021/jacs.8b04745 – ident: e_1_2_10_271_1 doi: 10.1021/jacs.9b13070 – ident: e_1_2_10_153_1 doi: 10.1021/jacs.9b04915 – ident: e_1_2_10_179_1 doi: 10.1021/jacs.6b04501 – ident: e_1_2_10_25_1 doi: 10.1039/C9NJ02059D – ident: e_1_2_10_32_1 doi: 10.1039/C9CE01730E – ident: e_1_2_10_110_1 doi: 10.1021/acs.cgd.8b01779 – ident: e_1_2_10_33_1 doi: 10.1039/C8QI01166D – ident: e_1_2_10_229_1 doi: 10.1039/c3cc48381a – ident: e_1_2_10_183_1 doi: 10.1021/acssuschemeng.9b00062 – ident: e_1_2_10_9_1 doi: 10.1039/C9CS00250B – ident: e_1_2_10_137_1 doi: 10.1021/jacs.0c01895 – ident: e_1_2_10_27_1 doi: 10.1038/s41929-019-0405-5 – ident: e_1_2_10_95_1 doi: 10.1021/acs.inorgchem.8b00465 – ident: e_1_2_10_5_1 doi: 10.1126/science.1137975 – ident: e_1_2_10_117_1 doi: 10.1021/jacs.9b11260 – ident: e_1_2_10_220_1 doi: 10.1039/C8TC03036G – ident: e_1_2_10_170_1 doi: 10.1021/acsami.0c06672 – ident: e_1_2_10_36_1 doi: 10.1039/C9DT03335A – ident: e_1_2_10_193_1 doi: 10.1021/jacs.9b07700 – ident: e_1_2_10_260_1 doi: 10.1038/nature06599 – ident: e_1_2_10_251_1 doi: 10.1002/anie.202000702 – ident: e_1_2_10_205_1 doi: 10.1021/ja406844r – ident: e_1_2_10_164_1 doi: 10.1038/s41467-018-07414-4 – ident: e_1_2_10_257_1 doi: 10.1021/cr2003272 – ident: e_1_2_10_249_1 doi: 10.1021/jacs.9b05580 – ident: e_1_2_10_46_1 doi: 10.1021/acs.inorgchem.9b01238 – ident: e_1_2_10_235_1 doi: 10.1021/jacs.9b02294 – ident: e_1_2_10_52_1 doi: 10.1021/acs.inorgchem.8b03310 – ident: e_1_2_10_231_1 doi: 10.1021/acs.inorgchem.9b01205 – ident: e_1_2_10_109_1 doi: 10.1021/acsami.9b16470 – ident: e_1_2_10_53_1 doi: 10.1039/C9CC06235A – ident: e_1_2_10_168_1 doi: 10.1021/acs.inorgchem.9b02517 – ident: e_1_2_10_209_1 doi: 10.1038/s41467-018-04152-5 – ident: e_1_2_10_250_1 doi: 10.1021/acs.cgd.8b01637 – ident: e_1_2_10_61_1 doi: 10.1039/C8NJ01077C – ident: e_1_2_10_180_1 doi: 10.1021/jacs.7b10643 – ident: e_1_2_10_67_1 doi: 10.1021/jacs.7b10565 – ident: e_1_2_10_113_1 doi: 10.1002/anie.201802661 – ident: e_1_2_10_10_1 doi: 10.1039/C4CS00003J – ident: e_1_2_10_92_1 doi: 10.1021/acs.jced.9b00207 – ident: e_1_2_10_38_1 doi: 10.1039/C9DT01454C – ident: e_1_2_10_143_1 doi: 10.1021/jacs.9b05964 – ident: e_1_2_10_80_1 doi: 10.1039/C8NJ04315A – ident: e_1_2_10_224_1 doi: 10.1021/jacs.8b08433 – ident: e_1_2_10_112_1 doi: 10.1039/C8CC03841D – ident: e_1_2_10_204_1 doi: 10.1021/ja408084j – ident: e_1_2_10_20_1 doi: 10.1021/acs.inorgchem.9b00616 – ident: e_1_2_10_97_1 doi: 10.1002/ijch.201800095 – ident: e_1_2_10_201_1 doi: 10.1021/cm403726v – ident: e_1_2_10_41_1 doi: 10.1002/anie.201812509 – ident: e_1_2_10_151_1 doi: 10.1021/jacs.7b13510 – ident: e_1_2_10_6_1 doi: 10.1126/science.1116275 – ident: e_1_2_10_48_1 doi: 10.1002/anie.201809762 – ident: e_1_2_10_108_1 doi: 10.1039/C8NJ04956D – ident: e_1_2_10_222_1 doi: 10.1021/acsami.9b06151 – ident: e_1_2_10_228_1 doi: 10.1021/acs.inorgchem.9b01666 – ident: e_1_2_10_145_1 doi: 10.1002/anie.201913135 – ident: e_1_2_10_163_1 doi: 10.1021/jacs.9b01839 – ident: e_1_2_10_74_1 doi: 10.1016/j.jssc.2019.05.048 – ident: e_1_2_10_237_1 doi: 10.1021/jacs.6b08176 – ident: e_1_2_10_105_1 doi: 10.1021/acs.inorgchem.8b03299 – ident: e_1_2_10_191_1 doi: 10.1021/jacs.9b01920 – ident: e_1_2_10_268_1 doi: 10.1002/adma.201805871 – ident: e_1_2_10_99_1 doi: 10.1021/acs.jpcc.8b06198 – ident: e_1_2_10_184_1 doi: 10.1039/C9SC01301F – ident: e_1_2_10_253_1 doi: 10.1021/jacs.8b04277 – ident: e_1_2_10_198_1 doi: 10.1021/ic4018536 – ident: e_1_2_10_258_1 doi: 10.1016/j.chempr.2019.10.012 – ident: e_1_2_10_150_1 doi: 10.1039/C3CC49440C – ident: e_1_2_10_223_1 doi: 10.1021/jacs.9b07084 – ident: e_1_2_10_18_1 doi: 10.1021/acs.inorgchem.8b00505 – ident: e_1_2_10_19_1 doi: 10.1039/C7QI00658F – ident: e_1_2_10_239_1 doi: 10.1021/jacs.8b11042 – ident: e_1_2_10_119_1 doi: 10.1038/s41467-018-05659-7 – ident: e_1_2_10_147_1 doi: 10.1002/anie.201809762 – ident: e_1_2_10_234_1 doi: 10.1002/cssc.202000306 – ident: e_1_2_10_141_1 doi: 10.1039/C7CS00001D – ident: e_1_2_10_197_1 doi: 10.1021/ic300825s – ident: e_1_2_10_213_1 doi: 10.1038/s41560-018-0261-6 – ident: e_1_2_10_11_1 doi: 10.1002/adma.201704303 – ident: e_1_2_10_264_1 doi: 10.1039/C7DT00159B – ident: e_1_2_10_42_1 doi: 10.1039/C8CC03744B – ident: e_1_2_10_207_1 doi: 10.1002/anie.201709186 – ident: e_1_2_10_76_1 doi: 10.1039/C8TC04442B – ident: e_1_2_10_35_1 doi: 10.1039/C7DT03179C – ident: e_1_2_10_269_1 doi: 10.1021/jacs.5b04695 – ident: e_1_2_10_7_1 doi: 10.1126/science.1220131 – ident: e_1_2_10_162_1 doi: 10.1021/ja8057953 – ident: e_1_2_10_210_1 doi: 10.1021/acsami.0c03336 – ident: e_1_2_10_252_1 doi: 10.1021/jacs.8b07411 – ident: e_1_2_10_138_1 doi: 10.1016/j.ccr.2017.12.013 – ident: e_1_2_10_154_1 doi: 10.1039/B800489G – ident: e_1_2_10_78_1 doi: 10.1016/j.jssc.2017.12.034 – ident: e_1_2_10_116_1 doi: 10.1002/anie.201910717 – ident: e_1_2_10_242_1 doi: 10.1002/adma.201704388 – ident: e_1_2_10_55_1 doi: 10.1002/chem.201901671 – ident: e_1_2_10_89_1 doi: 10.1016/j.jlumin.2018.09.021 – ident: e_1_2_10_59_1 doi: 10.1021/acs.inorgchem.9b02951 – ident: e_1_2_10_261_1 doi: 10.1021/acsami.8b19211 – ident: e_1_2_10_96_1 doi: 10.1039/C8DT00389K – ident: e_1_2_10_104_1 doi: 10.1039/C9TC05471E – ident: e_1_2_10_265_1 doi: 10.1016/j.ccr.2019.213065 – ident: e_1_2_10_66_1 doi: 10.1039/C9DT02032B – ident: e_1_2_10_203_1 doi: 10.1021/ja510525s – ident: e_1_2_10_233_1 doi: 10.1021/jacs.8b06789 – ident: e_1_2_10_245_1 doi: 10.1021/acsami.9b17569 – ident: e_1_2_10_22_1 doi: 10.1016/j.poly.2018.03.002 – ident: e_1_2_10_178_1 doi: 10.1021/jacs.9b13072 – ident: e_1_2_10_226_1 doi: 10.1021/jacs.9b02947 – ident: e_1_2_10_28_1 doi: 10.1021/acs.inorgchem.9b02668 – ident: e_1_2_10_79_1 doi: 10.1016/j.poly.2017.12.030 – ident: e_1_2_10_190_1 doi: 10.1038/s41467-019-08434-4 – ident: e_1_2_10_208_1 doi: 10.1021/jacs.7b09973 – ident: e_1_2_10_120_1 doi: 10.1039/C7CC09780H – ident: e_1_2_10_21_1 doi: 10.1016/j.poly.2018.11.006 – ident: e_1_2_10_176_1 doi: 10.1039/C9ME00062C – ident: e_1_2_10_232_1 doi: 10.1021/ja500330a – ident: e_1_2_10_16_1 doi: 10.1039/C8DT04267E – ident: e_1_2_10_200_1 doi: 10.1002/anie.201204475 – ident: e_1_2_10_217_1 doi: 10.1002/advs.201901855 – ident: e_1_2_10_122_1 doi: 10.1126/science.aam7851 – ident: e_1_2_10_136_1 doi: 10.1021/jacs.9b06187 – ident: e_1_2_10_106_1 doi: 10.1080/15421406.2018.1541294 – ident: e_1_2_10_196_1 doi: 10.1002/ejic.201801284 – ident: e_1_2_10_43_1 doi: 10.1021/jacs.9b05599 – ident: e_1_2_10_47_1 doi: 10.1039/C9RA03707A – ident: e_1_2_10_64_1 doi: 10.1039/C8DT01844H – ident: e_1_2_10_34_1 doi: 10.1039/C9NJ04893F – ident: e_1_2_10_214_1 doi: 10.1016/j.chempr.2018.03.001 – ident: e_1_2_10_161_1 doi: 10.1016/j.trechm.2019.03.010 – ident: e_1_2_10_68_1 doi: 10.1002/anie.201809961 – volume: 285 start-page: 121234 year: 2020 ident: e_1_2_10_185_1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2020.121246 – ident: e_1_2_10_262_1 doi: 10.1002/advs.201802059 – ident: e_1_2_10_140_1 doi: 10.1039/C7NJ03153J – ident: e_1_2_10_172_1 doi: 10.1021/acs.inorgchem.0c00018 – ident: e_1_2_10_181_1 doi: 10.1021/jacs.8b07050 – volume: 83 start-page: 363 year: 2018 ident: e_1_2_10_86_1 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2017.05.037 – ident: e_1_2_10_102_1 doi: 10.1016/j.inoche.2018.03.023 – ident: e_1_2_10_165_1 doi: 10.1021/acsami.8b14118 – ident: e_1_2_10_30_1 doi: 10.1002/ejic.201900643 – ident: e_1_2_10_243_1 doi: 10.1021/acs.inorgchem.8b03132 – ident: e_1_2_10_75_1 doi: 10.1016/j.jssc.2019.120900 – ident: e_1_2_10_187_1 doi: 10.1021/jacs.9b06711 – ident: e_1_2_10_238_1 doi: 10.1021/acsami.7b16163 – ident: e_1_2_10_2_1 doi: 10.1126/science.1230444 – ident: e_1_2_10_124_1 doi: 10.1021/jacs.9b04737 – ident: e_1_2_10_84_1 doi: 10.1039/C8DT01477A – ident: e_1_2_10_146_1 doi: 10.1039/C9TA01942A – ident: e_1_2_10_77_1 doi: 10.1016/j.jssc.2019.01.007 – ident: e_1_2_10_51_1 doi: 10.1039/C7DT04204C – ident: e_1_2_10_156_1 doi: 10.1016/j.ccr.2019.01.017 – ident: e_1_2_10_272_1 doi: 10.1021/jacs.8b11230 – ident: e_1_2_10_121_1 doi: 10.1021/ja036832p – ident: e_1_2_10_194_1 doi: 10.1021/acsanm.9b01534 – ident: e_1_2_10_8_1 doi: 10.1126/science.1067208 – ident: e_1_2_10_263_1 doi: 10.1007/s40843-019-1169-9 – ident: e_1_2_10_215_1 doi: 10.1039/C8SC04220A – ident: e_1_2_10_256_1 doi: 10.1002/anie.201808568 – ident: e_1_2_10_174_1 doi: 10.1016/j.jssc.2019.05.051 – ident: e_1_2_10_44_1 doi: 10.1021/acs.inorgchem.8b00919 – ident: e_1_2_10_152_1 doi: 10.1039/C9SC06500H – ident: e_1_2_10_131_1 doi: 10.1039/C9DT04158C – ident: e_1_2_10_85_1 doi: 10.1002/slct.201801610 – volume: 57 start-page: 17089 year: 2018 ident: e_1_2_10_24_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810156 – ident: e_1_2_10_62_1 doi: 10.1021/acs.inorgchem.9b02238 – ident: e_1_2_10_177_1 doi: 10.1016/j.matt.2019.02.002 – volume: 107 start-page: 107499 year: 2019 ident: e_1_2_10_218_1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2019.107499 – ident: e_1_2_10_57_1 doi: 10.1021/acs.inorgchem.8b00751 – ident: e_1_2_10_241_1 doi: 10.1021/jacs.9b06179 – ident: e_1_2_10_246_1 doi: 10.1002/adma.201802329 – ident: e_1_2_10_101_1 doi: 10.1016/j.jlumin.2018.06.040 – ident: e_1_2_10_49_1 doi: 10.1021/acs.inorgchem.8b00586 – ident: e_1_2_10_142_1 doi: 10.1021/ja903726m – ident: e_1_2_10_134_1 doi: 10.1039/C8CC03121E – ident: e_1_2_10_123_1 doi: 10.1002/chem.201901610 – ident: e_1_2_10_130_1 doi: 10.1021/acs.inorgchem.8b03511 – ident: e_1_2_10_60_1 doi: 10.1016/j.ica.2018.05.027 – ident: e_1_2_10_175_1 doi: 10.1016/j.micromeso.2018.08.030 – ident: e_1_2_10_26_1 doi: 10.1016/j.ica.2019.119201 – ident: e_1_2_10_14_1 doi: 10.1021/ja401429x – ident: e_1_2_10_118_1 doi: 10.1039/C8QI00083B – ident: e_1_2_10_71_1 doi: 10.1039/C8CE01064A – ident: e_1_2_10_166_1 doi: 10.1021/acsami.0c05631 – volume: 26 start-page: 2666 year: 2020 ident: e_1_2_10_54_1 publication-title: Dalton Trans. – ident: e_1_2_10_188_1 doi: 10.1039/C8CC03496F – ident: e_1_2_10_219_1 doi: 10.1021/acs.chemmater.9b01258 – ident: e_1_2_10_82_1 doi: 10.1016/j.inoche.2018.09.019 – ident: e_1_2_10_266_1 doi: 10.1002/cplu.201600137 – ident: e_1_2_10_65_1 doi: 10.1016/j.matt.2019.11.002 – ident: e_1_2_10_107_1 doi: 10.1016/j.ica.2017.06.048 – ident: e_1_2_10_158_1 doi: 10.1002/adma.201704303 – ident: e_1_2_10_182_1 doi: 10.1039/C8CC05225E – ident: e_1_2_10_87_1 doi: 10.1021/acs.inorgchem.7b02255 – ident: e_1_2_10_221_1 doi: 10.1021/acs.inorgchem.9b02397 – ident: e_1_2_10_29_1 doi: 10.1007/s10876-018-01490-8 – ident: e_1_2_10_216_1 doi: 10.1039/C9SC06009J – volume: 142 start-page: 9642 year: 2020 ident: e_1_2_10_236_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_10_1_1 doi: 10.1038/46248 – ident: e_1_2_10_4_1 doi: 10.1126/science.aam8743 – ident: e_1_2_10_171_1 doi: 10.1021/acsami.0c05912 – ident: e_1_2_10_63_1 doi: 10.1021/acs.inorgchem.9b00293 – ident: e_1_2_10_225_1 doi: 10.1021/acsami.7b00918 – ident: e_1_2_10_128_1 doi: 10.1021/acs.cgd.9b00671 – ident: e_1_2_10_173_1 doi: 10.1021/acs.inorgchem.0c00373 – ident: e_1_2_10_135_1 doi: 10.1021/ic201482n – ident: e_1_2_10_211_1 doi: 10.1021/acs.inorgchem.7b03063 – ident: e_1_2_10_12_1 doi: 10.1039/C4CS00081A – ident: e_1_2_10_155_1 doi: 10.1021/acs.accounts.0c00106 – ident: e_1_2_10_199_1 doi: 10.1021/ja408959g – ident: e_1_2_10_83_1 doi: 10.1039/C8CE00008E – ident: e_1_2_10_93_1 doi: 10.1021/acs.inorgchem.8b02123 – ident: e_1_2_10_39_1 doi: 10.1039/C8DT02609B – ident: e_1_2_10_37_1 doi: 10.1039/C8DT04602F – ident: e_1_2_10_69_1 doi: 10.1039/C9DT03057C – ident: e_1_2_10_70_1 doi: 10.1016/j.inoche.2018.09.013 – ident: e_1_2_10_111_1 doi: 10.1002/adma.201805088 – ident: e_1_2_10_195_1 doi: 10.1039/C9TA03126J – ident: e_1_2_10_125_1 doi: 10.1021/ja512762r – ident: e_1_2_10_255_1 doi: 10.1021/jacs.8b04886 – ident: e_1_2_10_23_1 doi: 10.1039/C7DT00172J – ident: e_1_2_10_17_1 doi: 10.1039/C9DT02419K – ident: e_1_2_10_94_1 doi: 10.1007/s10904-018-0869-9 – ident: e_1_2_10_186_1 doi: 10.1016/j.chempr.2018.05.017 – ident: e_1_2_10_270_1 doi: 10.1021/ja5006866 – ident: e_1_2_10_244_1 doi: 10.1016/j.jssc.2020.121224 – ident: e_1_2_10_88_1 doi: 10.1002/chem.201802627 – ident: e_1_2_10_192_1 doi: 10.1021/acsami.8b03987 – ident: e_1_2_10_160_1 doi: 10.1002/ejic.201600394 – ident: e_1_2_10_90_1 doi: 10.3389/fchem.2019.00036 – ident: e_1_2_10_149_1 doi: 10.1002/anie.201904347 – volume: 48 start-page: 454 year: 2018 ident: e_1_2_10_91_1 publication-title: Inorg. Nano‐Met. Chem. doi: 10.1080/24701556.2019.1569688 – ident: e_1_2_10_267_1 doi: 10.1016/j.chempr.2019.04.013 – ident: e_1_2_10_202_1 doi: 10.1021/jacs.6b09113 – volume: 210 start-page: 335 year: 2019 ident: e_1_2_10_72_1 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2019.02.048 – ident: e_1_2_10_148_1 doi: 10.1002/anie.202000158 – ident: e_1_2_10_144_1 doi: 10.1038/s41467-018-04034-w |
SSID | ssj0009606 |
Score | 2.625227 |
SecondaryResourceType | review_article |
Snippet | Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water... Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2004414 |
SubjectTerms | Actinides Adsorbed water Adsorption Biomedical materials Bonding strength Coordination group 3 metals group 4 metals Lanthanides Materials science Metal-organic frameworks Metals Structural design Titanium Topology Zirconium |
Title | Metal–Organic Frameworks Based on Group 3 and 4 Metals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202004414 https://www.proquest.com/docview/2456775360 https://www.proquest.com/docview/2441257194 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcH8aQHd7FaZQTB07RNMktyrEspQj2Ihd7CrBclFdNePPkd_IZ-EmdJ0lYQQW8JmckyMy_vN9v_AXBh3YpJtJKIWOeLcNQTSGAhkJEZy7QFcOlDsozu6XCM7yZksrSLP-hDNANuzjL8_9oZOBdldyEaypXXDXK1HCJZuwVbjooeFvpRDs-92F5CUEZxWqs29uLuavZVr7RAzWVg9R5nsA14_a5hoclTZz4THfn2TcbxPx-zA7YqHIX90H52wZou9sDmkkjhPkhH2gL65_tH2LYp4aBez1XCK-sDFZwW0A9hwQTyQkEMfY7yAIwHt4_XQ1TFW0ASkwQjwUhsaQkbLaQymXX-SvQMI0wbaoQlAaZYKikXWvFIx5pKlTrtG5pRYSHdJIdgvZgW-ghASQS37KB4JhMsE4shjPA4NUqkPIoMawFUl3cuKzFyFxPjOQ8yynHuSiRvSqQFLpv0L0GG48eU7br68socy9zN7jLbMaO9FjhvLltDcrMjvNDTuUuDLeyxKLO3iH1d_fKkvH8z6jdnx3_JdAI23HHY29gG67PXuT61kDMTZ74hfwGIXfGV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFMctBAMwcCMKBYyExOS2Sew4GctRFWg6oFZii3wuoBTRdmHiO_AN-STYztEWCSHBmMTOYfvl_Xz9HwDnxq3oQEmBiHG-CHstjjjmHGkR01gZABcuJEvSD7tDfPdIytWEdi9Mrg9RDbhZy3D_a2vgdkC6OVMNZdIJB9lqdqGsV2xYb9erepgpSFlAd3J7AUFxiKNSt7HlNxfzL_qlGWzOI6vzOZ1NwMu3zZeaPDWmE94Qb9-EHP_1OVtgoyBS2M6b0DZYUtkOWJ_TKdwFUaIMo3--f-Q7NwXslEu6xvDSuEEJRxl0o1gwgCyTEEOXY7wHhp2bwVUXFSEXkMAkwIhT4htgwlpxIXVs_L_kLU0JVTrU3MAAlTQSIeNKMk_5KhQysvI3YRxyw-k62AfL2ShTBwAKwpnBB8liEWARGBKhhPmRljxinqdpDaCywFNR6JHbsBjPaa6k7Ke2RNKqRGrgokr_kitx_JiyXtZfWljkOLUTvNT0zcJWDZxVl40t2QkSlqnR1KbBhveoF5tb-K6yfnlS2r5O2tXR4V8ynYLV7iDppb3b_v0RWLPn862OdbA8eZ2qY8M8E37iWvUXswv1sA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JSwMxFMeDKIge3MVq1QiCp7SzZJKZY7WWurSIWOhtyHpRpsW2F09-B7-hn8Qk05m2ggh6nJlkliRv3i_b_wFwbtyKDpUUKDLOF2Hf44hjzpEWCU2UAXDhQrJ0uqTdw7f9qD-3iz_XhygH3KxluP-1NfCh1PWZaCiTTjfI1rKLZL2CiRfbdt18nAlIWT53anthhBKC40K20Qvqi_kX3dKMNeeJ1bmc1iZgxcvmK02ea5Mxr4m3bzqO__maLbAx5VHYyBvQNlhS2Q5Yn1Mp3AVxRxlC_3z_yPdtCtgqFnSN4KVxghIOMujGsGAIWSYhhi7HaA_0WtdPV200DbiABI5CjDiNAoNLWCsupE6M95fc0zSiShPNDQpQSWNBGFeS-SpQRMjYit-QhHBD6TrcB8vZIFMHAIqIMwMPkiUixCI0HEIjFsRa8pj5vqYVgIryTsVUjdwGxXhJcx3lILUlkpYlUgEXZfphrsPxY8pqUX3p1B5HqZ3epaZnRrwKOCsvG0uy0yMsU4OJTYMN7VE_MbcIXF398qS00ew0yqPDv2Q6BasPzVZ6f9O9OwJr9nS-z7EKlsevE3VsgGfMT1yb_gLpQfRo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Frameworks+Based+on+Group+3+and+4+Metals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Feng%2C+Liang&rft.au=Pang%2C+Jiandong&rft.au=She%2C+Ping&rft.au=Li%2C+Jia-Luo&rft.date=2020-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=44&rft.spage=e2004414&rft_id=info:doi/10.1002%2Fadma.202004414&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |