Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based o...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 44; no. 22; pp. 11,463 - 11,471
Main Authors Stibal, Marek, Box, Jason E., Cameron, Karen A., Langen, Peter L., Yallop, Marian L., Mottram, Ruth H., Khan, Alia L., Molotch, Noah P., Chrismas, Nathan A. M., Calì Quaglia, Filippo, Remias, Daniel, Smeets, C. J. P. Paul, Broeke, Michiel R., Ryan, Jonathan C., Hubbard, Alun, Tranter, Martyn, As, Dirk, Ahlstrøm, Andreas P.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light‐absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere. Plain Language Summary Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment‐producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow‐free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting. Key Points We present the first quantitative assessment of the algal contribution to the Greenland ice sheet surface darkening We found that the effect of algae on bare ice darkening in the study area is greater than that of nonalgal impurities Incorporating the darkening effect of ice algal growth will improve mass balance and sea level projections of the Greenland ice sheet
AbstractList Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere. Plain Language Summary Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment-producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow-free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting.
Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light‐absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere. Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment‐producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow‐free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting. We present the first quantitative assessment of the algal contribution to the Greenland ice sheet surface darkening We found that the effect of algae on bare ice darkening in the study area is greater than that of nonalgal impurities Incorporating the darkening effect of ice algal growth will improve mass balance and sea level projections of the Greenland ice sheet
Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light‐absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere. Plain Language Summary Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment‐producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow‐free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting. Key Points We present the first quantitative assessment of the algal contribution to the Greenland ice sheet surface darkening We found that the effect of algae on bare ice darkening in the study area is greater than that of nonalgal impurities Incorporating the darkening effect of ice algal growth will improve mass balance and sea level projections of the Greenland ice sheet
Author Cameron, Karen A.
Khan, Alia L.
Calì Quaglia, Filippo
Stibal, Marek
Box, Jason E.
Broeke, Michiel R.
Langen, Peter L.
Molotch, Noah P.
Tranter, Martyn
Chrismas, Nathan A. M.
Ryan, Jonathan C.
Hubbard, Alun
Yallop, Marian L.
Mottram, Ruth H.
As, Dirk
Remias, Daniel
Smeets, C. J. P. Paul
Ahlstrøm, Andreas P.
Author_xml – sequence: 1
  givenname: Marek
  orcidid: 0000-0002-9998-5086
  surname: Stibal
  fullname: Stibal, Marek
  email: marek.stibal@natur.cuni.cz
  organization: Charles University
– sequence: 2
  givenname: Jason E.
  orcidid: 0000-0003-0052-8705
  surname: Box
  fullname: Box, Jason E.
  email: jeb@geus.dk
  organization: Geological Survey of Denmark and Greenland
– sequence: 3
  givenname: Karen A.
  orcidid: 0000-0003-4658-4913
  surname: Cameron
  fullname: Cameron, Karen A.
  organization: Aberystwyth University
– sequence: 4
  givenname: Peter L.
  orcidid: 0000-0003-2185-012X
  surname: Langen
  fullname: Langen, Peter L.
  organization: Danish Meteorological Institute
– sequence: 5
  givenname: Marian L.
  orcidid: 0000-0001-9556-6389
  surname: Yallop
  fullname: Yallop, Marian L.
  organization: University of Bristol
– sequence: 6
  givenname: Ruth H.
  orcidid: 0000-0002-1016-1997
  surname: Mottram
  fullname: Mottram, Ruth H.
  organization: Danish Meteorological Institute
– sequence: 7
  givenname: Alia L.
  orcidid: 0000-0002-4425-1528
  surname: Khan
  fullname: Khan, Alia L.
  organization: Now at The National Snow and Ice Data Center and Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder
– sequence: 8
  givenname: Noah P.
  orcidid: 0000-0003-4733-8060
  surname: Molotch
  fullname: Molotch, Noah P.
  organization: California Institute of Technology
– sequence: 9
  givenname: Nathan A. M.
  orcidid: 0000-0002-2165-3102
  surname: Chrismas
  fullname: Chrismas, Nathan A. M.
  organization: University of Bristol
– sequence: 10
  givenname: Filippo
  orcidid: 0000-0001-5557-1626
  surname: Calì Quaglia
  fullname: Calì Quaglia, Filippo
  organization: University of Turin
– sequence: 11
  givenname: Daniel
  orcidid: 0000-0003-0896-435X
  surname: Remias
  fullname: Remias, Daniel
  organization: University of Applied Sciences Upper Austria
– sequence: 12
  givenname: C. J. P. Paul
  surname: Smeets
  fullname: Smeets, C. J. P. Paul
  organization: Utrecht University
– sequence: 13
  givenname: Michiel R.
  orcidid: 0000-0003-4662-7565
  surname: Broeke
  fullname: Broeke, Michiel R.
  organization: Utrecht University
– sequence: 14
  givenname: Jonathan C.
  orcidid: 0000-0002-9432-1512
  surname: Ryan
  fullname: Ryan, Jonathan C.
  organization: Aberystwyth University
– sequence: 15
  givenname: Alun
  surname: Hubbard
  fullname: Hubbard, Alun
  organization: Aberystwyth University
– sequence: 16
  givenname: Martyn
  orcidid: 0000-0003-2071-3094
  surname: Tranter
  fullname: Tranter, Martyn
  organization: University of Bristol
– sequence: 17
  givenname: Dirk
  surname: As
  fullname: As, Dirk
  organization: Geological Survey of Denmark and Greenland
– sequence: 18
  givenname: Andreas P.
  orcidid: 0000-0001-8235-8070
  surname: Ahlstrøm
  fullname: Ahlstrøm, Andreas P.
  organization: Geological Survey of Denmark and Greenland
BookMark eNp9kM1OwzAQhC1UJNrCjQewxJXAOo7t-FjaEipFQuLnbFn2pk0JTnFaqr49gXLgxGlHo08zqxmRQWgDEnLJ4IYBpLcpMFWUoIQW-QkZMp1lSQ6gBmQIoHudKnlGRl23BgAOnA3JfNIsLdJZrD-RzsPKBoeezmx8w1CHJW0remcj0oVD2ga6XSEtImJobPA_5vMKcXtOTivbdHjxe8fk9X7-Mn1IysdiMZ2UicsEzxIrc8mhqlJABdaD45Zz4ZGzHHnOtHcIgkvZm7ZyOgOthHcCJVibegV8TK6OuZvYfuyw25p1u4uhrzRMK80FaJn21PWRcrHtuoiV2cT63caDYWC-hzJ_h-rx9Ijv6wYP_7KmeCpF_1_GvwCMBWf7
CitedBy_id crossref_primary_10_1111_1462_2920_15059
crossref_primary_10_1038_s41467_020_20627_w
crossref_primary_10_31857_S0032180X23601494
crossref_primary_10_1016_j_rse_2021_112613
crossref_primary_10_1080_01490451_2020_1739176
crossref_primary_10_5194_tc_12_2147_2018
crossref_primary_10_5200_baltica_2018_31_11
crossref_primary_10_3389_fmicb_2019_00524
crossref_primary_10_1017_aog_2023_17
crossref_primary_10_5194_cp_14_697_2018
crossref_primary_10_1002_ece3_5327
crossref_primary_10_5194_tc_15_1931_2021
crossref_primary_10_1007_s00248_022_02033_5
crossref_primary_10_5194_tc_18_609_2024
crossref_primary_10_1007_s40641_018_0107_0
crossref_primary_10_1016_j_earscirev_2020_103145
crossref_primary_10_1038_s41467_018_02985_8
crossref_primary_10_1080_23818107_2023_2248235
crossref_primary_10_1126_sciadv_aav3738
crossref_primary_10_5194_tc_12_811_2018
crossref_primary_10_1017_jog_2023_22
crossref_primary_10_1111_jpy_12952
crossref_primary_10_5194_tc_14_3249_2020
crossref_primary_10_1016_j_earscirev_2019_102976
crossref_primary_10_1029_2023GL104894
crossref_primary_10_3389_feart_2022_711560
crossref_primary_10_1029_2018RG000600
crossref_primary_10_5194_tc_12_3653_2018
crossref_primary_10_1029_2021GL097356
crossref_primary_10_1007_s40641_017_0084_8
crossref_primary_10_3389_feart_2019_00206
crossref_primary_10_5194_tc_14_521_2020
crossref_primary_10_1093_femsec_fiy025
crossref_primary_10_1109_TGRS_2023_3305194
crossref_primary_10_1038_s41467_021_24040_9
crossref_primary_10_5331_seppyo_83_1_51
crossref_primary_10_1029_2018GL080455
crossref_primary_10_1007_s10712_023_09795_8
crossref_primary_10_3390_w13212993
crossref_primary_10_1080_15230430_2018_1433786
crossref_primary_10_5194_tc_13_397_2019
crossref_primary_10_3390_microorganisms9051103
crossref_primary_10_1007_s10533_022_00998_6
crossref_primary_10_1016_j_atmosres_2021_105959
crossref_primary_10_1134_S1064229323602330
crossref_primary_10_3389_feart_2023_969629
crossref_primary_10_5194_tc_14_789_2020
crossref_primary_10_1111_1462_2920_16550
crossref_primary_10_1186_s40168_024_01796_y
crossref_primary_10_1017_jog_2022_64
crossref_primary_10_1017_jog_2023_11
crossref_primary_10_5331_seppyo_83_1_27
crossref_primary_10_5194_tc_17_2909_2023
crossref_primary_10_1029_2023JD040241
crossref_primary_10_1088_1748_9326_aaf2ed
crossref_primary_10_1029_2021JG006718
crossref_primary_10_1016_j_earscirev_2021_103728
crossref_primary_10_1371_journal_pclm_0000203
crossref_primary_10_3390_rs11192280
crossref_primary_10_3389_fpls_2021_673614
crossref_primary_10_1038_s43017_023_00509_7
crossref_primary_10_1021_acs_est_0c02710
crossref_primary_10_5194_tc_17_1967_2023
crossref_primary_10_3389_feart_2019_00004
crossref_primary_10_1038_s41558_018_0296_5
crossref_primary_10_3390_rs14010062
crossref_primary_10_5194_tc_15_133_2021
crossref_primary_10_1111_nph_15701
crossref_primary_10_5194_tc_15_547_2021
crossref_primary_10_1017_jog_2022_76
crossref_primary_10_1038_s41558_022_01441_2
crossref_primary_10_3389_fmicb_2024_1356376
crossref_primary_10_3390_rs11202405
crossref_primary_10_3389_fclim_2021_702585
crossref_primary_10_1029_2018RG000622
crossref_primary_10_1144_SP511_2020_55
crossref_primary_10_1029_2022RG000775
crossref_primary_10_1093_femsec_fiy007
crossref_primary_10_3389_fmicb_2019_00557
crossref_primary_10_3390_w15173150
crossref_primary_10_1016_j_polar_2018_11_008
crossref_primary_10_1038_s41467_018_03353_2
crossref_primary_10_1038_s41467_019_11394_4
crossref_primary_10_5194_tc_14_2687_2020
crossref_primary_10_1073_pnas_1918412117
crossref_primary_10_5194_tc_16_1197_2022
crossref_primary_10_5194_tc_16_4185_2022
crossref_primary_10_3390_su12166477
crossref_primary_10_1038_s41598_022_22271_4
crossref_primary_10_1071_EN22013
crossref_primary_10_1080_01431161_2023_2291000
crossref_primary_10_1111_1462_2920_16574
crossref_primary_10_1098_rsta_2018_0161
crossref_primary_10_1590_0001_3765202220201736
crossref_primary_10_5194_tc_14_309_2020
Cites_doi 10.1111/1574-6941.12351
10.1128/AEM.67.11.5267-5272.2001
10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
10.1007/s00300-011-1135-6
10.3189/002214310791190776
10.3189/172756411795932083
10.7185/geochemlet.1611
10.5194/tc-9-1845-2015
10.3189/172756402781817743
10.5194/tc-4-261-2010
10.5194/amt-5-2581-2012
10.5194/bg-6-913-2009
10.34194/geusb.v35.4942
10.1038/nclimate1433
10.3389/fmicb.2015.00225
10.1038/ngeo2260
10.1117/12.21451
10.1111/j.1574-6941.2011.01245.x
10.2307/1552211
10.5194/tc-5-359-2011
10.5194/tc-5-377-2011
10.3389/feart.2015.00082
10.5194/tc-9-1-2015
10.34194/geusb.v15.5045
10.1002/jgrd.50235
10.1038/ismej.2012.107
10.5194/tc-6-821-2012
10.3189/172756411795931958
10.1046/j.1529-8817.1999.3520403.x
10.3389/feart.2016.00043
10.5194/amtd-5-2315-2012
10.1175/JCLI-D-14-00271.1
10.5194/tc-9-487-2015
10.5194/acp-10-11647-2010
10.1038/ngeo1611
10.1080/02786820500421521
10.1073/pnas.1405397111
10.5194/tc-10-477-2016
10.5194/tc-5-589-2011
10.5194/tc-2016-204
ContentType Journal Article
Copyright 2017. The Authors.
2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. The Authors.
– notice: 2017. American Geophysical Union. All Rights Reserved.
DBID 24P
WIN
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2017GL075958
DatabaseName Wiley Online Library Open Access
Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 11,471
ExternalDocumentID 10_1002_2017GL075958
GRL56634
Genre article
GrantInformation_xml – fundername: Marie Skłodowska‐Curie Individual Fellowship
  funderid: 657533
– fundername: Leonardo DiCaprio Foundation
– fundername: Villum Young Investigator Programme
  funderid: VKR 023121
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
ALXUD
CITATION
PYCSY
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c4534-a68630ff20e70ad0c3a335de318e3819dce05366335afc940975dc5e60aa2d703
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Tue Nov 19 05:13:07 EST 2024
Fri Dec 06 00:58:50 EST 2024
Sat Aug 24 00:59:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4534-a68630ff20e70ad0c3a335de318e3819dce05366335afc940975dc5e60aa2d703
ORCID 0000-0003-2185-012X
0000-0001-9556-6389
0000-0003-0896-435X
0000-0001-8235-8070
0000-0003-4662-7565
0000-0002-4425-1528
0000-0003-4733-8060
0000-0002-9432-1512
0000-0003-2071-3094
0000-0001-5557-1626
0000-0002-1016-1997
0000-0003-4658-4913
0000-0002-9998-5086
0000-0003-0052-8705
0000-0002-2165-3102
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075958
PQID 1979350962
PQPubID 54723
PageCount 9
ParticipantIDs proquest_journals_1979350962
crossref_primary_10_1002_2017GL075958
wiley_primary_10_1002_2017GL075958_GRL56634
PublicationCentury 2000
PublicationDate 28 November 2017
PublicationDateYYYYMMDD 2017-11-28
PublicationDate_xml – month: 11
  year: 2017
  text: 28 November 2017
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 56
2010; 10
2015; 6
2015; 3
1990; 1302
1982; 128
2002; 34
2016; 10
2008; 15
1997
2015; 9
2014; 111
2001; 67
2012; 35
2012; 79
2011; 5
2014; 89
2016; 35
2016; 4
2012; 2
2015; 28
2016; 2
2006; 40
2013; 118
1999; 35
2016
2009; 6
2012; 6
2001; 33
2014; 7
2012; 5
2010; 4
2010; 51
1998; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
As D. (e_1_2_7_40_1) 2016; 35
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Bryant D. A. (e_1_2_7_10_1) 1982; 128
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 35
  start-page: 403
  issue: 2
  year: 1999
  end-page: 424
  article-title: Biovolume calculation for pelagic and benthic microalgae
  publication-title: Journal of Phycology
– volume: 79
  start-page: 2101
  issue: 10
  year: 1998
  end-page: 2114
  article-title: SBDART: A research and teaching software tool for plane‐parallell radiative transfer in the Earth's atmosphere
  publication-title: Bulletin of the American Meteorological Society
– volume: 6
  start-page: 2302
  issue: 12
  year: 2012
  end-page: 2313
  article-title: Photophysiology and albedo‐changing potential of the ice algal community on the surface of the Greenland ice sheet
  publication-title: The ISME Journal
– volume: 2
  start-page: 437
  issue: 6
  year: 2012
  end-page: 440
  article-title: Black‐carbon reduction of snow albedo
  publication-title: Nature Climate Change
– volume: 5
  start-page: 359
  issue: 2
  year: 2011
  end-page: 375
  article-title: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models
  publication-title: The Cryosphere
– volume: 2
  start-page: 106
  year: 2016
  end-page: 116
  article-title: Experimental evidence that microbial activity lowers the albedo of glaciers
  publication-title: Geochemical Perspectives Letters
– volume: 35
  start-page: 899
  issue: 6
  year: 2012
  end-page: 908
  article-title: Ecophysiology and ultrastructure of (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic)
  publication-title: Polar Biology
– volume: 6
  start-page: 225
  year: 2015
  article-title: Microbial abundance in surface ice on the Greenland ice sheet
  publication-title: Frontiers in Microbiology
– volume: 33
  start-page: 115
  issue: 2
  year: 2001
  end-page: 122
  article-title: Structure, formation, and darkening process of albedo‐reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 1302
  start-page: 290
  year: 1990
  end-page: 302
  article-title: In vivo absorption properties of algal pigments
  publication-title: SPIE Ocean Optics
– volume: 6
  start-page: 913
  issue: 5
  year: 2009
  end-page: 922
  article-title: Phosphatase activity and organic phosphorus turnover on a high Arctic glacier
  publication-title: Biogeosciences
– volume: 5
  start-page: 2315
  issue: 2
  year: 2012
  end-page: 2362
  article-title: Soot reference materials for instrument calibrations and comparisons
  publication-title: Atmospheric Measurement Techniques
– volume: 79
  start-page: 638
  issue: 3
  year: 2012
  end-page: 648
  article-title: Characterization of an UV‐ and VIS‐absorbing, purpurogallin‐derived secondary pigment new to algae and highly abundant in (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers
  publication-title: FEMS Microbiology Ecology
– volume: 40
  start-page: 27
  issue: 1
  year: 2006
  end-page: 67
  article-title: Light absorption by carbonaceous particles: An investigative review
  publication-title: Aerosol Science and Technology
– volume: 111
  start-page: 7964
  issue: 22
  year: 2014
  end-page: 7967
  article-title: Climate change and forest fires synergistically drive widespread melt events of the Greenland ice sheet
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 56
  start-page: 101
  issue: 195
  year: 2010
  end-page: 113
  article-title: The ablation zone in northeast Greenland: Ice types, albedos and impurities
  publication-title: Journal of Glaciology
– volume: 128
  start-page: 835
  issue: 4
  year: 1982
  end-page: 844
  article-title: Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria
  publication-title: Journal of General Microbiology
– volume: 51
  start-page: 1
  issue: 56
  year: 2010
  end-page: 8
  article-title: Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet
  publication-title: Annals of Glaciology
– volume: 4
  year: 2016
  article-title: Inter‐annual and geographical variations in the extent of bare ice and dark ice on the Greenland ice sheet derived from MODIS satellite images
  publication-title: Frontiers in Earth Science
– volume: 34
  start-page: 409
  year: 2002
  end-page: 414
  article-title: Optical characteristics of cryoconite (surface dust) on glaciers: The relationship between light absorbency and the property of organic matter contained in the cryoconite
  publication-title: Annals of Glaciology
– volume: 10
  start-page: 11,647
  issue: 23
  year: 2010
  end-page: 11,680
  article-title: Light‐absorbing impurities in Arctic snow
  publication-title: Atmospheric Chemistry and Physics
– volume: 5
  start-page: 377
  year: 2011
  end-page: 390
  article-title: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet
  publication-title: The Cryosphere
– volume: 6
  start-page: 821
  issue: 4
  year: 2012
  end-page: 839
  article-title: Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers
  publication-title: The Cryosphere
– volume: 9
  start-page: 487
  issue: 2
  year: 2015
  end-page: 504
  article-title: Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland ice sheet
  publication-title: The Cryosphere
– volume: 67
  start-page: 5267
  issue: 11
  year: 2001
  end-page: 5272
  article-title: Detection and quantification of snow algae with an airborne imaging spectrometer
  publication-title: Applied and Environmental Microbiology
– volume: 35
  start-page: 71
  year: 2016
  end-page: 74
  article-title: Placing Greenland ice sheet ablation measurements in a multi‐decadal context
  publication-title: Geological Survey of Denmark and Greenland Bulletin
– volume: 15
  start-page: 61
  year: 2008
  end-page: 64
  article-title: A new programme for monitoring the mass loss of the Greenland ice sheet
  publication-title: Geological Survey of Denmark and Greenland Bulletin
– volume: 118
  start-page: 5553
  year: 2013
  end-page: 5569
  article-title: Observed vertical redistribution of black carbon and other insoluble light‐absorbing particles in melting snow
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 7
  start-page: 691
  issue: 10
  year: 2014
  article-title: Biological impact on Greenland's albedo
  publication-title: Nature Geoscience
– volume: 89
  start-page: 402
  issue: 2
  year: 2014
  end-page: 414
  article-title: Variations of algal communities cause darkening of a Greenland glacier
  publication-title: FEMS Microbiology Ecology
– year: 1997
– volume: 5
  start-page: 589
  issue: 3
  year: 2011
  end-page: 601
  article-title: Dust from the dark region in the western ablation zone of the Greenland ice sheet
  publication-title: The Cryosphere
– volume: 9
  start-page: 1
  issue: 1
  year: 2015
  end-page: 11
  article-title: UAV photogrammetry and structure from motion to assess calving dynamics at store glacier, a large outlet draining the Greenland ice sheet
  publication-title: The Cryosphere
– volume: 9
  start-page: 1845
  issue: 5
  year: 2015
  end-page: 1856
  article-title: Ice sheet mass loss caused by dust and black carbon accumulation
  publication-title: The Cryosphere
– volume: 5
  start-page: 2581
  issue: 11
  year: 2012
  end-page: 2592
  article-title: Assessing recent measurement techniques for quantifying black carbon concentration in snow
  publication-title: Atmospheric Measurement Techniques
– volume: 28
  start-page: 3694
  issue: 9
  year: 2015
  end-page: 3713
  article-title: Quantifying energy and mass fluxes controlling Godthåbsfjord freshwater input in a 5 km simulation (1991‐2012)
  publication-title: Journal of Climate
– volume: 5
  start-page: 771
  issue: 11
  year: 2012
  end-page: 774
  article-title: Biological processes on glacier and ice sheet surfaces
  publication-title: Nature Geoscience
– volume: 10
  start-page: 477
  issue: 2
  year: 2016
  end-page: 496
  article-title: The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981–2100)
  publication-title: The Cryosphere
– start-page: 1
  year: 2016
  end-page: 23
  article-title: Attribution of Greenland's ablating ice surfaces on ice sheet albedo using unmanned aerial systems
  publication-title: The Cryosphere Discussions
– volume: 3
  year: 2015
  article-title: The effect of impurities on the surface melt of a glacier in the Suntar‐Khayata mountain range, Russian Siberia
  publication-title: Frontiers in Earth Science
– volume: 4
  start-page: 261
  issue: 3
  year: 2010
  end-page: 268
  article-title: An explanation for the dark region in the western melt zone of the Greenland ice sheet
  publication-title: The Cryosphere
– volume: 51
  start-page: 87
  issue: 56
  year: 2010
  end-page: 94
  article-title: The microstructure and biogeochemistry of Arctic cryoconite granules
  publication-title: Annals of Glaciology
– volume: 128
  start-page: 835
  issue: 4
  year: 1982
  ident: e_1_2_7_10_1
  article-title: Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria
  publication-title: Journal of General Microbiology
  contributor:
    fullname: Bryant D. A.
– ident: e_1_2_7_21_1
  doi: 10.1111/1574-6941.12351
– ident: e_1_2_7_23_1
  doi: 10.1128/AEM.67.11.5267-5272.2001
– ident: e_1_2_7_26_1
  doi: 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
– ident: e_1_2_7_24_1
  doi: 10.1007/s00300-011-1135-6
– ident: e_1_2_7_6_1
  doi: 10.3189/002214310791190776
– ident: e_1_2_7_20_1
  doi: 10.3189/172756411795932083
– ident: e_1_2_7_22_1
  doi: 10.7185/geochemlet.1611
– ident: e_1_2_7_15_1
  doi: 10.5194/tc-9-1845-2015
– ident: e_1_2_7_35_1
  doi: 10.3189/172756402781817743
– ident: e_1_2_7_41_1
  doi: 10.5194/tc-4-261-2010
– ident: e_1_2_7_29_1
  doi: 10.5194/amt-5-2581-2012
– ident: e_1_2_7_31_1
  doi: 10.5194/bg-6-913-2009
– volume: 35
  start-page: 71
  year: 2016
  ident: e_1_2_7_40_1
  article-title: Placing Greenland ice sheet ablation measurements in a multi‐decadal context
  publication-title: Geological Survey of Denmark and Greenland Bulletin
  doi: 10.34194/geusb.v35.4942
  contributor:
    fullname: As D.
– ident: e_1_2_7_16_1
  doi: 10.1038/nclimate1433
– ident: e_1_2_7_32_1
  doi: 10.3389/fmicb.2015.00225
– ident: e_1_2_7_4_1
  doi: 10.1038/ngeo2260
– ident: e_1_2_7_5_1
  doi: 10.1117/12.21451
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1574-6941.2011.01245.x
– ident: e_1_2_7_37_1
  doi: 10.2307/1552211
– ident: e_1_2_7_14_1
  doi: 10.5194/tc-5-359-2011
– ident: e_1_2_7_39_1
  doi: 10.5194/tc-5-377-2011
– ident: e_1_2_7_36_1
  doi: 10.3389/feart.2015.00082
– ident: e_1_2_7_8_1
– ident: e_1_2_7_27_1
  doi: 10.5194/tc-9-1-2015
– ident: e_1_2_7_2_1
  doi: 10.34194/geusb.v15.5045
– ident: e_1_2_7_12_1
  doi: 10.1002/jgrd.50235
– ident: e_1_2_7_43_1
  doi: 10.1038/ismej.2012.107
– ident: e_1_2_7_9_1
  doi: 10.5194/tc-6-821-2012
– ident: e_1_2_7_33_1
  doi: 10.3189/172756411795931958
– ident: e_1_2_7_17_1
  doi: 10.1046/j.1529-8817.1999.3520403.x
– ident: e_1_2_7_30_1
  doi: 10.3389/feart.2016.00043
– ident: e_1_2_7_3_1
  doi: 10.5194/amtd-5-2315-2012
– ident: e_1_2_7_19_1
  doi: 10.1175/JCLI-D-14-00271.1
– ident: e_1_2_7_11_1
  doi: 10.5194/tc-9-487-2015
– ident: e_1_2_7_13_1
  doi: 10.5194/acp-10-11647-2010
– ident: e_1_2_7_34_1
  doi: 10.1038/ngeo1611
– ident: e_1_2_7_7_1
  doi: 10.1080/02786820500421521
– ident: e_1_2_7_18_1
  doi: 10.1073/pnas.1405397111
– ident: e_1_2_7_38_1
  doi: 10.5194/tc-10-477-2016
– ident: e_1_2_7_42_1
  doi: 10.5194/tc-5-589-2011
– ident: e_1_2_7_28_1
  doi: 10.5194/tc-2016-204
SSID ssj0003031
Score 2.589187
Snippet Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and...
Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 11,463
SubjectTerms Ablation
Albedo
Albedo (solar)
Algae
Algal growth
Atmospheric particulates
Bare ice
Black carbon
Darkening
Dust storms
Glaciation
Greenland ice sheet
Ice
Ice sheet melting
Ice sheets
Impurities
light‐absorbing impurities
Melting
meltings
Microorganisms
Reflectance
Sea level
Title Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075958
https://www.proquest.com/docview/1979350962
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfAiPrFayx70JKHpvpIci30pVUStFC9hs9nYg6TS1oP_3plN-vAieAlhyeYwm5n5djL7fYRcambDBGADqpfBxTDuaZ5KTwehllkY6sDgRvH-QQ1G4m4sx2XBDc_CFPwQq4IbeoaL1-jgOpk316ShkLmC_hAyXiTDbVIFZKNQwYCJx1UkhvBcKOZFwgtZoMrGd5jf3Jz9OyWtceYmWnXpprdP9kqcSNvFwh6QLZsfkp2-0-H9hjvXuWnmR6Tb_njXlnZmELZoN5-4P_q0g103WPKg04yipgG9NZZOcwp4j7peG-xodIPPE2sXx2TU677cDLxSG8EzQnLhaRUq7mcZ823g69Q3XHMuU6xoWtyEpQY1HwBOcKkzEyGrlUyNtMrXmqXg5iekkk9ze0po1kptoH0LxrACFk5nIom0iFTCVJRkvEauluaJPwsKjLggO2bxphlrpL60XVw6wjxuRRAAkGKG1ci1s-ef74j7T0MAmFyc_evpc7KL43hGkIV1UlnMvuwFgIVF0nBfRINU26-jt9EPPjGzxA
link.rule.ids 314,780,784,11562,27924,27925,46052,46476,50814,50923
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagFYIF8RSFAh5gQlGDHSfOWNEnpB2gQRVL5DgOHVCK2jLw77lL0gcLEksURY6Hc-7u8-X8fYTcKGZkDLAB1cvgohm3FE-EpTypRCql8jRuFAdDtxc6j2MxLnVO8SxMwQ-xKrihZ-TxGh0cC9KNNWsopC6vG0DK84XcJlXIfIiQqs3X8C1cBWOI0IVonu9Yknlu2fsOMzQ23_-dldZQcxOw5hmnc0D2S6hIm8XaHpItkx2RnW4uxfsNd3nzpp4fk3bz410Z2ppB5KLtbJL_1KctbLzBqgedphRlDWhfGzrNKEA-mrfbYFNj_vBlYszihISd9uihZ5XyCJZ2BHcs5UqX22nKbOPZKrE1V5yLBIuaBvdhiUbZB0AUXKhU-0hsJRItjGsrxRLw9FNSyaaZOSM0vU-Mp2wDxjAOrJ1KndhXju_GzPXjlNfI7dI80WfBghEVfMcs2jRjjdSXtotKX5hH9z7EAGSZYTVyl9vzzzmi7nMAGJM75_8afU12e6NBEAX94dMF2cMxeGSQyTqpLGZf5hKwwyK-Kr-PHwOZt0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BKxAL4ikKBTzAhKKmfuQxVvQJpUJAEWKJHMemA0qrtgz8e85J-mBBYomiyPFwzt19vpy_D-BKUh3ECBusehleFGWOZIlwpB9IYYJA-spuFB8GXnfI797EW1Fws2dhcn6IZcHNekYWr62DTxJTW5GGYubyO33MeKEINqGMQKPOS1BuvA7fh8tYjAE618wLuRNQ3yta33GG2vr7v5PSCmmu49Us4bT3YLdAiqSRL-0-bOj0ALY6mRLvN95lvZtqdgitxueH1KQ5xcBFWuko-6dPmrbvxhY9yNgQq2pAekqTcUoQ8ZGs28b2NGYPn0daz49g2G693HadQh3BUVww7kgv8JhrDHW178rEVUwyJhJb09R2G5Yoq_qAgIIJaVRoea1EooT2XClpgo5-DKV0nOoTIKaeaF-6Go2hOS6dNDwOJQ-9mHphbFgFrhfmiSY5CUaU0x3TaN2MFagubBcVrjCL6iGGAEsyQytwk9nzzzmizlMfISbjp_8afQnbj8121O8N7s9gxw6xBwZpUIXSfPqlzxE5zOOL4vP4ARM-tmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algae+Drive+Enhanced+Darkening+of+Bare+Ice+on+the+Greenland+Ice+Sheet&rft.jtitle=Geophysical+research+letters&rft.au=Stibal%2C+Marek&rft.au=Box%2C+Jason+E.&rft.au=Cameron%2C+Karen+A.&rft.au=Langen%2C+Peter+L.&rft.date=2017-11-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=22&rft_id=info:doi/10.1002%2F2017GL075958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_2017GL075958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon