Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet
Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based o...
Saved in:
Published in | Geophysical research letters Vol. 44; no. 22; pp. 11,463 - 11,471 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light‐absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.
Plain Language Summary
Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment‐producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow‐free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting.
Key Points
We present the first quantitative assessment of the algal contribution to the Greenland ice sheet surface darkening
We found that the effect of algae on bare ice darkening in the study area is greater than that of nonalgal impurities
Incorporating the darkening effect of ice algal growth will improve mass balance and sea level projections of the Greenland ice sheet |
---|---|
AbstractList | Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere. Plain Language Summary Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment-producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow-free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting. Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light‐absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere. Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment‐producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow‐free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting. We present the first quantitative assessment of the algal contribution to the Greenland ice sheet surface darkening We found that the effect of algae on bare ice darkening in the study area is greater than that of nonalgal impurities Incorporating the darkening effect of ice algal growth will improve mass balance and sea level projections of the Greenland ice sheet Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light‐absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere. Plain Language Summary Melting of the Greenland ice sheet is enhanced by surface darkening caused by various impurities. We quantified the contribution of dark pigment‐producing algae to the ice sheet surface darkening, based on field measurements in the southwestern part of the ice sheet during the 2014 melt season. Our analysis reveals that the impact of algae on bare (snow‐free) ice darkening was greater than that of other impurities and, therefore, that algal growth was a crucial control of bare ice darkening in the study area. Incorporating the darkening effect of algal growth is expected to improve future projections of the Greenland ice sheet melting. Key Points We present the first quantitative assessment of the algal contribution to the Greenland ice sheet surface darkening We found that the effect of algae on bare ice darkening in the study area is greater than that of nonalgal impurities Incorporating the darkening effect of ice algal growth will improve mass balance and sea level projections of the Greenland ice sheet |
Author | Cameron, Karen A. Khan, Alia L. Calì Quaglia, Filippo Stibal, Marek Box, Jason E. Broeke, Michiel R. Langen, Peter L. Molotch, Noah P. Tranter, Martyn Chrismas, Nathan A. M. Ryan, Jonathan C. Hubbard, Alun Yallop, Marian L. Mottram, Ruth H. As, Dirk Remias, Daniel Smeets, C. J. P. Paul Ahlstrøm, Andreas P. |
Author_xml | – sequence: 1 givenname: Marek orcidid: 0000-0002-9998-5086 surname: Stibal fullname: Stibal, Marek email: marek.stibal@natur.cuni.cz organization: Charles University – sequence: 2 givenname: Jason E. orcidid: 0000-0003-0052-8705 surname: Box fullname: Box, Jason E. email: jeb@geus.dk organization: Geological Survey of Denmark and Greenland – sequence: 3 givenname: Karen A. orcidid: 0000-0003-4658-4913 surname: Cameron fullname: Cameron, Karen A. organization: Aberystwyth University – sequence: 4 givenname: Peter L. orcidid: 0000-0003-2185-012X surname: Langen fullname: Langen, Peter L. organization: Danish Meteorological Institute – sequence: 5 givenname: Marian L. orcidid: 0000-0001-9556-6389 surname: Yallop fullname: Yallop, Marian L. organization: University of Bristol – sequence: 6 givenname: Ruth H. orcidid: 0000-0002-1016-1997 surname: Mottram fullname: Mottram, Ruth H. organization: Danish Meteorological Institute – sequence: 7 givenname: Alia L. orcidid: 0000-0002-4425-1528 surname: Khan fullname: Khan, Alia L. organization: Now at The National Snow and Ice Data Center and Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder – sequence: 8 givenname: Noah P. orcidid: 0000-0003-4733-8060 surname: Molotch fullname: Molotch, Noah P. organization: California Institute of Technology – sequence: 9 givenname: Nathan A. M. orcidid: 0000-0002-2165-3102 surname: Chrismas fullname: Chrismas, Nathan A. M. organization: University of Bristol – sequence: 10 givenname: Filippo orcidid: 0000-0001-5557-1626 surname: Calì Quaglia fullname: Calì Quaglia, Filippo organization: University of Turin – sequence: 11 givenname: Daniel orcidid: 0000-0003-0896-435X surname: Remias fullname: Remias, Daniel organization: University of Applied Sciences Upper Austria – sequence: 12 givenname: C. J. P. Paul surname: Smeets fullname: Smeets, C. J. P. Paul organization: Utrecht University – sequence: 13 givenname: Michiel R. orcidid: 0000-0003-4662-7565 surname: Broeke fullname: Broeke, Michiel R. organization: Utrecht University – sequence: 14 givenname: Jonathan C. orcidid: 0000-0002-9432-1512 surname: Ryan fullname: Ryan, Jonathan C. organization: Aberystwyth University – sequence: 15 givenname: Alun surname: Hubbard fullname: Hubbard, Alun organization: Aberystwyth University – sequence: 16 givenname: Martyn orcidid: 0000-0003-2071-3094 surname: Tranter fullname: Tranter, Martyn organization: University of Bristol – sequence: 17 givenname: Dirk surname: As fullname: As, Dirk organization: Geological Survey of Denmark and Greenland – sequence: 18 givenname: Andreas P. orcidid: 0000-0001-8235-8070 surname: Ahlstrøm fullname: Ahlstrøm, Andreas P. organization: Geological Survey of Denmark and Greenland |
BookMark | eNp9kM1OwzAQhC1UJNrCjQewxJXAOo7t-FjaEipFQuLnbFn2pk0JTnFaqr49gXLgxGlHo08zqxmRQWgDEnLJ4IYBpLcpMFWUoIQW-QkZMp1lSQ6gBmQIoHudKnlGRl23BgAOnA3JfNIsLdJZrD-RzsPKBoeezmx8w1CHJW0remcj0oVD2ga6XSEtImJobPA_5vMKcXtOTivbdHjxe8fk9X7-Mn1IysdiMZ2UicsEzxIrc8mhqlJABdaD45Zz4ZGzHHnOtHcIgkvZm7ZyOgOthHcCJVibegV8TK6OuZvYfuyw25p1u4uhrzRMK80FaJn21PWRcrHtuoiV2cT63caDYWC-hzJ_h-rx9Ijv6wYP_7KmeCpF_1_GvwCMBWf7 |
CitedBy_id | crossref_primary_10_1111_1462_2920_15059 crossref_primary_10_1038_s41467_020_20627_w crossref_primary_10_31857_S0032180X23601494 crossref_primary_10_1016_j_rse_2021_112613 crossref_primary_10_1080_01490451_2020_1739176 crossref_primary_10_5194_tc_12_2147_2018 crossref_primary_10_5200_baltica_2018_31_11 crossref_primary_10_3389_fmicb_2019_00524 crossref_primary_10_1017_aog_2023_17 crossref_primary_10_5194_cp_14_697_2018 crossref_primary_10_1002_ece3_5327 crossref_primary_10_5194_tc_15_1931_2021 crossref_primary_10_1007_s00248_022_02033_5 crossref_primary_10_5194_tc_18_609_2024 crossref_primary_10_1007_s40641_018_0107_0 crossref_primary_10_1016_j_earscirev_2020_103145 crossref_primary_10_1038_s41467_018_02985_8 crossref_primary_10_1080_23818107_2023_2248235 crossref_primary_10_1126_sciadv_aav3738 crossref_primary_10_5194_tc_12_811_2018 crossref_primary_10_1017_jog_2023_22 crossref_primary_10_1111_jpy_12952 crossref_primary_10_5194_tc_14_3249_2020 crossref_primary_10_1016_j_earscirev_2019_102976 crossref_primary_10_1029_2023GL104894 crossref_primary_10_3389_feart_2022_711560 crossref_primary_10_1029_2018RG000600 crossref_primary_10_5194_tc_12_3653_2018 crossref_primary_10_1029_2021GL097356 crossref_primary_10_1007_s40641_017_0084_8 crossref_primary_10_3389_feart_2019_00206 crossref_primary_10_5194_tc_14_521_2020 crossref_primary_10_1093_femsec_fiy025 crossref_primary_10_1109_TGRS_2023_3305194 crossref_primary_10_1038_s41467_021_24040_9 crossref_primary_10_5331_seppyo_83_1_51 crossref_primary_10_1029_2018GL080455 crossref_primary_10_1007_s10712_023_09795_8 crossref_primary_10_3390_w13212993 crossref_primary_10_1080_15230430_2018_1433786 crossref_primary_10_5194_tc_13_397_2019 crossref_primary_10_3390_microorganisms9051103 crossref_primary_10_1007_s10533_022_00998_6 crossref_primary_10_1016_j_atmosres_2021_105959 crossref_primary_10_1134_S1064229323602330 crossref_primary_10_3389_feart_2023_969629 crossref_primary_10_5194_tc_14_789_2020 crossref_primary_10_1111_1462_2920_16550 crossref_primary_10_1186_s40168_024_01796_y crossref_primary_10_1017_jog_2022_64 crossref_primary_10_1017_jog_2023_11 crossref_primary_10_5331_seppyo_83_1_27 crossref_primary_10_5194_tc_17_2909_2023 crossref_primary_10_1029_2023JD040241 crossref_primary_10_1088_1748_9326_aaf2ed crossref_primary_10_1029_2021JG006718 crossref_primary_10_1016_j_earscirev_2021_103728 crossref_primary_10_1371_journal_pclm_0000203 crossref_primary_10_3390_rs11192280 crossref_primary_10_3389_fpls_2021_673614 crossref_primary_10_1038_s43017_023_00509_7 crossref_primary_10_1021_acs_est_0c02710 crossref_primary_10_5194_tc_17_1967_2023 crossref_primary_10_3389_feart_2019_00004 crossref_primary_10_1038_s41558_018_0296_5 crossref_primary_10_3390_rs14010062 crossref_primary_10_5194_tc_15_133_2021 crossref_primary_10_1111_nph_15701 crossref_primary_10_5194_tc_15_547_2021 crossref_primary_10_1017_jog_2022_76 crossref_primary_10_1038_s41558_022_01441_2 crossref_primary_10_3389_fmicb_2024_1356376 crossref_primary_10_3390_rs11202405 crossref_primary_10_3389_fclim_2021_702585 crossref_primary_10_1029_2018RG000622 crossref_primary_10_1144_SP511_2020_55 crossref_primary_10_1029_2022RG000775 crossref_primary_10_1093_femsec_fiy007 crossref_primary_10_3389_fmicb_2019_00557 crossref_primary_10_3390_w15173150 crossref_primary_10_1016_j_polar_2018_11_008 crossref_primary_10_1038_s41467_018_03353_2 crossref_primary_10_1038_s41467_019_11394_4 crossref_primary_10_5194_tc_14_2687_2020 crossref_primary_10_1073_pnas_1918412117 crossref_primary_10_5194_tc_16_1197_2022 crossref_primary_10_5194_tc_16_4185_2022 crossref_primary_10_3390_su12166477 crossref_primary_10_1038_s41598_022_22271_4 crossref_primary_10_1071_EN22013 crossref_primary_10_1080_01431161_2023_2291000 crossref_primary_10_1111_1462_2920_16574 crossref_primary_10_1098_rsta_2018_0161 crossref_primary_10_1590_0001_3765202220201736 crossref_primary_10_5194_tc_14_309_2020 |
Cites_doi | 10.1111/1574-6941.12351 10.1128/AEM.67.11.5267-5272.2001 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2 10.1007/s00300-011-1135-6 10.3189/002214310791190776 10.3189/172756411795932083 10.7185/geochemlet.1611 10.5194/tc-9-1845-2015 10.3189/172756402781817743 10.5194/tc-4-261-2010 10.5194/amt-5-2581-2012 10.5194/bg-6-913-2009 10.34194/geusb.v35.4942 10.1038/nclimate1433 10.3389/fmicb.2015.00225 10.1038/ngeo2260 10.1117/12.21451 10.1111/j.1574-6941.2011.01245.x 10.2307/1552211 10.5194/tc-5-359-2011 10.5194/tc-5-377-2011 10.3389/feart.2015.00082 10.5194/tc-9-1-2015 10.34194/geusb.v15.5045 10.1002/jgrd.50235 10.1038/ismej.2012.107 10.5194/tc-6-821-2012 10.3189/172756411795931958 10.1046/j.1529-8817.1999.3520403.x 10.3389/feart.2016.00043 10.5194/amtd-5-2315-2012 10.1175/JCLI-D-14-00271.1 10.5194/tc-9-487-2015 10.5194/acp-10-11647-2010 10.1038/ngeo1611 10.1080/02786820500421521 10.1073/pnas.1405397111 10.5194/tc-10-477-2016 10.5194/tc-5-589-2011 10.5194/tc-2016-204 |
ContentType | Journal Article |
Copyright | 2017. The Authors. 2017. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2017. The Authors. – notice: 2017. American Geophysical Union. All Rights Reserved. |
DBID | 24P WIN AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/2017GL075958 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 11,471 |
ExternalDocumentID | 10_1002_2017GL075958 GRL56634 |
Genre | article |
GrantInformation_xml | – fundername: Marie Skłodowska‐Curie Individual Fellowship funderid: 657533 – fundername: Leonardo DiCaprio Foundation – fundername: Villum Young Investigator Programme funderid: VKR 023121 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX ALXUD CITATION PYCSY 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c4534-a68630ff20e70ad0c3a335de318e3819dce05366335afc940975dc5e60aa2d703 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Tue Nov 19 05:13:07 EST 2024 Fri Dec 06 00:58:50 EST 2024 Sat Aug 24 00:59:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4534-a68630ff20e70ad0c3a335de318e3819dce05366335afc940975dc5e60aa2d703 |
ORCID | 0000-0003-2185-012X 0000-0001-9556-6389 0000-0003-0896-435X 0000-0001-8235-8070 0000-0003-4662-7565 0000-0002-4425-1528 0000-0003-4733-8060 0000-0002-9432-1512 0000-0003-2071-3094 0000-0001-5557-1626 0000-0002-1016-1997 0000-0003-4658-4913 0000-0002-9998-5086 0000-0003-0052-8705 0000-0002-2165-3102 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075958 |
PQID | 1979350962 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1979350962 crossref_primary_10_1002_2017GL075958 wiley_primary_10_1002_2017GL075958_GRL56634 |
PublicationCentury | 2000 |
PublicationDate | 28 November 2017 |
PublicationDateYYYYMMDD | 2017-11-28 |
PublicationDate_xml | – month: 11 year: 2017 text: 28 November 2017 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2010; 56 2010; 10 2015; 6 2015; 3 1990; 1302 1982; 128 2002; 34 2016; 10 2008; 15 1997 2015; 9 2014; 111 2001; 67 2012; 35 2012; 79 2011; 5 2014; 89 2016; 35 2016; 4 2012; 2 2015; 28 2016; 2 2006; 40 2013; 118 1999; 35 2016 2009; 6 2012; 6 2001; 33 2014; 7 2012; 5 2010; 4 2010; 51 1998; 79 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 As D. (e_1_2_7_40_1) 2016; 35 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Bryant D. A. (e_1_2_7_10_1) 1982; 128 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 35 start-page: 403 issue: 2 year: 1999 end-page: 424 article-title: Biovolume calculation for pelagic and benthic microalgae publication-title: Journal of Phycology – volume: 79 start-page: 2101 issue: 10 year: 1998 end-page: 2114 article-title: SBDART: A research and teaching software tool for plane‐parallell radiative transfer in the Earth's atmosphere publication-title: Bulletin of the American Meteorological Society – volume: 6 start-page: 2302 issue: 12 year: 2012 end-page: 2313 article-title: Photophysiology and albedo‐changing potential of the ice algal community on the surface of the Greenland ice sheet publication-title: The ISME Journal – volume: 2 start-page: 437 issue: 6 year: 2012 end-page: 440 article-title: Black‐carbon reduction of snow albedo publication-title: Nature Climate Change – volume: 5 start-page: 359 issue: 2 year: 2011 end-page: 375 article-title: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models publication-title: The Cryosphere – volume: 2 start-page: 106 year: 2016 end-page: 116 article-title: Experimental evidence that microbial activity lowers the albedo of glaciers publication-title: Geochemical Perspectives Letters – volume: 35 start-page: 899 issue: 6 year: 2012 end-page: 908 article-title: Ecophysiology and ultrastructure of (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic) publication-title: Polar Biology – volume: 6 start-page: 225 year: 2015 article-title: Microbial abundance in surface ice on the Greenland ice sheet publication-title: Frontiers in Microbiology – volume: 33 start-page: 115 issue: 2 year: 2001 end-page: 122 article-title: Structure, formation, and darkening process of albedo‐reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier publication-title: Arctic, Antarctic, and Alpine Research – volume: 1302 start-page: 290 year: 1990 end-page: 302 article-title: In vivo absorption properties of algal pigments publication-title: SPIE Ocean Optics – volume: 6 start-page: 913 issue: 5 year: 2009 end-page: 922 article-title: Phosphatase activity and organic phosphorus turnover on a high Arctic glacier publication-title: Biogeosciences – volume: 5 start-page: 2315 issue: 2 year: 2012 end-page: 2362 article-title: Soot reference materials for instrument calibrations and comparisons publication-title: Atmospheric Measurement Techniques – volume: 79 start-page: 638 issue: 3 year: 2012 end-page: 648 article-title: Characterization of an UV‐ and VIS‐absorbing, purpurogallin‐derived secondary pigment new to algae and highly abundant in (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers publication-title: FEMS Microbiology Ecology – volume: 40 start-page: 27 issue: 1 year: 2006 end-page: 67 article-title: Light absorption by carbonaceous particles: An investigative review publication-title: Aerosol Science and Technology – volume: 111 start-page: 7964 issue: 22 year: 2014 end-page: 7967 article-title: Climate change and forest fires synergistically drive widespread melt events of the Greenland ice sheet publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 56 start-page: 101 issue: 195 year: 2010 end-page: 113 article-title: The ablation zone in northeast Greenland: Ice types, albedos and impurities publication-title: Journal of Glaciology – volume: 128 start-page: 835 issue: 4 year: 1982 end-page: 844 article-title: Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria publication-title: Journal of General Microbiology – volume: 51 start-page: 1 issue: 56 year: 2010 end-page: 8 article-title: Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet publication-title: Annals of Glaciology – volume: 4 year: 2016 article-title: Inter‐annual and geographical variations in the extent of bare ice and dark ice on the Greenland ice sheet derived from MODIS satellite images publication-title: Frontiers in Earth Science – volume: 34 start-page: 409 year: 2002 end-page: 414 article-title: Optical characteristics of cryoconite (surface dust) on glaciers: The relationship between light absorbency and the property of organic matter contained in the cryoconite publication-title: Annals of Glaciology – volume: 10 start-page: 11,647 issue: 23 year: 2010 end-page: 11,680 article-title: Light‐absorbing impurities in Arctic snow publication-title: Atmospheric Chemistry and Physics – volume: 5 start-page: 377 year: 2011 end-page: 390 article-title: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet publication-title: The Cryosphere – volume: 6 start-page: 821 issue: 4 year: 2012 end-page: 839 article-title: Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers publication-title: The Cryosphere – volume: 9 start-page: 487 issue: 2 year: 2015 end-page: 504 article-title: Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland ice sheet publication-title: The Cryosphere – volume: 67 start-page: 5267 issue: 11 year: 2001 end-page: 5272 article-title: Detection and quantification of snow algae with an airborne imaging spectrometer publication-title: Applied and Environmental Microbiology – volume: 35 start-page: 71 year: 2016 end-page: 74 article-title: Placing Greenland ice sheet ablation measurements in a multi‐decadal context publication-title: Geological Survey of Denmark and Greenland Bulletin – volume: 15 start-page: 61 year: 2008 end-page: 64 article-title: A new programme for monitoring the mass loss of the Greenland ice sheet publication-title: Geological Survey of Denmark and Greenland Bulletin – volume: 118 start-page: 5553 year: 2013 end-page: 5569 article-title: Observed vertical redistribution of black carbon and other insoluble light‐absorbing particles in melting snow publication-title: Journal of Geophysical Research: Atmospheres – volume: 7 start-page: 691 issue: 10 year: 2014 article-title: Biological impact on Greenland's albedo publication-title: Nature Geoscience – volume: 89 start-page: 402 issue: 2 year: 2014 end-page: 414 article-title: Variations of algal communities cause darkening of a Greenland glacier publication-title: FEMS Microbiology Ecology – year: 1997 – volume: 5 start-page: 589 issue: 3 year: 2011 end-page: 601 article-title: Dust from the dark region in the western ablation zone of the Greenland ice sheet publication-title: The Cryosphere – volume: 9 start-page: 1 issue: 1 year: 2015 end-page: 11 article-title: UAV photogrammetry and structure from motion to assess calving dynamics at store glacier, a large outlet draining the Greenland ice sheet publication-title: The Cryosphere – volume: 9 start-page: 1845 issue: 5 year: 2015 end-page: 1856 article-title: Ice sheet mass loss caused by dust and black carbon accumulation publication-title: The Cryosphere – volume: 5 start-page: 2581 issue: 11 year: 2012 end-page: 2592 article-title: Assessing recent measurement techniques for quantifying black carbon concentration in snow publication-title: Atmospheric Measurement Techniques – volume: 28 start-page: 3694 issue: 9 year: 2015 end-page: 3713 article-title: Quantifying energy and mass fluxes controlling Godthåbsfjord freshwater input in a 5 km simulation (1991‐2012) publication-title: Journal of Climate – volume: 5 start-page: 771 issue: 11 year: 2012 end-page: 774 article-title: Biological processes on glacier and ice sheet surfaces publication-title: Nature Geoscience – volume: 10 start-page: 477 issue: 2 year: 2016 end-page: 496 article-title: The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981–2100) publication-title: The Cryosphere – start-page: 1 year: 2016 end-page: 23 article-title: Attribution of Greenland's ablating ice surfaces on ice sheet albedo using unmanned aerial systems publication-title: The Cryosphere Discussions – volume: 3 year: 2015 article-title: The effect of impurities on the surface melt of a glacier in the Suntar‐Khayata mountain range, Russian Siberia publication-title: Frontiers in Earth Science – volume: 4 start-page: 261 issue: 3 year: 2010 end-page: 268 article-title: An explanation for the dark region in the western melt zone of the Greenland ice sheet publication-title: The Cryosphere – volume: 51 start-page: 87 issue: 56 year: 2010 end-page: 94 article-title: The microstructure and biogeochemistry of Arctic cryoconite granules publication-title: Annals of Glaciology – volume: 128 start-page: 835 issue: 4 year: 1982 ident: e_1_2_7_10_1 article-title: Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria publication-title: Journal of General Microbiology contributor: fullname: Bryant D. A. – ident: e_1_2_7_21_1 doi: 10.1111/1574-6941.12351 – ident: e_1_2_7_23_1 doi: 10.1128/AEM.67.11.5267-5272.2001 – ident: e_1_2_7_26_1 doi: 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2 – ident: e_1_2_7_24_1 doi: 10.1007/s00300-011-1135-6 – ident: e_1_2_7_6_1 doi: 10.3189/002214310791190776 – ident: e_1_2_7_20_1 doi: 10.3189/172756411795932083 – ident: e_1_2_7_22_1 doi: 10.7185/geochemlet.1611 – ident: e_1_2_7_15_1 doi: 10.5194/tc-9-1845-2015 – ident: e_1_2_7_35_1 doi: 10.3189/172756402781817743 – ident: e_1_2_7_41_1 doi: 10.5194/tc-4-261-2010 – ident: e_1_2_7_29_1 doi: 10.5194/amt-5-2581-2012 – ident: e_1_2_7_31_1 doi: 10.5194/bg-6-913-2009 – volume: 35 start-page: 71 year: 2016 ident: e_1_2_7_40_1 article-title: Placing Greenland ice sheet ablation measurements in a multi‐decadal context publication-title: Geological Survey of Denmark and Greenland Bulletin doi: 10.34194/geusb.v35.4942 contributor: fullname: As D. – ident: e_1_2_7_16_1 doi: 10.1038/nclimate1433 – ident: e_1_2_7_32_1 doi: 10.3389/fmicb.2015.00225 – ident: e_1_2_7_4_1 doi: 10.1038/ngeo2260 – ident: e_1_2_7_5_1 doi: 10.1117/12.21451 – ident: e_1_2_7_25_1 doi: 10.1111/j.1574-6941.2011.01245.x – ident: e_1_2_7_37_1 doi: 10.2307/1552211 – ident: e_1_2_7_14_1 doi: 10.5194/tc-5-359-2011 – ident: e_1_2_7_39_1 doi: 10.5194/tc-5-377-2011 – ident: e_1_2_7_36_1 doi: 10.3389/feart.2015.00082 – ident: e_1_2_7_8_1 – ident: e_1_2_7_27_1 doi: 10.5194/tc-9-1-2015 – ident: e_1_2_7_2_1 doi: 10.34194/geusb.v15.5045 – ident: e_1_2_7_12_1 doi: 10.1002/jgrd.50235 – ident: e_1_2_7_43_1 doi: 10.1038/ismej.2012.107 – ident: e_1_2_7_9_1 doi: 10.5194/tc-6-821-2012 – ident: e_1_2_7_33_1 doi: 10.3189/172756411795931958 – ident: e_1_2_7_17_1 doi: 10.1046/j.1529-8817.1999.3520403.x – ident: e_1_2_7_30_1 doi: 10.3389/feart.2016.00043 – ident: e_1_2_7_3_1 doi: 10.5194/amtd-5-2315-2012 – ident: e_1_2_7_19_1 doi: 10.1175/JCLI-D-14-00271.1 – ident: e_1_2_7_11_1 doi: 10.5194/tc-9-487-2015 – ident: e_1_2_7_13_1 doi: 10.5194/acp-10-11647-2010 – ident: e_1_2_7_34_1 doi: 10.1038/ngeo1611 – ident: e_1_2_7_7_1 doi: 10.1080/02786820500421521 – ident: e_1_2_7_18_1 doi: 10.1073/pnas.1405397111 – ident: e_1_2_7_38_1 doi: 10.5194/tc-10-477-2016 – ident: e_1_2_7_42_1 doi: 10.5194/tc-5-589-2011 – ident: e_1_2_7_28_1 doi: 10.5194/tc-2016-204 |
SSID | ssj0003031 |
Score | 2.589187 |
Snippet | Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light‐absorbing impurities such as mineral dust, black carbon, and... Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 11,463 |
SubjectTerms | Ablation Albedo Albedo (solar) Algae Algal growth Atmospheric particulates Bare ice Black carbon Darkening Dust storms Glaciation Greenland ice sheet Ice Ice sheet melting Ice sheets Impurities light‐absorbing impurities Melting meltings Microorganisms Reflectance Sea level |
Title | Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075958 https://www.proquest.com/docview/1979350962 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfAiPrFayx70JKHpvpIci30pVUStFC9hs9nYg6TS1oP_3plN-vAieAlhyeYwm5n5djL7fYRcambDBGADqpfBxTDuaZ5KTwehllkY6sDgRvH-QQ1G4m4sx2XBDc_CFPwQq4IbeoaL1-jgOpk316ShkLmC_hAyXiTDbVIFZKNQwYCJx1UkhvBcKOZFwgtZoMrGd5jf3Jz9OyWtceYmWnXpprdP9kqcSNvFwh6QLZsfkp2-0-H9hjvXuWnmR6Tb_njXlnZmELZoN5-4P_q0g103WPKg04yipgG9NZZOcwp4j7peG-xodIPPE2sXx2TU677cDLxSG8EzQnLhaRUq7mcZ823g69Q3XHMuU6xoWtyEpQY1HwBOcKkzEyGrlUyNtMrXmqXg5iekkk9ze0po1kptoH0LxrACFk5nIom0iFTCVJRkvEauluaJPwsKjLggO2bxphlrpL60XVw6wjxuRRAAkGKG1ci1s-ef74j7T0MAmFyc_evpc7KL43hGkIV1UlnMvuwFgIVF0nBfRINU26-jt9EPPjGzxA |
link.rule.ids | 314,780,784,11562,27924,27925,46052,46476,50814,50923 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagFYIF8RSFAh5gQlGDHSfOWNEnpB2gQRVL5DgOHVCK2jLw77lL0gcLEksURY6Hc-7u8-X8fYTcKGZkDLAB1cvgohm3FE-EpTypRCql8jRuFAdDtxc6j2MxLnVO8SxMwQ-xKrihZ-TxGh0cC9KNNWsopC6vG0DK84XcJlXIfIiQqs3X8C1cBWOI0IVonu9Yknlu2fsOMzQ23_-dldZQcxOw5hmnc0D2S6hIm8XaHpItkx2RnW4uxfsNd3nzpp4fk3bz410Z2ppB5KLtbJL_1KctbLzBqgedphRlDWhfGzrNKEA-mrfbYFNj_vBlYszihISd9uihZ5XyCJZ2BHcs5UqX22nKbOPZKrE1V5yLBIuaBvdhiUbZB0AUXKhU-0hsJRItjGsrxRLw9FNSyaaZOSM0vU-Mp2wDxjAOrJ1KndhXju_GzPXjlNfI7dI80WfBghEVfMcs2jRjjdSXtotKX5hH9z7EAGSZYTVyl9vzzzmi7nMAGJM75_8afU12e6NBEAX94dMF2cMxeGSQyTqpLGZf5hKwwyK-Kr-PHwOZt0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BKxAL4ikKBTzAhKKmfuQxVvQJpUJAEWKJHMemA0qrtgz8e85J-mBBYomiyPFwzt19vpy_D-BKUh3ECBusehleFGWOZIlwpB9IYYJA-spuFB8GXnfI797EW1Fws2dhcn6IZcHNekYWr62DTxJTW5GGYubyO33MeKEINqGMQKPOS1BuvA7fh8tYjAE618wLuRNQ3yta33GG2vr7v5PSCmmu49Us4bT3YLdAiqSRL-0-bOj0ALY6mRLvN95lvZtqdgitxueH1KQ5xcBFWuko-6dPmrbvxhY9yNgQq2pAekqTcUoQ8ZGs28b2NGYPn0daz49g2G693HadQh3BUVww7kgv8JhrDHW178rEVUwyJhJb09R2G5Yoq_qAgIIJaVRoea1EooT2XClpgo5-DKV0nOoTIKaeaF-6Go2hOS6dNDwOJQ-9mHphbFgFrhfmiSY5CUaU0x3TaN2MFagubBcVrjCL6iGGAEsyQytwk9nzzzmizlMfISbjp_8afQnbj8121O8N7s9gxw6xBwZpUIXSfPqlzxE5zOOL4vP4ARM-tmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algae+Drive+Enhanced+Darkening+of+Bare+Ice+on+the+Greenland+Ice+Sheet&rft.jtitle=Geophysical+research+letters&rft.au=Stibal%2C+Marek&rft.au=Box%2C+Jason+E.&rft.au=Cameron%2C+Karen+A.&rft.au=Langen%2C+Peter+L.&rft.date=2017-11-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=22&rft_id=info:doi/10.1002%2F2017GL075958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_2017GL075958 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |