Anomalous Channel‐Length Dependence in Nanofluidic Osmotic Energy Conversion
Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannel...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 9; pp. np - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
03.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices.
Anomalous channel‐length dependence is discovered in nanofluidic osmotic power generation. In contrast to conventional long nanofluidic devices, if the channel length is further reduced to below 400 nm, the output power decreases with decreasing channel length, showing anomalous, non‐Ohmic response. These findings reveal the importance of the long‐overlooked element, the channel length, in nanofluidic energy conversion. |
---|---|
AbstractList | Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices.
Anomalous channel‐length dependence is discovered in nanofluidic osmotic power generation. In contrast to conventional long nanofluidic devices, if the channel length is further reduced to below 400 nm, the output power decreases with decreasing channel length, showing anomalous, non‐Ohmic response. These findings reveal the importance of the long‐overlooked element, the channel length, in nanofluidic energy conversion. Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel-length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non-Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long-overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high-performance nanofluidic energy devices. Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels ( L ) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices. Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel-length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non-Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long-overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high-performance nanofluidic energy devices. Anomalous channel-length dependence is discovered in nanofluidic osmotic power generation. In contrast to conventional long nanofluidic devices, if the channel length is further reduced to below 400 nm, the output power decreases with decreasing channel length, showing anomalous, non-Ohmic response. These findings reveal the importance of the long-overlooked element, the channel length, in nanofluidic energy conversion. |
Author | Geng, Wenxiao Li, Ning Xiao, Feilong Guo, Wei Yang, Jinlei Zhang, Xiaopeng Cao, Liuxuan Jiang, Lei Feng, Yaping Zhu, Weiwei |
Author_xml | – sequence: 1 givenname: Liuxuan surname: Cao fullname: Cao, Liuxuan organization: Xiamen University – sequence: 2 givenname: Feilong surname: Xiao fullname: Xiao, Feilong organization: Xiamen University – sequence: 3 givenname: Yaping surname: Feng fullname: Feng, Yaping organization: Chinese Academy of Sciences – sequence: 4 givenname: Weiwei surname: Zhu fullname: Zhu, Weiwei organization: Chinese Academy of Sciences – sequence: 5 givenname: Wenxiao surname: Geng fullname: Geng, Wenxiao organization: Capital Normal University – sequence: 6 givenname: Jinlei surname: Yang fullname: Yang, Jinlei organization: Chinese Academy of Sciences – sequence: 7 givenname: Xiaopeng surname: Zhang fullname: Zhang, Xiaopeng organization: Chinese Academy of Sciences – sequence: 8 givenname: Ning surname: Li fullname: Li, Ning organization: Xiamen University – sequence: 9 givenname: Wei surname: Guo fullname: Guo, Wei email: wguo@iccas.ac.cn organization: Chinese Academy of Sciences – sequence: 10 givenname: Lei surname: Jiang fullname: Jiang, Lei organization: Chinese Academy of Sciences |
BookMark | eNqFkMtKAzEYhYNUsK1uXQ-4cdOaW2eSZelFhWo3Cu5CyPzTpswkNZkq3fkIPqNP4pRKhYK4Omdxvv9yOqjlvAOELgnuE4zpjc6Lqk8xSTFnmJ6gNklJ2musaB08eTlDnRhXGJMsY7yNHofOV7r0m5iMlto5KL8-PmfgFvUyGcMaXA7OQGJd8qidL8qNza1J5rHydaMTB2GxTUbevUGI1rtzdFroMsLFj3bR83TyNLrrzea396PhrGf4gNFezqik1EiZcT0wIsUZSCGEAaMJ1ZphzBjkjEg24EAKwtiAQso4pjQXmWasi673c9fBv24g1qqy0UBZagfNL4oIyYSUgtAmenUUXflNcM11ikiKOWGUZ02qv0-Z4GMMUKh1sJUOW0Ww2tWrdvWqQ70NwI8AY2tdNx3UQdvyb0zusXdbwvafJWo4nj78st8jjJCL |
CitedBy_id | crossref_primary_10_1016_j_renene_2023_04_056 crossref_primary_10_1021_acs_iecr_3c02574 crossref_primary_10_1063_5_0243056 crossref_primary_10_5004_dwt_2023_29775 crossref_primary_10_1016_j_jpowsour_2017_09_022 crossref_primary_10_1021_acsami_4c19678 crossref_primary_10_1039_C7NR04387B crossref_primary_10_1002_cphc_202400395 crossref_primary_10_1016_j_clay_2019_105184 crossref_primary_10_1002_adfm_201804189 crossref_primary_10_1002_smll_202101099 crossref_primary_10_1002_adfm_201800382 crossref_primary_10_1016_j_memsci_2017_09_008 crossref_primary_10_1039_D1TA02400K crossref_primary_10_3390_nano14151302 crossref_primary_10_1039_D4EE01381F crossref_primary_10_1002_adfm_201801079 crossref_primary_10_1063_5_0241150 crossref_primary_10_1016_j_cej_2022_136675 crossref_primary_10_1021_acsnano_3c11646 crossref_primary_10_1002_adma_201700177 crossref_primary_10_1002_pssr_201900129 crossref_primary_10_1016_j_jelechem_2018_03_027 crossref_primary_10_1016_j_memsci_2021_120075 crossref_primary_10_1016_j_nanoen_2024_109924 crossref_primary_10_1088_2053_1583_ac9ceb crossref_primary_10_1016_j_molliq_2024_126190 crossref_primary_10_1002_ange_202414984 crossref_primary_10_1016_j_desal_2025_118615 crossref_primary_10_1002_smll_201702691 crossref_primary_10_1016_j_jpowsour_2021_229637 crossref_primary_10_1002_adma_202307849 crossref_primary_10_1088_1361_6528_aaed6d crossref_primary_10_3390_ma14227012 crossref_primary_10_1039_C8CP01906A crossref_primary_10_1021_acsnano_1c08347 crossref_primary_10_1021_acsnano_4c09555 crossref_primary_10_1088_1361_6528_ab0ed8 crossref_primary_10_1002_adma_201702773 crossref_primary_10_1093_nsr_nwz106 crossref_primary_10_3390_membranes13020164 crossref_primary_10_1021_acsaem_2c03308 crossref_primary_10_1016_j_cclet_2018_01_053 crossref_primary_10_1016_j_electacta_2022_140887 crossref_primary_10_1016_j_jcis_2019_12_103 crossref_primary_10_1002_adma_201702419 crossref_primary_10_1002_smsc_202300167 crossref_primary_10_1016_j_apenergy_2020_115294 crossref_primary_10_1016_j_eng_2024_08_021 crossref_primary_10_1039_D4TA08491H crossref_primary_10_1002_smll_202205003 crossref_primary_10_1021_acs_nanolett_2c04807 crossref_primary_10_1016_j_joule_2019_09_005 crossref_primary_10_1016_j_nantod_2024_102468 crossref_primary_10_1002_smll_202100141 crossref_primary_10_1021_acsnano_0c02202 crossref_primary_10_1039_D3NR04467J crossref_primary_10_1002_smll_202403593 crossref_primary_10_1021_acsnano_2c07641 crossref_primary_10_1021_acsnano_2c11975 crossref_primary_10_1016_j_memsci_2025_123912 crossref_primary_10_1016_j_nanoen_2020_104612 crossref_primary_10_1002_adfm_202309869 crossref_primary_10_1016_j_cclet_2021_09_066 crossref_primary_10_1039_C8TA10848J crossref_primary_10_1039_C9SM02144B crossref_primary_10_1002_ange_202303582 crossref_primary_10_1002_smll_202301013 crossref_primary_10_1088_1361_6528_ac622b crossref_primary_10_1016_j_mseb_2024_117931 crossref_primary_10_1039_D2TA08991B crossref_primary_10_1126_sciadv_ado8081 crossref_primary_10_1002_adma_201903954 crossref_primary_10_1002_smll_201804279 crossref_primary_10_1002_adfm_202404410 crossref_primary_10_1039_D2CP05831F crossref_primary_10_1021_acsenergylett_2c01681 crossref_primary_10_1021_acsaem_2c00734 crossref_primary_10_1016_j_nanoen_2018_03_030 crossref_primary_10_1016_j_trac_2022_116877 crossref_primary_10_1088_1361_6439_aaa782 crossref_primary_10_1016_j_mtsust_2024_100939 crossref_primary_10_1039_C7CS00369B crossref_primary_10_1063_5_0188959 crossref_primary_10_1016_j_snb_2023_134106 crossref_primary_10_1002_smll_202309128 crossref_primary_10_1021_acs_langmuir_1c01504 crossref_primary_10_1002_anie_202303582 crossref_primary_10_1002_cjoc_201800067 crossref_primary_10_1002_smtd_202101255 crossref_primary_10_1021_acsnano_2c00866 crossref_primary_10_1039_C8QI00397A crossref_primary_10_1021_acsmacrolett_2c00138 crossref_primary_10_1063_5_0170905 crossref_primary_10_1039_D2TA06557F crossref_primary_10_1016_j_memsci_2018_05_026 crossref_primary_10_1021_acs_langmuir_4c00477 crossref_primary_10_1016_j_electacta_2018_10_074 crossref_primary_10_1016_j_tws_2023_111431 crossref_primary_10_1063_5_0166095 crossref_primary_10_1039_D0RA02329A crossref_primary_10_1002_cjoc_202000066 crossref_primary_10_1002_adma_202404418 crossref_primary_10_1016_j_carbon_2022_01_049 crossref_primary_10_1016_j_jtice_2022_104351 crossref_primary_10_1021_acs_jpcc_8b01959 crossref_primary_10_1039_D1SE01729B crossref_primary_10_1039_C7SC00153C crossref_primary_10_1016_j_seppur_2023_125929 crossref_primary_10_1021_acsapm_0c01272 crossref_primary_10_1021_acssensors_7b00576 crossref_primary_10_1039_D1SC03581A crossref_primary_10_1039_D0CP05974A crossref_primary_10_1002_admt_201800742 crossref_primary_10_1002_VIW_20220036 crossref_primary_10_1016_j_nanoen_2021_105930 crossref_primary_10_1039_D2CP01015A crossref_primary_10_1039_D4SM00123K crossref_primary_10_1007_s12274_023_5794_8 crossref_primary_10_1038_s41598_018_29695_x crossref_primary_10_1016_j_clay_2024_107577 crossref_primary_10_3390_ma15103561 crossref_primary_10_1007_s11431_023_2559_y crossref_primary_10_1021_jacs_7b11732 crossref_primary_10_1515_ntrev_2024_0029 crossref_primary_10_1002_anie_202414984 crossref_primary_10_1021_acs_jpcc_1c03010 crossref_primary_10_1016_j_diamond_2023_109971 crossref_primary_10_1016_j_nanoen_2021_106709 crossref_primary_10_1021_acsnano_9b02579 crossref_primary_10_1016_j_cej_2024_155934 crossref_primary_10_1021_acsnano_9b06774 crossref_primary_10_1002_advs_202000286 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121126 crossref_primary_10_1557_s43581_024_00104_3 crossref_primary_10_1007_s40820_024_01577_0 crossref_primary_10_1016_j_rser_2023_114078 crossref_primary_10_1039_D1SM00187F crossref_primary_10_1016_j_nanoen_2019_104284 crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1002_cjoc_201900042 crossref_primary_10_1021_acs_langmuir_2c02060 crossref_primary_10_1039_C8QM00031J crossref_primary_10_1021_acs_accounts_3c00310 crossref_primary_10_1021_acs_nanolett_4c03836 crossref_primary_10_1002_adma_202206354 crossref_primary_10_1016_j_nanoen_2019_02_056 crossref_primary_10_3390_mi12070775 crossref_primary_10_1021_acsestengg_1c00309 crossref_primary_10_1016_j_chempr_2021_04_008 crossref_primary_10_1016_j_electacta_2021_139221 crossref_primary_10_1038_s41578_021_00300_4 crossref_primary_10_1016_j_ces_2023_119156 crossref_primary_10_1016_j_electacta_2020_136613 crossref_primary_10_1039_D0NR02464C |
Cites_doi | 10.1038/nnano.2009.90 10.1002/smll.201100287 10.1002/adma.201301336 10.1021/la203837q 10.1007/s12274-011-0189-7 10.1002/adma.201203567 10.1038/nnano.2009.332 10.1021/ac4040136 10.1038/nnano.2011.129 10.1038/nmat2127 10.1016/j.nanoen.2015.07.013 10.1038/nnano.2007.27 10.1007/s40843-014-0005-z 10.1002/adma.200901945 10.1002/adfm.200902312 10.1039/c1ee01088c 10.1126/science.1239089 10.1021/nl800949k 10.1016/j.nimb.2008.03.169 10.1021/nn403686s 10.1126/science.aaf5289 10.1103/PhysRevE.75.051201 10.1103/PhysRevLett.93.035901 10.1002/adfm.201601689 10.1126/science.1100103 10.1038/458138a 10.1063/1.2179797 10.1038/nature18593 10.1038/nature13817 10.1002/adma.201302441 10.1103/PhysRevLett.99.044501 10.1021/ja101014y 10.1021/nn800306u 10.1021/ja503692z 10.1039/B822554K 10.1126/sciadv.1501272 10.1021/la702955k 10.1002/adma.201405078 10.1021/ar400024p 10.1021/jp071884c 10.1007/s10404-010-0641-0 10.1007/s11434-015-0739-6 10.1073/pnas.0911450106 10.1038/nature11876 10.1073/pnas.0506694103 10.1039/C4CC06008C |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201604302 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201604302 ADFM201604302 |
Genre | article |
GrantInformation_xml | – fundername: Beijing Nova Program – fundername: National Natural Science Foundation of China funderid: 11405143; 21522108; 11335003; 11290163 – fundername: Youth Innovation Promotion Association of CAS |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4532-d32922c9974a5c8607e9888ceca12aa30033ed319354e1f13352e634022d87a33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 15:34:34 EDT 2025 Fri Jul 25 07:19:30 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 04:11:37 EDT 2025 Wed Aug 20 07:24:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4532-d32922c9974a5c8607e9888ceca12aa30033ed319354e1f13352e634022d87a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1920413247 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1893899812 proquest_journals_1920413247 crossref_primary_10_1002_adfm_201604302 crossref_citationtrail_10_1002_adfm_201604302 wiley_primary_10_1002_adfm_201604302_ADFM201604302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 3, 2017 |
PublicationDateYYYYMMDD | 2017-03-03 |
PublicationDate_xml | – month: 03 year: 2017 text: March 3, 2017 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 514 2015; 16 2013; 25 2013; 46 2010; 39 2008; 7 2008; 8 2013; 341 2011; 4 2008; 266 2013; 7 2007; 75 2008; 2 2004; 305 2007; 99 2011; 6 2014; 136 2011; 7 2009; 458 2014; 86 2010; 22 2010; 20 2015; 27 2016; 2 2004; 93 2015; 60 2016; 536 2007; 111 2010; 132 2014; 57 2008; 24 2016 2012; 28 2007; 2 2013; 494 2009; 4 2014; 50 2012; 5 2016; 26 2016; 351 2006; 103 2010; 9 2009; 106 2006; 124 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Ji J. (e_1_2_6_47_1) 2016 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 |
References_xml | – volume: 25 start-page: 6064 year: 2013 publication-title: Adv. Mater. – volume: 46 start-page: 2834 year: 2013 publication-title: Acc. Chem. Res. – volume: 39 start-page: 923 year: 2010 publication-title: Chem. Soc. Rev. – volume: 266 start-page: 3095 year: 2008 publication-title: Nucl. Instrum. Methods B – volume: 341 start-page: 534 year: 2013 publication-title: Science – volume: 132 start-page: 8338 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 044501 year: 2007 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 2259 year: 2011 publication-title: Energy Environ. Sci. – year: 2016 publication-title: Adv. Funct. Mater. – volume: 75 start-page: 051201 year: 2007 publication-title: Phys. Rev. E – volume: 25 start-page: 4549 year: 2013 publication-title: Adv. Mater. – volume: 351 start-page: 1395 year: 2016 publication-title: Science – volume: 536 start-page: 197 year: 2016 publication-title: Nature – volume: 57 start-page: 2 year: 2014 publication-title: Sci. China Mater. – volume: 50 start-page: 14149 year: 2014 publication-title: Chem. Commun. – volume: 136 start-page: 12265 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 713 year: 2009 publication-title: Nat. Nanotechnol. – volume: 106 start-page: 21039 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 514 start-page: 612 year: 2014 publication-title: Nature – volume: 22 start-page: 120 year: 2010 publication-title: Adv. Mater. – volume: 2 start-page: 1589 year: 2008 publication-title: ACS Nano – volume: 6 start-page: 615 year: 2011 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 1978 year: 2008 publication-title: Nano Lett. – volume: 60 start-page: 491 year: 2015 publication-title: Sci. Bull. – volume: 103 start-page: 5251 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 2225 year: 2011 publication-title: Small – volume: 458 start-page: 138 year: 2009 publication-title: Nature – volume: 27 start-page: 2090 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 5796 year: 2016 publication-title: Adv. Funct. Mater. – volume: 111 start-page: 12265 year: 2007 publication-title: J. Phys. Chem. C – volume: 2 start-page: e1501272 year: 2016 publication-title: Sci. Adv. – volume: 93 start-page: 035901 year: 2004 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 9085 year: 2013 publication-title: ACS Nano – volume: 86 start-page: 2681 year: 2014 publication-title: Anal. Chem. – volume: 494 start-page: 455 year: 2013 publication-title: Nature – volume: 5 start-page: 99 year: 2012 publication-title: Nano Res. – volume: 9 start-page: 1215 year: 2010 publication-title: Microfluid. Nanofluid. – volume: 25 start-page: 13 year: 2013 publication-title: Adv. Mater. – volume: 28 start-page: 2194 year: 2012 publication-title: Langmuir – volume: 2 start-page: 209 year: 2007 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 303 year: 2008 publication-title: Nat. Mater. – volume: 4 start-page: 353 year: 2009 publication-title: Nat. Nanotechnol. – volume: 20 start-page: 1339 year: 2010 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 2212 year: 2008 publication-title: Langmuir – volume: 124 start-page: 104706 year: 2006 publication-title: J. Chem. Phys. – volume: 305 start-page: 968 year: 2004 publication-title: Science – volume: 16 start-page: 375 year: 2015 publication-title: Nano Energy – ident: e_1_2_6_40_1 doi: 10.1038/nnano.2009.90 – ident: e_1_2_6_18_1 doi: 10.1002/smll.201100287 – ident: e_1_2_6_20_1 doi: 10.1002/adma.201301336 – ident: e_1_2_6_13_1 doi: 10.1021/la203837q – ident: e_1_2_6_19_1 doi: 10.1007/s12274-011-0189-7 – ident: e_1_2_6_43_1 doi: 10.1002/adma.201203567 – ident: e_1_2_6_15_1 doi: 10.1038/nnano.2009.332 – ident: e_1_2_6_29_1 doi: 10.1021/ac4040136 – ident: e_1_2_6_39_1 doi: 10.1038/nnano.2011.129 – year: 2016 ident: e_1_2_6_47_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_6_25_1 doi: 10.1038/nmat2127 – ident: e_1_2_6_8_1 doi: 10.1016/j.nanoen.2015.07.013 – ident: e_1_2_6_16_1 doi: 10.1038/nnano.2007.27 – ident: e_1_2_6_5_1 doi: 10.1007/s40843-014-0005-z – ident: e_1_2_6_6_1 doi: 10.1002/adma.200901945 – ident: e_1_2_6_9_1 doi: 10.1002/adfm.200902312 – ident: e_1_2_6_12_1 doi: 10.1039/c1ee01088c – ident: e_1_2_6_7_1 doi: 10.1126/science.1239089 – ident: e_1_2_6_37_1 doi: 10.1021/nl800949k – ident: e_1_2_6_26_1 doi: 10.1016/j.nimb.2008.03.169 – ident: e_1_2_6_28_1 doi: 10.1021/nn403686s – ident: e_1_2_6_44_1 doi: 10.1126/science.aaf5289 – ident: e_1_2_6_34_1 doi: 10.1103/PhysRevE.75.051201 – ident: e_1_2_6_23_1 doi: 10.1103/PhysRevLett.93.035901 – ident: e_1_2_6_31_1 doi: 10.1002/adfm.201601689 – ident: e_1_2_6_1_1 doi: 10.1126/science.1100103 – ident: e_1_2_6_2_1 doi: 10.1038/458138a – ident: e_1_2_6_33_1 doi: 10.1063/1.2179797 – ident: e_1_2_6_22_1 doi: 10.1038/nature18593 – ident: e_1_2_6_41_1 doi: 10.1038/nature13817 – ident: e_1_2_6_45_1 doi: 10.1002/adma.201302441 – ident: e_1_2_6_38_1 doi: 10.1103/PhysRevLett.99.044501 – ident: e_1_2_6_27_1 doi: 10.1021/ja101014y – ident: e_1_2_6_35_1 doi: 10.1021/nn800306u – ident: e_1_2_6_11_1 doi: 10.1021/ja503692z – ident: e_1_2_6_32_1 doi: 10.1039/B822554K – ident: e_1_2_6_46_1 doi: 10.1126/sciadv.1501272 – ident: e_1_2_6_24_1 doi: 10.1021/la702955k – ident: e_1_2_6_30_1 doi: 10.1002/adma.201405078 – ident: e_1_2_6_4_1 doi: 10.1021/ar400024p – ident: e_1_2_6_14_1 doi: 10.1021/jp071884c – ident: e_1_2_6_36_1 doi: 10.1007/s10404-010-0641-0 – ident: e_1_2_6_42_1 doi: 10.1007/s11434-015-0739-6 – ident: e_1_2_6_17_1 doi: 10.1073/pnas.0911450106 – ident: e_1_2_6_10_1 doi: 10.1038/nature11876 – ident: e_1_2_6_3_1 doi: 10.1073/pnas.0506694103 – ident: e_1_2_6_21_1 doi: 10.1039/C4CC06008C |
SSID | ssj0017734 |
Score | 2.5753503 |
Snippet | Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy... Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | biomimetics Channels Computer simulation Devices Direct power generation Electric charge Electric power Electric power generation Energy conversion Energy conversion efficiency Energy management Energy storage Fluidics functional materials Ion concentration Ion transport Materials science Materials selection Mathematical models nanofluidics Nanofluids Nanostructure Nanotechnology Photovoltaic cells Polarization Power generation Selectivity |
Title | Anomalous Channel‐Length Dependence in Nanofluidic Osmotic Energy Conversion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604302 https://www.proquest.com/docview/1920413247 https://www.proquest.com/docview/1893899812 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzidEkHwqVuTdMn6OJxjyDbBC-ytpGmqw9mJ21588if4G_0lntN2dQoi6GNpLm1OTvKd5JzvEHISMuMKyyUoUhw5nt-wjhageDL0wOxpuDZMY2F6fdm59S4G9cFCFH_GD1EcuKFmpOs1KrgOJ7VP0lAdxRhJziSyVuEijA5biIquCv4oplR2rSwZOnixwZy10eW1r9W_7kqfUHMRsKY7Tnud6Pm3Zo4mD9XZNKyal280jv_5mQ2ylsNR2szmzyZZsskWWV0gKdwm_WYyftSj8WxCMRQBenp_feva5G56T1t5Cl1j6TChsFKP49FsGA0NvUzzAxl6nsYW0jN0bk9P5nbIbfv85qzj5FkYHOPVBXciwX3OjQ-Gh66bhnSV9cFsNtZoxjUI1hXCRqDJou5ZFjMM4rJSgF3Ko4bSQuySUjJO7B6hXMZSaeNHmgnPRoBs4lipEBp0FXeNLBNnLoXA5BTlmCljFGTkyjzAcQqKcSqT06L8U0bO8WPJylyoQa6kkwDArQt7OPdUmRwXr0G98M5EJxYGNmCA59AkZdAETyX4S09Bs9XuFU_7f6l0QFY4ggf0dBMVUpo-z-whQJ9peESWm61e9_ooneYfpDz60w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYqOBQOhUKrpryMVInTwtre2NljBEShJEGqQOJmeb1eGhE2VZNcOPET-I38Ema8DxIkVKkcV-vHrsdjf2PPfEPIj4TZUDguQZGyNIjilguMAMWTSQRmTyt0iY-F6Q9k9yr6ed2svAkxFqbgh6gP3FAz_HqNCo4H0kcvrKEmzTCUnEmkrYJVeBnTenur6lfNIMWUKi6WJUMXL3Zd8TaG_Gix_uK-9AI25yGr33M6aySpvrZwNbk9nE2TQ3v_isjxXb-zTj6ViJS2iyn0mXxw-QZZneMp3CSDdj6-M6PxbEIxGgG6enp47Ln8ZvqbnpRZdK2jw5zCYj3ORrNhOrT0wqcIsvTUhxfSY_Rv94dzX8hV5_TyuBuUiRgCGzUFD1LBY85tDLaHadqWDJWLwXK2zhrGDcg2FMKloMyiGTmWMYzjclKAacrTljJCfCVL-Th33wjlMpPK2Dg1TEQuBXCTZUol0GCoeGhlgwSVGLQtWcoxWcZIF_zKXOM46XqcGuSgLv-n4Od4s-R2JVVd6ulEA74NYRvnkWqQ_fo1aBhem5jcwcBqBpAOrVIGTXAvwn_0pNsnnX799P1_Ku2Rj93Lfk_3zgbnW2SFI5ZAxzexTZamf2duB5DQNNn1c_0Zcdv9Wg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYQSAgeBhtDdBRmpEk8pfiS2slj1VJxazehVeqb5dgOVHQpGu0LT_wEfuN-yY6TNLRIaNJ4jOJL4uNjf8c-5zsIfUuoIdwxAYqU2iCMIxdoDoonkhDMnoi4JI-F6fXF2SC8GDaHC1H8BT9EdeDmNSNfr72C39v05IU0VNvUR5JT4VmrYBFeCwWJ_LzuXFcEUlTK4l5ZUO_hRYdz2kbCTpbrL29LL1hzEbHmW053C-n5xxaeJneN2TRpmMdXPI7v-Ztt9KHEo7hVTKCPaMVln9DmAkvhDuq3sskvPZ7MHrCPRYCe_jw9X7nsZnqLO2UOXePwKMOwVE_S8WxkRwZ_zxMEGXyaBxfitvduz4_mPqNB9_Rn-ywo0zAEJmxyFljOYsZMDJaHbppIEOlisJuNM5oyDZIlnDsLqsyboaMp9VFcTnAwTJmNpOZ8F61mk8ztIcxEKqQ2sdWUh84CtElTKRNokEhGjKihYC4FZUqOcp8qY6wKdmWm_Dipapxq6Lgqf1-wc7xZsj4Xqiq19EEBuiWwibNQ1tBR9Rr0y1-a6MzBwCoKgM7bpBSaYLkE_9GTanW6verpy_9U-orWf3S66uq8f7mPNpgHEt7rjdfR6vT3zB0ADJomh_lM_wuM1fwS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalous+Channel-Length+Dependence+in+Nanofluidic+Osmotic+Energy+Conversion&rft.jtitle=Advanced+functional+materials&rft.au=Cao%2C+Liuxuan&rft.au=Xiao%2C+Feilong&rft.au=Feng%2C+Yaping&rft.au=Zhu%2C+Weiwei&rft.date=2017-03-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=9&rft_id=info:doi/10.1002%2Fadfm.201604302&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |