Anomalous Channel‐Length Dependence in Nanofluidic Osmotic Energy Conversion

Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannel...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 9; pp. np - n/a
Main Authors Cao, Liuxuan, Xiao, Feilong, Feng, Yaping, Zhu, Weiwei, Geng, Wenxiao, Yang, Jinlei, Zhang, Xiaopeng, Li, Ning, Guo, Wei, Jiang, Lei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 03.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices. Anomalous channel‐length dependence is discovered in nanofluidic osmotic power generation. In contrast to conventional long nanofluidic devices, if the channel length is further reduced to below 400 nm, the output power decreases with decreasing channel length, showing anomalous, non‐Ohmic response. These findings reveal the importance of the long‐overlooked element, the channel length, in nanofluidic energy conversion.
AbstractList Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices. Anomalous channel‐length dependence is discovered in nanofluidic osmotic power generation. In contrast to conventional long nanofluidic devices, if the channel length is further reduced to below 400 nm, the output power decreases with decreasing channel length, showing anomalous, non‐Ohmic response. These findings reveal the importance of the long‐overlooked element, the channel length, in nanofluidic energy conversion.
Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel-length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non-Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long-overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high-performance nanofluidic energy devices.
Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels ( L ) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices.
Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel-length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non-Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long-overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high-performance nanofluidic energy devices. Anomalous channel-length dependence is discovered in nanofluidic osmotic power generation. In contrast to conventional long nanofluidic devices, if the channel length is further reduced to below 400 nm, the output power decreases with decreasing channel length, showing anomalous, non-Ohmic response. These findings reveal the importance of the long-overlooked element, the channel length, in nanofluidic energy conversion.
Author Geng, Wenxiao
Li, Ning
Xiao, Feilong
Guo, Wei
Yang, Jinlei
Zhang, Xiaopeng
Cao, Liuxuan
Jiang, Lei
Feng, Yaping
Zhu, Weiwei
Author_xml – sequence: 1
  givenname: Liuxuan
  surname: Cao
  fullname: Cao, Liuxuan
  organization: Xiamen University
– sequence: 2
  givenname: Feilong
  surname: Xiao
  fullname: Xiao, Feilong
  organization: Xiamen University
– sequence: 3
  givenname: Yaping
  surname: Feng
  fullname: Feng, Yaping
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Weiwei
  surname: Zhu
  fullname: Zhu, Weiwei
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Wenxiao
  surname: Geng
  fullname: Geng, Wenxiao
  organization: Capital Normal University
– sequence: 6
  givenname: Jinlei
  surname: Yang
  fullname: Yang, Jinlei
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Xiaopeng
  surname: Zhang
  fullname: Zhang, Xiaopeng
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: Xiamen University
– sequence: 9
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  email: wguo@iccas.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Lei
  surname: Jiang
  fullname: Jiang, Lei
  organization: Chinese Academy of Sciences
BookMark eNqFkMtKAzEYhYNUsK1uXQ-4cdOaW2eSZelFhWo3Cu5CyPzTpswkNZkq3fkIPqNP4pRKhYK4Omdxvv9yOqjlvAOELgnuE4zpjc6Lqk8xSTFnmJ6gNklJ2musaB08eTlDnRhXGJMsY7yNHofOV7r0m5iMlto5KL8-PmfgFvUyGcMaXA7OQGJd8qidL8qNza1J5rHydaMTB2GxTUbevUGI1rtzdFroMsLFj3bR83TyNLrrzea396PhrGf4gNFezqik1EiZcT0wIsUZSCGEAaMJ1ZphzBjkjEg24EAKwtiAQso4pjQXmWasi673c9fBv24g1qqy0UBZagfNL4oIyYSUgtAmenUUXflNcM11ikiKOWGUZ02qv0-Z4GMMUKh1sJUOW0Ww2tWrdvWqQ70NwI8AY2tdNx3UQdvyb0zusXdbwvafJWo4nj78st8jjJCL
CitedBy_id crossref_primary_10_1016_j_renene_2023_04_056
crossref_primary_10_1021_acs_iecr_3c02574
crossref_primary_10_1063_5_0243056
crossref_primary_10_5004_dwt_2023_29775
crossref_primary_10_1016_j_jpowsour_2017_09_022
crossref_primary_10_1021_acsami_4c19678
crossref_primary_10_1039_C7NR04387B
crossref_primary_10_1002_cphc_202400395
crossref_primary_10_1016_j_clay_2019_105184
crossref_primary_10_1002_adfm_201804189
crossref_primary_10_1002_smll_202101099
crossref_primary_10_1002_adfm_201800382
crossref_primary_10_1016_j_memsci_2017_09_008
crossref_primary_10_1039_D1TA02400K
crossref_primary_10_3390_nano14151302
crossref_primary_10_1039_D4EE01381F
crossref_primary_10_1002_adfm_201801079
crossref_primary_10_1063_5_0241150
crossref_primary_10_1016_j_cej_2022_136675
crossref_primary_10_1021_acsnano_3c11646
crossref_primary_10_1002_adma_201700177
crossref_primary_10_1002_pssr_201900129
crossref_primary_10_1016_j_jelechem_2018_03_027
crossref_primary_10_1016_j_memsci_2021_120075
crossref_primary_10_1016_j_nanoen_2024_109924
crossref_primary_10_1088_2053_1583_ac9ceb
crossref_primary_10_1016_j_molliq_2024_126190
crossref_primary_10_1002_ange_202414984
crossref_primary_10_1016_j_desal_2025_118615
crossref_primary_10_1002_smll_201702691
crossref_primary_10_1016_j_jpowsour_2021_229637
crossref_primary_10_1002_adma_202307849
crossref_primary_10_1088_1361_6528_aaed6d
crossref_primary_10_3390_ma14227012
crossref_primary_10_1039_C8CP01906A
crossref_primary_10_1021_acsnano_1c08347
crossref_primary_10_1021_acsnano_4c09555
crossref_primary_10_1088_1361_6528_ab0ed8
crossref_primary_10_1002_adma_201702773
crossref_primary_10_1093_nsr_nwz106
crossref_primary_10_3390_membranes13020164
crossref_primary_10_1021_acsaem_2c03308
crossref_primary_10_1016_j_cclet_2018_01_053
crossref_primary_10_1016_j_electacta_2022_140887
crossref_primary_10_1016_j_jcis_2019_12_103
crossref_primary_10_1002_adma_201702419
crossref_primary_10_1002_smsc_202300167
crossref_primary_10_1016_j_apenergy_2020_115294
crossref_primary_10_1016_j_eng_2024_08_021
crossref_primary_10_1039_D4TA08491H
crossref_primary_10_1002_smll_202205003
crossref_primary_10_1021_acs_nanolett_2c04807
crossref_primary_10_1016_j_joule_2019_09_005
crossref_primary_10_1016_j_nantod_2024_102468
crossref_primary_10_1002_smll_202100141
crossref_primary_10_1021_acsnano_0c02202
crossref_primary_10_1039_D3NR04467J
crossref_primary_10_1002_smll_202403593
crossref_primary_10_1021_acsnano_2c07641
crossref_primary_10_1021_acsnano_2c11975
crossref_primary_10_1016_j_memsci_2025_123912
crossref_primary_10_1016_j_nanoen_2020_104612
crossref_primary_10_1002_adfm_202309869
crossref_primary_10_1016_j_cclet_2021_09_066
crossref_primary_10_1039_C8TA10848J
crossref_primary_10_1039_C9SM02144B
crossref_primary_10_1002_ange_202303582
crossref_primary_10_1002_smll_202301013
crossref_primary_10_1088_1361_6528_ac622b
crossref_primary_10_1016_j_mseb_2024_117931
crossref_primary_10_1039_D2TA08991B
crossref_primary_10_1126_sciadv_ado8081
crossref_primary_10_1002_adma_201903954
crossref_primary_10_1002_smll_201804279
crossref_primary_10_1002_adfm_202404410
crossref_primary_10_1039_D2CP05831F
crossref_primary_10_1021_acsenergylett_2c01681
crossref_primary_10_1021_acsaem_2c00734
crossref_primary_10_1016_j_nanoen_2018_03_030
crossref_primary_10_1016_j_trac_2022_116877
crossref_primary_10_1088_1361_6439_aaa782
crossref_primary_10_1016_j_mtsust_2024_100939
crossref_primary_10_1039_C7CS00369B
crossref_primary_10_1063_5_0188959
crossref_primary_10_1016_j_snb_2023_134106
crossref_primary_10_1002_smll_202309128
crossref_primary_10_1021_acs_langmuir_1c01504
crossref_primary_10_1002_anie_202303582
crossref_primary_10_1002_cjoc_201800067
crossref_primary_10_1002_smtd_202101255
crossref_primary_10_1021_acsnano_2c00866
crossref_primary_10_1039_C8QI00397A
crossref_primary_10_1021_acsmacrolett_2c00138
crossref_primary_10_1063_5_0170905
crossref_primary_10_1039_D2TA06557F
crossref_primary_10_1016_j_memsci_2018_05_026
crossref_primary_10_1021_acs_langmuir_4c00477
crossref_primary_10_1016_j_electacta_2018_10_074
crossref_primary_10_1016_j_tws_2023_111431
crossref_primary_10_1063_5_0166095
crossref_primary_10_1039_D0RA02329A
crossref_primary_10_1002_cjoc_202000066
crossref_primary_10_1002_adma_202404418
crossref_primary_10_1016_j_carbon_2022_01_049
crossref_primary_10_1016_j_jtice_2022_104351
crossref_primary_10_1021_acs_jpcc_8b01959
crossref_primary_10_1039_D1SE01729B
crossref_primary_10_1039_C7SC00153C
crossref_primary_10_1016_j_seppur_2023_125929
crossref_primary_10_1021_acsapm_0c01272
crossref_primary_10_1021_acssensors_7b00576
crossref_primary_10_1039_D1SC03581A
crossref_primary_10_1039_D0CP05974A
crossref_primary_10_1002_admt_201800742
crossref_primary_10_1002_VIW_20220036
crossref_primary_10_1016_j_nanoen_2021_105930
crossref_primary_10_1039_D2CP01015A
crossref_primary_10_1039_D4SM00123K
crossref_primary_10_1007_s12274_023_5794_8
crossref_primary_10_1038_s41598_018_29695_x
crossref_primary_10_1016_j_clay_2024_107577
crossref_primary_10_3390_ma15103561
crossref_primary_10_1007_s11431_023_2559_y
crossref_primary_10_1021_jacs_7b11732
crossref_primary_10_1515_ntrev_2024_0029
crossref_primary_10_1002_anie_202414984
crossref_primary_10_1021_acs_jpcc_1c03010
crossref_primary_10_1016_j_diamond_2023_109971
crossref_primary_10_1016_j_nanoen_2021_106709
crossref_primary_10_1021_acsnano_9b02579
crossref_primary_10_1016_j_cej_2024_155934
crossref_primary_10_1021_acsnano_9b06774
crossref_primary_10_1002_advs_202000286
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121126
crossref_primary_10_1557_s43581_024_00104_3
crossref_primary_10_1007_s40820_024_01577_0
crossref_primary_10_1016_j_rser_2023_114078
crossref_primary_10_1039_D1SM00187F
crossref_primary_10_1016_j_nanoen_2019_104284
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1002_cjoc_201900042
crossref_primary_10_1021_acs_langmuir_2c02060
crossref_primary_10_1039_C8QM00031J
crossref_primary_10_1021_acs_accounts_3c00310
crossref_primary_10_1021_acs_nanolett_4c03836
crossref_primary_10_1002_adma_202206354
crossref_primary_10_1016_j_nanoen_2019_02_056
crossref_primary_10_3390_mi12070775
crossref_primary_10_1021_acsestengg_1c00309
crossref_primary_10_1016_j_chempr_2021_04_008
crossref_primary_10_1016_j_electacta_2021_139221
crossref_primary_10_1038_s41578_021_00300_4
crossref_primary_10_1016_j_ces_2023_119156
crossref_primary_10_1016_j_electacta_2020_136613
crossref_primary_10_1039_D0NR02464C
Cites_doi 10.1038/nnano.2009.90
10.1002/smll.201100287
10.1002/adma.201301336
10.1021/la203837q
10.1007/s12274-011-0189-7
10.1002/adma.201203567
10.1038/nnano.2009.332
10.1021/ac4040136
10.1038/nnano.2011.129
10.1038/nmat2127
10.1016/j.nanoen.2015.07.013
10.1038/nnano.2007.27
10.1007/s40843-014-0005-z
10.1002/adma.200901945
10.1002/adfm.200902312
10.1039/c1ee01088c
10.1126/science.1239089
10.1021/nl800949k
10.1016/j.nimb.2008.03.169
10.1021/nn403686s
10.1126/science.aaf5289
10.1103/PhysRevE.75.051201
10.1103/PhysRevLett.93.035901
10.1002/adfm.201601689
10.1126/science.1100103
10.1038/458138a
10.1063/1.2179797
10.1038/nature18593
10.1038/nature13817
10.1002/adma.201302441
10.1103/PhysRevLett.99.044501
10.1021/ja101014y
10.1021/nn800306u
10.1021/ja503692z
10.1039/B822554K
10.1126/sciadv.1501272
10.1021/la702955k
10.1002/adma.201405078
10.1021/ar400024p
10.1021/jp071884c
10.1007/s10404-010-0641-0
10.1007/s11434-015-0739-6
10.1073/pnas.0911450106
10.1038/nature11876
10.1073/pnas.0506694103
10.1039/C4CC06008C
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201604302
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201604302
ADFM201604302
Genre article
GrantInformation_xml – fundername: Beijing Nova Program
– fundername: National Natural Science Foundation of China
  funderid: 11405143; 21522108; 11335003; 11290163
– fundername: Youth Innovation Promotion Association of CAS
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4532-d32922c9974a5c8607e9888ceca12aa30033ed319354e1f13352e634022d87a33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 15:34:34 EDT 2025
Fri Jul 25 07:19:30 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Tue Jul 01 04:11:37 EDT 2025
Wed Aug 20 07:24:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4532-d32922c9974a5c8607e9888ceca12aa30033ed319354e1f13352e634022d87a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920413247
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_miscellaneous_1893899812
proquest_journals_1920413247
crossref_primary_10_1002_adfm_201604302
crossref_citationtrail_10_1002_adfm_201604302
wiley_primary_10_1002_adfm_201604302_ADFM201604302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 3, 2017
PublicationDateYYYYMMDD 2017-03-03
PublicationDate_xml – month: 03
  year: 2017
  text: March 3, 2017
  day: 03
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 514
2015; 16
2013; 25
2013; 46
2010; 39
2008; 7
2008; 8
2013; 341
2011; 4
2008; 266
2013; 7
2007; 75
2008; 2
2004; 305
2007; 99
2011; 6
2014; 136
2011; 7
2009; 458
2014; 86
2010; 22
2010; 20
2015; 27
2016; 2
2004; 93
2015; 60
2016; 536
2007; 111
2010; 132
2014; 57
2008; 24
2016
2012; 28
2007; 2
2013; 494
2009; 4
2014; 50
2012; 5
2016; 26
2016; 351
2006; 103
2010; 9
2009; 106
2006; 124
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Ji J. (e_1_2_6_47_1) 2016
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
References_xml – volume: 25
  start-page: 6064
  year: 2013
  publication-title: Adv. Mater.
– volume: 46
  start-page: 2834
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 39
  start-page: 923
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 266
  start-page: 3095
  year: 2008
  publication-title: Nucl. Instrum. Methods B
– volume: 341
  start-page: 534
  year: 2013
  publication-title: Science
– volume: 132
  start-page: 8338
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 044501
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 2259
  year: 2011
  publication-title: Energy Environ. Sci.
– year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 75
  start-page: 051201
  year: 2007
  publication-title: Phys. Rev. E
– volume: 25
  start-page: 4549
  year: 2013
  publication-title: Adv. Mater.
– volume: 351
  start-page: 1395
  year: 2016
  publication-title: Science
– volume: 536
  start-page: 197
  year: 2016
  publication-title: Nature
– volume: 57
  start-page: 2
  year: 2014
  publication-title: Sci. China Mater.
– volume: 50
  start-page: 14149
  year: 2014
  publication-title: Chem. Commun.
– volume: 136
  start-page: 12265
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 713
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 106
  start-page: 21039
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 514
  start-page: 612
  year: 2014
  publication-title: Nature
– volume: 22
  start-page: 120
  year: 2010
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1589
  year: 2008
  publication-title: ACS Nano
– volume: 6
  start-page: 615
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 1978
  year: 2008
  publication-title: Nano Lett.
– volume: 60
  start-page: 491
  year: 2015
  publication-title: Sci. Bull.
– volume: 103
  start-page: 5251
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 2225
  year: 2011
  publication-title: Small
– volume: 458
  start-page: 138
  year: 2009
  publication-title: Nature
– volume: 27
  start-page: 2090
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5796
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 111
  start-page: 12265
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: e1501272
  year: 2016
  publication-title: Sci. Adv.
– volume: 93
  start-page: 035901
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 9085
  year: 2013
  publication-title: ACS Nano
– volume: 86
  start-page: 2681
  year: 2014
  publication-title: Anal. Chem.
– volume: 494
  start-page: 455
  year: 2013
  publication-title: Nature
– volume: 5
  start-page: 99
  year: 2012
  publication-title: Nano Res.
– volume: 9
  start-page: 1215
  year: 2010
  publication-title: Microfluid. Nanofluid.
– volume: 25
  start-page: 13
  year: 2013
  publication-title: Adv. Mater.
– volume: 28
  start-page: 2194
  year: 2012
  publication-title: Langmuir
– volume: 2
  start-page: 209
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 303
  year: 2008
  publication-title: Nat. Mater.
– volume: 4
  start-page: 353
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 1339
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 2212
  year: 2008
  publication-title: Langmuir
– volume: 124
  start-page: 104706
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 305
  start-page: 968
  year: 2004
  publication-title: Science
– volume: 16
  start-page: 375
  year: 2015
  publication-title: Nano Energy
– ident: e_1_2_6_40_1
  doi: 10.1038/nnano.2009.90
– ident: e_1_2_6_18_1
  doi: 10.1002/smll.201100287
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201301336
– ident: e_1_2_6_13_1
  doi: 10.1021/la203837q
– ident: e_1_2_6_19_1
  doi: 10.1007/s12274-011-0189-7
– ident: e_1_2_6_43_1
  doi: 10.1002/adma.201203567
– ident: e_1_2_6_15_1
  doi: 10.1038/nnano.2009.332
– ident: e_1_2_6_29_1
  doi: 10.1021/ac4040136
– ident: e_1_2_6_39_1
  doi: 10.1038/nnano.2011.129
– year: 2016
  ident: e_1_2_6_47_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_6_25_1
  doi: 10.1038/nmat2127
– ident: e_1_2_6_8_1
  doi: 10.1016/j.nanoen.2015.07.013
– ident: e_1_2_6_16_1
  doi: 10.1038/nnano.2007.27
– ident: e_1_2_6_5_1
  doi: 10.1007/s40843-014-0005-z
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.200901945
– ident: e_1_2_6_9_1
  doi: 10.1002/adfm.200902312
– ident: e_1_2_6_12_1
  doi: 10.1039/c1ee01088c
– ident: e_1_2_6_7_1
  doi: 10.1126/science.1239089
– ident: e_1_2_6_37_1
  doi: 10.1021/nl800949k
– ident: e_1_2_6_26_1
  doi: 10.1016/j.nimb.2008.03.169
– ident: e_1_2_6_28_1
  doi: 10.1021/nn403686s
– ident: e_1_2_6_44_1
  doi: 10.1126/science.aaf5289
– ident: e_1_2_6_34_1
  doi: 10.1103/PhysRevE.75.051201
– ident: e_1_2_6_23_1
  doi: 10.1103/PhysRevLett.93.035901
– ident: e_1_2_6_31_1
  doi: 10.1002/adfm.201601689
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1100103
– ident: e_1_2_6_2_1
  doi: 10.1038/458138a
– ident: e_1_2_6_33_1
  doi: 10.1063/1.2179797
– ident: e_1_2_6_22_1
  doi: 10.1038/nature18593
– ident: e_1_2_6_41_1
  doi: 10.1038/nature13817
– ident: e_1_2_6_45_1
  doi: 10.1002/adma.201302441
– ident: e_1_2_6_38_1
  doi: 10.1103/PhysRevLett.99.044501
– ident: e_1_2_6_27_1
  doi: 10.1021/ja101014y
– ident: e_1_2_6_35_1
  doi: 10.1021/nn800306u
– ident: e_1_2_6_11_1
  doi: 10.1021/ja503692z
– ident: e_1_2_6_32_1
  doi: 10.1039/B822554K
– ident: e_1_2_6_46_1
  doi: 10.1126/sciadv.1501272
– ident: e_1_2_6_24_1
  doi: 10.1021/la702955k
– ident: e_1_2_6_30_1
  doi: 10.1002/adma.201405078
– ident: e_1_2_6_4_1
  doi: 10.1021/ar400024p
– ident: e_1_2_6_14_1
  doi: 10.1021/jp071884c
– ident: e_1_2_6_36_1
  doi: 10.1007/s10404-010-0641-0
– ident: e_1_2_6_42_1
  doi: 10.1007/s11434-015-0739-6
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.0911450106
– ident: e_1_2_6_10_1
  doi: 10.1038/nature11876
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.0506694103
– ident: e_1_2_6_21_1
  doi: 10.1039/C4CC06008C
SSID ssj0017734
Score 2.5753503
Snippet Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy...
Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms biomimetics
Channels
Computer simulation
Devices
Direct power generation
Electric charge
Electric power
Electric power generation
Energy conversion
Energy conversion efficiency
Energy management
Energy storage
Fluidics
functional materials
Ion concentration
Ion transport
Materials science
Materials selection
Mathematical models
nanofluidics
Nanofluids
Nanostructure
Nanotechnology
Photovoltaic cells
Polarization
Power generation
Selectivity
Title Anomalous Channel‐Length Dependence in Nanofluidic Osmotic Energy Conversion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604302
https://www.proquest.com/docview/1920413247
https://www.proquest.com/docview/1893899812
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzidEkHwqVuTdMn6OJxjyDbBC-ytpGmqw9mJ21588if4G_0lntN2dQoi6GNpLm1OTvKd5JzvEHISMuMKyyUoUhw5nt-wjhageDL0wOxpuDZMY2F6fdm59S4G9cFCFH_GD1EcuKFmpOs1KrgOJ7VP0lAdxRhJziSyVuEijA5biIquCv4oplR2rSwZOnixwZy10eW1r9W_7kqfUHMRsKY7Tnud6Pm3Zo4mD9XZNKyal280jv_5mQ2ylsNR2szmzyZZsskWWV0gKdwm_WYyftSj8WxCMRQBenp_feva5G56T1t5Cl1j6TChsFKP49FsGA0NvUzzAxl6nsYW0jN0bk9P5nbIbfv85qzj5FkYHOPVBXciwX3OjQ-Gh66bhnSV9cFsNtZoxjUI1hXCRqDJou5ZFjMM4rJSgF3Ko4bSQuySUjJO7B6hXMZSaeNHmgnPRoBs4lipEBp0FXeNLBNnLoXA5BTlmCljFGTkyjzAcQqKcSqT06L8U0bO8WPJylyoQa6kkwDArQt7OPdUmRwXr0G98M5EJxYGNmCA59AkZdAETyX4S09Bs9XuFU_7f6l0QFY4ggf0dBMVUpo-z-whQJ9peESWm61e9_ooneYfpDz60w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYqOBQOhUKrpryMVInTwtre2NljBEShJEGqQOJmeb1eGhE2VZNcOPET-I38Ema8DxIkVKkcV-vHrsdjf2PPfEPIj4TZUDguQZGyNIjilguMAMWTSQRmTyt0iY-F6Q9k9yr6ed2svAkxFqbgh6gP3FAz_HqNCo4H0kcvrKEmzTCUnEmkrYJVeBnTenur6lfNIMWUKi6WJUMXL3Zd8TaG_Gix_uK-9AI25yGr33M6aySpvrZwNbk9nE2TQ3v_isjxXb-zTj6ViJS2iyn0mXxw-QZZneMp3CSDdj6-M6PxbEIxGgG6enp47Ln8ZvqbnpRZdK2jw5zCYj3ORrNhOrT0wqcIsvTUhxfSY_Rv94dzX8hV5_TyuBuUiRgCGzUFD1LBY85tDLaHadqWDJWLwXK2zhrGDcg2FMKloMyiGTmWMYzjclKAacrTljJCfCVL-Th33wjlMpPK2Dg1TEQuBXCTZUol0GCoeGhlgwSVGLQtWcoxWcZIF_zKXOM46XqcGuSgLv-n4Od4s-R2JVVd6ulEA74NYRvnkWqQ_fo1aBhem5jcwcBqBpAOrVIGTXAvwn_0pNsnnX799P1_Ku2Rj93Lfk_3zgbnW2SFI5ZAxzexTZamf2duB5DQNNn1c_0Zcdv9Wg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYQSAgeBhtDdBRmpEk8pfiS2slj1VJxazehVeqb5dgOVHQpGu0LT_wEfuN-yY6TNLRIaNJ4jOJL4uNjf8c-5zsIfUuoIdwxAYqU2iCMIxdoDoonkhDMnoi4JI-F6fXF2SC8GDaHC1H8BT9EdeDmNSNfr72C39v05IU0VNvUR5JT4VmrYBFeCwWJ_LzuXFcEUlTK4l5ZUO_hRYdz2kbCTpbrL29LL1hzEbHmW053C-n5xxaeJneN2TRpmMdXPI7v-Ztt9KHEo7hVTKCPaMVln9DmAkvhDuq3sskvPZ7MHrCPRYCe_jw9X7nsZnqLO2UOXePwKMOwVE_S8WxkRwZ_zxMEGXyaBxfitvduz4_mPqNB9_Rn-ywo0zAEJmxyFljOYsZMDJaHbppIEOlisJuNM5oyDZIlnDsLqsyboaMp9VFcTnAwTJmNpOZ8F61mk8ztIcxEKqQ2sdWUh84CtElTKRNokEhGjKihYC4FZUqOcp8qY6wKdmWm_Dipapxq6Lgqf1-wc7xZsj4Xqiq19EEBuiWwibNQ1tBR9Rr0y1-a6MzBwCoKgM7bpBSaYLkE_9GTanW6verpy_9U-orWf3S66uq8f7mPNpgHEt7rjdfR6vT3zB0ADJomh_lM_wuM1fwS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalous+Channel-Length+Dependence+in+Nanofluidic+Osmotic+Energy+Conversion&rft.jtitle=Advanced+functional+materials&rft.au=Cao%2C+Liuxuan&rft.au=Xiao%2C+Feilong&rft.au=Feng%2C+Yaping&rft.au=Zhu%2C+Weiwei&rft.date=2017-03-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=9&rft_id=info:doi/10.1002%2Fadfm.201604302&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon