An Intercomparison of Skill and Overconfidence/Underconfidence of the Wintertime North Atlantic Oscillation in Multimodel Seasonal Forecasts

Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skillfully forecast. However, it has also been suggested that these skillful forecasts tend to be underconfident, meaning that there is too high a proportion of unpredictable...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 45; no. 15; pp. 7808 - 7817
Main Authors Baker, L. H., Shaffrey, L. C., Sutton, R. T., Weisheimer, A., Scaife, A. A.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skillfully forecast. However, it has also been suggested that these skillful forecasts tend to be underconfident, meaning that there is too high a proportion of unpredictable noise in the forecasts. We assess the skill and overconfidence/underconfidence of the seasonal forecast systems contributing to the EUROpean Seasonal to Interannual Prediction (EUROSIP) multimodel ensemble system. Five of the seven systems studied have significant skill for forecasting the wintertime NAO at 2‐ to 4‐month lead times. Four of these skillful systems are underconfident for forecasting the NAO. A multimodel ensemble (ensemble size 126 members) is both skillful and clearly underconfident. Underconfidence becomes more pronounced as the ensemble size increases. Certain years in the hindcast period are well forecast by all or most models. This implies that common teleconnections and drivers of the NAO are being captured by the EUROSIP seasonal forecasts. Plain Language Summary In this paper we provide an intercomparison of seven seasonal forecast systems, with particular focus on the wintertime North Atlantic Oscillation (NAO). The wintertime NAO is the main driver of winter weather variability in the United Kingdom and Europe, and being able to forecast the NAO for the season ahead has potential benefits for many different sectors such as agriculture, energy, health, transport, and water resource management. We show that five of the seven systems studied can skillfully forecast the NAO, and a multimodel ensemble has even higher skill. Four of these skillful systems are found to be underconfident, which means that there is too high a proportion of unpredictable noise in the model. Being underconfident makes it more difficult to fully utilize the skill of a forecast. However, one system is skillful but not underconfident. We also find that there are common years in which the NAO is well forecast by all the skillful systems. This is an important result because it implies that common drivers of NAO predictability are being captured by these systems. These results are an important contribution to our understanding of seasonal forecasts systems and the predictability of the NAO. Key Points Five seasonal forecast systems are shown to skillfully forecast the wintertime North Atlantic Oscillation at 2‐ to 4‐month lead times Four of these five systems are underconfident at forecasting the North Atlantic Oscillation Winters when the North Atlantic Oscillation is successfully forecast tend to be common to different seasonal forecast systems
AbstractList Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skillfully forecast. However, it has also been suggested that these skillful forecasts tend to be underconfident, meaning that there is too high a proportion of unpredictable noise in the forecasts. We assess the skill and overconfidence/underconfidence of the seasonal forecast systems contributing to the EUROpean Seasonal to Interannual Prediction (EUROSIP) multimodel ensemble system. Five of the seven systems studied have significant skill for forecasting the wintertime NAO at 2‐ to 4‐month lead times. Four of these skillful systems are underconfident for forecasting the NAO. A multimodel ensemble (ensemble size 126 members) is both skillful and clearly underconfident. Underconfidence becomes more pronounced as the ensemble size increases. Certain years in the hindcast period are well forecast by all or most models. This implies that common teleconnections and drivers of the NAO are being captured by the EUROSIP seasonal forecasts. Plain Language Summary In this paper we provide an intercomparison of seven seasonal forecast systems, with particular focus on the wintertime North Atlantic Oscillation (NAO). The wintertime NAO is the main driver of winter weather variability in the United Kingdom and Europe, and being able to forecast the NAO for the season ahead has potential benefits for many different sectors such as agriculture, energy, health, transport, and water resource management. We show that five of the seven systems studied can skillfully forecast the NAO, and a multimodel ensemble has even higher skill. Four of these skillful systems are found to be underconfident, which means that there is too high a proportion of unpredictable noise in the model. Being underconfident makes it more difficult to fully utilize the skill of a forecast. However, one system is skillful but not underconfident. We also find that there are common years in which the NAO is well forecast by all the skillful systems. This is an important result because it implies that common drivers of NAO predictability are being captured by these systems. These results are an important contribution to our understanding of seasonal forecasts systems and the predictability of the NAO. Key Points Five seasonal forecast systems are shown to skillfully forecast the wintertime North Atlantic Oscillation at 2‐ to 4‐month lead times Four of these five systems are underconfident at forecasting the North Atlantic Oscillation Winters when the North Atlantic Oscillation is successfully forecast tend to be common to different seasonal forecast systems
Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skillfully forecast. However, it has also been suggested that these skillful forecasts tend to be underconfident, meaning that there is too high a proportion of unpredictable noise in the forecasts. We assess the skill and overconfidence/underconfidence of the seasonal forecast systems contributing to the EUROpean Seasonal to Interannual Prediction (EUROSIP) multimodel ensemble system. Five of the seven systems studied have significant skill for forecasting the wintertime NAO at 2‐ to 4‐month lead times. Four of these skillful systems are underconfident for forecasting the NAO. A multimodel ensemble (ensemble size 126 members) is both skillful and clearly underconfident. Underconfidence becomes more pronounced as the ensemble size increases. Certain years in the hindcast period are well forecast by all or most models. This implies that common teleconnections and drivers of the NAO are being captured by the EUROSIP seasonal forecasts.
Abstract Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skillfully forecast. However, it has also been suggested that these skillful forecasts tend to be underconfident, meaning that there is too high a proportion of unpredictable noise in the forecasts. We assess the skill and overconfidence/underconfidence of the seasonal forecast systems contributing to the EUROpean Seasonal to Interannual Prediction (EUROSIP) multimodel ensemble system. Five of the seven systems studied have significant skill for forecasting the wintertime NAO at 2‐ to 4‐month lead times. Four of these skillful systems are underconfident for forecasting the NAO. A multimodel ensemble (ensemble size 126 members) is both skillful and clearly underconfident. Underconfidence becomes more pronounced as the ensemble size increases. Certain years in the hindcast period are well forecast by all or most models. This implies that common teleconnections and drivers of the NAO are being captured by the EUROSIP seasonal forecasts. Plain Language Summary In this paper we provide an intercomparison of seven seasonal forecast systems, with particular focus on the wintertime North Atlantic Oscillation (NAO). The wintertime NAO is the main driver of winter weather variability in the United Kingdom and Europe, and being able to forecast the NAO for the season ahead has potential benefits for many different sectors such as agriculture, energy, health, transport, and water resource management. We show that five of the seven systems studied can skillfully forecast the NAO, and a multimodel ensemble has even higher skill. Four of these skillful systems are found to be underconfident, which means that there is too high a proportion of unpredictable noise in the model. Being underconfident makes it more difficult to fully utilize the skill of a forecast. However, one system is skillful but not underconfident. We also find that there are common years in which the NAO is well forecast by all the skillful systems. This is an important result because it implies that common drivers of NAO predictability are being captured by these systems. These results are an important contribution to our understanding of seasonal forecasts systems and the predictability of the NAO. Key Points Five seasonal forecast systems are shown to skillfully forecast the wintertime North Atlantic Oscillation at 2‐ to 4‐month lead times Four of these five systems are underconfident at forecasting the North Atlantic Oscillation Winters when the North Atlantic Oscillation is successfully forecast tend to be common to different seasonal forecast systems
Author Weisheimer, A.
Baker, L. H.
Scaife, A. A.
Shaffrey, L. C.
Sutton, R. T.
Author_xml – sequence: 1
  givenname: L. H.
  orcidid: 0000-0003-0738-9488
  surname: Baker
  fullname: Baker, L. H.
  email: l.h.baker@reading.ac.uk
  organization: University of Reading
– sequence: 2
  givenname: L. C.
  orcidid: 0000-0003-2696-752X
  surname: Shaffrey
  fullname: Shaffrey, L. C.
  organization: University of Reading
– sequence: 3
  givenname: R. T.
  orcidid: 0000-0001-8345-8583
  surname: Sutton
  fullname: Sutton, R. T.
  organization: University of Reading
– sequence: 4
  givenname: A.
  orcidid: 0000-0002-7231-6974
  surname: Weisheimer
  fullname: Weisheimer, A.
  organization: European Centre for Medium‐Range Weather Forecasts
– sequence: 5
  givenname: A. A.
  orcidid: 0000-0002-5189-7538
  surname: Scaife
  fullname: Scaife, A. A.
  organization: University of Exeter
BookMark eNp9kMFqGzEQhkVwII7TWx9A0GudaKTd1epoQu0YnBqahBwXrXZElK4lV5Jb8g596Mq4h5xymhnm45vhvyQTHzwS8hnYNTCubjiDdrVhsm1Fe0amoKpq3jImJ2TKmCo9l80FuUzplTEmmIAp-bvwdO0zRhN2ex1dCp4GSx9-unGk2g90-_u489YN6A3ePPnh_Xxk8wvSZ3d0ZLdD-j3E_EIXedQ-O0O3yRSVzq6Inaf3h7FQYcCRPqAu1_RIlyGi0SmnK3Ju9Zjw0_86I0_Lb4-3d_PNdrW-XWzmpqoFzBsrKwEDqL6Vg-lrxB5qrBm3OMiGm0KBBqygB2sRlFK8QtsLYZpe9UaKGfly8u5j-HXAlLvXcIjlldRxphpeSQWsUF9PlIkhpYi220e30_GtA9Yd8-7e511wfsL_uBHfPmS71Y9NLRsF4h9QFoXq
CitedBy_id crossref_primary_10_5194_acp_22_2999_2022
crossref_primary_10_1175_JCLI_D_20_0270_1
crossref_primary_10_1029_2023GL107574
crossref_primary_10_1002_qj_4213
crossref_primary_10_1029_2019JD031739
crossref_primary_10_1029_2022GL099083
crossref_primary_10_1007_s00382_023_06814_7
crossref_primary_10_1029_2020GL089283
crossref_primary_10_5194_wcd_3_951_2022
crossref_primary_10_1080_16000870_2021_1892435
crossref_primary_10_1029_2021GL096236
crossref_primary_10_1029_2022GL101689
crossref_primary_10_1007_s00382_021_05787_9
crossref_primary_10_3389_fclim_2022_955414
crossref_primary_10_1002_asl_868
crossref_primary_10_1029_2020GL088664
crossref_primary_10_1029_2022GL100712
crossref_primary_10_1002_qj_4522
crossref_primary_10_1002_qj_3631
crossref_primary_10_1002_qj_3796
crossref_primary_10_1029_2019JD030923
crossref_primary_10_1002_asl_1205
crossref_primary_10_1029_2019GL084402
crossref_primary_10_1029_2022GL100471
crossref_primary_10_1002_qj_4568
crossref_primary_10_1002_asl_1005
crossref_primary_10_1088_1748_9326_abd8aa
crossref_primary_10_1002_asl_1009
crossref_primary_10_1002_joc_6881
crossref_primary_10_1088_1748_9326_ab87d2
crossref_primary_10_1175_JCLI_D_21_0807_1
crossref_primary_10_1029_2020GL088717
crossref_primary_10_1002_qj_3890
crossref_primary_10_1088_1748_9326_ab4d33
crossref_primary_10_1002_asl_1212
crossref_primary_10_1007_s00382_024_07128_y
crossref_primary_10_1088_1748_9326_ab9f7d
crossref_primary_10_1175_JAMC_D_19_0094_1
crossref_primary_10_1038_s43247_023_01063_2
crossref_primary_10_1038_s41586_020_2525_0
crossref_primary_10_3846_jeelm_2021_15580
crossref_primary_10_1002_qj_3446
crossref_primary_10_1038_s41612_022_00280_4
crossref_primary_10_5194_esd_11_1033_2020
crossref_primary_10_3389_fphy_2021_736085
crossref_primary_10_1002_asl_1146
crossref_primary_10_1002_joc_7148
crossref_primary_10_1007_s00382_019_05023_5
crossref_primary_10_1002_met_2018
crossref_primary_10_1038_s41612_023_00434_y
crossref_primary_10_5194_acp_22_6135_2022
crossref_primary_10_1029_2020EF001625
crossref_primary_10_5194_wcd_2_1245_2021
crossref_primary_10_1002_asl_922
crossref_primary_10_1175_JCLI_D_18_0765_1
crossref_primary_10_1007_s00382_022_06455_2
crossref_primary_10_1029_2019GL083059
crossref_primary_10_1029_2019GL085159
crossref_primary_10_1007_s00382_019_04678_4
crossref_primary_10_3103_S106837392307004X
crossref_primary_10_1002_qj_4440
crossref_primary_10_1002_qj_4200
crossref_primary_10_1029_2021GL094662
crossref_primary_10_1002_joc_7557
crossref_primary_10_1029_2021GL093258
crossref_primary_10_1007_s40641_019_00148_5
crossref_primary_10_3390_atmos10050252
crossref_primary_10_1007_s00382_018_4533_4
crossref_primary_10_1016_j_margeo_2020_106207
crossref_primary_10_5194_os_14_887_2018
crossref_primary_10_1016_j_cliser_2022_100318
crossref_primary_10_1007_s00382_020_05314_2
crossref_primary_10_1029_2020GL087766
crossref_primary_10_1038_s41467_022_28283_y
crossref_primary_10_1038_s41612_019_0071_y
crossref_primary_10_1029_2023JD039860
Cites_doi 10.1007/s00382-016-3076-9
10.1175/WAF-D-16-0124.1
10.1175/JCLI-D-14-00207.1
10.1175/MWR-D-13-00287.1
10.1175/JCLI-D-15-0196.1
10.1038/s41598-017-00353-y
10.1007/s00382-017-3618-9
10.1002/qj.828
10.1002/2014GL061146
10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
10.1175/JCLI-D-16-0153.1
10.1175/JCLI-D-17-0226.1
10.1088/1748-9326/aa57ab
10.1093/acrefore/9780190228620.013.22
10.1007/s00382-006-0140-x
10.1002/2014GL059637
10.1029/96GL00459
10.1175/2009MWR2814.1
10.1007/s003820050310
10.1007/s00382-011-1259-y
10.1007/s00382-008-0397-3
10.1007/BF02915394
10.1175/1520-0442(1990)003<1364:POLFMS>2.0.CO;2
10.1002/asl.598
10.1038/ngeo1698
10.1002/2014GL061094
10.1002/2018GL077209
10.1002/2014GL062681
10.3354/cr020009
10.1002/joc.2314
10.1002/asl.721
10.1002/joc.4157
10.1088/1748-9326/10/4/044007
10.1175/JAMC-D-15-0102.1
10.1002/2015GL065493
10.1038/ngeo2824
10.1126/science.269.5224.676
10.1002/qj.2396
10.1029/2009GL040896
10.1002/2015GL064547
10.1002/gdj3.23
10.1002/qj.2743
10.1002/2014GL060011
10.1002/qj.2976
10.1175/JCLI-D-12-00823.1
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2018GL078838
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Agriculture
EISSN 1944-8007
EndPage 7817
ExternalDocumentID 10_1029_2018GL078838
GRL57691
Genre article
GrantInformation_xml – fundername: NERC
  funderid: NE/L010488/1
– fundername: Joint DECC/Defra Met Office Hadley Centre Climate Programme
  funderid: GA01101
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c4531-6f7431d19b87dcb5eeb15e502fed762cc451a1e41b1ffe199924efb33c6b9bc73
ISSN 0094-8276
IngestDate Fri Sep 13 10:11:16 EDT 2024
Thu Sep 12 17:39:43 EDT 2024
Sat Aug 24 00:48:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4531-6f7431d19b87dcb5eeb15e502fed762cc451a1e41b1ffe199924efb33c6b9bc73
ORCID 0000-0001-8345-8583
0000-0002-7231-6974
0000-0002-5189-7538
0000-0003-2696-752X
0000-0003-0738-9488
OpenAccessLink https://centaur.reading.ac.uk/78200/8/Baker_et_al-2018-Geophysical_Research_Letters.pdf
PQID 2096247910
PQPubID 54723
PageCount 10
ParticipantIDs proquest_journals_2096247910
crossref_primary_10_1029_2018GL078838
wiley_primary_10_1029_2018GL078838_GRL57691
PublicationCentury 2000
PublicationDate 16 August 2018
PublicationDateYYYYMMDD 2018-08-16
PublicationDate_xml – month: 08
  year: 2018
  text: 16 August 2018
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 2
2015; 35
2011; 137
2015; 141
2017; 7
2016; 19
2012
2017; 48
2011
2013; 40
2015; 10
2014; 27
2003
2008; 31
2018; 45
2014; 41
2016; 17
2013; 6
2016; 142
2012; 32
2009; 137
2016; 55
1990; 3
2009; 36
2017; 30
2015; 28
2002; 20
2017; 38
1987; 115
2015; 42
2006; 27
2017; 32
1999; 15
2017; 12
2017
1995; 269
2017; 18
2018; 50
2017; 143
2018; 31
2014; 142
2003; 20
2016; 9
1996; 23
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
Hurrell J. (e_1_2_7_22_1) 2003
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
Baker L. H. (e_1_2_7_3_1) 2017; 38
e_1_2_7_38_1
References_xml – year: 2011
– volume: 18
  start-page: 38
  issue: 2
  year: 2017
  end-page: 44
  article-title: Predictability of European winter 2015/2016
  publication-title: Atmospheric Science Letters
– volume: 6
  start-page: 98
  issue: 2
  year: 2013
  end-page: 102
  article-title: Enhanced seasonal forecast skill following stratospheric sudden warmings
  publication-title: Nature Geoscience
– volume: 35
  start-page: 2540
  issue: 9
  year: 2015
  end-page: 2554
  article-title: Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index
  publication-title: International Journal of Climatology
– volume: 31
  start-page: 647
  issue: 6
  year: 2008
  end-page: 664
  article-title: Current status of ENSO prediction skill in coupled ocean–atmosphere models
  publication-title: Climate Dynamics
– volume: 20
  start-page: 661
  issue: 5
  year: 2003
  end-page: 676
  article-title: A new North Atlantic Oscillation index and its variability
  publication-title: Advances in Atmospheric Sciences
– volume: 27
  start-page: 2185
  issue: 6
  year: 2014
  end-page: 2208
  article-title: The NCEP climate forecast system version 2
  publication-title: Journal of Climate
– volume: 27
  start-page: 401
  issue: 4
  year: 2006
  end-page: 420
  article-title: North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: A CMIP2 multi‐model assessment
  publication-title: Climate Dynamics
– volume: 269
  start-page: 676
  year: 1995
  end-page: 679
  article-title: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation
  publication-title: Science
– volume: 141
  start-page: 1072
  year: 2015
  end-page: 1084
  article-title: Global seasonal forecast system version 5 (GloSea5): A high‐resolution seasonal forecast system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 36
  year: 2009
  article-title: ENSEMBLES: A new multi‐model ensemble for seasonal‐to‐annual predictions ‐ skill and progress beyond DEMETER in forecasting Tropical Pacific SSTs
  publication-title: Geophysical Research Letters
– volume: 30
  start-page: 1461
  year: 2017
  end-page: 1475
  article-title: A multi‐system view of wintertime NAO seasonal predictions
  publication-title: Journal of Climate
– volume: 41
  start-page: 2514
  year: 2014
  end-page: 2519
  article-title: Skillful long‐range prediction of European and North American winters
  publication-title: Geophysical Research Letters
– volume: 15
  start-page: 685
  issue: 9
  year: 1999
  end-page: 702
  article-title: Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model
  publication-title: Climate Dynamics
– volume: 28
  start-page: 256
  issue: 1
  year: 2015
  end-page: 271
  article-title: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI‐ESM seasonal prediction system
  publication-title: Journal of Climate
– volume: 3
  start-page: 1364
  issue: 12
  year: 1990
  end-page: 1379
  article-title: Patterns of low‐frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies
  publication-title: Journal of Climate
– volume: 2
  start-page: 12
  issue: 1
  year: 2015
  end-page: 24
  article-title: A daily Azores–Iceland North Atlantic Oscillation index back to 1850
  publication-title: Geoscience Data Journal
– volume: 32
  start-page: 1585
  issue: 4
  year: 2017
  end-page: 1601
  article-title: Simple statistical probabilistic forecasts of the winter NAO
  publication-title: Weather and Forecasting
– volume: 41
  start-page: 6055
  year: 2014
  end-page: 6062
  article-title: Impact of the MJO on the boreal winter extratropical circulation
  publication-title: Geophysical Research Letters
– volume: 42
  start-page: 5571
  year: 2015
  end-page: 5576
  article-title: Interannual variability of the Madden‐Julian Oscillation and its impact on the North Atlantic Oscillation in the boreal winter
  publication-title: Geophysical Research Letters
– volume: 137
  start-page: 2622
  issue: 8
  year: 2009
  end-page: 2631
  article-title: Finite samples and uncertainty estimates for skill measures for seasonal prediction
  publication-title: Monthly Weather Review
– volume: 143
  start-page: 917
  issue: 703
  year: 2017
  end-page: 926
  article-title: Atmospheric seasonal forecasts of the twentieth century: Multi‐decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 50
  start-page: 423
  issue: 1‐2
  year: 2018
  end-page: 441
  article-title: An interannual link between Arctic sea‐ice cover and the North Atlantic Oscillation
  publication-title: Climate Dynamics
– volume: 31
  start-page: 997
  issue: 3
  year: 2018
  end-page: 1014
  article-title: How predictable are the Arctic and North Atlantic Oscillations? Exploring the variability and predictability of the Northern Hemisphere
  publication-title: Journal of Climate
– volume: 10
  start-page: 044007
  year: 2015
  article-title: Skilful seasonal predictions of Baltic sea ice cover
  publication-title: Environmental Research Letters
– volume: 48
  start-page: 313
  issue: 1
  year: 2017
  end-page: 333
  article-title: Japan Meteorological Agency/Meteorological Research Institute‐Coupled Prediction System version 1 (JMA/MRI‐CPS1) for operational seasonal forecasting
  publication-title: Climate Dynamics
– volume: 20
  start-page: 9
  issue: 1
  year: 2002
  end-page: 17
  article-title: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms
  publication-title: Climate Research
– volume: 19
  start-page: 995
  issue: 3
  year: 2016
  end-page: 1012
  article-title: A Bayesian framework for verification and recalibration of ensemble forecasts: How uncertain is NAO predictability?
  publication-title: Journal of Climate
– volume: 12
  start-page: 024002
  issue: 2
  year: 2017
  article-title: Skilful seasonal predictions for the European energy industry
  publication-title: Environmental Research Letters
– volume: 55
  start-page: 325
  issue: 2
  year: 2016
  end-page: 344
  article-title: Skillful seasonal forecasts of winter disruption to the UK transport system
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 7
  start-page: 279
  issue: 1
  year: 2017
  article-title: A robust empirical seasonal prediction of winter NAO and surface climate
  publication-title: Scientific Reports
– start-page: 1
  year: 2003
  end-page: 35
– volume: 41
  start-page: 3577
  year: 2014
  end-page: 3585
  article-title: Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems
  publication-title: Geophysical Research Letters
– volume: 41
  start-page: 5620
  year: 2014
  end-page: 5628
  article-title: Do seasonal‐to‐decadal climate predictions underestimate the predictability of the real world?
  publication-title: Geophysical Research Letters
– volume: 40
  start-page: 2091
  issue: 9
  year: 2013
  end-page: 2121
  article-title: Decharme the CNRM‐CM5.1 global climate model: Description and basic evaluation
  publication-title: Climate Dynamics
– year: 2012
– volume: 115
  start-page: 1083
  year: 1987
  end-page: 1126
  article-title: Classification, seasonality and persistence of low‐frequency atmospheric circulation patterns
  publication-title: Monthly Weather Review
– volume: 9
  start-page: 809
  year: 2016
  end-page: 814
  article-title: Skilful predictions of the winter North Atlantic Oscillation one year ahead
  publication-title: Nature Geoscience
– volume: 42
  start-page: 6868
  year: 2015
  end-page: 6875
  article-title: Understanding the contrasting North Atlantic Oscillation anomalies of the winters of 2010 and 2014
  publication-title: Geophysical Research Letters
– volume: 42
  start-page: 1173
  year: 2015
  end-page: 1179
  article-title: Atmospheric initial conditions and the predictability of the Arctic Oscillation
  publication-title: Geophysical Research Letters
– volume: 38
  start-page: e437
  issue: S1
  year: 2017
  end-page: e453
  article-title: Improved seasonal prediction of UK regional precipitation using atmospheric circulation
  publication-title: International Journal of Climatology
– volume: 17
  start-page: 51
  issue: 1
  year: 2016
  end-page: 56
  article-title: Seasonal winter forecasts and the stratosphere
  publication-title: Atmospheric Science Letters
– volume: 23
  start-page: 665
  issue: 6
  year: 1996
  end-page: 668
  article-title: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature
  publication-title: Geophysical Research Letters
– volume: 142
  start-page: 1413
  issue: 696
  year: 2016
  end-page: 1427
  article-title: The climate‐system historical forecast project: Do stratosphere‐resolving models make better seasonal climate predictions in boreal winter?
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 45
  start-page: 3605
  year: 2018
  end-page: 3614
  article-title: Improved teleconnection‐based dynamical seasonal predictions of boreal winter
  publication-title: Geophysical Research Letters
– year: 2017
– volume: 142
  start-page: 2220
  issue: 6
  year: 2014
  end-page: 2227
  article-title: Is there a relationship between potential and actual skill?
  publication-title: Monthly Weather Review
– volume: 32
  start-page: 801
  issue: 6
  year: 2012
  end-page: 818
  article-title: How potentially predictable is northern European winter climate a season ahead?
  publication-title: International Journal of Climatology
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– ident: e_1_2_7_45_1
  doi: 10.1007/s00382-016-3076-9
– ident: e_1_2_7_17_1
  doi: 10.1175/WAF-D-16-0124.1
– ident: e_1_2_7_12_1
  doi: 10.1175/JCLI-D-14-00207.1
– ident: e_1_2_7_27_1
  doi: 10.1175/MWR-D-13-00287.1
– ident: e_1_2_7_40_1
  doi: 10.1175/JCLI-D-15-0196.1
– ident: e_1_2_7_48_1
  doi: 10.1038/s41598-017-00353-y
– ident: e_1_2_7_6_1
  doi: 10.1007/s00382-017-3618-9
– ident: e_1_2_7_9_1
  doi: 10.1002/qj.828
– ident: e_1_2_7_14_1
  doi: 10.1002/2014GL061146
– ident: e_1_2_7_4_1
  doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
– ident: e_1_2_7_2_1
  doi: 10.1175/JCLI-D-16-0153.1
– ident: e_1_2_7_11_1
  doi: 10.1175/JCLI-D-17-0226.1
– ident: e_1_2_7_7_1
  doi: 10.1088/1748-9326/aa57ab
– ident: e_1_2_7_18_1
  doi: 10.1093/acrefore/9780190228620.013.22
– ident: e_1_2_7_42_1
  doi: 10.1007/s00382-006-0140-x
– ident: e_1_2_7_37_1
  doi: 10.1002/2014GL059637
– ident: e_1_2_7_43_1
– start-page: 1
  volume-title: An overview of the North Atlantic Oscillation
  year: 2003
  ident: e_1_2_7_22_1
  contributor:
    fullname: Hurrell J.
– ident: e_1_2_7_21_1
  doi: 10.1029/96GL00459
– ident: e_1_2_7_26_1
  doi: 10.1175/2009MWR2814.1
– ident: e_1_2_7_32_1
  doi: 10.1007/s003820050310
– ident: e_1_2_7_47_1
  doi: 10.1007/s00382-011-1259-y
– ident: e_1_2_7_23_1
  doi: 10.1007/s00382-008-0397-3
– ident: e_1_2_7_28_1
  doi: 10.1007/BF02915394
– ident: e_1_2_7_35_1
  doi: 10.1175/1520-0442(1990)003<1364:POLFMS>2.0.CO;2
– ident: e_1_2_7_39_1
  doi: 10.1002/asl.598
– ident: e_1_2_7_41_1
  doi: 10.1038/ngeo1698
– ident: e_1_2_7_16_1
  doi: 10.1002/2014GL061094
– ident: e_1_2_7_10_1
  doi: 10.1002/2018GL077209
– ident: e_1_2_7_44_1
  doi: 10.1002/2014GL062681
– ident: e_1_2_7_46_1
  doi: 10.3354/cr020009
– ident: e_1_2_7_15_1
  doi: 10.1002/joc.2314
– ident: e_1_2_7_38_1
  doi: 10.1002/asl.721
– ident: e_1_2_7_19_1
  doi: 10.1002/joc.4157
– ident: e_1_2_7_25_1
  doi: 10.1088/1748-9326/10/4/044007
– ident: e_1_2_7_33_1
  doi: 10.1175/JAMC-D-15-0102.1
– ident: e_1_2_7_34_1
  doi: 10.1002/2015GL065493
– ident: e_1_2_7_13_1
  doi: 10.1038/ngeo2824
– ident: e_1_2_7_20_1
  doi: 10.1126/science.269.5224.676
– ident: e_1_2_7_30_1
  doi: 10.1002/qj.2396
– ident: e_1_2_7_49_1
  doi: 10.1029/2009GL040896
– ident: e_1_2_7_29_1
  doi: 10.1002/2015GL064547
– ident: e_1_2_7_8_1
  doi: 10.1002/gdj3.23
– volume: 38
  start-page: e437
  issue: 1
  year: 2017
  ident: e_1_2_7_3_1
  article-title: Improved seasonal prediction of UK regional precipitation using atmospheric circulation
  publication-title: International Journal of Climatology
  contributor:
    fullname: Baker L. H.
– ident: e_1_2_7_5_1
  doi: 10.1002/qj.2743
– ident: e_1_2_7_24_1
  doi: 10.1002/2014GL060011
– ident: e_1_2_7_50_1
  doi: 10.1002/qj.2976
– ident: e_1_2_7_36_1
  doi: 10.1175/JCLI-D-12-00823.1
– ident: e_1_2_7_31_1
SSID ssj0003031
Score 2.5753126
Snippet Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skillfully forecast. However, it...
Abstract Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skillfully forecast....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 7808
SubjectTerms Agricultural management
Agriculture
Atmospheric forcing
Energy management
Europe
Forecasting
Intercomparison
Noise
North Atlantic Oscillation
Ocean-atmosphere system
predictability
Resource management
Seasonal forecasting
Seasons
Water resources
Water resources management
Winter weather
Title An Intercomparison of Skill and Overconfidence/Underconfidence of the Wintertime North Atlantic Oscillation in Multimodel Seasonal Forecasts
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL078838
https://www.proquest.com/docview/2096247910/abstract/
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqTki8IK6iMJAf4ClKljh2Lo_VBK1QYdJo2cRLlDiOFq2k05pOgt_Av-KPcXxLsoEmxksU2Udum_PF_uye8x2E3jDByyQKSzdIUt-lMU1dYOHEDcsqrJgUOAtk7vDHT9F8RT-cstPR6NcgamnXFh7_8de8kv_xKrSBX2WW7B082w0KDXAP_oUreBiu_-Rje6LHh8UEnc_n9VoLABxdyb6m0oVD4XNUlaO-xQYInNQqNKD-Juz_OO0annjNnSNYIdc6XE6ejKh0XVU8ByaZXLF4Rxb35PlWK0JZnjsTmwuLAKMndOasVepQfy6fm4iOhefMve6o5yxXuWWm47Dv2LUm1P_Yc5Zd84mQUf21KQIz9YbHGIGUxXZ1lqWdmlPqJiQ2uth6Nk4ptPm6LK6drrX6pIUlG0y-ceIng4U8TnRW6B-LhE-kxqr8ErMFMKQkTPrF0AYAdHbsNkvFA2bHC9i0SQWFPRKnLB6jvemX1ddVRwiAJejCjeYXmvwLGP5gOPR1ZtRvd4abJsV6lg_RA7NdwVONvUdoJJrH6N5MlYP-DncqgJhvn6Cf0wbfwCLeVFhhEQMW8XUsHtxAorQFJOIeiVghEVsk4gEScd3gHonYIhF3SHyKVu_fLQ_nrqn04XIKs4EbVZLIlkFaJHHJCyaAQTDBfFKJElZrDlZBHggaFEFVCamcQaioijDkUZEWPA6foXGzacRzhKM0J3mUFIQUlDIwCmgpK0-WUggxCuMJemufcnahBV0yFYhB0mzojQnaty7IzCu_BYM0IjQGij1BjnLLrWNkFhov7mT9Et3v35B9NG4vd-IVUN-2eG2g9RvH3qrd
link.rule.ids 315,786,790,27957,27958,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoheUMtDLPThA5xQ1NpxHPu4QnS3sG0l2oWKSxS_pIhtWnUXJP4DP5oZJ90uFyRuiTLxwRPPfBmPvw_gTRGc1yr3GdfmMJOlNBmicJHlPuaxIIIzTmeHT07VZCY_XhaXvc4pnYXp-CFWBTdaGSle0wKngnTPNkAkmZi69HiKKU7n-iFs0MB6ABujL7Nvs1UwxgjdieYZmWlRqr73HUc4WH__76x0DzXXAWvKOEdb8KSHimzU-XYbHoT2KTwaJyneX3iVmjfd4hn8HrUsVfbcSlSQXUd2_r2Zz1ndenb2k561sRMQPUhaR_f3ZIswkH1tUoNAcxVY2s1ho-Uc571x7Azz5LxrmmNNy9Kh3SShw85DnbA8I4lPVy-Wi-cwO_pw8X6S9SoLmZPoiUxFAhGeG6tL72wRMHoXoTgUMXiMlA6teM2D5JbHGIi1QMgQbZ47ZY11Zf4CBu11G14CU6YWtdJWCCtlgUZcelL980RCp_JyCG_vZrm66cg0qrQJLky17o0h7Ny5oOqX1AINjBKyRHgzhHfJLf8coxp_nuK_lOGv_st6Hx5PLk6m1fT49NNr2CQbqiBztQOD5e2PsIsQZGn3-s_sD2Fj0-I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYBOKCWEWhgA9wQhHYcZz4WAEtS1kEFBCXKN6kiJIiWpD4Bz6asZOWckHiligTHzL2zMt4_B5CO5FROuGhDkgiDgIWMxEACqdBqG1oI0dwRtzZ4YtLftJhZ4_RY1Vwc2dhSn6IUcHNrQwfr90Cf9W2IhtwHJmQuZJWGzJcEiaTaBqABoNZPd247zx1RrEYAnSpmSdYkNCYV63vMML--Pu_k9IP0hzHqz7hNBfQfIUUcaN07SKaMMUSmml5Jd5PuPK9m6q_jL4aBfaFPTXSFMQ9i2-f824XZ4XGVx_uWWFL_dB9L3X0c-9sAQXih9z3B-QvBvvNHNwYdOGz5wpfQZrslj1zOC-wP7PrFXTwrck8lMdO4VNl_UF_BXWax3eHJ0ElshAoBo4IuHUYQhMhk1grGRkI3pGJDqg1GgKlAiuSEcOIJNYaR1pAmbEyDBWXQqo4XEVTRa8wawhzkdGMJ5JSyVgERoRpJ_qnHQcdD-Ma2h1-5fS15NJI_R44Fem4N2qoPnRBWq2oPhgITlkM6KaG9rxb_hwjbd204VdKkPV_WW-j2eujZto-vTzfQHPOxNWPCa-jqcHbu9kEADKQW9Us-wYyxNML
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intercomparison+of+Skill+and+Overconfidence%2FUnderconfidence+of+the+Wintertime+North+Atlantic+Oscillation+in+Multimodel+Seasonal+Forecasts&rft.jtitle=Geophysical+research+letters&rft.au=Baker%2C+L.+H.&rft.au=Shaffrey%2C+L.+C.&rft.au=Sutton%2C+R.+T.&rft.au=Weisheimer%2C+A.&rft.date=2018-08-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=45&rft.issue=15&rft.spage=7808&rft.epage=7817&rft_id=info:doi/10.1029%2F2018GL078838&rft.externalDBID=10.1029%252F2018GL078838&rft.externalDocID=GRL57691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon