Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation

The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vap...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 32; no. 8; pp. 980 - 991
Main Authors DOMEC, JEAN-CHRISTOPHE, NOORMETS, ASKO, KING, JOHN S, SUN, GE, MCNULTY, STEVEN G, GAVAZZI, MICHAEL J, BOGGS, JOHNNY L, TREASURE, EMRYS A
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.08.2009
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions.
AbstractList ABSTRACTThe study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions.
The study examined the relationships between whole tree hydraulic conductance (K(tree)) and the conductance in roots (K(root)) and leaves (K(leaf)) in loblolly pine trees. In addition, the role of seasonal variations in K(root) and K(leaf) in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K(root) declined faster than K(leaf). Although K(tree) depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased K(leaf) when REW was below 50%. After accounting for the effect of D on g(s), the seasonal decline in K(tree) caused a 35% decrease in g(s) and in its sensitivity to D, responses that were mainly driven by K(leaf) under high REW and by K(root) under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K(tree) and g(s) and the acclimation of trees to changing environmental conditions.
The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions.
ABSTRACT The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil‐dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current‐year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions.
ABSTRACT The study examined the relationships between whole tree hydraulic conductance ( K tree ) and the conductance in roots ( K root ) and leaves ( K leaf ) in loblolly pine trees. In addition, the role of seasonal variations in K root and K leaf in mediating stomatal control of transpiration and its response to vapour pressure deficit ( D ) as soil‐dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K root declined faster than K leaf . Although K tree depended on soil moisture, its dynamics was tempered by the elongation of current‐year needles that significantly increased K leaf when REW was below 50%. After accounting for the effect of D on g s , the seasonal decline in K tree caused a 35% decrease in g s and in its sensitivity to D , responses that were mainly driven by K leaf under high REW and by K root under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K tree and g s and the acclimation of trees to changing environmental conditions.
Author MCNULTY, STEVEN G
GAVAZZI, MICHAEL J
KING, JOHN S
TREASURE, EMRYS A
NOORMETS, ASKO
DOMEC, JEAN-CHRISTOPHE
BOGGS, JOHNNY L
SUN, GE
Author_xml – sequence: 1
  fullname: DOMEC, JEAN-CHRISTOPHE
– sequence: 2
  fullname: NOORMETS, ASKO
– sequence: 3
  fullname: KING, JOHN S
– sequence: 4
  fullname: SUN, GE
– sequence: 5
  fullname: MCNULTY, STEVEN G
– sequence: 6
  fullname: GAVAZZI, MICHAEL J
– sequence: 7
  fullname: BOGGS, JOHNNY L
– sequence: 8
  fullname: TREASURE, EMRYS A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21691212$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19344336$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi1URLeFV4C5QE-72LE3aQ4c0FL-SJVAgp6tie20XnntYDuleba-HE53VTghfPHY_n0z4_lOyJEP3hACjK5YWW-3K8br9ZJTQVcVpe2Ksvacre6ekMXjwxFZUCbosmladkxOUtpSWi6a9hk5Zi0XgvN6Qe4_GBXGwVl_DfnGgPW9G41XBkIPzmAP6DXEEDLcTDri6KwCFbweVcaCJQgeUg47zOj-fnjQ2ZwgGZ9strc2T5AD3OIQxghDNCmN0YA2vVU2AxYyWAc62pLUesASovVGgwudC85NMJQjDA59xmyDf06e9uiSeXHYT8nVx4sfm8_Ly6-fvmzeXy6VWHO2rEWn54H0rPxZc-SKdULrNVIsc2jaTuC6x07X2HS1qRXXrRGV6JSmmivV8VNyts87xPBzNCnLnU3KuNKICWOSDReMl1SskG_-SVasEm0tZvB8D6oYUoqml0O0O4yTZFTOFsutnJ2Uc-Nytlg-WCzvivTlocbY7Yz-Izx4WoDXBwCTQtfHYodNj1zF6paVRgr3bs_9ss5M_92A_La5mKOif7XX9xgkXsdS4-p7RRmnrF5XvOX8N3pj0d8
CODEN PLCEDV
CitedBy_id crossref_primary_10_1016_j_foreco_2011_09_041
crossref_primary_10_3390_w13202867
crossref_primary_10_1111_j_1365_2664_2011_02089_x
crossref_primary_10_1029_2010JG001573
crossref_primary_10_1111_ppl_12180
crossref_primary_10_1016_j_scs_2022_104056
crossref_primary_10_1002_hyp_14389
crossref_primary_10_1016_j_foreco_2015_11_025
crossref_primary_10_1093_treephys_tpv062
crossref_primary_10_1111_pce_12137
crossref_primary_10_1016_j_foreco_2015_03_028
crossref_primary_10_1093_treephys_tpw031
crossref_primary_10_1111_njb_01325
crossref_primary_10_1111_pce_13460
crossref_primary_10_1007_s00442_022_05250_4
crossref_primary_10_1093_treephys_tpq054
crossref_primary_10_3389_fpls_2015_00860
crossref_primary_10_1016_j_advwatres_2018_08_008
crossref_primary_10_1093_treephys_tps118
crossref_primary_10_1016_j_agrformet_2018_06_025
crossref_primary_10_1002_eco_197
crossref_primary_10_3390_f6062014
crossref_primary_10_1111_j_1365_2486_2009_01928_x
crossref_primary_10_1111_pce_14712
crossref_primary_10_1104_pp_111_173856
crossref_primary_10_5194_bg_19_1335_2022
crossref_primary_10_1093_treephys_tps122
crossref_primary_10_1111_1365_2435_14066
crossref_primary_10_1890_ES15_00111_1
crossref_primary_10_1093_aob_mcw031
crossref_primary_10_1093_aobpla_plu021
crossref_primary_10_5194_acp_12_5537_2012
crossref_primary_10_1016_j_envexpbot_2020_104085
crossref_primary_10_1016_j_scienta_2022_111335
crossref_primary_10_1007_s00442_014_3187_0
crossref_primary_10_1093_treephys_tpaa153
crossref_primary_10_1093_treephys_tpv045
crossref_primary_10_1093_treephys_tpy032
crossref_primary_10_1093_treephys_tpr120
crossref_primary_10_1590_S0044_59672014000100007
crossref_primary_10_1016_j_foreco_2009_09_016
crossref_primary_10_1111_pce_13607
crossref_primary_10_1093_treephys_tpz096
crossref_primary_10_1111_nph_12263
crossref_primary_10_1007_s11056_020_09831_0
crossref_primary_10_3389_fpls_2024_1414448
crossref_primary_10_1093_treephys_tpz135
crossref_primary_10_3390_f7030068
crossref_primary_10_1016_j_agrformet_2016_02_018
crossref_primary_10_1186_1471_2229_14_72
crossref_primary_10_3389_ffgc_2022_1075787
crossref_primary_10_1016_j_foreco_2012_02_017
crossref_primary_10_3390_f7090203
crossref_primary_10_1016_j_foreco_2015_06_033
crossref_primary_10_1016_j_foreco_2018_04_029
crossref_primary_10_3389_fpls_2016_00588
crossref_primary_10_1016_j_foreco_2014_06_030
crossref_primary_10_3390_rs4010303
crossref_primary_10_3390_f7100214
crossref_primary_10_5194_gmd_11_861_2018
crossref_primary_10_1175_JAMC_D_15_0126_1
crossref_primary_10_1016_j_scienta_2021_110736
crossref_primary_10_1016_j_agrformet_2012_11_004
crossref_primary_10_1111_j_1469_8137_2010_03245_x
crossref_primary_10_1007_s11104_012_1507_x
crossref_primary_10_1016_j_plaphy_2023_108145
crossref_primary_10_1093_jxb_eraa587
crossref_primary_10_1111_nph_15079
crossref_primary_10_1111_nph_16962
crossref_primary_10_1016_j_agrformet_2012_05_015
crossref_primary_10_1093_plcell_koac263
crossref_primary_10_2134_jeq2011_0388
crossref_primary_10_1111_pce_14524
crossref_primary_10_1029_2022JG007347
crossref_primary_10_1016_j_agrformet_2021_108381
crossref_primary_10_1038_srep19502
crossref_primary_10_3389_fpls_2020_00758
crossref_primary_10_1111_ppl_12673
crossref_primary_10_1093_treephys_tpq107
crossref_primary_10_1093_jxb_erab100
crossref_primary_10_1093_treephys_tps129
crossref_primary_10_1111_j_1365_3040_2011_02440_x
crossref_primary_10_1016_j_ecolmodel_2017_01_007
crossref_primary_10_1111_pce_14327
crossref_primary_10_3390_horticulturae3030047
crossref_primary_10_1139_cjfr_2017_0357
crossref_primary_10_1093_treephys_tpt101
crossref_primary_10_1093_treephys_tps013
crossref_primary_10_1139_cjfr_2016_0422
crossref_primary_10_1111_pce_14292
crossref_primary_10_1093_plcell_koac089
crossref_primary_10_1093_treephys_tpq115
crossref_primary_10_1016_j_advwatres_2017_08_004
crossref_primary_10_1093_treephys_tps018
crossref_primary_10_7554_eLife_29655
crossref_primary_10_1139_cjb_2015_0004
crossref_primary_10_1371_journal_pone_0155246
crossref_primary_10_1080_02827581_2021_1992002
crossref_primary_10_1016_j_foreco_2015_04_012
crossref_primary_10_1016_j_foreco_2019_117557
crossref_primary_10_1093_treephys_tpy001
crossref_primary_10_1139_X10_230
crossref_primary_10_1016_j_foreco_2021_119940
crossref_primary_10_1016_j_envres_2021_111798
crossref_primary_10_1139_cjb_2017_0142
crossref_primary_10_3390_physiologia3040039
crossref_primary_10_1890_11_0587_1
crossref_primary_10_1139_cjfr_2019_0436
crossref_primary_10_1016_j_agrformet_2014_02_013
crossref_primary_10_1111_gcb_15543
crossref_primary_10_3389_fpls_2015_00297
crossref_primary_10_3390_app11114729
crossref_primary_10_1007_s13595_018_0778_7
crossref_primary_10_1093_treephys_tpr058
crossref_primary_10_1093_aobpla_plz056
Cites_doi 10.1890/1051-0761(2001)011[0239:GPPIDF]2.0.CO;2
10.1046/j.1365-3040.2000.00516.x
10.1104/pp.010400
10.1016/j.agrformet.2008.06.013
10.1093/treephys/24.7.753
10.1046/j.1365-3040.1999.00513.x
10.1046/j.1365-3040.1999.00494.x
10.1093/oso/9780195171792.001.0001
10.1051/forest:19870101
10.1023/A:1026439226716
10.1046/j.1365-3040.2003.00965.x
10.1046/j.1365-3040.2002.00781.x
10.1051/forest:2006042
10.1051/forest:2000158
10.1016/j.agrformet.2005.01.004
10.1111/j.1469-8137.2006.01736.x
10.1093/treephys/22.2-3.91
10.1111/j.1365-3040.2005.01347.x
10.1007/PL00008875
10.1093/treephys/24.5.561
10.1093/treephys/22.2-3.205
10.1093/jxb/erl127
10.1104/pp.83.4.941
10.1016/j.geoderma.2004.11.018
10.1146/annurev.pp.39.060188.001333
10.1046/j.0016-8025.2001.00799.x
10.1051/forest:19980103
10.1046/j.0140-7791.2003.01082.x
10.1029/2006WR005541
10.1016/j.ecolmodel.2005.03.027
10.1046/j.1365-3040.2000.00625.x
10.1093/treephys/22.4.277
10.1111/j.1365-3040.2005.01397.x
10.1093/jxb/49.Special_Issue.407
10.1046/j.1469-8137.2003.00736.x
10.1051/forest:2003021
10.1111/j.1365-3040.1995.tb00371.x
10.1093/treephys/20.9.579
10.1051/forest:19980112
10.1093/jxb/48.1.1
10.1111/j.1365-3040.1987.tb02079.x
10.1093/treephys/28.10.1493
10.1046/j.1365-3040.2000.00554.x
10.1007/s004680050102
10.1046/j.1365-3040.2003.00975.x
10.1093/treephys/28.8.1179
10.1093/treephys/27.10.1375
10.1007/BF00329432
10.1111/j.1365-3040.1995.tb00570.x
10.1007/978-3-642-69213-0
10.1029/2005WR004181
10.1016/j.agrformet.2006.12.004
10.1093/treephys/18.6.393
10.1111/j.1365-3040.2005.01448.x
10.1007/s00442-004-1621-4
10.1093/treephys/28.4.579
10.1111/j.1365-3040.1993.tb00870.x
10.1051/forest:2002060
10.1046/j.0016-8025.2003.01058.x
10.1111/j.1365-3040.2005.01312.x
10.1093/treephys/18.8-9.633
10.1146/annurev.arplant.56.032604.144141
10.1093/treephys/28.4.559
10.1093/treephys/20.17.1205
10.1002/eco.20
10.1016/j.foreco.2004.10.059
10.1093/sjaf/32.3.101
10.1111/j.1365-3040.2007.01652.x
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
– notice: 2009 INIST-CNRS
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7ST
C1K
SOI
7X8
DOI 10.1111/j.1365-3040.2009.01981.x
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Environment Abstracts
MEDLINE - Academic


CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 991
ExternalDocumentID 10_1111_j_1365_3040_2009_01981_x
19344336
21691212
PCE1981
US201301652393
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABPTK
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
HGLYW
OIG
08R
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7ST
C1K
SOI
7X8
ID FETCH-LOGICAL-c4531-64bd3040f1443d3a3c1b4dd5a0a19379b4a5fabd6a7b6e6c3d9e424bcd0d3ccb3
IEDL.DBID DR2
ISSN 0140-7791
IngestDate Fri Aug 16 01:21:37 EDT 2024
Sat Aug 17 03:10:30 EDT 2024
Thu Sep 26 18:24:34 EDT 2024
Sat Sep 28 07:45:02 EDT 2024
Sun Oct 22 16:05:21 EDT 2023
Sat Aug 24 00:57:05 EDT 2024
Wed Dec 27 19:15:00 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Relative humidity
leaf phenology
Vapor pressure
Pinus taeda
Hydraulic conductivity
water potential
conductivity
Softwood forest tree
Gymnospermae
Root
soil moisture
Stomatal conductance
Plant ecology
Plant leaf
Embolism
coastal plain
Drainage
Soils
Sensitivity
Decoupling
Plain
Artificial forest stand
LAI
Coniferales
Spermatophyta
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4531-64bd3040f1443d3a3c1b4dd5a0a19379b4a5fabd6a7b6e6c3d9e424bcd0d3ccb3
Notes http://dx.doi.org/10.1111/j.1365-3040.2009.01981.x
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 19344336
PQID 21249641
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_734131931
proquest_miscellaneous_21249641
crossref_primary_10_1111_j_1365_3040_2009_01981_x
pubmed_primary_19344336
pascalfrancis_primary_21691212
wiley_primary_10_1111_j_1365_3040_2009_01981_x_PCE1981
fao_agris_US201301652393
PublicationCentury 2000
PublicationDate August 2009
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: August 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: United States
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References 1998; 49
2005; 130
2007; 143
1997; 48
2004; 24
1988; 39
2008; 32
2008; 148
2006; 171
2007; 30
2008; 1
2003; 158
2005; 28
1987; 44
1998; 18
2006; 63
2000; 124
1997; 11
1987; 83
2000; 57
2008; 28
2006; 29
1984
2001; 11
1998; 55
2007; 27
1987; 10
2006; 57
2000; 23
2004; 141
2002; 7
2000; 20
2009
1998
2005; 41
1999; 22
2006; 191
2004
1992
1995; 18
2002; 25
1993; 16
2000; 226
2005; 126
2002; 22
2002; 128
2005; 206
2003; 26
1995; 101
2003; 60
2007; 43
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_72_1
Rundel P.W. (e_1_2_6_56_1) 1998
e_1_2_6_19_1
Noormets A. (e_1_2_6_46_1) 2009
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
Iiames J.S. (e_1_2_6_26_1) 2008; 32
e_1_2_6_20_1
Motulsky H. (e_1_2_6_43_1) 2004
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
Sperry J.S. (e_1_2_6_64_1) 2002; 25
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Jones H.G. (e_1_2_6_30_1) 1992
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
Maier C.A. (e_1_2_6_37_1) 2008; 28
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_69_1
References_xml – year: 2009
– volume: 11
  start-page: 412
  year: 1997
  end-page: 419
  article-title: Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow
  publication-title: Trees
– volume: 24
  start-page: 561
  year: 2004
  end-page: 569
  article-title: Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in
  publication-title: Tree Physiology
– volume: 25
  start-page: 265
  year: 2002
  end-page: 274
  article-title: Co‐ordination of vapour and liquid phase water transport properties in plants
  publication-title: Plant, Cell & Environment
– volume: 206
  start-page: 153
  year: 2005
  end-page: 166
  article-title: Variation in leaf conductance of silver birch: effects of irradiance, vapour pressure deficit, and leaf water status and position within a crown
  publication-title: Forest Ecology and Management
– volume: 18
  start-page: 689
  year: 1995
  end-page: 696
  article-title: Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in
  publication-title: Plant, Cell & Environment
– volume: 28
  start-page: 660
  year: 2005
  end-page: 678
  article-title: Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests
  publication-title: Plant, Cell & Environment
– volume: 49
  start-page: 407
  year: 1998
  end-page: 417
  article-title: Stomatal heterogeneity
  publication-title: Journal of Experimental Botany
– volume: 23
  start-page: 71
  year: 2000
  end-page: 79
  article-title: Xylem cavitation and hydraulic control of stomatal conductance in laurel ( L.)
  publication-title: Plant, Cell & Environment
– volume: 28
  start-page: 559
  year: 2008
  end-page: 577
  article-title: Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation
  publication-title: Tree Physiology
– volume: 30
  start-page: 559
  year: 2007
  end-page: 569
  article-title: Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas‐fir
  publication-title: Plant, Cell & Environment
– volume: 22
  start-page: 1515
  year: 1999
  end-page: 1526
  article-title: Survey and synthesis of intra‐ and interspecific variation in stomatal sensitivity to vapour pressure deficit
  publication-title: Plant, Cell & Environment
– volume: 29
  start-page: 803
  year: 2006
  end-page: 809
  article-title: Hydraulic design of pine needles: one‐dimensional optimization for single‐vein leaves
  publication-title: Plant, Cell & Environment
– volume: 28
  start-page: 1103
  year: 2005
  end-page: 1113
  article-title: Axial and radial profiles in conductivities, water storage and native embolism in trunks of young and old growth ponderosa pine trees
  publication-title: Plant, Cell & Environment
– volume: 26
  start-page: 339
  year: 2003
  end-page: 350
  article-title: Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model
  publication-title: Plant, Cell & Environment
– volume: 57
  start-page: 361
  year: 2006
  end-page: 381
  article-title: Leaf hydraulics
  publication-title: Annual Review of Plant Biology
– volume: 130
  start-page: 39
  year: 2005
  end-page: 58
  article-title: Vertical stratification of soil water storage and release dynamics in Pacific Northwest Coniferous Forests
  publication-title: Agricultural and Forest Meteorology
– volume: 48
  start-page: 1
  year: 1997
  end-page: 7
  article-title: Water relations of plants in the field: some comments on the measurement of selected parameters
  publication-title: Journal of Experimental Botany
– volume: 28
  start-page: 1093
  year: 2008
  end-page: 1106
  article-title: Branch growth and gas exchange in 13‐year‐old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization
  publication-title: Tree Physiology
– volume: 7
  start-page: 723
  year: 2002
  end-page: 752
  article-title: Hydraulic architecture of trees: main concepts and results
  publication-title: Annals of Forest Science
– volume: 23
  start-page: 1055
  year: 2000
  end-page: 1066
  article-title: Influence of nutrient versus water supply on hydraulic architecture and water balance in
  publication-title: Plant, Cell & Environment
– volume: 20
  start-page: 579
  year: 2000
  end-page: 589
  article-title: Analysis of assumptions and errors in the calculation of stomatal conductance from sap‐flow measurements
  publication-title: Tree Physiology
– volume: 29
  start-page: 26
  year: 2006
  end-page: 35
  article-title: Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status
  publication-title: Plant, Cell & Environment
– volume: 28
  start-page: 1493
  year: 2008
  end-page: 1504
  article-title: Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees
  publication-title: Tree Physiology
– year: 2004
– volume: 24
  start-page: 753
  year: 2004
  end-page: 763
  article-title: Age‐related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine
  publication-title: Tree Physiology
– volume: 226
  start-page: 45
  year: 2000
  end-page: 56
  article-title: Water uptake by plant roots: an integration of views
  publication-title: Plant & Soil
– volume: 41
  start-page: W11404
  year: 2005
  article-title: Finite‐Element Tree Crown Hydrodynamics model (FETCH) using porous media flow within branching elements – a new representation of tree hydrodynamics
  publication-title: Water Resource Research
– volume: 83
  start-page: 941
  year: 1987
  end-page: 944
  article-title: Sequential leaf senescence and correlatively controlled increases in xylem flow resistance
  publication-title: Plant Physiology
– volume: 22
  start-page: 1337
  year: 1999
  end-page: 1349
  article-title: A relationship between humidity response, growth form and photosynthetic operating point in C plants
  publication-title: Plant, Cell & Environment
– volume: 23
  start-page: 407
  year: 2000
  end-page: 414
  article-title: Dynamic changes in petiole specific conductivity in red maple ( L.), tulip tree ( L.) and northern fox grape ( L.)
  publication-title: Plant, Cell & Environment
– volume: 43
  start-page: 64
  year: 2007
  end-page: 70
  article-title: Plant rooting strategies in water‐limited ecosystems
  publication-title: Water Resources Research
– start-page: 296
  year: 1998
  end-page: 323
– volume: 10
  start-page: 53
  year: 1987
  end-page: 57
  article-title: Changes in hydraulic conductance of citrus trees following a reduction in wetted soil volume
  publication-title: Plant, Cell & Environment
– volume: 191
  start-page: 447
  year: 2006
  end-page: 468
  article-title: The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate
  publication-title: Ecological Modeling
– volume: 18
  start-page: 393
  year: 1998
  end-page: 402
  article-title: The response of to drought: stomatal control of transpiration and hydraulic conductance
  publication-title: Tree Physiology
– volume: 18
  start-page: 633
  year: 1998
  end-page: 644
  article-title: Regulation of stomatal conductance and transpiration in forest canopies
  publication-title: Tree Physiology
– volume: 141
  start-page: 7
  year: 2004
  end-page: 16
  article-title: Native root xylem embolism and stomatal closure in stands of Douglas‐fir and ponderosa pine: mitigation by hydraulic redistribution
  publication-title: Oecologia
– volume: 26
  start-page: 443
  year: 2003
  end-page: 450
  article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees
  publication-title: Plant, Cell & Environment
– volume: 20
  start-page: 1205
  year: 2000
  end-page: 1207
  article-title: Physiological responses of radiate pine roots to soil strength and soil water deficit
  publication-title: Tree Physiology
– volume: 11
  start-page: 239
  year: 2001
  end-page: 252
  article-title: Gross primary productivity in Duke Forest: modeling synthesis of CO experiment and eddy‐flux data
  publication-title: Ecological Applications
– volume: 26
  start-page: 1633
  year: 2003
  end-page: 1645
  article-title: Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels
  publication-title: Plant, Cell & Environment
– volume: 57
  start-page: 3963
  year: 2006
  end-page: 3977
  article-title: Stay wet or else: three ways in which plants can adjust hydraulically to their environment
  publication-title: Journal of Experimental Botany
– volume: 171
  start-page: 106
  year: 2006
  end-page: 116
  article-title: Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?
  publication-title: New Phytologist
– volume: 60
  start-page: 297
  year: 2003
  end-page: 305
  article-title: Water relations and hydraulic characteristics of three woody species co‐occurring in the same habitat
  publication-title: Annals of Forest Science
– volume: 22
  start-page: 91
  year: 2002
  end-page: 104
  article-title: Age and position‐related in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas‐fir wood structure
  publication-title: Tree Physiology
– volume: 148
  start-page: 719
  year: 2008
  end-page: 732
  article-title: Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements
  publication-title: Agricultural Forest and Meteorology
– volume: 28
  start-page: 1179
  year: 2008
  end-page: 1188
  article-title: Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood
  publication-title: Tree Physiology
– volume: 22
  start-page: 205
  year: 2002
  end-page: 211
  article-title: Canopy and hydraulic conductance in young, mature and old Douglas‐fir trees
  publication-title: Tree Physiology
– volume: 128
  start-page: 282
  year: 2002
  end-page: 290
  article-title: Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut
  publication-title: Plant Physiology
– volume: 63
  start-page: 625
  year: 2006
  end-page: 644
  article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences
  publication-title: Annals of Forest Science
– volume: 22
  start-page: 277
  year: 2002
  end-page: 283
  article-title: Heat dissipation sensors of variable length for the measurement of sapflow in trees with deep sap wood
  publication-title: Tree Physiology
– volume: 28
  start-page: 579
  year: 2008
  end-page: 596
  article-title: Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees
  publication-title: Tree Physiology
– year: 1992
– volume: 1
  start-page: 193
  year: 2008
  end-page: 204
  article-title: Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains
  publication-title: Ecohydrology
– volume: 27
  start-page: 1375
  year: 2007
  end-page: 1387
  article-title: Estimation of light interception properties of conifer shoots by an improved photographic method and a 3D model of shoot structure
  publication-title: Tree Physiology
– volume: 55
  start-page: 29
  year: 1998
  end-page: 46
  article-title: Interpreting the variations in xylem sap flux density within the trunk of maritime pine ( .): application of a model for calculating water flows at tree and stand levels
  publication-title: Annales Des Sciences Forestieres
– volume: 55
  start-page: 191
  year: 1998
  end-page: 216
  article-title: Scaling xylem sap flux and soil water balance and calculating variance
  publication-title: Annales des Sciences Forestieres
– volume: 25
  start-page: 2251
  year: 2002
  end-page: 2263
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell & Environment
– volume: 16
  start-page: 279
  year: 1993
  end-page: 287
  article-title: Limitation to transpiration by hydraulic conductance and xylem cavitation in
  publication-title: Plant, Cell & Environment
– year: 1984
– volume: 143
  start-page: 123
  year: 2007
  end-page: 145
  article-title: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003
  publication-title: Agricultural and Forest Meteorology
– volume: 18
  start-page: 357
  year: 1995
  end-page: 364
  article-title: A reinterpretation of stomatal responses to humidity
  publication-title: Plant, Cell & Environment
– volume: 126
  start-page: 129
  year: 2005
  end-page: 140
  article-title: Mapping the global distribution of deep roots in relation to climate and soil characteristics
  publication-title: Geoderma
– volume: 44
  start-page: 1
  year: 1987
  end-page: 14
  article-title: Sap flow measurement in Douglas fir stems using a new thermal method
  publication-title: Annales Des Sciences Forestieres
– volume: 32
  start-page: 101
  year: 2008
  end-page: 110
  article-title: Validation of an integrated estimation of loblolly pine ( L.) leaf area index using two indirect optical methods in the southeastern United States
  publication-title: Southern Journal of Applied Forestry
– volume: 57
  start-page: 755
  year: 2000
  end-page: 765
  article-title: A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index
  publication-title: Annales Des Sciences Forestieres
– volume: 124
  start-page: 495
  year: 2000
  end-page: 505
  article-title: Influence of soil porosity on water use in
  publication-title: Oecologia
– volume: 158
  start-page: 295
  year: 2003
  end-page: 303
  article-title: Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest
  publication-title: New Phytologist
– volume: 39
  start-page: 245
  year: 1988
  end-page: 265
  article-title: Water transport in and to roots
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 26
  start-page: 1343
  year: 2003
  end-page: 1356
  article-title: The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species
  publication-title: Plant, Cell & Environment
– volume: 101
  start-page: 514
  year: 1995
  end-page: 522
  article-title: Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties
  publication-title: Oecologia
– ident: e_1_2_6_34_1
  doi: 10.1890/1051-0761(2001)011[0239:GPPIDF]2.0.CO;2
– ident: e_1_2_6_59_1
  doi: 10.1046/j.1365-3040.2000.00516.x
– ident: e_1_2_6_9_1
  doi: 10.1104/pp.010400
– ident: e_1_2_6_47_1
  doi: 10.1016/j.agrformet.2008.06.013
– ident: e_1_2_6_28_1
  doi: 10.1093/treephys/24.7.753
– ident: e_1_2_6_49_1
  doi: 10.1046/j.1365-3040.1999.00513.x
– start-page: 296
  volume-title: Ecology and biogeography of Pinus
  year: 1998
  ident: e_1_2_6_56_1
  contributor:
    fullname: Rundel P.W.
– ident: e_1_2_6_21_1
  doi: 10.1046/j.1365-3040.1999.00494.x
– volume-title: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting
  year: 2004
  ident: e_1_2_6_43_1
  doi: 10.1093/oso/9780195171792.001.0001
  contributor:
    fullname: Motulsky H.
– ident: e_1_2_6_22_1
  doi: 10.1051/forest:19870101
– ident: e_1_2_6_65_1
  doi: 10.1023/A:1026439226716
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-3040.2003.00965.x
– ident: e_1_2_6_39_1
  doi: 10.1046/j.1365-3040.2002.00781.x
– ident: e_1_2_6_4_1
  doi: 10.1051/forest:2006042
– ident: e_1_2_6_23_1
  doi: 10.1051/forest:2000158
– ident: e_1_2_6_68_1
  doi: 10.1016/j.agrformet.2005.01.004
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1469-8137.2006.01736.x
– ident: e_1_2_6_13_1
  doi: 10.1093/treephys/22.2-3.91
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1365-3040.2005.01347.x
– ident: e_1_2_6_25_1
  doi: 10.1007/PL00008875
– ident: e_1_2_6_2_1
  doi: 10.1093/treephys/24.5.561
– ident: e_1_2_6_52_1
  doi: 10.1093/treephys/22.2-3.205
– ident: e_1_2_6_38_1
  doi: 10.1093/jxb/erl127
– ident: e_1_2_6_45_1
  doi: 10.1104/pp.83.4.941
– ident: e_1_2_6_60_1
  doi: 10.1016/j.geoderma.2004.11.018
– ident: e_1_2_6_50_1
  doi: 10.1146/annurev.pp.39.060188.001333
– volume: 25
  start-page: 2251
  year: 2002
  ident: e_1_2_6_64_1
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell & Environment
  doi: 10.1046/j.0016-8025.2001.00799.x
  contributor:
    fullname: Sperry J.S.
– ident: e_1_2_6_33_1
  doi: 10.1051/forest:19980103
– ident: e_1_2_6_7_1
  doi: 10.1046/j.0140-7791.2003.01082.x
– ident: e_1_2_6_11_1
  doi: 10.1029/2006WR005541
– ident: e_1_2_6_8_1
  doi: 10.1016/j.ecolmodel.2005.03.027
– ident: e_1_2_6_19_1
  doi: 10.1046/j.1365-3040.2000.00625.x
– ident: e_1_2_6_29_1
  doi: 10.1093/treephys/22.4.277
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-3040.2005.01397.x
– ident: e_1_2_6_42_1
  doi: 10.1093/jxb/49.Special_Issue.407
– volume-title: Global Change Biology
  year: 2009
  ident: e_1_2_6_46_1
  contributor:
    fullname: Noormets A.
– ident: e_1_2_6_5_1
  doi: 10.1046/j.1469-8137.2003.00736.x
– ident: e_1_2_6_44_1
  doi: 10.1051/forest:2003021
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1365-3040.1995.tb00371.x
– ident: e_1_2_6_18_1
  doi: 10.1093/treephys/20.9.579
– ident: e_1_2_6_48_1
  doi: 10.1051/forest:19980112
– ident: e_1_2_6_53_1
  doi: 10.1093/jxb/48.1.1
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-3040.1987.tb02079.x
– ident: e_1_2_6_14_1
  doi: 10.1093/treephys/28.10.1493
– ident: e_1_2_6_72_1
  doi: 10.1046/j.1365-3040.2000.00554.x
– ident: e_1_2_6_51_1
  doi: 10.1007/s004680050102
– ident: e_1_2_6_6_1
  doi: 10.1046/j.1365-3040.2003.00975.x
– ident: e_1_2_6_55_1
  doi: 10.1093/treephys/28.8.1179
– ident: e_1_2_6_66_1
  doi: 10.1093/treephys/27.10.1375
– ident: e_1_2_6_40_1
  doi: 10.1007/BF00329432
– volume: 28
  start-page: 1093
  year: 2008
  ident: e_1_2_6_37_1
  article-title: Branch growth and gas exchange in 13‐year‐old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization
  publication-title: Tree Physiology
  contributor:
    fullname: Maier C.A.
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-3040.1995.tb00570.x
– ident: e_1_2_6_62_1
  doi: 10.1007/978-3-642-69213-0
– ident: e_1_2_6_3_1
  doi: 10.1029/2005WR004181
– ident: e_1_2_6_24_1
  doi: 10.1016/j.agrformet.2006.12.004
– ident: e_1_2_6_27_1
  doi: 10.1093/treephys/18.6.393
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1365-3040.2005.01448.x
– ident: e_1_2_6_15_1
  doi: 10.1007/s00442-004-1621-4
– ident: e_1_2_6_67_1
  doi: 10.1093/treephys/28.4.579
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1365-3040.1993.tb00870.x
– ident: e_1_2_6_12_1
  doi: 10.1051/forest:2002060
– ident: e_1_2_6_58_1
  doi: 10.1046/j.0016-8025.2003.01058.x
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1365-3040.2005.01312.x
– ident: e_1_2_6_69_1
  doi: 10.1093/treephys/18.8-9.633
– volume-title: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology
  year: 1992
  ident: e_1_2_6_30_1
  contributor:
    fullname: Jones H.G.
– ident: e_1_2_6_57_1
  doi: 10.1146/annurev.arplant.56.032604.144141
– ident: e_1_2_6_32_1
  doi: 10.1093/treephys/28.4.559
– ident: e_1_2_6_71_1
  doi: 10.1093/treephys/20.17.1205
– ident: e_1_2_6_35_1
  doi: 10.1002/eco.20
– ident: e_1_2_6_61_1
  doi: 10.1016/j.foreco.2004.10.059
– volume: 32
  start-page: 101
  year: 2008
  ident: e_1_2_6_26_1
  article-title: Validation of an integrated estimation of loblolly pine (Pinus taeda L.) leaf area index using two indirect optical methods in the southeastern United States
  publication-title: Southern Journal of Applied Forestry
  doi: 10.1093/sjaf/32.3.101
  contributor:
    fullname: Iiames J.S.
– ident: e_1_2_6_70_1
  doi: 10.1111/j.1365-3040.2007.01652.x
SSID ssj0001479
Score 2.3746564
Snippet The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine...
ABSTRACT The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in...
The study examined the relationships between whole tree hydraulic conductance (K(tree)) and the conductance in roots (K(root)) and leaves (K(leaf)) in loblolly...
ABSTRACT The study examined the relationships between whole tree hydraulic conductance ( K tree ) and the conductance in roots ( K root ) and leaves ( K leaf )...
ABSTRACTThe study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 980
SubjectTerms Biological and medical sciences
coastal plain
conductivity
embolism
Fundamental and applied biological sciences. Psychology
LAI
leaf phenology
Pinus taeda
Pinus taeda - physiology
Plant Leaves - physiology
Plant Roots - physiology
Plant Stomata - physiology
Plant Transpiration - physiology
Seasons
Soil - analysis
soil moisture
soil water
Vapor Pressure
Water - metabolism
water potential
Title Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3040.2009.01981.x
https://www.ncbi.nlm.nih.gov/pubmed/19344336
https://search.proquest.com/docview/21249641
https://search.proquest.com/docview/734131931
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokLj_JoeJQ5cM1qvfY6yRH6UIUEQsBKvUXj2CmrhmS1SRDLX-PPMRPvtl1UJIS4RIkysezJ2P7G_jwjxCstaZbJHHWkolSx9lkap6mSsdUZubiE6NOBTfjuvTmZ6ben09M1_4nPwoT4EBcLbtwzhvGaOzjadruTM0OL3PHxOuwkFz5iPClVwuyuw4-XkaSkDmH3mM2YJJncJvVcW9DWTHWzxIZ5k9iS6sqQ8-I6ULqNcYdJ6vieON80L3BTzkd9Z0fFj98iP_6f9t8Xd9dYFl4H43sgbvh6V9wO2S1Xu-LWm4aQ5-qh-HlIPm7PR3_PgPAmzDeJUaApofJYAtYOCMJ38GXllthX8wLIT-dQtGyULTQ1EEj9yktNV18M3827Flqm4Yc8GNA18A0XVDcYOL790oPzHCejAyTJZl6B4_UBqgYg3SJpwkHV2IrTbsOCHmFRYTiSVT8Ss-Ojzwcn8TppRFxoGk9io61jnZTkKSqnUBXSauemOEbCqklmNU5LtM5gYo03hXKZ1xNtCzd2qiiseix26qb2ewLSIiFAqh1NGHTVCZLgRJbGean0GHUk5MZA8kWIDZJf8ano7-RcE870meXD38m_R2KPLCnHMxrC89mnCW8cSzPlQHSR2N8yr4syJxzQiCBGJF5u7C2nQYB3drD2Td-SBHnRRstIwB8kEkYrpAASeRIs9bLKmSJVKRMJM9jbX7cl_3BwxHdP__XDZ-JO2JxjPuVzsdMte_-CMF5n94fe-wtaP0Lc
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggOCFjzFY-NjugddUTe06ySPsQwW2CcEq7c2yY2dUhKRqEkT51_jnuIvbbUFDQoiXKlUulnO5s39nn3_H2CsR4SyTWnSkLOehcGkSJgmPQiNSDHER0SddNuHxiZxMxbuz8dmqHBCdhfH8EBcLbuQZ3XhNDk4L0n0vpxQtjMeHK95Jan2AgPIWej-nOg77Hy-5pCLhifconzGO06if1nNtS7256mauK8qc1DUqL_dVL66DpX2U201Thw9YsX5Bn53yZdA2ZpD9-I378T9p4CG7v4Kz8Nrb3yN2w5Wb7I4vcLncZLffVAg-l4_Zz30Mc1s6_XsOCDlhtq6NAlUOhdM56NICovgGPi_tQrfFLAMM1YmNluyyhqoExKlfabXp6o3uuVlTQ02Z-L4UBjQVfNNz7Bt0ab7twoF1RJXRgEbJalaApSUC7AZovNSoCgtFZQqqvA1z_AvzQvtTWeUWmx4enO5NwlXdiDATOKSEUhhLOskxWOSWa55FRlg71kONcDVOjdDjXBsrdWykkxm3qRMjYTI7tDzLDH_CNsqqdNsMkixGTCoszhn4K2KNgqMol9ZFXAy1CFi0thA19_Qg6kpYhV9HUU-o2Gequq-jvgdsG01J6XMcxdX004j2jiM5Ji66gO307OuizRFxGiHKCNju2uAUjgO0uaNLV7U1SmAgLUUUMPiDREyABRWAIk-9qV52OeWoKi4DJjuD--t3UR_2Dujq2b8-uMvuTk6Pj9TR25P3z9k9v1dH6ZUv2EazaN1LhHyN2elc-RdnQUb0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPMSFR4E2PNo5cM1qvfY6yRHarsqrqoCVeovs2Cmrpkm0SRDLX-PPMRPvtl1UJIS4rLLKxHImM_Y39vgbxl5JjrNMYtGRslyE0iVxGMeCh0YmGOIioo_7bMKPR-pwKt-djE-W-U90FsbzQ1wsuJFn9OM1OXht83UnpwwtDMeHS9pJanyAePKWVAiECSB9uqSS4tLz7lE6YxQlfD2r59qW1qaqm7muKHFSN6i73Be9uA6VroPcfpaaPGBnq_fzySlng641g-zHb9SP_0cBD9n9JZiF1976HrEbrtxkd3x5y8Umu_2mQui5eMx-7mOQ29HZ31NAwAmzVWUUqHIonM5BlxYQw7fwdWHnuitmGWCgTly0ZJUNVCUgSj2ntaarN_rnZm0DDeXh-0IY0FbwTdfYN-iTfLu5A-uIKKMFjZLVrABLCwTYDdB4qVETForKFFR3G2r8C3Wh_Zms8gmbTg6-7B2Gy6oRYSZxQAmVNJZ0kmOoKKzQIuNGWjvWQ41gNUqM1ONcG6t0ZJRTmbCJkyNpMju0IsuMeMo2yqp02wziLEJEKi3OGPgrI42CI54r67iQQy0DxlcGktaeHCS9ElTh10mpJ1TqM0n7r5N-D9g2WlKqT3EMT6efR7RzzNWYmOgCtrNmXhdtjojRCDFGwHZX9pbiKEBbO7p0VdegBIbRSvKAwR8kIoIrqAAU2fKWetnlRKCqhAqY6u3tr98lPd47oKtn__rgLrt7vD9JP7w9ev-c3fMbdZRb-YJttPPOvUS815qd3pF_AUyERaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoupling+the+influence+of+leaf+and+root+hydraulic+conductances+on+stomatal+conductance+and+its+sensitivity+to+vapour+pressure+deficit+as+soil+dries+in+a+drained+loblolly+pine+plantation&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Domec%2C+Jean-Christophe&rft.au=Noormets%2C+Asko&rft.au=King%2C+John+S&rft.au=Sun%2C+Ge&rft.date=2009-08-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=32&rft.issue=8&rft.spage=980&rft.epage=991&rft_id=info:doi/10.1111%2Fj.1365-3040.2009.01981.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon