Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation
The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vap...
Saved in:
Published in | Plant, cell and environment Vol. 32; no. 8; pp. 980 - 991 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.08.2009
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions. |
---|---|
AbstractList | ABSTRACTThe study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions. The study examined the relationships between whole tree hydraulic conductance (K(tree)) and the conductance in roots (K(root)) and leaves (K(leaf)) in loblolly pine trees. In addition, the role of seasonal variations in K(root) and K(leaf) in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K(root) declined faster than K(leaf). Although K(tree) depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased K(leaf) when REW was below 50%. After accounting for the effect of D on g(s), the seasonal decline in K(tree) caused a 35% decrease in g(s) and in its sensitivity to D, responses that were mainly driven by K(leaf) under high REW and by K(root) under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K(tree) and g(s) and the acclimation of trees to changing environmental conditions. The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions. ABSTRACT The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil‐dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current‐year needles that significantly increased Kleaf when REW was below 50%. After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions. ABSTRACT The study examined the relationships between whole tree hydraulic conductance ( K tree ) and the conductance in roots ( K root ) and leaves ( K leaf ) in loblolly pine trees. In addition, the role of seasonal variations in K root and K leaf in mediating stomatal control of transpiration and its response to vapour pressure deficit ( D ) as soil‐dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K root declined faster than K leaf . Although K tree depended on soil moisture, its dynamics was tempered by the elongation of current‐year needles that significantly increased K leaf when REW was below 50%. After accounting for the effect of D on g s , the seasonal decline in K tree caused a 35% decrease in g s and in its sensitivity to D , responses that were mainly driven by K leaf under high REW and by K root under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K tree and g s and the acclimation of trees to changing environmental conditions. |
Author | MCNULTY, STEVEN G GAVAZZI, MICHAEL J KING, JOHN S TREASURE, EMRYS A NOORMETS, ASKO DOMEC, JEAN-CHRISTOPHE BOGGS, JOHNNY L SUN, GE |
Author_xml | – sequence: 1 fullname: DOMEC, JEAN-CHRISTOPHE – sequence: 2 fullname: NOORMETS, ASKO – sequence: 3 fullname: KING, JOHN S – sequence: 4 fullname: SUN, GE – sequence: 5 fullname: MCNULTY, STEVEN G – sequence: 6 fullname: GAVAZZI, MICHAEL J – sequence: 7 fullname: BOGGS, JOHNNY L – sequence: 8 fullname: TREASURE, EMRYS A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21691212$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19344336$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQxi1URLeFV4C5QE-72LE3aQ4c0FL-SJVAgp6tie20XnntYDuleba-HE53VTghfPHY_n0z4_lOyJEP3hACjK5YWW-3K8br9ZJTQVcVpe2Ksvacre6ekMXjwxFZUCbosmladkxOUtpSWi6a9hk5Zi0XgvN6Qe4_GBXGwVl_DfnGgPW9G41XBkIPzmAP6DXEEDLcTDri6KwCFbweVcaCJQgeUg47zOj-fnjQ2ZwgGZ9strc2T5AD3OIQxghDNCmN0YA2vVU2AxYyWAc62pLUesASovVGgwudC85NMJQjDA59xmyDf06e9uiSeXHYT8nVx4sfm8_Ly6-fvmzeXy6VWHO2rEWn54H0rPxZc-SKdULrNVIsc2jaTuC6x07X2HS1qRXXrRGV6JSmmivV8VNyts87xPBzNCnLnU3KuNKICWOSDReMl1SskG_-SVasEm0tZvB8D6oYUoqml0O0O4yTZFTOFsutnJ2Uc-Nytlg-WCzvivTlocbY7Yz-Izx4WoDXBwCTQtfHYodNj1zF6paVRgr3bs_9ss5M_92A_La5mKOif7XX9xgkXsdS4-p7RRmnrF5XvOX8N3pj0d8 |
CODEN | PLCEDV |
CitedBy_id | crossref_primary_10_1016_j_foreco_2011_09_041 crossref_primary_10_3390_w13202867 crossref_primary_10_1111_j_1365_2664_2011_02089_x crossref_primary_10_1029_2010JG001573 crossref_primary_10_1111_ppl_12180 crossref_primary_10_1016_j_scs_2022_104056 crossref_primary_10_1002_hyp_14389 crossref_primary_10_1016_j_foreco_2015_11_025 crossref_primary_10_1093_treephys_tpv062 crossref_primary_10_1111_pce_12137 crossref_primary_10_1016_j_foreco_2015_03_028 crossref_primary_10_1093_treephys_tpw031 crossref_primary_10_1111_njb_01325 crossref_primary_10_1111_pce_13460 crossref_primary_10_1007_s00442_022_05250_4 crossref_primary_10_1093_treephys_tpq054 crossref_primary_10_3389_fpls_2015_00860 crossref_primary_10_1016_j_advwatres_2018_08_008 crossref_primary_10_1093_treephys_tps118 crossref_primary_10_1016_j_agrformet_2018_06_025 crossref_primary_10_1002_eco_197 crossref_primary_10_3390_f6062014 crossref_primary_10_1111_j_1365_2486_2009_01928_x crossref_primary_10_1111_pce_14712 crossref_primary_10_1104_pp_111_173856 crossref_primary_10_5194_bg_19_1335_2022 crossref_primary_10_1093_treephys_tps122 crossref_primary_10_1111_1365_2435_14066 crossref_primary_10_1890_ES15_00111_1 crossref_primary_10_1093_aob_mcw031 crossref_primary_10_1093_aobpla_plu021 crossref_primary_10_5194_acp_12_5537_2012 crossref_primary_10_1016_j_envexpbot_2020_104085 crossref_primary_10_1016_j_scienta_2022_111335 crossref_primary_10_1007_s00442_014_3187_0 crossref_primary_10_1093_treephys_tpaa153 crossref_primary_10_1093_treephys_tpv045 crossref_primary_10_1093_treephys_tpy032 crossref_primary_10_1093_treephys_tpr120 crossref_primary_10_1590_S0044_59672014000100007 crossref_primary_10_1016_j_foreco_2009_09_016 crossref_primary_10_1111_pce_13607 crossref_primary_10_1093_treephys_tpz096 crossref_primary_10_1111_nph_12263 crossref_primary_10_1007_s11056_020_09831_0 crossref_primary_10_3389_fpls_2024_1414448 crossref_primary_10_1093_treephys_tpz135 crossref_primary_10_3390_f7030068 crossref_primary_10_1016_j_agrformet_2016_02_018 crossref_primary_10_1186_1471_2229_14_72 crossref_primary_10_3389_ffgc_2022_1075787 crossref_primary_10_1016_j_foreco_2012_02_017 crossref_primary_10_3390_f7090203 crossref_primary_10_1016_j_foreco_2015_06_033 crossref_primary_10_1016_j_foreco_2018_04_029 crossref_primary_10_3389_fpls_2016_00588 crossref_primary_10_1016_j_foreco_2014_06_030 crossref_primary_10_3390_rs4010303 crossref_primary_10_3390_f7100214 crossref_primary_10_5194_gmd_11_861_2018 crossref_primary_10_1175_JAMC_D_15_0126_1 crossref_primary_10_1016_j_scienta_2021_110736 crossref_primary_10_1016_j_agrformet_2012_11_004 crossref_primary_10_1111_j_1469_8137_2010_03245_x crossref_primary_10_1007_s11104_012_1507_x crossref_primary_10_1016_j_plaphy_2023_108145 crossref_primary_10_1093_jxb_eraa587 crossref_primary_10_1111_nph_15079 crossref_primary_10_1111_nph_16962 crossref_primary_10_1016_j_agrformet_2012_05_015 crossref_primary_10_1093_plcell_koac263 crossref_primary_10_2134_jeq2011_0388 crossref_primary_10_1111_pce_14524 crossref_primary_10_1029_2022JG007347 crossref_primary_10_1016_j_agrformet_2021_108381 crossref_primary_10_1038_srep19502 crossref_primary_10_3389_fpls_2020_00758 crossref_primary_10_1111_ppl_12673 crossref_primary_10_1093_treephys_tpq107 crossref_primary_10_1093_jxb_erab100 crossref_primary_10_1093_treephys_tps129 crossref_primary_10_1111_j_1365_3040_2011_02440_x crossref_primary_10_1016_j_ecolmodel_2017_01_007 crossref_primary_10_1111_pce_14327 crossref_primary_10_3390_horticulturae3030047 crossref_primary_10_1139_cjfr_2017_0357 crossref_primary_10_1093_treephys_tpt101 crossref_primary_10_1093_treephys_tps013 crossref_primary_10_1139_cjfr_2016_0422 crossref_primary_10_1111_pce_14292 crossref_primary_10_1093_plcell_koac089 crossref_primary_10_1093_treephys_tpq115 crossref_primary_10_1016_j_advwatres_2017_08_004 crossref_primary_10_1093_treephys_tps018 crossref_primary_10_7554_eLife_29655 crossref_primary_10_1139_cjb_2015_0004 crossref_primary_10_1371_journal_pone_0155246 crossref_primary_10_1080_02827581_2021_1992002 crossref_primary_10_1016_j_foreco_2015_04_012 crossref_primary_10_1016_j_foreco_2019_117557 crossref_primary_10_1093_treephys_tpy001 crossref_primary_10_1139_X10_230 crossref_primary_10_1016_j_foreco_2021_119940 crossref_primary_10_1016_j_envres_2021_111798 crossref_primary_10_1139_cjb_2017_0142 crossref_primary_10_3390_physiologia3040039 crossref_primary_10_1890_11_0587_1 crossref_primary_10_1139_cjfr_2019_0436 crossref_primary_10_1016_j_agrformet_2014_02_013 crossref_primary_10_1111_gcb_15543 crossref_primary_10_3389_fpls_2015_00297 crossref_primary_10_3390_app11114729 crossref_primary_10_1007_s13595_018_0778_7 crossref_primary_10_1093_treephys_tpr058 crossref_primary_10_1093_aobpla_plz056 |
Cites_doi | 10.1890/1051-0761(2001)011[0239:GPPIDF]2.0.CO;2 10.1046/j.1365-3040.2000.00516.x 10.1104/pp.010400 10.1016/j.agrformet.2008.06.013 10.1093/treephys/24.7.753 10.1046/j.1365-3040.1999.00513.x 10.1046/j.1365-3040.1999.00494.x 10.1093/oso/9780195171792.001.0001 10.1051/forest:19870101 10.1023/A:1026439226716 10.1046/j.1365-3040.2003.00965.x 10.1046/j.1365-3040.2002.00781.x 10.1051/forest:2006042 10.1051/forest:2000158 10.1016/j.agrformet.2005.01.004 10.1111/j.1469-8137.2006.01736.x 10.1093/treephys/22.2-3.91 10.1111/j.1365-3040.2005.01347.x 10.1007/PL00008875 10.1093/treephys/24.5.561 10.1093/treephys/22.2-3.205 10.1093/jxb/erl127 10.1104/pp.83.4.941 10.1016/j.geoderma.2004.11.018 10.1146/annurev.pp.39.060188.001333 10.1046/j.0016-8025.2001.00799.x 10.1051/forest:19980103 10.1046/j.0140-7791.2003.01082.x 10.1029/2006WR005541 10.1016/j.ecolmodel.2005.03.027 10.1046/j.1365-3040.2000.00625.x 10.1093/treephys/22.4.277 10.1111/j.1365-3040.2005.01397.x 10.1093/jxb/49.Special_Issue.407 10.1046/j.1469-8137.2003.00736.x 10.1051/forest:2003021 10.1111/j.1365-3040.1995.tb00371.x 10.1093/treephys/20.9.579 10.1051/forest:19980112 10.1093/jxb/48.1.1 10.1111/j.1365-3040.1987.tb02079.x 10.1093/treephys/28.10.1493 10.1046/j.1365-3040.2000.00554.x 10.1007/s004680050102 10.1046/j.1365-3040.2003.00975.x 10.1093/treephys/28.8.1179 10.1093/treephys/27.10.1375 10.1007/BF00329432 10.1111/j.1365-3040.1995.tb00570.x 10.1007/978-3-642-69213-0 10.1029/2005WR004181 10.1016/j.agrformet.2006.12.004 10.1093/treephys/18.6.393 10.1111/j.1365-3040.2005.01448.x 10.1007/s00442-004-1621-4 10.1093/treephys/28.4.579 10.1111/j.1365-3040.1993.tb00870.x 10.1051/forest:2002060 10.1046/j.0016-8025.2003.01058.x 10.1111/j.1365-3040.2005.01312.x 10.1093/treephys/18.8-9.633 10.1146/annurev.arplant.56.032604.144141 10.1093/treephys/28.4.559 10.1093/treephys/20.17.1205 10.1002/eco.20 10.1016/j.foreco.2004.10.059 10.1093/sjaf/32.3.101 10.1111/j.1365-3040.2007.01652.x |
ContentType | Journal Article |
Copyright | 2009 Blackwell Publishing Ltd 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 Blackwell Publishing Ltd – notice: 2009 INIST-CNRS |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7ST C1K SOI 7X8 |
DOI | 10.1111/j.1365-3040.2009.01981.x |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Environment Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 991 |
ExternalDocumentID | 10_1111_j_1365_3040_2009_01981_x 19344336 21691212 PCE1981 US201301652393 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABPTK ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG HGLYW OIG 08R IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7ST C1K SOI 7X8 |
ID | FETCH-LOGICAL-c4531-64bd3040f1443d3a3c1b4dd5a0a19379b4a5fabd6a7b6e6c3d9e424bcd0d3ccb3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 |
IngestDate | Fri Aug 16 01:21:37 EDT 2024 Sat Aug 17 03:10:30 EDT 2024 Thu Sep 26 18:24:34 EDT 2024 Sat Sep 28 07:45:02 EDT 2024 Sun Oct 22 16:05:21 EDT 2023 Sat Aug 24 00:57:05 EDT 2024 Wed Dec 27 19:15:00 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Relative humidity leaf phenology Vapor pressure Pinus taeda Hydraulic conductivity water potential conductivity Softwood forest tree Gymnospermae Root soil moisture Stomatal conductance Plant ecology Plant leaf Embolism coastal plain Drainage Soils Sensitivity Decoupling Plain Artificial forest stand LAI Coniferales Spermatophyta |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4531-64bd3040f1443d3a3c1b4dd5a0a19379b4a5fabd6a7b6e6c3d9e424bcd0d3ccb3 |
Notes | http://dx.doi.org/10.1111/j.1365-3040.2009.01981.x ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 19344336 |
PQID | 21249641 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_734131931 proquest_miscellaneous_21249641 crossref_primary_10_1111_j_1365_3040_2009_01981_x pubmed_primary_19344336 pascalfrancis_primary_21691212 wiley_primary_10_1111_j_1365_3040_2009_01981_x_PCE1981 fao_agris_US201301652393 |
PublicationCentury | 2000 |
PublicationDate | August 2009 |
PublicationDateYYYYMMDD | 2009-08-01 |
PublicationDate_xml | – month: 08 year: 2009 text: August 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: United States |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | 1998; 49 2005; 130 2007; 143 1997; 48 2004; 24 1988; 39 2008; 32 2008; 148 2006; 171 2007; 30 2008; 1 2003; 158 2005; 28 1987; 44 1998; 18 2006; 63 2000; 124 1997; 11 1987; 83 2000; 57 2008; 28 2006; 29 1984 2001; 11 1998; 55 2007; 27 1987; 10 2006; 57 2000; 23 2004; 141 2002; 7 2000; 20 2009 1998 2005; 41 1999; 22 2006; 191 2004 1992 1995; 18 2002; 25 1993; 16 2000; 226 2005; 126 2002; 22 2002; 128 2005; 206 2003; 26 1995; 101 2003; 60 2007; 43 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_72_1 Rundel P.W. (e_1_2_6_56_1) 1998 e_1_2_6_19_1 Noormets A. (e_1_2_6_46_1) 2009 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 Iiames J.S. (e_1_2_6_26_1) 2008; 32 e_1_2_6_20_1 Motulsky H. (e_1_2_6_43_1) 2004 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 Sperry J.S. (e_1_2_6_64_1) 2002; 25 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Jones H.G. (e_1_2_6_30_1) 1992 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 Maier C.A. (e_1_2_6_37_1) 2008; 28 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_69_1 |
References_xml | – year: 2009 – volume: 11 start-page: 412 year: 1997 end-page: 419 article-title: Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow publication-title: Trees – volume: 24 start-page: 561 year: 2004 end-page: 569 article-title: Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in publication-title: Tree Physiology – volume: 25 start-page: 265 year: 2002 end-page: 274 article-title: Co‐ordination of vapour and liquid phase water transport properties in plants publication-title: Plant, Cell & Environment – volume: 206 start-page: 153 year: 2005 end-page: 166 article-title: Variation in leaf conductance of silver birch: effects of irradiance, vapour pressure deficit, and leaf water status and position within a crown publication-title: Forest Ecology and Management – volume: 18 start-page: 689 year: 1995 end-page: 696 article-title: Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in publication-title: Plant, Cell & Environment – volume: 28 start-page: 660 year: 2005 end-page: 678 article-title: Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests publication-title: Plant, Cell & Environment – volume: 49 start-page: 407 year: 1998 end-page: 417 article-title: Stomatal heterogeneity publication-title: Journal of Experimental Botany – volume: 23 start-page: 71 year: 2000 end-page: 79 article-title: Xylem cavitation and hydraulic control of stomatal conductance in laurel ( L.) publication-title: Plant, Cell & Environment – volume: 28 start-page: 559 year: 2008 end-page: 577 article-title: Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation publication-title: Tree Physiology – volume: 30 start-page: 559 year: 2007 end-page: 569 article-title: Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas‐fir publication-title: Plant, Cell & Environment – volume: 22 start-page: 1515 year: 1999 end-page: 1526 article-title: Survey and synthesis of intra‐ and interspecific variation in stomatal sensitivity to vapour pressure deficit publication-title: Plant, Cell & Environment – volume: 29 start-page: 803 year: 2006 end-page: 809 article-title: Hydraulic design of pine needles: one‐dimensional optimization for single‐vein leaves publication-title: Plant, Cell & Environment – volume: 28 start-page: 1103 year: 2005 end-page: 1113 article-title: Axial and radial profiles in conductivities, water storage and native embolism in trunks of young and old growth ponderosa pine trees publication-title: Plant, Cell & Environment – volume: 26 start-page: 339 year: 2003 end-page: 350 article-title: Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model publication-title: Plant, Cell & Environment – volume: 57 start-page: 361 year: 2006 end-page: 381 article-title: Leaf hydraulics publication-title: Annual Review of Plant Biology – volume: 130 start-page: 39 year: 2005 end-page: 58 article-title: Vertical stratification of soil water storage and release dynamics in Pacific Northwest Coniferous Forests publication-title: Agricultural and Forest Meteorology – volume: 48 start-page: 1 year: 1997 end-page: 7 article-title: Water relations of plants in the field: some comments on the measurement of selected parameters publication-title: Journal of Experimental Botany – volume: 28 start-page: 1093 year: 2008 end-page: 1106 article-title: Branch growth and gas exchange in 13‐year‐old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization publication-title: Tree Physiology – volume: 7 start-page: 723 year: 2002 end-page: 752 article-title: Hydraulic architecture of trees: main concepts and results publication-title: Annals of Forest Science – volume: 23 start-page: 1055 year: 2000 end-page: 1066 article-title: Influence of nutrient versus water supply on hydraulic architecture and water balance in publication-title: Plant, Cell & Environment – volume: 20 start-page: 579 year: 2000 end-page: 589 article-title: Analysis of assumptions and errors in the calculation of stomatal conductance from sap‐flow measurements publication-title: Tree Physiology – volume: 29 start-page: 26 year: 2006 end-page: 35 article-title: Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status publication-title: Plant, Cell & Environment – volume: 28 start-page: 1493 year: 2008 end-page: 1504 article-title: Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees publication-title: Tree Physiology – year: 2004 – volume: 24 start-page: 753 year: 2004 end-page: 763 article-title: Age‐related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine publication-title: Tree Physiology – volume: 226 start-page: 45 year: 2000 end-page: 56 article-title: Water uptake by plant roots: an integration of views publication-title: Plant & Soil – volume: 41 start-page: W11404 year: 2005 article-title: Finite‐Element Tree Crown Hydrodynamics model (FETCH) using porous media flow within branching elements – a new representation of tree hydrodynamics publication-title: Water Resource Research – volume: 83 start-page: 941 year: 1987 end-page: 944 article-title: Sequential leaf senescence and correlatively controlled increases in xylem flow resistance publication-title: Plant Physiology – volume: 22 start-page: 1337 year: 1999 end-page: 1349 article-title: A relationship between humidity response, growth form and photosynthetic operating point in C plants publication-title: Plant, Cell & Environment – volume: 23 start-page: 407 year: 2000 end-page: 414 article-title: Dynamic changes in petiole specific conductivity in red maple ( L.), tulip tree ( L.) and northern fox grape ( L.) publication-title: Plant, Cell & Environment – volume: 43 start-page: 64 year: 2007 end-page: 70 article-title: Plant rooting strategies in water‐limited ecosystems publication-title: Water Resources Research – start-page: 296 year: 1998 end-page: 323 – volume: 10 start-page: 53 year: 1987 end-page: 57 article-title: Changes in hydraulic conductance of citrus trees following a reduction in wetted soil volume publication-title: Plant, Cell & Environment – volume: 191 start-page: 447 year: 2006 end-page: 468 article-title: The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate publication-title: Ecological Modeling – volume: 18 start-page: 393 year: 1998 end-page: 402 article-title: The response of to drought: stomatal control of transpiration and hydraulic conductance publication-title: Tree Physiology – volume: 18 start-page: 633 year: 1998 end-page: 644 article-title: Regulation of stomatal conductance and transpiration in forest canopies publication-title: Tree Physiology – volume: 141 start-page: 7 year: 2004 end-page: 16 article-title: Native root xylem embolism and stomatal closure in stands of Douglas‐fir and ponderosa pine: mitigation by hydraulic redistribution publication-title: Oecologia – volume: 26 start-page: 443 year: 2003 end-page: 450 article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees publication-title: Plant, Cell & Environment – volume: 20 start-page: 1205 year: 2000 end-page: 1207 article-title: Physiological responses of radiate pine roots to soil strength and soil water deficit publication-title: Tree Physiology – volume: 11 start-page: 239 year: 2001 end-page: 252 article-title: Gross primary productivity in Duke Forest: modeling synthesis of CO experiment and eddy‐flux data publication-title: Ecological Applications – volume: 26 start-page: 1633 year: 2003 end-page: 1645 article-title: Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels publication-title: Plant, Cell & Environment – volume: 57 start-page: 3963 year: 2006 end-page: 3977 article-title: Stay wet or else: three ways in which plants can adjust hydraulically to their environment publication-title: Journal of Experimental Botany – volume: 171 start-page: 106 year: 2006 end-page: 116 article-title: Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood? publication-title: New Phytologist – volume: 60 start-page: 297 year: 2003 end-page: 305 article-title: Water relations and hydraulic characteristics of three woody species co‐occurring in the same habitat publication-title: Annals of Forest Science – volume: 22 start-page: 91 year: 2002 end-page: 104 article-title: Age and position‐related in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas‐fir wood structure publication-title: Tree Physiology – volume: 148 start-page: 719 year: 2008 end-page: 732 article-title: Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements publication-title: Agricultural Forest and Meteorology – volume: 28 start-page: 1179 year: 2008 end-page: 1188 article-title: Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood publication-title: Tree Physiology – volume: 22 start-page: 205 year: 2002 end-page: 211 article-title: Canopy and hydraulic conductance in young, mature and old Douglas‐fir trees publication-title: Tree Physiology – volume: 128 start-page: 282 year: 2002 end-page: 290 article-title: Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut publication-title: Plant Physiology – volume: 63 start-page: 625 year: 2006 end-page: 644 article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences publication-title: Annals of Forest Science – volume: 22 start-page: 277 year: 2002 end-page: 283 article-title: Heat dissipation sensors of variable length for the measurement of sapflow in trees with deep sap wood publication-title: Tree Physiology – volume: 28 start-page: 579 year: 2008 end-page: 596 article-title: Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees publication-title: Tree Physiology – year: 1992 – volume: 1 start-page: 193 year: 2008 end-page: 204 article-title: Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains publication-title: Ecohydrology – volume: 27 start-page: 1375 year: 2007 end-page: 1387 article-title: Estimation of light interception properties of conifer shoots by an improved photographic method and a 3D model of shoot structure publication-title: Tree Physiology – volume: 55 start-page: 29 year: 1998 end-page: 46 article-title: Interpreting the variations in xylem sap flux density within the trunk of maritime pine ( .): application of a model for calculating water flows at tree and stand levels publication-title: Annales Des Sciences Forestieres – volume: 55 start-page: 191 year: 1998 end-page: 216 article-title: Scaling xylem sap flux and soil water balance and calculating variance publication-title: Annales des Sciences Forestieres – volume: 25 start-page: 2251 year: 2002 end-page: 2263 article-title: Water deficits and hydraulic limits to leaf water supply publication-title: Plant, Cell & Environment – volume: 16 start-page: 279 year: 1993 end-page: 287 article-title: Limitation to transpiration by hydraulic conductance and xylem cavitation in publication-title: Plant, Cell & Environment – year: 1984 – volume: 143 start-page: 123 year: 2007 end-page: 145 article-title: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003 publication-title: Agricultural and Forest Meteorology – volume: 18 start-page: 357 year: 1995 end-page: 364 article-title: A reinterpretation of stomatal responses to humidity publication-title: Plant, Cell & Environment – volume: 126 start-page: 129 year: 2005 end-page: 140 article-title: Mapping the global distribution of deep roots in relation to climate and soil characteristics publication-title: Geoderma – volume: 44 start-page: 1 year: 1987 end-page: 14 article-title: Sap flow measurement in Douglas fir stems using a new thermal method publication-title: Annales Des Sciences Forestieres – volume: 32 start-page: 101 year: 2008 end-page: 110 article-title: Validation of an integrated estimation of loblolly pine ( L.) leaf area index using two indirect optical methods in the southeastern United States publication-title: Southern Journal of Applied Forestry – volume: 57 start-page: 755 year: 2000 end-page: 765 article-title: A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index publication-title: Annales Des Sciences Forestieres – volume: 124 start-page: 495 year: 2000 end-page: 505 article-title: Influence of soil porosity on water use in publication-title: Oecologia – volume: 158 start-page: 295 year: 2003 end-page: 303 article-title: Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest publication-title: New Phytologist – volume: 39 start-page: 245 year: 1988 end-page: 265 article-title: Water transport in and to roots publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 26 start-page: 1343 year: 2003 end-page: 1356 article-title: The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species publication-title: Plant, Cell & Environment – volume: 101 start-page: 514 year: 1995 end-page: 522 article-title: Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties publication-title: Oecologia – ident: e_1_2_6_34_1 doi: 10.1890/1051-0761(2001)011[0239:GPPIDF]2.0.CO;2 – ident: e_1_2_6_59_1 doi: 10.1046/j.1365-3040.2000.00516.x – ident: e_1_2_6_9_1 doi: 10.1104/pp.010400 – ident: e_1_2_6_47_1 doi: 10.1016/j.agrformet.2008.06.013 – ident: e_1_2_6_28_1 doi: 10.1093/treephys/24.7.753 – ident: e_1_2_6_49_1 doi: 10.1046/j.1365-3040.1999.00513.x – start-page: 296 volume-title: Ecology and biogeography of Pinus year: 1998 ident: e_1_2_6_56_1 contributor: fullname: Rundel P.W. – ident: e_1_2_6_21_1 doi: 10.1046/j.1365-3040.1999.00494.x – volume-title: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting year: 2004 ident: e_1_2_6_43_1 doi: 10.1093/oso/9780195171792.001.0001 contributor: fullname: Motulsky H. – ident: e_1_2_6_22_1 doi: 10.1051/forest:19870101 – ident: e_1_2_6_65_1 doi: 10.1023/A:1026439226716 – ident: e_1_2_6_31_1 doi: 10.1046/j.1365-3040.2003.00965.x – ident: e_1_2_6_39_1 doi: 10.1046/j.1365-3040.2002.00781.x – ident: e_1_2_6_4_1 doi: 10.1051/forest:2006042 – ident: e_1_2_6_23_1 doi: 10.1051/forest:2000158 – ident: e_1_2_6_68_1 doi: 10.1016/j.agrformet.2005.01.004 – ident: e_1_2_6_54_1 doi: 10.1111/j.1469-8137.2006.01736.x – ident: e_1_2_6_13_1 doi: 10.1093/treephys/22.2-3.91 – ident: e_1_2_6_16_1 doi: 10.1111/j.1365-3040.2005.01347.x – ident: e_1_2_6_25_1 doi: 10.1007/PL00008875 – ident: e_1_2_6_2_1 doi: 10.1093/treephys/24.5.561 – ident: e_1_2_6_52_1 doi: 10.1093/treephys/22.2-3.205 – ident: e_1_2_6_38_1 doi: 10.1093/jxb/erl127 – ident: e_1_2_6_45_1 doi: 10.1104/pp.83.4.941 – ident: e_1_2_6_60_1 doi: 10.1016/j.geoderma.2004.11.018 – ident: e_1_2_6_50_1 doi: 10.1146/annurev.pp.39.060188.001333 – volume: 25 start-page: 2251 year: 2002 ident: e_1_2_6_64_1 article-title: Water deficits and hydraulic limits to leaf water supply publication-title: Plant, Cell & Environment doi: 10.1046/j.0016-8025.2001.00799.x contributor: fullname: Sperry J.S. – ident: e_1_2_6_33_1 doi: 10.1051/forest:19980103 – ident: e_1_2_6_7_1 doi: 10.1046/j.0140-7791.2003.01082.x – ident: e_1_2_6_11_1 doi: 10.1029/2006WR005541 – ident: e_1_2_6_8_1 doi: 10.1016/j.ecolmodel.2005.03.027 – ident: e_1_2_6_19_1 doi: 10.1046/j.1365-3040.2000.00625.x – ident: e_1_2_6_29_1 doi: 10.1093/treephys/22.4.277 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-3040.2005.01397.x – ident: e_1_2_6_42_1 doi: 10.1093/jxb/49.Special_Issue.407 – volume-title: Global Change Biology year: 2009 ident: e_1_2_6_46_1 contributor: fullname: Noormets A. – ident: e_1_2_6_5_1 doi: 10.1046/j.1469-8137.2003.00736.x – ident: e_1_2_6_44_1 doi: 10.1051/forest:2003021 – ident: e_1_2_6_41_1 doi: 10.1111/j.1365-3040.1995.tb00371.x – ident: e_1_2_6_18_1 doi: 10.1093/treephys/20.9.579 – ident: e_1_2_6_48_1 doi: 10.1051/forest:19980112 – ident: e_1_2_6_53_1 doi: 10.1093/jxb/48.1.1 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-3040.1987.tb02079.x – ident: e_1_2_6_14_1 doi: 10.1093/treephys/28.10.1493 – ident: e_1_2_6_72_1 doi: 10.1046/j.1365-3040.2000.00554.x – ident: e_1_2_6_51_1 doi: 10.1007/s004680050102 – ident: e_1_2_6_6_1 doi: 10.1046/j.1365-3040.2003.00975.x – ident: e_1_2_6_55_1 doi: 10.1093/treephys/28.8.1179 – ident: e_1_2_6_66_1 doi: 10.1093/treephys/27.10.1375 – ident: e_1_2_6_40_1 doi: 10.1007/BF00329432 – volume: 28 start-page: 1093 year: 2008 ident: e_1_2_6_37_1 article-title: Branch growth and gas exchange in 13‐year‐old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization publication-title: Tree Physiology contributor: fullname: Maier C.A. – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-3040.1995.tb00570.x – ident: e_1_2_6_62_1 doi: 10.1007/978-3-642-69213-0 – ident: e_1_2_6_3_1 doi: 10.1029/2005WR004181 – ident: e_1_2_6_24_1 doi: 10.1016/j.agrformet.2006.12.004 – ident: e_1_2_6_27_1 doi: 10.1093/treephys/18.6.393 – ident: e_1_2_6_73_1 doi: 10.1111/j.1365-3040.2005.01448.x – ident: e_1_2_6_15_1 doi: 10.1007/s00442-004-1621-4 – ident: e_1_2_6_67_1 doi: 10.1093/treephys/28.4.579 – ident: e_1_2_6_63_1 doi: 10.1111/j.1365-3040.1993.tb00870.x – ident: e_1_2_6_12_1 doi: 10.1051/forest:2002060 – ident: e_1_2_6_58_1 doi: 10.1046/j.0016-8025.2003.01058.x – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-3040.2005.01312.x – ident: e_1_2_6_69_1 doi: 10.1093/treephys/18.8-9.633 – volume-title: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology year: 1992 ident: e_1_2_6_30_1 contributor: fullname: Jones H.G. – ident: e_1_2_6_57_1 doi: 10.1146/annurev.arplant.56.032604.144141 – ident: e_1_2_6_32_1 doi: 10.1093/treephys/28.4.559 – ident: e_1_2_6_71_1 doi: 10.1093/treephys/20.17.1205 – ident: e_1_2_6_35_1 doi: 10.1002/eco.20 – ident: e_1_2_6_61_1 doi: 10.1016/j.foreco.2004.10.059 – volume: 32 start-page: 101 year: 2008 ident: e_1_2_6_26_1 article-title: Validation of an integrated estimation of loblolly pine (Pinus taeda L.) leaf area index using two indirect optical methods in the southeastern United States publication-title: Southern Journal of Applied Forestry doi: 10.1093/sjaf/32.3.101 contributor: fullname: Iiames J.S. – ident: e_1_2_6_70_1 doi: 10.1111/j.1365-3040.2007.01652.x |
SSID | ssj0001479 |
Score | 2.3746564 |
Snippet | The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine... ABSTRACT The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in... The study examined the relationships between whole tree hydraulic conductance (K(tree)) and the conductance in roots (K(root)) and leaves (K(leaf)) in loblolly... ABSTRACT The study examined the relationships between whole tree hydraulic conductance ( K tree ) and the conductance in roots ( K root ) and leaves ( K leaf )... ABSTRACTThe study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in... |
SourceID | proquest crossref pubmed pascalfrancis wiley fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 980 |
SubjectTerms | Biological and medical sciences coastal plain conductivity embolism Fundamental and applied biological sciences. Psychology LAI leaf phenology Pinus taeda Pinus taeda - physiology Plant Leaves - physiology Plant Roots - physiology Plant Stomata - physiology Plant Transpiration - physiology Seasons Soil - analysis soil moisture soil water Vapor Pressure Water - metabolism water potential |
Title | Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3040.2009.01981.x https://www.ncbi.nlm.nih.gov/pubmed/19344336 https://search.proquest.com/docview/21249641 https://search.proquest.com/docview/734131931 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokLj_JoeJQ5cM1qvfY6yRH6UIUEQsBKvUXj2CmrhmS1SRDLX-PPMRPvtl1UJIS4RIkysezJ2P7G_jwjxCstaZbJHHWkolSx9lkap6mSsdUZubiE6NOBTfjuvTmZ6ben09M1_4nPwoT4EBcLbtwzhvGaOzjadruTM0OL3PHxOuwkFz5iPClVwuyuw4-XkaSkDmH3mM2YJJncJvVcW9DWTHWzxIZ5k9iS6sqQ8-I6ULqNcYdJ6vieON80L3BTzkd9Z0fFj98iP_6f9t8Xd9dYFl4H43sgbvh6V9wO2S1Xu-LWm4aQ5-qh-HlIPm7PR3_PgPAmzDeJUaApofJYAtYOCMJ38GXllthX8wLIT-dQtGyULTQ1EEj9yktNV18M3827Flqm4Yc8GNA18A0XVDcYOL790oPzHCejAyTJZl6B4_UBqgYg3SJpwkHV2IrTbsOCHmFRYTiSVT8Ss-Ojzwcn8TppRFxoGk9io61jnZTkKSqnUBXSauemOEbCqklmNU5LtM5gYo03hXKZ1xNtCzd2qiiseix26qb2ewLSIiFAqh1NGHTVCZLgRJbGean0GHUk5MZA8kWIDZJf8ano7-RcE870meXD38m_R2KPLCnHMxrC89mnCW8cSzPlQHSR2N8yr4syJxzQiCBGJF5u7C2nQYB3drD2Td-SBHnRRstIwB8kEkYrpAASeRIs9bLKmSJVKRMJM9jbX7cl_3BwxHdP__XDZ-JO2JxjPuVzsdMte_-CMF5n94fe-wtaP0Lc |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggOCFjzFY-NjugddUTe06ySPsQwW2CcEq7c2yY2dUhKRqEkT51_jnuIvbbUFDQoiXKlUulnO5s39nn3_H2CsR4SyTWnSkLOehcGkSJgmPQiNSDHER0SddNuHxiZxMxbuz8dmqHBCdhfH8EBcLbuQZ3XhNDk4L0n0vpxQtjMeHK95Jan2AgPIWej-nOg77Hy-5pCLhifconzGO06if1nNtS7256mauK8qc1DUqL_dVL66DpX2U201Thw9YsX5Bn53yZdA2ZpD9-I378T9p4CG7v4Kz8Nrb3yN2w5Wb7I4vcLncZLffVAg-l4_Zz30Mc1s6_XsOCDlhtq6NAlUOhdM56NICovgGPi_tQrfFLAMM1YmNluyyhqoExKlfabXp6o3uuVlTQ02Z-L4UBjQVfNNz7Bt0ab7twoF1RJXRgEbJalaApSUC7AZovNSoCgtFZQqqvA1z_AvzQvtTWeUWmx4enO5NwlXdiDATOKSEUhhLOskxWOSWa55FRlg71kONcDVOjdDjXBsrdWykkxm3qRMjYTI7tDzLDH_CNsqqdNsMkixGTCoszhn4K2KNgqMol9ZFXAy1CFi0thA19_Qg6kpYhV9HUU-o2Gequq-jvgdsG01J6XMcxdX004j2jiM5Ji66gO307OuizRFxGiHKCNju2uAUjgO0uaNLV7U1SmAgLUUUMPiDREyABRWAIk-9qV52OeWoKi4DJjuD--t3UR_2Dujq2b8-uMvuTk6Pj9TR25P3z9k9v1dH6ZUv2EazaN1LhHyN2elc-RdnQUb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPMSFR4E2PNo5cM1qvfY6yRHarsqrqoCVeovs2Cmrpkm0SRDLX-PPMRPvtl1UJIS4rLLKxHImM_Y39vgbxl5JjrNMYtGRslyE0iVxGMeCh0YmGOIioo_7bMKPR-pwKt-djE-W-U90FsbzQ1wsuJFn9OM1OXht83UnpwwtDMeHS9pJanyAePKWVAiECSB9uqSS4tLz7lE6YxQlfD2r59qW1qaqm7muKHFSN6i73Be9uA6VroPcfpaaPGBnq_fzySlng641g-zHb9SP_0cBD9n9JZiF1976HrEbrtxkd3x5y8Umu_2mQui5eMx-7mOQ29HZ31NAwAmzVWUUqHIonM5BlxYQw7fwdWHnuitmGWCgTly0ZJUNVCUgSj2ntaarN_rnZm0DDeXh-0IY0FbwTdfYN-iTfLu5A-uIKKMFjZLVrABLCwTYDdB4qVETForKFFR3G2r8C3Wh_Zms8gmbTg6-7B2Gy6oRYSZxQAmVNJZ0kmOoKKzQIuNGWjvWQ41gNUqM1ONcG6t0ZJRTmbCJkyNpMju0IsuMeMo2yqp02wziLEJEKi3OGPgrI42CI54r67iQQy0DxlcGktaeHCS9ElTh10mpJ1TqM0n7r5N-D9g2WlKqT3EMT6efR7RzzNWYmOgCtrNmXhdtjojRCDFGwHZX9pbiKEBbO7p0VdegBIbRSvKAwR8kIoIrqAAU2fKWetnlRKCqhAqY6u3tr98lPd47oKtn__rgLrt7vD9JP7w9ev-c3fMbdZRb-YJttPPOvUS815qd3pF_AUyERaM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoupling+the+influence+of+leaf+and+root+hydraulic+conductances+on+stomatal+conductance+and+its+sensitivity+to+vapour+pressure+deficit+as+soil+dries+in+a+drained+loblolly+pine+plantation&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Domec%2C+Jean-Christophe&rft.au=Noormets%2C+Asko&rft.au=King%2C+John+S&rft.au=Sun%2C+Ge&rft.date=2009-08-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=32&rft.issue=8&rft.spage=980&rft.epage=991&rft_id=info:doi/10.1111%2Fj.1365-3040.2009.01981.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |