A Hydrogen‐Bonded yet Hydrophobic Porous Molecular Crystal for Molecular‐Sieving‐like Separation of Butane and Isobutane

Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bo...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 51; pp. 23322 - 23328
Main Authors Ye, Zi‐Ming, Zhang, Xue‐Wen, Liao, Pei‐Qin, Xie, Yi, Xu, Yan‐Tong, Zhang, Xue‐Feng, Wang, Chao, Liu, De‐Xuan, Huang, Ning‐Yu, Qiu, Ze‐Hao, Zhou, Dong‐Dong, He, Chun‐Ting, Zhang, Jie‐Peng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 14.12.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role. A rigid hydrogen‐bonded porous molecular crystal shows not only exceptionally high hydrophobicity and chemical stability, but also molecular‐sieving‐like separation of butane/isobutane associated with a trivial guest‐induced structural transformation revealed by powder/single‐crystal X‐ray diffraction and computational simulations.
AbstractList Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role.Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role.
Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role.
Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role. A rigid hydrogen‐bonded porous molecular crystal shows not only exceptionally high hydrophobicity and chemical stability, but also molecular‐sieving‐like separation of butane/isobutane associated with a trivial guest‐induced structural transformation revealed by powder/single‐crystal X‐ray diffraction and computational simulations.
Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear Ag I complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role.
Author Huang, Ning‐Yu
Zhou, Dong‐Dong
Zhang, Jie‐Peng
Liao, Pei‐Qin
Xie, Yi
Liu, De‐Xuan
Ye, Zi‐Ming
Zhang, Xue‐Wen
Wang, Chao
Zhang, Xue‐Feng
Qiu, Ze‐Hao
Xu, Yan‐Tong
He, Chun‐Ting
Author_xml – sequence: 1
  givenname: Zi‐Ming
  surname: Ye
  fullname: Ye, Zi‐Ming
  organization: Sun Yat-Sen University
– sequence: 2
  givenname: Xue‐Wen
  surname: Zhang
  fullname: Zhang, Xue‐Wen
  organization: Sun Yat-Sen University
– sequence: 3
  givenname: Pei‐Qin
  surname: Liao
  fullname: Liao, Pei‐Qin
  organization: Sun Yat-Sen University
– sequence: 4
  givenname: Yi
  surname: Xie
  fullname: Xie, Yi
  organization: Sun Yat-Sen University
– sequence: 5
  givenname: Yan‐Tong
  surname: Xu
  fullname: Xu, Yan‐Tong
  organization: Sun Yat-Sen University
– sequence: 6
  givenname: Xue‐Feng
  surname: Zhang
  fullname: Zhang, Xue‐Feng
  organization: Sun Yat-Sen University
– sequence: 7
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Sun Yat-Sen University
– sequence: 8
  givenname: De‐Xuan
  surname: Liu
  fullname: Liu, De‐Xuan
  organization: Sun Yat-Sen University
– sequence: 9
  givenname: Ning‐Yu
  surname: Huang
  fullname: Huang, Ning‐Yu
  organization: Sun Yat-Sen University
– sequence: 10
  givenname: Ze‐Hao
  surname: Qiu
  fullname: Qiu, Ze‐Hao
  organization: Sun Yat-Sen University
– sequence: 11
  givenname: Dong‐Dong
  surname: Zhou
  fullname: Zhou, Dong‐Dong
  organization: Sun Yat-Sen University
– sequence: 12
  givenname: Chun‐Ting
  surname: He
  fullname: He, Chun‐Ting
  email: hct@jxnu.edu.cn
  organization: Ministry of Education
– sequence: 13
  givenname: Jie‐Peng
  orcidid: 0000-0002-2614-2774
  surname: Zhang
  fullname: Zhang, Jie‐Peng
  email: zhangjp7@mail.sysu.edu.cn
  organization: Sun Yat-Sen University
BookMark eNqFkc1O3DAQgC1EpQLttWdLvXDJdvyTxDkuKygr0R8Jeo6cZAymxl7sBJRL1UfoM_ZJalhUJKSqF3s8-j57xrNPdn3wSMg7BgsGwD9ob3HBgQNjAmCH7LGSs0LUtdjNsRSiqFXJXpP9lK4zrxRUe-THkp7OQwyX6H___HUU_IADnXHcZjdXobM9_RpimBL9FBz2k9ORruKcRu2oCfE5m_1zi3fWX-bI2e9Iz3Gjox5t8DQYejSN2iPVfqDrFLrH0xvyymiX8O3TfkC-nRxfrE6Lsy8f16vlWdHLUkDRAWuYYVxrQGm6yqhSMS0rZMA7CYOSvMbOSC1yW7wbqrqWpukVIO9EqYw4IIfbezcx3E6YxvbGph6dyzXk1louJTSQlzqj71-g12GKPleXqaquZKVkk6nFlupjSCmiaTfR3ug4twzah3G0D-No_44jC_KF0Nvx8W_GqK37t9ZstXvrcP7PI-3y8_r42f0D-iGk8A
CitedBy_id crossref_primary_10_1002_anie_202218596
crossref_primary_10_1002_anie_202115956
crossref_primary_10_1021_acs_accounts_2c00418
crossref_primary_10_1038_s41563_023_01729_4
crossref_primary_10_1021_jacs_3c13480
crossref_primary_10_1002_ange_202310225
crossref_primary_10_1016_j_inoche_2021_108741
crossref_primary_10_1002_ange_202106665
crossref_primary_10_1016_j_memsci_2021_119521
crossref_primary_10_1016_j_scib_2022_05_009
crossref_primary_10_1002_smtd_202500027
crossref_primary_10_1016_j_jcis_2024_11_158
crossref_primary_10_1002_anie_202201646
crossref_primary_10_1016_j_mtener_2024_101705
crossref_primary_10_1002_anie_202110057
crossref_primary_10_1002_adfm_202416384
crossref_primary_10_1021_acs_cgd_1c01382
crossref_primary_10_1021_acs_chemmater_4c02251
crossref_primary_10_1002_ange_202107550
crossref_primary_10_1002_ange_202115956
crossref_primary_10_1007_s11426_024_2377_9
crossref_primary_10_1002_ange_202319674
crossref_primary_10_1002_anie_202211482
crossref_primary_10_1002_chem_202102148
crossref_primary_10_1007_s11426_022_1555_9
crossref_primary_10_1016_j_ccr_2022_214714
crossref_primary_10_1039_D1TA09194H
crossref_primary_10_1038_s41467_024_45081_w
crossref_primary_10_1016_j_eng_2022_03_022
crossref_primary_10_1002_cplu_202400756
crossref_primary_10_1002_chem_202303580
crossref_primary_10_1021_acs_cgd_1c00942
crossref_primary_10_1002_ange_202201646
crossref_primary_10_1016_j_jece_2023_111027
crossref_primary_10_1002_anie_202107550
crossref_primary_10_1007_s11426_022_1304_1
crossref_primary_10_1002_ange_202211482
crossref_primary_10_1002_anie_202319674
crossref_primary_10_1002_cjoc_202100291
crossref_primary_10_2139_ssrn_4076661
crossref_primary_10_1016_j_ccr_2024_216293
crossref_primary_10_1002_ange_202218596
crossref_primary_10_1021_jacs_2c02598
crossref_primary_10_1016_j_powtec_2024_119851
crossref_primary_10_1002_aic_17568
crossref_primary_10_1016_j_ccr_2021_214241
crossref_primary_10_1002_anie_202303671
crossref_primary_10_1002_anie_202310225
crossref_primary_10_1021_accountsmr_4c00316
crossref_primary_10_1021_acs_cgd_3c00899
crossref_primary_10_1021_acs_cgd_2c00182
crossref_primary_10_1002_anie_202404452
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1002_ange_202404452
crossref_primary_10_1002_anie_202106665
crossref_primary_10_1002_ange_202110057
crossref_primary_10_1002_aic_18443
crossref_primary_10_1016_j_seppur_2023_125025
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1002_ange_202303671
crossref_primary_10_1039_D2TA07042A
crossref_primary_10_1002_zaac_202100152
Cites_doi 10.1002/ange.201510637
10.1126/science.aam7232
10.1002/ange.201603934
10.1021/ja973906m
10.1021/ja800550a
10.1002/adma.201900820
10.1002/ange.201803244
10.1038/s41563-019-0427-z
10.1021/acs.cgd.9b00582
10.1002/cssc.201700657
10.1007/s12039-019-1648-z
10.1016/j.enchem.2019.100016
10.1002/ange.201800354
10.1002/ange.201909732
10.1038/ncomms9697
10.1021/cs300048u
10.1021/ja904658p
10.1002/anie.201506345
10.1021/jacs.5b05644
10.1002/anie.201811638
10.1021/jp911930k
10.1002/anie.201902147
10.1002/ange.202004535
10.1039/C5CS00292C
10.1007/s11426-017-9045-9
10.1002/anie.201603934
10.1002/ange.201708769
10.1002/anie.201510637
10.1021/acs.inorgchem.0c00022
10.1021/acs.cgd.8b00153
10.1002/anie.201800354
10.1021/jp0489875
10.1126/science.aar6833
10.1002/anie.201708769
10.1021/cr300302b
10.1021/acs.accounts.6b00526
10.1002/anie.201404306
10.1002/anie.201902209
10.1002/anie.202004535
10.1002/ange.201811638
10.1038/s41563-018-0206-2
10.1016/j.scib.2019.05.011
10.1039/b802426j
10.1021/acsami.7b06010
10.1093/nsr/nwx127
10.1021/ja4054948
10.1021/ja507555j
10.1021/ja1042935
10.1002/anie.201803244
10.1002/ange.201902209
10.1039/C8TA02211A
10.1016/j.ccr.2019.03.008
10.1002/ange.201404306
10.1038/nature15732
10.1016/j.jngse.2015.09.023
10.1021/acs.inorgchem.9b00006
10.1021/jacs.5b03727
10.1021/jacs.0c01769
10.1039/C8CC04824J
10.1016/S2095-4956(14)60171-6
10.1021/acs.langmuir.8b03085
10.1039/C8CS00155C
10.1021/ja305663k
10.1039/C4CS00129J
10.1039/C8CC07227B
10.1038/s41467-019-10575-5
10.34133/2019/9463719
10.1002/aic.16236
10.1007/s40843-019-9427-5
10.1002/ange.201506345
10.1021/jacs.6b02968
10.1021/ja2066016
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202011300
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 23328
ExternalDocumentID 10_1002_anie_202011300
ANIE202011300
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21731007; 21821003; 21901089
– fundername: Young Elite Scientists Sponsorship Program
– fundername: Guangdong Pearl River Talents Program
  funderid: 2017BT01C161
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4530-b0191f12aa0e4fb6f8581a46e102b40d8427ebf4a32882bd6774f9c80e2b358f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:14:19 EDT 2025
Fri Jul 25 10:39:30 EDT 2025
Tue Jul 01 01:17:47 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed Jan 22 16:31:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4530-b0191f12aa0e4fb6f8581a46e102b40d8427ebf4a32882bd6774f9c80e2b358f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2614-2774
PQID 2467646849
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2440904407
proquest_journals_2467646849
crossref_primary_10_1002_anie_202011300
crossref_citationtrail_10_1002_anie_202011300
wiley_primary_10_1002_anie_202011300_ANIE202011300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 14, 2020
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: December 14, 2020
  day: 14
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2019; 2019
2019; 10
2019; 58
2020 2020; 59 132
2020; 59
2019; 19
2019; 18
2017; 356
2014; 23
2014; 136
2017; 9
2019; 363
2018; 6
2019; 62
2012; 134
2018; 5
2015; 137
2019; 64
2018 2018; 57 130
2010; 114
2015; 44
2005; 109
2015 2015; 54 127
2018; 34
1998; 120
2015; 6
2017; 60
2019; 31
2020; 142
2019; 1
2019; 389
2015; 527
2017 2017; 56 129
2009; 131
2014; 114
2019 2019; 58 131
2011; 133
2014; 43
2017; 50
2018; 18
2018; 17
2012; 2
2015; 27
2016 2016; 55 128
2017; 10
2019; 48
2010; 132
2013; 135
2016; 138
2020; 66
2018; 54
2009; 38
2008; 130
2019; 131
e_1_2_6_51_2
e_1_2_6_74_3
e_1_2_6_76_1
e_1_2_6_53_2
e_1_2_6_74_2
e_1_2_6_30_2
e_1_2_6_70_3
e_1_2_6_72_1
e_1_2_6_70_2
e_1_2_6_17_3
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_34_3
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_38_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_78_2
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_66_3
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_52_1
e_1_2_6_75_1
e_1_2_6_31_1
e_1_2_6_71_1
e_1_2_6_18_2
e_1_2_6_18_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_33_3
e_1_2_6_58_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_16_1
e_1_2_6_63_1
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_65_1
e_1_2_6_40_2
e_1_2_6_61_1
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_42_3
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 57 130
  start-page: 7691 7817
  year: 2018 2018
  end-page: 7696 7822
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58
  start-page: 3944
  year: 2019
  end-page: 3949
  publication-title: Inorg. Chem.
– volume: 389
  start-page: 161
  year: 2019
  end-page: 188
  publication-title: Coord. Chem. Rev.
– volume: 130
  start-page: 6010
  year: 2008
  end-page: 6017
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 14546
  year: 2018
  end-page: 14551
  publication-title: Langmuir
– volume: 137
  start-page: 9963
  year: 2015
  end-page: 9970
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 453
  year: 2014
  publication-title: J. Energy Chem.
– volume: 356
  start-page: 1193
  year: 2017
  publication-title: Science
– volume: 138
  start-page: 6617
  year: 2016
  end-page: 6628
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 964
  year: 2019
  end-page: 967
  publication-title: Sci. Bull.
– volume: 55 128
  start-page: 3378 3439
  year: 2016 2016
  end-page: 3381 3442
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 109
  start-page: 2164
  year: 2005
  end-page: 2175
  publication-title: J. Phys. Chem. B
– volume: 131
  start-page: 13216
  year: 2009
  end-page: 13217
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 683
  year: 2017
  end-page: 684
  publication-title: Sci. China Chem.
– volume: 58 131
  start-page: 327 333
  year: 2019 2019
  end-page: 331 337
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 14353 14561
  year: 2015 2015
  end-page: 14358 14566
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 14570
  year: 2011
  end-page: 14573
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 14635
  year: 2012
  end-page: 14637
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 72
  year: 2019
  end-page: 85
  publication-title: J. Chem. Sci.
– volume: 27
  start-page: 763
  year: 2015
  end-page: 768
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 19
  start-page: 5184
  year: 2019
  end-page: 5188
  publication-title: Cryst. Growth Des.
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 54
  start-page: 13391
  year: 2018
  end-page: 13394
  publication-title: Chem. Commun.
– volume: 363
  start-page: 387
  year: 2019
  publication-title: Science
– volume: 59 132
  start-page: 15325 15438
  year: 2020 2020
  end-page: 15341 15456
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 7217
  year: 2015
  end-page: 7223
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 5509
  year: 1998
  end-page: 5516
  publication-title: J. Am. Chem. Soc.
– volume: 527
  start-page: 357
  year: 2015
  end-page: 361
  publication-title: Nature
– volume: 50
  start-page: 407
  year: 2017
  end-page: 417
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 2555
  year: 2018
  end-page: 2562
  publication-title: Cryst. Growth Des.
– volume: 17
  start-page: 1128
  year: 2018
  end-page: 1133
  publication-title: Nat. Mater.
– volume: 66
  year: 2020
  publication-title: AIChE J.
– volume: 142
  start-page: 6925
  year: 2020
  end-page: 6929
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 16282 16500
  year: 2017 2017
  end-page: 16287 16505
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 33521
  year: 2017
  end-page: 33527
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58 131
  start-page: 11160 11278
  year: 2019 2019
  end-page: 11170 11288
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 5694
  year: 2010
  end-page: 5699
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 907
  year: 2018
  end-page: 919
  publication-title: Natl. Sci. Rev.
– volume: 6
  start-page: 14231
  year: 2018
  end-page: 14239
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 7128
  year: 2015
  end-page: 7154
  publication-title: Chem. Soc. Rev.
– volume: 62
  start-page: 1315
  year: 2019
  end-page: 1322
  publication-title: Sci. China Mater.
– volume: 58 131
  start-page: 7692 7774
  year: 2019 2019
  end-page: 7696 7778
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 10950
  year: 2013
  end-page: 10953
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 11228 11398
  year: 2018 2018
  end-page: 11232 11402
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 18
  start-page: 994
  year: 2019
  end-page: 998
  publication-title: Nat. Mater.
– volume: 55 128
  start-page: 10268 10424
  year: 2016 2016
  end-page: 10272 10428
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 1203
  year: 2012
  end-page: 1210
  publication-title: ACS Catal.
– volume: 6
  start-page: 8697
  year: 2015
  publication-title: Nat. Commun.
– volume: 48
  start-page: 1362
  year: 2019
  end-page: 1389
  publication-title: Chem. Soc. Rev.
– volume: 114
  start-page: 981
  year: 2014
  end-page: 1019
  publication-title: Chem. Rev.
– volume: 54
  start-page: 9414
  year: 2018
  end-page: 9417
  publication-title: Chem. Commun.
– volume: 136
  start-page: 14883
  year: 2014
  end-page: 14895
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 14457
  year: 2010
  end-page: 14469
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3947
  year: 2017
  end-page: 3963
  publication-title: ChemSusChem
– volume: 10
  start-page: 3074
  year: 2019
  publication-title: Nat. Commun.
– volume: 43
  start-page: 5789
  year: 2014
  end-page: 5814
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 6047
  year: 2020
  end-page: 6052
  publication-title: Inorg. Chem.
– volume: 53 126
  start-page: 8225 8364
  year: 2014 2014
  end-page: 8230 8369
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_6_23_1
– ident: e_1_2_6_42_3
  doi: 10.1002/ange.201510637
– ident: e_1_2_6_78_2
  doi: 10.1126/science.aam7232
– ident: e_1_2_6_70_3
  doi: 10.1002/ange.201603934
– ident: e_1_2_6_71_1
  doi: 10.1021/ja973906m
– ident: e_1_2_6_68_1
– ident: e_1_2_6_76_1
– ident: e_1_2_6_31_1
– ident: e_1_2_6_67_2
  doi: 10.1021/ja800550a
– ident: e_1_2_6_53_2
  doi: 10.1002/adma.201900820
– ident: e_1_2_6_58_3
  doi: 10.1002/ange.201803244
– ident: e_1_2_6_22_2
  doi: 10.1038/s41563-019-0427-z
– ident: e_1_2_6_64_1
  doi: 10.1021/acs.cgd.9b00582
– ident: e_1_2_6_3_2
  doi: 10.1002/cssc.201700657
– ident: e_1_2_6_59_2
  doi: 10.1007/s12039-019-1648-z
– ident: e_1_2_6_10_2
  doi: 10.1016/j.enchem.2019.100016
– ident: e_1_2_6_33_3
  doi: 10.1002/ange.201800354
– ident: e_1_2_6_34_3
  doi: 10.1002/ange.201909732
– ident: e_1_2_6_77_2
  doi: 10.1038/ncomms9697
– ident: e_1_2_6_6_2
  doi: 10.1021/cs300048u
– ident: e_1_2_6_62_1
  doi: 10.1021/ja904658p
– ident: e_1_2_6_4_1
– ident: e_1_2_6_17_2
  doi: 10.1002/anie.201506345
– ident: e_1_2_6_40_2
  doi: 10.1021/jacs.5b05644
– ident: e_1_2_6_9_2
  doi: 10.1002/anie.201811638
– ident: e_1_2_6_57_2
  doi: 10.1021/jp911930k
– ident: e_1_2_6_34_2
  doi: 10.1002/anie.201902147
– ident: e_1_2_6_74_3
  doi: 10.1002/ange.202004535
– ident: e_1_2_6_14_2
  doi: 10.1039/C5CS00292C
– ident: e_1_2_6_44_1
– ident: e_1_2_6_37_2
  doi: 10.1007/s11426-017-9045-9
– ident: e_1_2_6_70_2
  doi: 10.1002/anie.201603934
– ident: e_1_2_6_18_3
  doi: 10.1002/ange.201708769
– ident: e_1_2_6_42_2
  doi: 10.1002/anie.201510637
– ident: e_1_2_6_72_1
– ident: e_1_2_6_47_1
– ident: e_1_2_6_30_2
  doi: 10.1021/acs.inorgchem.0c00022
– ident: e_1_2_6_35_2
  doi: 10.1021/acs.cgd.8b00153
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.201800354
– ident: e_1_2_6_5_2
  doi: 10.1021/jp0489875
– ident: e_1_2_6_46_2
  doi: 10.1126/science.aar6833
– ident: e_1_2_6_18_2
  doi: 10.1002/anie.201708769
– ident: e_1_2_6_2_2
  doi: 10.1021/cr300302b
– ident: e_1_2_6_25_2
  doi: 10.1021/acs.accounts.6b00526
– ident: e_1_2_6_63_1
  doi: 10.1002/anie.201404306
– ident: e_1_2_6_66_2
  doi: 10.1002/anie.201902209
– ident: e_1_2_6_74_2
  doi: 10.1002/anie.202004535
– ident: e_1_2_6_65_1
– ident: e_1_2_6_9_3
  doi: 10.1002/ange.201811638
– ident: e_1_2_6_19_2
  doi: 10.1038/s41563-018-0206-2
– ident: e_1_2_6_1_1
– ident: e_1_2_6_61_1
  doi: 10.1016/j.scib.2019.05.011
– ident: e_1_2_6_8_2
  doi: 10.1039/b802426j
– ident: e_1_2_6_50_2
  doi: 10.1021/acsami.7b06010
– ident: e_1_2_6_28_2
  doi: 10.1093/nsr/nwx127
– ident: e_1_2_6_48_2
  doi: 10.1021/ja4054948
– ident: e_1_2_6_49_2
  doi: 10.1021/ja507555j
– ident: e_1_2_6_56_1
– ident: e_1_2_6_36_2
  doi: 10.1021/ja1042935
– ident: e_1_2_6_58_2
  doi: 10.1002/anie.201803244
– ident: e_1_2_6_7_1
– ident: e_1_2_6_66_3
  doi: 10.1002/ange.201902209
– ident: e_1_2_6_41_2
  doi: 10.1039/C8TA02211A
– ident: e_1_2_6_29_2
  doi: 10.1016/j.ccr.2019.03.008
– ident: e_1_2_6_52_1
– ident: e_1_2_6_63_2
  doi: 10.1002/ange.201404306
– ident: e_1_2_6_73_2
  doi: 10.1038/nature15732
– ident: e_1_2_6_21_2
  doi: 10.1016/j.jngse.2015.09.023
– ident: e_1_2_6_55_2
  doi: 10.1021/acs.inorgchem.9b00006
– ident: e_1_2_6_27_1
– ident: e_1_2_6_54_2
  doi: 10.1021/jacs.5b03727
– ident: e_1_2_6_69_2
  doi: 10.1021/jacs.0c01769
– ident: e_1_2_6_15_2
  doi: 10.1039/C8CC04824J
– ident: e_1_2_6_11_2
  doi: 10.1016/S2095-4956(14)60171-6
– ident: e_1_2_6_13_1
– ident: e_1_2_6_16_1
– ident: e_1_2_6_24_2
  doi: 10.1021/acs.langmuir.8b03085
– ident: e_1_2_6_32_2
  doi: 10.1039/C8CS00155C
– ident: e_1_2_6_20_2
  doi: 10.1021/ja305663k
– ident: e_1_2_6_43_1
  doi: 10.1039/C4CS00129J
– ident: e_1_2_6_38_1
– ident: e_1_2_6_51_2
  doi: 10.1039/C8CC07227B
– ident: e_1_2_6_39_2
  doi: 10.1038/s41467-019-10575-5
– ident: e_1_2_6_45_2
  doi: 10.34133/2019/9463719
– ident: e_1_2_6_75_1
  doi: 10.1002/aic.16236
– ident: e_1_2_6_12_2
  doi: 10.1007/s40843-019-9427-5
– ident: e_1_2_6_17_3
  doi: 10.1002/ange.201506345
– ident: e_1_2_6_26_2
  doi: 10.1021/jacs.6b02968
– ident: e_1_2_6_60_1
  doi: 10.1021/ja2066016
SSID ssj0028806
Score 2.5441415
Snippet Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23322
SubjectTerms Adsorbents
Adsorption
adsorptive separation
Adsorptivity
Bonding strength
Butane
Computer applications
Contact angle
Crystal structure
Crystals
Hydrogen
Hydrogen bonding
Hydrogen bonds
hydrogen-bonded organic frameworks (HOFs)
Hydrophobicity
molecular sieve
Selectivity
Separation
single-crystal-to-single-crystal
Title A Hydrogen‐Bonded yet Hydrophobic Porous Molecular Crystal for Molecular‐Sieving‐like Separation of Butane and Isobutane
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202011300
https://www.proquest.com/docview/2467646849
https://www.proquest.com/docview/2440904407
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754F6dTIgg-dWvT9LLHOZQpOEQd7K0kaYLD0Y5dHuaD-BP8jf4Sz2nXbgoi6FuTJrQ9l5wvafIdQs5Y7Ae-4rElpM0tLn1wKcXB3T1PKxkIzTKKjduO3-7ym57XWzrFn_NDlAtu6BnZeI0OLuS4viANxRPYML_DAObaOGnHDVuIiu5L_igGxpkfL3JdC7PQF6yNNqt_7f41Ki2g5jJgzSLO1SYRxbvmG02ea9OJrKmXbzSO__mYLbIxh6O0mdvPNlnRyQ5ZaxVZ4HbJa5O2Z_EoBTv7eHvHJMQ6pjM9yWuHT6nsK3qXjtLpmN4WqXZpazQD1DmggIgXtdD_oa9xAQOuBv1nTR90zjyeJjQ19GIKQFVTkcT0epzKrLRHuleXj622Nc_ZYCnuubYlATI6xmFC2Job6ZvQCx3BfQ1ARnI7DjkLtDRcuKAcJsFSAm4aKrQ1k64XGnefrCZpog8IFZhKSzDHwBDMVdAIDTOe8qSSyDJnswqxCp1Fak5ojnk1BlFOxcwilGpUSrVCzsv2w5zK48eW1cIEorlLjyMGIcXnfsgbFXJa3gZt4B8WEAjIGdrAdBmTeAcVwjJ9__KkqNm5vixLh3_pdETW8Rq32Di8SlYno6k-BqA0kSeZM3wC3vANbw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hONALBdqqW2gxElJPgcRxPva4rEC7wK6qAlJvke3YYsUqQftxWA6In8Bv5Jcwk2yygISQyi12bCWxZ-w3jv0ewB5PwyjUInWkcoUjVIgupQW6exAYrSJpeEGx0euHnUtx8i-odhPSWZiSH6JecCPPKMZrcnBakD5YsIbSEWwM8GgG812M2ldI1ruIqv7WDFIczbM8YOT7DunQV7yNLj94Wf_lvLQAm88hazHnHH8GVb1tudXken86Ufv69hWR44c-Zx3W5oiUtUoT2oAlk23CarsSgvsCdy3WmaWjHE3t8f6BdIhNymZmUubeXOVqoNmffJRPx6xXqe2y9miGwHPIEBQvcrH--cDQGgZeDQfXhp2bknw8z1hu2eEUsaphMktZd5yrIvUVLo-PLtodZy7b4GgR-K6jEDV61uNSukZYFdo4iD0pQoNYRgk3jQWPjLJC-tg7XKGxRMI2dewarvwgtv43WM7yzHwHJklNS3LP4igsdNSMLbeBDpRWRDTn8gY4Vacles5pTtIaw6RkY-YJtWpSt2oDftflb0o2jzdLblc2kMy9epxwnFVCEcai2YDd-jb2Bv1kwQbBdsYyGDGTjnfUAF50-DtPSlr97lGd-vE_lXZgtXPRO0vOuv3TLfhE-bTjxhPbsDwZTc1PxE0T9avwjCeoBRGK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CQwJeYNxEYQMjIfGUzXFOnPSx61a1wKqJMWlvke3YolqVVL08lAfET-A38kt2nDTphoSQ4C12bCU5F5_Pjv0dgHcil4k0mAdKcwxQS3Ipg-TucWyNTpQVFcXG6VgOL_DDZXx54xR_zQ_RLrh5z6jGa-_gs9wdbklD_Qlsmt_5ABZxmrTfRclTb9fHn1sCKUHWWZ8viqLAp6FvaBu5OLzd_3ZY2mLNm4i1CjmDR6Cal613mlwdrJb6wHz7jcfxf75mFx5u8Cjr1Qb0GO7Y4gnc7zdp4J7C9x4brvN5SYb268dPn4XY5mxtl3Xt7GupJ4adlfNytWCnTa5d1p-vCXZOGUHibS31P59Yv4JBV9PJlWXntqYeLwtWOna0IqRqmSpyNlqUuio9g4vByZf-MNgkbQgMxhEPNGHG0IVCKW7RaenSOA0VSktIRiPPUxSJ1Q5VRMoRmkwlQdc1KbdCR3HqouewU5SFfQFM-VxaSoSOxmA0STd1wsUm1kZ7mjkuOhA0OsvMhtHcJ9aYZjUXs8i8VLNWqh1437af1Vwef2y515hAtvHpRSYopkiUKXY78La9Tdrwv1hIICRnakPzZZ_FO-mAqPT9lydlvfHopC29_JdOb-De2fEg-zQaf3wFD3y1324T4h7sLOcru0-gaalfV35xDYPKEEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hydrogen%E2%80%90Bonded+yet+Hydrophobic+Porous+Molecular+Crystal+for+Molecular%E2%80%90Sieving%E2%80%90like+Separation+of+Butane+and+Isobutane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zi%E2%80%90Ming+Ye&rft.au=Xue%E2%80%90Wen+Zhang&rft.au=Pei%E2%80%90Qin+Liao&rft.au=Xie%2C+Yi&rft.date=2020-12-14&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=23322&rft.epage=23328&rft_id=info:doi/10.1002%2Fanie.202011300&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon