A Hydrogen‐Bonded yet Hydrophobic Porous Molecular Crystal for Molecular‐Sieving‐like Separation of Butane and Isobutane
Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bo...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 51; pp. 23322 - 23328 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.12.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role.
A rigid hydrogen‐bonded porous molecular crystal shows not only exceptionally high hydrophobicity and chemical stability, but also molecular‐sieving‐like separation of butane/isobutane associated with a trivial guest‐induced structural transformation revealed by powder/single‐crystal X‐ray diffraction and computational simulations. |
---|---|
AbstractList | Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role.Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role. Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role. Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role. A rigid hydrogen‐bonded porous molecular crystal shows not only exceptionally high hydrophobicity and chemical stability, but also molecular‐sieving‐like separation of butane/isobutane associated with a trivial guest‐induced structural transformation revealed by powder/single‐crystal X‐ray diffraction and computational simulations. Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear Ag I complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role. |
Author | Huang, Ning‐Yu Zhou, Dong‐Dong Zhang, Jie‐Peng Liao, Pei‐Qin Xie, Yi Liu, De‐Xuan Ye, Zi‐Ming Zhang, Xue‐Wen Wang, Chao Zhang, Xue‐Feng Qiu, Ze‐Hao Xu, Yan‐Tong He, Chun‐Ting |
Author_xml | – sequence: 1 givenname: Zi‐Ming surname: Ye fullname: Ye, Zi‐Ming organization: Sun Yat-Sen University – sequence: 2 givenname: Xue‐Wen surname: Zhang fullname: Zhang, Xue‐Wen organization: Sun Yat-Sen University – sequence: 3 givenname: Pei‐Qin surname: Liao fullname: Liao, Pei‐Qin organization: Sun Yat-Sen University – sequence: 4 givenname: Yi surname: Xie fullname: Xie, Yi organization: Sun Yat-Sen University – sequence: 5 givenname: Yan‐Tong surname: Xu fullname: Xu, Yan‐Tong organization: Sun Yat-Sen University – sequence: 6 givenname: Xue‐Feng surname: Zhang fullname: Zhang, Xue‐Feng organization: Sun Yat-Sen University – sequence: 7 givenname: Chao surname: Wang fullname: Wang, Chao organization: Sun Yat-Sen University – sequence: 8 givenname: De‐Xuan surname: Liu fullname: Liu, De‐Xuan organization: Sun Yat-Sen University – sequence: 9 givenname: Ning‐Yu surname: Huang fullname: Huang, Ning‐Yu organization: Sun Yat-Sen University – sequence: 10 givenname: Ze‐Hao surname: Qiu fullname: Qiu, Ze‐Hao organization: Sun Yat-Sen University – sequence: 11 givenname: Dong‐Dong surname: Zhou fullname: Zhou, Dong‐Dong organization: Sun Yat-Sen University – sequence: 12 givenname: Chun‐Ting surname: He fullname: He, Chun‐Ting email: hct@jxnu.edu.cn organization: Ministry of Education – sequence: 13 givenname: Jie‐Peng orcidid: 0000-0002-2614-2774 surname: Zhang fullname: Zhang, Jie‐Peng email: zhangjp7@mail.sysu.edu.cn organization: Sun Yat-Sen University |
BookMark | eNqFkc1O3DAQgC1EpQLttWdLvXDJdvyTxDkuKygr0R8Jeo6cZAymxl7sBJRL1UfoM_ZJalhUJKSqF3s8-j57xrNPdn3wSMg7BgsGwD9ob3HBgQNjAmCH7LGSs0LUtdjNsRSiqFXJXpP9lK4zrxRUe-THkp7OQwyX6H___HUU_IADnXHcZjdXobM9_RpimBL9FBz2k9ORruKcRu2oCfE5m_1zi3fWX-bI2e9Iz3Gjox5t8DQYejSN2iPVfqDrFLrH0xvyymiX8O3TfkC-nRxfrE6Lsy8f16vlWdHLUkDRAWuYYVxrQGm6yqhSMS0rZMA7CYOSvMbOSC1yW7wbqrqWpukVIO9EqYw4IIfbezcx3E6YxvbGph6dyzXk1louJTSQlzqj71-g12GKPleXqaquZKVkk6nFlupjSCmiaTfR3ug4twzah3G0D-No_44jC_KF0Nvx8W_GqK37t9ZstXvrcP7PI-3y8_r42f0D-iGk8A |
CitedBy_id | crossref_primary_10_1002_anie_202218596 crossref_primary_10_1002_anie_202115956 crossref_primary_10_1021_acs_accounts_2c00418 crossref_primary_10_1038_s41563_023_01729_4 crossref_primary_10_1021_jacs_3c13480 crossref_primary_10_1002_ange_202310225 crossref_primary_10_1016_j_inoche_2021_108741 crossref_primary_10_1002_ange_202106665 crossref_primary_10_1016_j_memsci_2021_119521 crossref_primary_10_1016_j_scib_2022_05_009 crossref_primary_10_1002_smtd_202500027 crossref_primary_10_1016_j_jcis_2024_11_158 crossref_primary_10_1002_anie_202201646 crossref_primary_10_1016_j_mtener_2024_101705 crossref_primary_10_1002_anie_202110057 crossref_primary_10_1002_adfm_202416384 crossref_primary_10_1021_acs_cgd_1c01382 crossref_primary_10_1021_acs_chemmater_4c02251 crossref_primary_10_1002_ange_202107550 crossref_primary_10_1002_ange_202115956 crossref_primary_10_1007_s11426_024_2377_9 crossref_primary_10_1002_ange_202319674 crossref_primary_10_1002_anie_202211482 crossref_primary_10_1002_chem_202102148 crossref_primary_10_1007_s11426_022_1555_9 crossref_primary_10_1016_j_ccr_2022_214714 crossref_primary_10_1039_D1TA09194H crossref_primary_10_1038_s41467_024_45081_w crossref_primary_10_1016_j_eng_2022_03_022 crossref_primary_10_1002_cplu_202400756 crossref_primary_10_1002_chem_202303580 crossref_primary_10_1021_acs_cgd_1c00942 crossref_primary_10_1002_ange_202201646 crossref_primary_10_1016_j_jece_2023_111027 crossref_primary_10_1002_anie_202107550 crossref_primary_10_1007_s11426_022_1304_1 crossref_primary_10_1002_ange_202211482 crossref_primary_10_1002_anie_202319674 crossref_primary_10_1002_cjoc_202100291 crossref_primary_10_2139_ssrn_4076661 crossref_primary_10_1016_j_ccr_2024_216293 crossref_primary_10_1002_ange_202218596 crossref_primary_10_1021_jacs_2c02598 crossref_primary_10_1016_j_powtec_2024_119851 crossref_primary_10_1002_aic_17568 crossref_primary_10_1016_j_ccr_2021_214241 crossref_primary_10_1002_anie_202303671 crossref_primary_10_1002_anie_202310225 crossref_primary_10_1021_accountsmr_4c00316 crossref_primary_10_1021_acs_cgd_3c00899 crossref_primary_10_1021_acs_cgd_2c00182 crossref_primary_10_1002_anie_202404452 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1002_ange_202404452 crossref_primary_10_1002_anie_202106665 crossref_primary_10_1002_ange_202110057 crossref_primary_10_1002_aic_18443 crossref_primary_10_1016_j_seppur_2023_125025 crossref_primary_10_1039_D3SC06076D crossref_primary_10_1002_ange_202303671 crossref_primary_10_1039_D2TA07042A crossref_primary_10_1002_zaac_202100152 |
Cites_doi | 10.1002/ange.201510637 10.1126/science.aam7232 10.1002/ange.201603934 10.1021/ja973906m 10.1021/ja800550a 10.1002/adma.201900820 10.1002/ange.201803244 10.1038/s41563-019-0427-z 10.1021/acs.cgd.9b00582 10.1002/cssc.201700657 10.1007/s12039-019-1648-z 10.1016/j.enchem.2019.100016 10.1002/ange.201800354 10.1002/ange.201909732 10.1038/ncomms9697 10.1021/cs300048u 10.1021/ja904658p 10.1002/anie.201506345 10.1021/jacs.5b05644 10.1002/anie.201811638 10.1021/jp911930k 10.1002/anie.201902147 10.1002/ange.202004535 10.1039/C5CS00292C 10.1007/s11426-017-9045-9 10.1002/anie.201603934 10.1002/ange.201708769 10.1002/anie.201510637 10.1021/acs.inorgchem.0c00022 10.1021/acs.cgd.8b00153 10.1002/anie.201800354 10.1021/jp0489875 10.1126/science.aar6833 10.1002/anie.201708769 10.1021/cr300302b 10.1021/acs.accounts.6b00526 10.1002/anie.201404306 10.1002/anie.201902209 10.1002/anie.202004535 10.1002/ange.201811638 10.1038/s41563-018-0206-2 10.1016/j.scib.2019.05.011 10.1039/b802426j 10.1021/acsami.7b06010 10.1093/nsr/nwx127 10.1021/ja4054948 10.1021/ja507555j 10.1021/ja1042935 10.1002/anie.201803244 10.1002/ange.201902209 10.1039/C8TA02211A 10.1016/j.ccr.2019.03.008 10.1002/ange.201404306 10.1038/nature15732 10.1016/j.jngse.2015.09.023 10.1021/acs.inorgchem.9b00006 10.1021/jacs.5b03727 10.1021/jacs.0c01769 10.1039/C8CC04824J 10.1016/S2095-4956(14)60171-6 10.1021/acs.langmuir.8b03085 10.1039/C8CS00155C 10.1021/ja305663k 10.1039/C4CS00129J 10.1039/C8CC07227B 10.1038/s41467-019-10575-5 10.34133/2019/9463719 10.1002/aic.16236 10.1007/s40843-019-9427-5 10.1002/ange.201506345 10.1021/jacs.6b02968 10.1021/ja2066016 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202011300 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 23328 |
ExternalDocumentID | 10_1002_anie_202011300 ANIE202011300 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21731007; 21821003; 21901089 – fundername: Young Elite Scientists Sponsorship Program – fundername: Guangdong Pearl River Talents Program funderid: 2017BT01C161 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4530-b0191f12aa0e4fb6f8581a46e102b40d8427ebf4a32882bd6774f9c80e2b358f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:14:19 EDT 2025 Fri Jul 25 10:39:30 EDT 2025 Tue Jul 01 01:17:47 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Wed Jan 22 16:31:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4530-b0191f12aa0e4fb6f8581a46e102b40d8427ebf4a32882bd6774f9c80e2b358f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2614-2774 |
PQID | 2467646849 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2440904407 proquest_journals_2467646849 crossref_primary_10_1002_anie_202011300 crossref_citationtrail_10_1002_anie_202011300 wiley_primary_10_1002_anie_202011300_ANIE202011300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 14, 2020 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: December 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2019; 2019 2019; 10 2019; 58 2020 2020; 59 132 2020; 59 2019; 19 2019; 18 2017; 356 2014; 23 2014; 136 2017; 9 2019; 363 2018; 6 2019; 62 2012; 134 2018; 5 2015; 137 2019; 64 2018 2018; 57 130 2010; 114 2015; 44 2005; 109 2015 2015; 54 127 2018; 34 1998; 120 2015; 6 2017; 60 2019; 31 2020; 142 2019; 1 2019; 389 2015; 527 2017 2017; 56 129 2009; 131 2014; 114 2019 2019; 58 131 2011; 133 2014; 43 2017; 50 2018; 18 2018; 17 2012; 2 2015; 27 2016 2016; 55 128 2017; 10 2019; 48 2010; 132 2013; 135 2016; 138 2020; 66 2018; 54 2009; 38 2008; 130 2019; 131 e_1_2_6_51_2 e_1_2_6_74_3 e_1_2_6_76_1 e_1_2_6_53_2 e_1_2_6_74_2 e_1_2_6_30_2 e_1_2_6_70_3 e_1_2_6_72_1 e_1_2_6_70_2 e_1_2_6_17_3 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_34_3 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_38_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_78_2 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_66_3 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_52_1 e_1_2_6_75_1 e_1_2_6_31_1 e_1_2_6_71_1 e_1_2_6_18_2 e_1_2_6_18_3 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_33_3 e_1_2_6_58_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_63_1 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_65_1 e_1_2_6_40_2 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_42_3 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_67_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 57 130 start-page: 7691 7817 year: 2018 2018 end-page: 7696 7822 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 start-page: 3944 year: 2019 end-page: 3949 publication-title: Inorg. Chem. – volume: 389 start-page: 161 year: 2019 end-page: 188 publication-title: Coord. Chem. Rev. – volume: 130 start-page: 6010 year: 2008 end-page: 6017 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 14546 year: 2018 end-page: 14551 publication-title: Langmuir – volume: 137 start-page: 9963 year: 2015 end-page: 9970 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 453 year: 2014 publication-title: J. Energy Chem. – volume: 356 start-page: 1193 year: 2017 publication-title: Science – volume: 138 start-page: 6617 year: 2016 end-page: 6628 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 964 year: 2019 end-page: 967 publication-title: Sci. Bull. – volume: 55 128 start-page: 3378 3439 year: 2016 2016 end-page: 3381 3442 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 109 start-page: 2164 year: 2005 end-page: 2175 publication-title: J. Phys. Chem. B – volume: 131 start-page: 13216 year: 2009 end-page: 13217 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 683 year: 2017 end-page: 684 publication-title: Sci. China Chem. – volume: 58 131 start-page: 327 333 year: 2019 2019 end-page: 331 337 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 14353 14561 year: 2015 2015 end-page: 14358 14566 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 14570 year: 2011 end-page: 14573 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 14635 year: 2012 end-page: 14637 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 72 year: 2019 end-page: 85 publication-title: J. Chem. Sci. – volume: 27 start-page: 763 year: 2015 end-page: 768 publication-title: J. Nat. Gas Sci. Eng. – volume: 1 year: 2019 publication-title: EnergyChem – volume: 19 start-page: 5184 year: 2019 end-page: 5188 publication-title: Cryst. Growth Des. – volume: 2019 year: 2019 publication-title: Research – volume: 54 start-page: 13391 year: 2018 end-page: 13394 publication-title: Chem. Commun. – volume: 363 start-page: 387 year: 2019 publication-title: Science – volume: 59 132 start-page: 15325 15438 year: 2020 2020 end-page: 15341 15456 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 7217 year: 2015 end-page: 7223 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 5509 year: 1998 end-page: 5516 publication-title: J. Am. Chem. Soc. – volume: 527 start-page: 357 year: 2015 end-page: 361 publication-title: Nature – volume: 50 start-page: 407 year: 2017 end-page: 417 publication-title: Acc. Chem. Res. – volume: 18 start-page: 2555 year: 2018 end-page: 2562 publication-title: Cryst. Growth Des. – volume: 17 start-page: 1128 year: 2018 end-page: 1133 publication-title: Nat. Mater. – volume: 66 year: 2020 publication-title: AIChE J. – volume: 142 start-page: 6925 year: 2020 end-page: 6929 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 16282 16500 year: 2017 2017 end-page: 16287 16505 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 33521 year: 2017 end-page: 33527 publication-title: ACS Appl. Mater. Interfaces – volume: 58 131 start-page: 11160 11278 year: 2019 2019 end-page: 11170 11288 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 5694 year: 2010 end-page: 5699 publication-title: J. Phys. Chem. B – volume: 5 start-page: 907 year: 2018 end-page: 919 publication-title: Natl. Sci. Rev. – volume: 6 start-page: 14231 year: 2018 end-page: 14239 publication-title: J. Mater. Chem. A – volume: 44 start-page: 7128 year: 2015 end-page: 7154 publication-title: Chem. Soc. Rev. – volume: 62 start-page: 1315 year: 2019 end-page: 1322 publication-title: Sci. China Mater. – volume: 58 131 start-page: 7692 7774 year: 2019 2019 end-page: 7696 7778 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 10950 year: 2013 end-page: 10953 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 11228 11398 year: 2018 2018 end-page: 11232 11402 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 18 start-page: 994 year: 2019 end-page: 998 publication-title: Nat. Mater. – volume: 55 128 start-page: 10268 10424 year: 2016 2016 end-page: 10272 10428 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 1203 year: 2012 end-page: 1210 publication-title: ACS Catal. – volume: 6 start-page: 8697 year: 2015 publication-title: Nat. Commun. – volume: 48 start-page: 1362 year: 2019 end-page: 1389 publication-title: Chem. Soc. Rev. – volume: 114 start-page: 981 year: 2014 end-page: 1019 publication-title: Chem. Rev. – volume: 54 start-page: 9414 year: 2018 end-page: 9417 publication-title: Chem. Commun. – volume: 136 start-page: 14883 year: 2014 end-page: 14895 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 14457 year: 2010 end-page: 14469 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3947 year: 2017 end-page: 3963 publication-title: ChemSusChem – volume: 10 start-page: 3074 year: 2019 publication-title: Nat. Commun. – volume: 43 start-page: 5789 year: 2014 end-page: 5814 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 6047 year: 2020 end-page: 6052 publication-title: Inorg. Chem. – volume: 53 126 start-page: 8225 8364 year: 2014 2014 end-page: 8230 8369 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_6_23_1 – ident: e_1_2_6_42_3 doi: 10.1002/ange.201510637 – ident: e_1_2_6_78_2 doi: 10.1126/science.aam7232 – ident: e_1_2_6_70_3 doi: 10.1002/ange.201603934 – ident: e_1_2_6_71_1 doi: 10.1021/ja973906m – ident: e_1_2_6_68_1 – ident: e_1_2_6_76_1 – ident: e_1_2_6_31_1 – ident: e_1_2_6_67_2 doi: 10.1021/ja800550a – ident: e_1_2_6_53_2 doi: 10.1002/adma.201900820 – ident: e_1_2_6_58_3 doi: 10.1002/ange.201803244 – ident: e_1_2_6_22_2 doi: 10.1038/s41563-019-0427-z – ident: e_1_2_6_64_1 doi: 10.1021/acs.cgd.9b00582 – ident: e_1_2_6_3_2 doi: 10.1002/cssc.201700657 – ident: e_1_2_6_59_2 doi: 10.1007/s12039-019-1648-z – ident: e_1_2_6_10_2 doi: 10.1016/j.enchem.2019.100016 – ident: e_1_2_6_33_3 doi: 10.1002/ange.201800354 – ident: e_1_2_6_34_3 doi: 10.1002/ange.201909732 – ident: e_1_2_6_77_2 doi: 10.1038/ncomms9697 – ident: e_1_2_6_6_2 doi: 10.1021/cs300048u – ident: e_1_2_6_62_1 doi: 10.1021/ja904658p – ident: e_1_2_6_4_1 – ident: e_1_2_6_17_2 doi: 10.1002/anie.201506345 – ident: e_1_2_6_40_2 doi: 10.1021/jacs.5b05644 – ident: e_1_2_6_9_2 doi: 10.1002/anie.201811638 – ident: e_1_2_6_57_2 doi: 10.1021/jp911930k – ident: e_1_2_6_34_2 doi: 10.1002/anie.201902147 – ident: e_1_2_6_74_3 doi: 10.1002/ange.202004535 – ident: e_1_2_6_14_2 doi: 10.1039/C5CS00292C – ident: e_1_2_6_44_1 – ident: e_1_2_6_37_2 doi: 10.1007/s11426-017-9045-9 – ident: e_1_2_6_70_2 doi: 10.1002/anie.201603934 – ident: e_1_2_6_18_3 doi: 10.1002/ange.201708769 – ident: e_1_2_6_42_2 doi: 10.1002/anie.201510637 – ident: e_1_2_6_72_1 – ident: e_1_2_6_47_1 – ident: e_1_2_6_30_2 doi: 10.1021/acs.inorgchem.0c00022 – ident: e_1_2_6_35_2 doi: 10.1021/acs.cgd.8b00153 – ident: e_1_2_6_33_2 doi: 10.1002/anie.201800354 – ident: e_1_2_6_5_2 doi: 10.1021/jp0489875 – ident: e_1_2_6_46_2 doi: 10.1126/science.aar6833 – ident: e_1_2_6_18_2 doi: 10.1002/anie.201708769 – ident: e_1_2_6_2_2 doi: 10.1021/cr300302b – ident: e_1_2_6_25_2 doi: 10.1021/acs.accounts.6b00526 – ident: e_1_2_6_63_1 doi: 10.1002/anie.201404306 – ident: e_1_2_6_66_2 doi: 10.1002/anie.201902209 – ident: e_1_2_6_74_2 doi: 10.1002/anie.202004535 – ident: e_1_2_6_65_1 – ident: e_1_2_6_9_3 doi: 10.1002/ange.201811638 – ident: e_1_2_6_19_2 doi: 10.1038/s41563-018-0206-2 – ident: e_1_2_6_1_1 – ident: e_1_2_6_61_1 doi: 10.1016/j.scib.2019.05.011 – ident: e_1_2_6_8_2 doi: 10.1039/b802426j – ident: e_1_2_6_50_2 doi: 10.1021/acsami.7b06010 – ident: e_1_2_6_28_2 doi: 10.1093/nsr/nwx127 – ident: e_1_2_6_48_2 doi: 10.1021/ja4054948 – ident: e_1_2_6_49_2 doi: 10.1021/ja507555j – ident: e_1_2_6_56_1 – ident: e_1_2_6_36_2 doi: 10.1021/ja1042935 – ident: e_1_2_6_58_2 doi: 10.1002/anie.201803244 – ident: e_1_2_6_7_1 – ident: e_1_2_6_66_3 doi: 10.1002/ange.201902209 – ident: e_1_2_6_41_2 doi: 10.1039/C8TA02211A – ident: e_1_2_6_29_2 doi: 10.1016/j.ccr.2019.03.008 – ident: e_1_2_6_52_1 – ident: e_1_2_6_63_2 doi: 10.1002/ange.201404306 – ident: e_1_2_6_73_2 doi: 10.1038/nature15732 – ident: e_1_2_6_21_2 doi: 10.1016/j.jngse.2015.09.023 – ident: e_1_2_6_55_2 doi: 10.1021/acs.inorgchem.9b00006 – ident: e_1_2_6_27_1 – ident: e_1_2_6_54_2 doi: 10.1021/jacs.5b03727 – ident: e_1_2_6_69_2 doi: 10.1021/jacs.0c01769 – ident: e_1_2_6_15_2 doi: 10.1039/C8CC04824J – ident: e_1_2_6_11_2 doi: 10.1016/S2095-4956(14)60171-6 – ident: e_1_2_6_13_1 – ident: e_1_2_6_16_1 – ident: e_1_2_6_24_2 doi: 10.1021/acs.langmuir.8b03085 – ident: e_1_2_6_32_2 doi: 10.1039/C8CS00155C – ident: e_1_2_6_20_2 doi: 10.1021/ja305663k – ident: e_1_2_6_43_1 doi: 10.1039/C4CS00129J – ident: e_1_2_6_38_1 – ident: e_1_2_6_51_2 doi: 10.1039/C8CC07227B – ident: e_1_2_6_39_2 doi: 10.1038/s41467-019-10575-5 – ident: e_1_2_6_45_2 doi: 10.34133/2019/9463719 – ident: e_1_2_6_75_1 doi: 10.1002/aic.16236 – ident: e_1_2_6_12_2 doi: 10.1007/s40843-019-9427-5 – ident: e_1_2_6_17_3 doi: 10.1002/ange.201506345 – ident: e_1_2_6_26_2 doi: 10.1021/jacs.6b02968 – ident: e_1_2_6_60_1 doi: 10.1021/ja2066016 |
SSID | ssj0028806 |
Score | 2.5441415 |
Snippet | Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23322 |
SubjectTerms | Adsorbents Adsorption adsorptive separation Adsorptivity Bonding strength Butane Computer applications Contact angle Crystal structure Crystals Hydrogen Hydrogen bonding Hydrogen bonds hydrogen-bonded organic frameworks (HOFs) Hydrophobicity molecular sieve Selectivity Separation single-crystal-to-single-crystal |
Title | A Hydrogen‐Bonded yet Hydrophobic Porous Molecular Crystal for Molecular‐Sieving‐like Separation of Butane and Isobutane |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202011300 https://www.proquest.com/docview/2467646849 https://www.proquest.com/docview/2440904407 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754F6dTIgg-dWvT9LLHOZQpOEQd7K0kaYLD0Y5dHuaD-BP8jf4Sz2nXbgoi6FuTJrQ9l5wvafIdQs5Y7Ae-4rElpM0tLn1wKcXB3T1PKxkIzTKKjduO3-7ym57XWzrFn_NDlAtu6BnZeI0OLuS4viANxRPYML_DAObaOGnHDVuIiu5L_igGxpkfL3JdC7PQF6yNNqt_7f41Ki2g5jJgzSLO1SYRxbvmG02ea9OJrKmXbzSO__mYLbIxh6O0mdvPNlnRyQ5ZaxVZ4HbJa5O2Z_EoBTv7eHvHJMQ6pjM9yWuHT6nsK3qXjtLpmN4WqXZpazQD1DmggIgXtdD_oa9xAQOuBv1nTR90zjyeJjQ19GIKQFVTkcT0epzKrLRHuleXj622Nc_ZYCnuubYlATI6xmFC2Job6ZvQCx3BfQ1ARnI7DjkLtDRcuKAcJsFSAm4aKrQ1k64XGnefrCZpog8IFZhKSzDHwBDMVdAIDTOe8qSSyDJnswqxCp1Fak5ojnk1BlFOxcwilGpUSrVCzsv2w5zK48eW1cIEorlLjyMGIcXnfsgbFXJa3gZt4B8WEAjIGdrAdBmTeAcVwjJ9__KkqNm5vixLh3_pdETW8Rq32Di8SlYno6k-BqA0kSeZM3wC3vANbw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hONALBdqqW2gxElJPgcRxPva4rEC7wK6qAlJvke3YYsUqQftxWA6In8Bv5Jcwk2yygISQyi12bCWxZ-w3jv0ewB5PwyjUInWkcoUjVIgupQW6exAYrSJpeEGx0euHnUtx8i-odhPSWZiSH6JecCPPKMZrcnBakD5YsIbSEWwM8GgG812M2ldI1ruIqv7WDFIczbM8YOT7DunQV7yNLj94Wf_lvLQAm88hazHnHH8GVb1tudXken86Ufv69hWR44c-Zx3W5oiUtUoT2oAlk23CarsSgvsCdy3WmaWjHE3t8f6BdIhNymZmUubeXOVqoNmffJRPx6xXqe2y9miGwHPIEBQvcrH--cDQGgZeDQfXhp2bknw8z1hu2eEUsaphMktZd5yrIvUVLo-PLtodZy7b4GgR-K6jEDV61uNSukZYFdo4iD0pQoNYRgk3jQWPjLJC-tg7XKGxRMI2dewarvwgtv43WM7yzHwHJklNS3LP4igsdNSMLbeBDpRWRDTn8gY4Vacles5pTtIaw6RkY-YJtWpSt2oDftflb0o2jzdLblc2kMy9epxwnFVCEcai2YDd-jb2Bv1kwQbBdsYyGDGTjnfUAF50-DtPSlr97lGd-vE_lXZgtXPRO0vOuv3TLfhE-bTjxhPbsDwZTc1PxE0T9avwjCeoBRGK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CQwJeYNxEYQMjIfGUzXFOnPSx61a1wKqJMWlvke3YolqVVL08lAfET-A38kt2nDTphoSQ4C12bCU5F5_Pjv0dgHcil4k0mAdKcwxQS3Ipg-TucWyNTpQVFcXG6VgOL_DDZXx54xR_zQ_RLrh5z6jGa-_gs9wdbklD_Qlsmt_5ABZxmrTfRclTb9fHn1sCKUHWWZ8viqLAp6FvaBu5OLzd_3ZY2mLNm4i1CjmDR6Cal613mlwdrJb6wHz7jcfxf75mFx5u8Cjr1Qb0GO7Y4gnc7zdp4J7C9x4brvN5SYb268dPn4XY5mxtl3Xt7GupJ4adlfNytWCnTa5d1p-vCXZOGUHibS31P59Yv4JBV9PJlWXntqYeLwtWOna0IqRqmSpyNlqUuio9g4vByZf-MNgkbQgMxhEPNGHG0IVCKW7RaenSOA0VSktIRiPPUxSJ1Q5VRMoRmkwlQdc1KbdCR3HqouewU5SFfQFM-VxaSoSOxmA0STd1wsUm1kZ7mjkuOhA0OsvMhtHcJ9aYZjUXs8i8VLNWqh1437af1Vwef2y515hAtvHpRSYopkiUKXY78La9Tdrwv1hIICRnakPzZZ_FO-mAqPT9lydlvfHopC29_JdOb-De2fEg-zQaf3wFD3y1324T4h7sLOcru0-gaalfV35xDYPKEEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hydrogen%E2%80%90Bonded+yet+Hydrophobic+Porous+Molecular+Crystal+for+Molecular%E2%80%90Sieving%E2%80%90like+Separation+of+Butane+and+Isobutane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zi%E2%80%90Ming+Ye&rft.au=Xue%E2%80%90Wen+Zhang&rft.au=Pei%E2%80%90Qin+Liao&rft.au=Xie%2C+Yi&rft.date=2020-12-14&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=23322&rft.epage=23328&rft_id=info:doi/10.1002%2Fanie.202011300&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |