Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation
Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radic...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 46; pp. 20666 - 20671 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
09.11.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h−1 g−1, respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding.
A single‐crystal‐to‐single‐crystal (SCSC) transformation of stable radical‐containing MOF Gd‐IHEP‐7 generates Gd‐IHEP‐8. It is accompanied by a marked increase in efficiency of sacrificial agent‐free photocatalytic nitrogen fixation to yield NH3 from H2O and N2 under simulated solar light irradiation at ambient temperature. The NH3 production rate of 220 μmol h−1 g−1 for Gd‐IHEP‐8 is a new record for MOF photocatalysts. |
---|---|
AbstractList | Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h−1 g−1, respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding. Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h−1 g−1, respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding. A single‐crystal‐to‐single‐crystal (SCSC) transformation of stable radical‐containing MOF Gd‐IHEP‐7 generates Gd‐IHEP‐8. It is accompanied by a marked increase in efficiency of sacrificial agent‐free photocatalytic nitrogen fixation to yield NH3 from H2O and N2 under simulated solar light irradiation at ambient temperature. The NH3 production rate of 220 μmol h−1 g−1 for Gd‐IHEP‐8 is a new record for MOF photocatalysts. Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h −1 g −1 , respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding. Herein we present a new viologen-based radical-containing metal-organic framework (RMOF) Gd-IHEP-7, which upon heating in air undergoes a single-crystal-to-single-crystal transformation to generate Gd-IHEP-8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical-radical interactions, and their long-lifetime radicals result in wide spectral absorption in the range 200-2500 nm. Gd-IHEP-7 and Gd-IHEP-8 show excellent activity toward solar-driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h-1 g-1 , respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd-IHEP-8 versus Gd-IHEP-7 is attributed to intermediates stabilized by enhanced hydrogen bonding.Herein we present a new viologen-based radical-containing metal-organic framework (RMOF) Gd-IHEP-7, which upon heating in air undergoes a single-crystal-to-single-crystal transformation to generate Gd-IHEP-8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical-radical interactions, and their long-lifetime radicals result in wide spectral absorption in the range 200-2500 nm. Gd-IHEP-7 and Gd-IHEP-8 show excellent activity toward solar-driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h-1 g-1 , respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd-IHEP-8 versus Gd-IHEP-7 is attributed to intermediates stabilized by enhanced hydrogen bonding. |
Author | Hu, Kong‐Qiu An, Shu‐Wen Zhang, Zhi‐Hui Bu, Yun‐Fei Zeng, Li‐Wen Chai, Zhi‐Fang Xu, Zhong‐Fei Lan, Jian‐Hui Yu, Ji‐Pan Shi, Wei‐Qun Mei, Lei Huang, Zhi‐Wei Kong, Xiang‐He Gibson, John K. Hu, Shu‐Xian Qiu, Peng‐Xiang |
Author_xml | – sequence: 1 givenname: Kong‐Qiu surname: Hu fullname: Hu, Kong‐Qiu organization: Chinese Academy of Sciences – sequence: 2 givenname: Peng‐Xiang surname: Qiu fullname: Qiu, Peng‐Xiang organization: Nanjing University of Information Science and Technology – sequence: 3 givenname: Li‐Wen surname: Zeng fullname: Zeng, Li‐Wen organization: Chinese Academy of Sciences – sequence: 4 givenname: Shu‐Xian surname: Hu fullname: Hu, Shu‐Xian organization: University of Science and Technology Beijing – sequence: 5 givenname: Lei surname: Mei fullname: Mei, Lei organization: Chinese Academy of Sciences – sequence: 6 givenname: Shu‐Wen surname: An fullname: An, Shu‐Wen organization: Chinese Academy of Sciences – sequence: 7 givenname: Zhi‐Wei surname: Huang fullname: Huang, Zhi‐Wei organization: Chinese Academy of Sciences – sequence: 8 givenname: Xiang‐He surname: Kong fullname: Kong, Xiang‐He organization: Chinese Academy of Sciences – sequence: 9 givenname: Jian‐Hui surname: Lan fullname: Lan, Jian‐Hui organization: Chinese Academy of Sciences – sequence: 10 givenname: Ji‐Pan surname: Yu fullname: Yu, Ji‐Pan organization: Chinese Academy of Sciences – sequence: 11 givenname: Zhi‐Hui surname: Zhang fullname: Zhang, Zhi‐Hui organization: Changzhou University – sequence: 12 givenname: Zhong‐Fei surname: Xu fullname: Xu, Zhong‐Fei organization: University of Science and Technology Beijing – sequence: 13 givenname: John K. surname: Gibson fullname: Gibson, John K. organization: Lawrence Berkeley National Laboratory (LBNL) – sequence: 14 givenname: Zhi‐Fang surname: Chai fullname: Chai, Zhi‐Fang organization: Chinese Academy of Sciences – sequence: 15 givenname: Yun‐Fei surname: Bu fullname: Bu, Yun‐Fei organization: Nanjing University of Information Science and Technology – sequence: 16 givenname: Wei‐Qun orcidid: 0000-0001-9929-9732 surname: Shi fullname: Shi, Wei‐Qun email: shiwq@ihep.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkU9vFCEYh4mpif3j1TOJFy-zhQEGxluz7tpNapvYep68wzANDQsVmOp48uzJz-gnkXYbTZoYT7yH5_nxwu8A7fngDUKvKFlQQupj8NYsalIT0jaMPEP7VNS0YlKyvTJzxiqpBH2BDlK6KbxSpNlHPy6Dg_jr-8930d4Zj89tjuG6DGv7FbINHi8hg5u_mQH3M77M0DuDP8JgNbiiLYPPYL311_jDxTq9xZvtbQx3hV6No9XWeD3jjR8mvQuAEhEnnacIDl9F8GkMcftw0xF6PoJL5uXjeYg-rVdXy9Pq7OL9ZnlyVmkuGKloP1JqBOeNEUpKqUamDGFa6VGw8hF8VFK3A9QD1Y3kmhnoh1r0QLWWxWGH6M0utyz6eTIpd1ubtHEOvAlT6mrOOBGCqbqgr5-gN2GKvmxXKNEwRVraForvKB1DStGMnbb54Uk5gnUdJd19Qd19Qd2fgoq2eKLdRruFOP9baHfCF-vM_B-6OznfrP66vwERQ6ju |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_2c02760 crossref_primary_10_1016_j_cej_2023_142275 crossref_primary_10_1002_adfm_202404126 crossref_primary_10_3390_catal12091005 crossref_primary_10_1002_adsu_202400225 crossref_primary_10_1002_aesr_202000097 crossref_primary_10_1039_D4TC00977K crossref_primary_10_1002_smll_202108055 crossref_primary_10_1002_ejic_202100748 crossref_primary_10_1126_sciadv_ade1383 crossref_primary_10_1016_j_mtchem_2023_101419 crossref_primary_10_1002_anie_202401766 crossref_primary_10_1016_S1872_5813_24_60468_8 crossref_primary_10_1016_j_nanoen_2024_110109 crossref_primary_10_1007_s12274_024_6453_4 crossref_primary_10_1016_j_apcatb_2022_122148 crossref_primary_10_1016_j_apcatb_2023_123474 crossref_primary_10_1021_jacs_2c06216 crossref_primary_10_1039_D4CE00360H crossref_primary_10_1002_cssc_202200297 crossref_primary_10_1016_S1872_2067_24_60006_9 crossref_primary_10_1016_j_cclet_2021_06_077 crossref_primary_10_1016_j_cej_2023_145256 crossref_primary_10_1002_anie_202117244 crossref_primary_10_1002_smll_202402779 crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1016_j_jcat_2023_115249 crossref_primary_10_1002_smll_202410939 crossref_primary_10_1016_j_ccr_2024_216064 crossref_primary_10_1021_acscatal_2c02282 crossref_primary_10_1021_acssuschemeng_1c05107 crossref_primary_10_1002_adma_202412924 crossref_primary_10_1016_j_enchem_2022_100078 crossref_primary_10_1016_j_mattod_2023_12_014 crossref_primary_10_1039_D0NJ06296K crossref_primary_10_1016_j_apcatb_2021_119990 crossref_primary_10_1002_ange_202108318 crossref_primary_10_2139_ssrn_4184969 crossref_primary_10_1016_j_chempr_2022_03_023 crossref_primary_10_1002_anie_202108318 crossref_primary_10_1002_adfm_202308534 crossref_primary_10_1016_j_microc_2024_111492 crossref_primary_10_1039_D2TA09799K crossref_primary_10_1016_j_apcatb_2025_125034 crossref_primary_10_1021_acs_inorgchem_3c04625 crossref_primary_10_1039_D4TA01126K crossref_primary_10_1016_j_apsusc_2023_156781 crossref_primary_10_1016_j_apsusc_2023_158443 crossref_primary_10_1016_j_ccr_2025_216543 crossref_primary_10_1021_acs_cgd_4c00765 crossref_primary_10_1002_chem_202301575 crossref_primary_10_1021_acs_inorgchem_3c02202 crossref_primary_10_1039_D1SC03709A crossref_primary_10_1016_j_cplett_2024_141292 crossref_primary_10_1002_smll_202302738 crossref_primary_10_1039_D2RA03464F crossref_primary_10_1039_D4CC01152J crossref_primary_10_1002_ange_202117244 crossref_primary_10_1002_chem_202302397 crossref_primary_10_1016_j_checat_2024_100929 crossref_primary_10_1038_s41467_023_40091_6 crossref_primary_10_1021_jacs_2c10233 crossref_primary_10_1016_j_xcrp_2023_101306 crossref_primary_10_1038_s41467_022_35489_7 crossref_primary_10_1016_j_fuel_2024_131928 crossref_primary_10_1016_j_jcis_2024_09_027 crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1016_j_apcatb_2021_120680 crossref_primary_10_1021_acs_inorgchem_1c00217 crossref_primary_10_1039_D3GC02996D crossref_primary_10_1002_adfm_202213039 crossref_primary_10_1039_D0DT04358C crossref_primary_10_1002_ange_202401766 crossref_primary_10_1039_D4QI03182B crossref_primary_10_1039_D4QI02128B crossref_primary_10_1016_j_cplett_2021_139291 crossref_primary_10_1021_acs_inorgchem_0c03586 crossref_primary_10_1021_acs_inorgchem_1c01832 crossref_primary_10_1002_adma_202106400 crossref_primary_10_1021_acsami_0c20036 crossref_primary_10_1093_ce_zkac095 crossref_primary_10_1002_ejic_202100819 crossref_primary_10_1016_j_apcata_2022_118978 crossref_primary_10_1021_acs_iecr_3c02831 crossref_primary_10_1016_j_ccr_2024_216292 crossref_primary_10_1002_adfm_202315548 crossref_primary_10_1016_j_apcatb_2021_120106 crossref_primary_10_1021_acsami_4c01412 crossref_primary_10_1038_s41467_021_23190_0 crossref_primary_10_1016_j_jece_2024_112142 crossref_primary_10_1021_acs_energyfuels_2c01083 crossref_primary_10_1016_j_jallcom_2022_164751 crossref_primary_10_1021_acs_jpcc_4c05246 crossref_primary_10_1016_j_seppur_2021_119627 crossref_primary_10_1016_j_apcatb_2024_124537 crossref_primary_10_1002_cssc_202301730 crossref_primary_10_1016_j_inoche_2023_111210 crossref_primary_10_1016_j_mtchem_2022_100973 crossref_primary_10_1039_D2TA07042A crossref_primary_10_1021_acsaem_2c01346 |
Cites_doi | 10.1039/C7CS00543A 10.1016/j.ccr.2015.09.002 10.1002/aenm.202000659 10.1016/j.jre.2020.01.012 10.1039/C8CS00829A 10.1021/ar1000617 10.1002/anie.201814729 10.1038/46248 10.1038/s41467-020-14986-7 10.1021/ja3037355 10.1039/C6CS00250A 10.1038/s41929-018-0206-2 10.1021/acsami.6b15540 10.1038/s41560-017-0018-7 10.1039/c3cc42268b 10.1126/science.1106435 10.1021/cr3002824 10.1039/C5CC08168H 10.1016/j.apcatb.2020.118686 10.1016/j.enchem.2019.100005 10.1016/j.ccr.2018.03.015 10.1021/acsami.9b08682 10.1126/science.1228429 10.1016/j.ccr.2019.03.005 10.1021/acs.accounts.8b00521 10.1021/acs.chemrev.9b00223 10.1021/ja306044r 10.1039/C0CS00031K 10.1039/C9SC03348C 10.1039/C6SC04579K 10.1021/ar400161z 10.1038/358656a0 10.1002/admi.201900091 10.1021/jacs.0c01861 10.1126/science.1230444 10.1016/j.apcata.2016.10.017 10.1021/jacs.8b07472 10.1021/acscatal.9b03246 10.1002/ange.201814729 10.1016/j.mattod.2018.10.038 10.1039/C7MH00557A 10.1039/C6QI00013D 10.1021/ja310060n 10.1021/jacs.9b04930 10.1007/s12274-018-2268-5 10.1016/j.ccr.2017.10.029 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202009630 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 20671 |
ExternalDocumentID | 10_1002_anie_202009630 ANIE202009630 |
Genre | article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars funderid: 21925603 – fundername: Heavy Element Chemistry program at LBNL funderid: DE-AC02-05CH11231 – fundername: National Natural Science Foundation of China funderid: 21836001, 11875057, 21701006, 21976014 and U1930402; 51908294; 21706132 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4530-1bf11e5446e587778f38e03c8cf531004f87c9da2d1c674c3eabd25ba1cc76e53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:40:24 EDT 2025 Sun Jul 13 04:43:14 EDT 2025 Thu Apr 24 22:54:09 EDT 2025 Tue Jul 01 01:17:46 EDT 2025 Wed Jan 22 16:32:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4530-1bf11e5446e587778f38e03c8cf531004f87c9da2d1c674c3eabd25ba1cc76e53 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9929-9732 |
PQID | 2456380919 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2434055382 proquest_journals_2456380919 crossref_citationtrail_10_1002_anie_202009630 crossref_primary_10_1002_anie_202009630 wiley_primary_10_1002_anie_202009630_ANIE202009630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 9, 2020 |
PublicationDateYYYYMMDD | 2020-11-09 |
PublicationDate_xml | – month: 11 year: 2020 text: November 9, 2020 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2017; 8 2017; 2 2019; 6 2018; 140 2013; 49 2016; 307 2019; 52 2020; 142 2020; 120 2019; 2 2019; 11 2019; 1 2019; 10 2019; 12 2017; 46 2011; 40 2020; 38 2019; 388 2016; 52 2014; 47 2013; 341 2020; 11 2020; 10 2020; 267 2019; 141 1999; 402 2017; 9 2019 2019; 58 131 2018; 47 2010; 43 2017; 529 2018; 5 2012; 134 2016; 3 2013; 339 2019; 48 1992; 358 2019; 27 2005; 307 2019; 378 2013; 113 2013; 135 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_30_3 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_52_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_46_1 e_1_2_6_25_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 9 start-page: 5503 year: 2017 end-page: 5512 publication-title: ACS Appl. Mater. Interfaces – volume: 120 start-page: 1438 year: 2020 end-page: 1511 publication-title: Chem. Rev. – volume: 11 start-page: 29917 year: 2019 end-page: 29923 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 814 year: 2016 end-page: 820 publication-title: Inorg. Chem. Front. – volume: 388 start-page: 268 year: 2019 end-page: 292 publication-title: Coord. Chem. Rev. – volume: 46 start-page: 126 year: 2017 end-page: 157 publication-title: Chem. Soc. Rev. – volume: 113 start-page: 734 year: 2013 end-page: 777 publication-title: Chem. Rev. – volume: 141 start-page: 12663 year: 2019 end-page: 12672 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 525 year: 2016 end-page: 528 publication-title: Chem. Commun. – volume: 49 start-page: 7711 year: 2013 end-page: 7713 publication-title: Chem. Commun. – volume: 12 start-page: 1229 year: 2019 end-page: 1249 publication-title: Nano Res. – volume: 10 start-page: 8558 year: 2019 end-page: 8565 publication-title: Chem. Sci. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 9 year: 2018 end-page: 27 publication-title: Mater. Horiz. – volume: 43 start-page: 1166 year: 2010 end-page: 1175 publication-title: Acc. Chem. Res. – volume: 307 start-page: 361 year: 2016 end-page: 381 publication-title: Coord. Chem. Rev. – volume: 140 start-page: 14161 year: 2018 end-page: 14168 publication-title: J. Am. Chem. Soc. – volume: 402 start-page: 276 year: 1999 end-page: 279 publication-title: Nature – volume: 378 start-page: 17 year: 2019 end-page: 31 publication-title: Coord. Chem. Rev. – volume: 529 start-page: 91 year: 2017 end-page: 97 publication-title: Appl. Catal. A – volume: 47 start-page: 482 year: 2014 end-page: 493 publication-title: Acc. Chem. Res. – volume: 142 start-page: 8142 year: 2020 end-page: 8146 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 456 year: 2013 end-page: 467 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 533 year: 2019 end-page: 560 publication-title: Coord. Chem. Rev. – volume: 52 start-page: 356 year: 2019 end-page: 366 publication-title: Acc. Chem. Res. – volume: 11 start-page: 1179 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 2758 year: 2017 end-page: 2768 publication-title: Chem. Sci. – volume: 339 start-page: 429 year: 2013 end-page: 433 publication-title: Science – volume: 1 year: 2019 publication-title: EnergyChem – volume: 341 year: 2013 publication-title: Science – volume: 38 start-page: 801 year: 2020 end-page: 808 publication-title: J. Rare Earths – volume: 267 year: 2020 publication-title: Appl. Catal. B – volume: 307 start-page: 555 year: 2005 end-page: 558 publication-title: Science – volume: 47 start-page: 2322 year: 2018 end-page: 2356 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 9739 year: 2019 end-page: 9750 publication-title: ACS Catal. – volume: 58 131 start-page: 5226 5280 year: 2019 2019 end-page: 5231 5285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 358 start-page: 656 year: 1992 end-page: 658 publication-title: Nature – volume: 134 start-page: 16275 year: 2012 end-page: 16288 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 877 year: 2017 end-page: 883 publication-title: Nat. Energy – volume: 134 start-page: 11709 year: 2012 end-page: 11720 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 498 year: 2011 end-page: 519 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 2783 year: 2019 end-page: 2828 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 142 year: 2019 end-page: 148 publication-title: Nat. Catal. – volume: 27 start-page: 43 year: 2019 end-page: 68 publication-title: Mater. Today – ident: e_1_2_6_12_2 doi: 10.1039/C7CS00543A – ident: e_1_2_6_15_2 doi: 10.1016/j.ccr.2015.09.002 – ident: e_1_2_6_4_2 doi: 10.1002/aenm.202000659 – ident: e_1_2_6_26_2 doi: 10.1016/j.jre.2020.01.012 – ident: e_1_2_6_27_2 doi: 10.1039/C8CS00829A – ident: e_1_2_6_31_1 – ident: e_1_2_6_18_2 doi: 10.1021/ar1000617 – ident: e_1_2_6_30_2 doi: 10.1002/anie.201814729 – ident: e_1_2_6_21_2 doi: 10.1038/46248 – ident: e_1_2_6_43_1 doi: 10.1038/s41467-020-14986-7 – ident: e_1_2_6_53_1 – ident: e_1_2_6_48_2 doi: 10.1021/ja3037355 – ident: e_1_2_6_14_2 doi: 10.1039/C6CS00250A – ident: e_1_2_6_29_2 doi: 10.1038/s41929-018-0206-2 – ident: e_1_2_6_44_1 doi: 10.1021/acsami.6b15540 – ident: e_1_2_6_16_2 doi: 10.1038/s41560-017-0018-7 – ident: e_1_2_6_42_2 doi: 10.1039/c3cc42268b – ident: e_1_2_6_5_1 doi: 10.1126/science.1106435 – ident: e_1_2_6_20_2 doi: 10.1021/cr3002824 – ident: e_1_2_6_40_2 doi: 10.1039/C5CC08168H – ident: e_1_2_6_32_2 doi: 10.1016/j.apcatb.2020.118686 – ident: e_1_2_6_34_1 doi: 10.1016/j.enchem.2019.100005 – ident: e_1_2_6_6_1 – ident: e_1_2_6_13_2 doi: 10.1016/j.ccr.2018.03.015 – ident: e_1_2_6_33_2 doi: 10.1021/acsami.9b08682 – ident: e_1_2_6_45_1 doi: 10.1126/science.1228429 – ident: e_1_2_6_23_2 doi: 10.1016/j.ccr.2019.03.005 – ident: e_1_2_6_1_1 – ident: e_1_2_6_28_2 doi: 10.1021/acs.accounts.8b00521 – ident: e_1_2_6_25_2 doi: 10.1021/acs.chemrev.9b00223 – ident: e_1_2_6_49_1 doi: 10.1021/ja306044r – ident: e_1_2_6_11_1 – ident: e_1_2_6_19_2 doi: 10.1039/C0CS00031K – ident: e_1_2_6_51_1 doi: 10.1039/C9SC03348C – ident: e_1_2_6_38_2 doi: 10.1039/C6SC04579K – ident: e_1_2_6_50_1 doi: 10.1021/ar400161z – ident: e_1_2_6_39_2 doi: 10.1038/358656a0 – ident: e_1_2_6_2_2 doi: 10.1002/admi.201900091 – ident: e_1_2_6_9_2 doi: 10.1021/jacs.0c01861 – ident: e_1_2_6_17_2 doi: 10.1126/science.1230444 – ident: e_1_2_6_52_1 doi: 10.1016/j.apcata.2016.10.017 – ident: e_1_2_6_10_2 doi: 10.1021/jacs.8b07472 – ident: e_1_2_6_24_1 – ident: e_1_2_6_7_2 doi: 10.1021/acscatal.9b03246 – ident: e_1_2_6_30_3 doi: 10.1002/ange.201814729 – ident: e_1_2_6_22_2 doi: 10.1016/j.mattod.2018.10.038 – ident: e_1_2_6_46_1 – ident: e_1_2_6_8_2 doi: 10.1039/C7MH00557A – ident: e_1_2_6_41_2 doi: 10.1039/C6QI00013D – ident: e_1_2_6_35_1 – ident: e_1_2_6_47_2 doi: 10.1021/ja310060n – ident: e_1_2_6_37_2 doi: 10.1021/jacs.9b04930 – ident: e_1_2_6_3_2 doi: 10.1007/s12274-018-2268-5 – ident: e_1_2_6_36_2 doi: 10.1016/j.ccr.2017.10.029 |
SSID | ssj0028806 |
Score | 2.6071472 |
Snippet | Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a... Herein we present a new viologen-based radical-containing metal-organic framework (RMOF) Gd-IHEP-7, which upon heating in air undergoes a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20666 |
SubjectTerms | Absorption spectra Ammonia Gadolinium Hydrogen bonding hydrogen bonds Intermediates Metal-organic frameworks Nitrogen Nitrogen fixation Nitrogenation photocatalytic nitrogen fixation radical-containing MOFs single-crystal-to-single-crystal viologen Water stability |
Title | Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202009630 https://www.proquest.com/docview/2456380919 https://www.proquest.com/docview/2434055382 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--xfVFBMFTdZs029abrLuo4Ao-wFtJ0gTEpSvuCu6ePHvyN_pLnEm2dRVE0FtLk7TNzCTfJJlvCNnFFFRhmotAMaaCKLUCbC6XQRwZZR1fiGNiOu80Tm6is1txOxHF7_khqgU3tAw3XqOBS9U_-CQNxQhs8O9wdb_B0WnHA1uIii4r_igGyunDizgPMAt9ydpYZwdfq3-dlT6h5iRgdTNOe57I8lv9QZP7_aeB2tejbzSO__mZBTI3hqP0yOvPIpkyxRKZaZZZ4JbJ6xX6vu8vb8ePOC7Szt3gsQdKR9t3z06otIkLQMORyakaUsCuqmvopXTbP1AN2a98Egp6ftHuH1K_igGlW468AiM_KeYP0b4BSa8coy2ygdDrCVTdK1bITbt13TwJxvkbAh0JXg9CZcPQCHA4jUDawcTyBFRDJ9oK3FeIbBLrNJcsD3UjjjQ3UuVMKBlqHUMdvkqmi15h1ggVxhhhbV2n0kZ5rJJYAe5oWJbk0KaIaiQo5ZfpMbk55tjoZp6WmWXYw1nVwzWyV5V_8LQeP5bcLNUhG5t3P8PdYp4A1EprZKd6DJLB3RZZmN4TluEAhmE-YTXCnOx_eVN21DltVXfrf6m0QWbx2sVKpptkGgRmtgA0DdS2M4wPL4sRvg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hOLCX5bna8vRKK3EKNHbcJNxQaVUeLRIUaW9R7NgSWpSuoEjAiTMnfiO_hBm7CQ8JrbR7TGI7iWfG_jz2fAPwk1JQhWkhA8W5CqLUSrS5Ig_iyCjr-EIcE1N_0OqdR4e_ZHWakGJhPD9E7XAjy3DjNRk4OaR3XllDKQQbF3jk3m8JXLXPUFpvos_fP60ZpDiqpw8wEiKgPPQVb2OT77yv_35eegWbbyGrm3O6c6Cqr_VHTX5v34zVtr7_QOT4X78zD18niJTteRVagClTLsJsu0oEtwSPZ7T8fX542r-ioZENLsZXI9Q71r24dXJlbfIB3d2bgqk7hvBVXRp2mrsdIKxGBFg-DwXrn3Svd5l3ZGDpjuOvoOBPRilEtG8gZ2eO1JYIQdjwDbAelctw3u0M271gksIh0JEUzSBUNgyNxDWnkcQ8mFiRoHboRFtJWwuRTWKdFjkvQt2KIy1MrgouVR5qHWMd8Q2my1FpvgOTxhhpbVOnuY2KWCWxQujRsjwpsE0ZNSCoBJjpCb85pdm4zDwzM8-oh7O6hxuwVZf_45k9Pi25VulDNrHw64w2jEWCaCttwI_6MUqGNlzy0oxuqIxAPIxTCm8Ad8L_y5uyvcFBp75a-ZdKmzDbG_aPs-ODwdEqfKH7LnQyXYNpFJ5ZRww1VhvOSl4APVIV2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYALjwLq0gKuhMQp7caPPHqrdjdqgS6oD6m3yE9p1SpbtVup7Ykzp_5Gfgkz9ibdIiEkOCbxOIlnJv48znxDyAcsQZWWViaaMZ2I0kvwOauSXDjtA19IYGLaG2c7R-LTsTxeyOKP_BBdwA09I3yv0cHPrN-8Iw3FDGxY32F0P-OwaH8osn6JxRuG-x2BFAPrjPlFnCdYhr6lbeyzzfvy96elO6y5iFjDlFM9I6p92PinycnG5UxvmJvfeBz_522ek6dzPEq3owG9IA9cs0weD9oycC_JjwNc_P78fjs8xw8jHU9m51OwOlpNroJW6QAjQNc3zlJ9TQG86lNH91XY_wExpL-KVSjo3tfqYovGMAa0HgX2Ckz9pFhAxMQOFD0IlLZIB0IPF2D1tHlFjqrR4WAnmRdwSIyQvJ-k2qepk7DidBJ5BwvPC7ANUxgvcWNB-CI3pVXMpibLheFOacukVqkxOcjw12SpmTZuhVDpnJPe902pvLC5LnINwCPzrLDQpxQ9krT6q82c3RyLbJzWkZeZ1TjCdTfCPfKxa38WeT3-2HKtNYd67t8XNW4X8wKwVtkj691l0Axut6jGTS-xDQc0DBMK6xEWdP-XO9Xb491Rd_TmX4Tek0ffhlX9ZXf8eZU8wdMhb7JcI0ugO_cWANRMvws-8gvtYhSJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar%E2%80%90Driven+Nitrogen+Fixation+Catalyzed+by+Stable+Radical%E2%80%90Containing+MOFs%3A+Improved+Efficiency+Induced+by+a+Structural+Transformation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hu%2C+Kong%E2%80%90Qiu&rft.au=Qiu%2C+Peng%E2%80%90Xiang&rft.au=Zeng%2C+Li%E2%80%90Wen&rft.au=Hu%2C+Shu%E2%80%90Xian&rft.date=2020-11-09&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=46&rft.spage=20666&rft.epage=20671&rft_id=info:doi/10.1002%2Fanie.202009630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202009630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |