Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation

Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radic...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 46; pp. 20666 - 20671
Main Authors Hu, Kong‐Qiu, Qiu, Peng‐Xiang, Zeng, Li‐Wen, Hu, Shu‐Xian, Mei, Lei, An, Shu‐Wen, Huang, Zhi‐Wei, Kong, Xiang‐He, Lan, Jian‐Hui, Yu, Ji‐Pan, Zhang, Zhi‐Hui, Xu, Zhong‐Fei, Gibson, John K., Chai, Zhi‐Fang, Bu, Yun‐Fei, Shi, Wei‐Qun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 09.11.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h−1 g−1, respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding. A single‐crystal‐to‐single‐crystal (SCSC) transformation of stable radical‐containing MOF Gd‐IHEP‐7 generates Gd‐IHEP‐8. It is accompanied by a marked increase in efficiency of sacrificial agent‐free photocatalytic nitrogen fixation to yield NH3 from H2O and N2 under simulated solar light irradiation at ambient temperature. The NH3 production rate of 220 μmol h−1 g−1 for Gd‐IHEP‐8 is a new record for MOF photocatalysts.
AbstractList Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h−1 g−1, respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding.
Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h−1 g−1, respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding. A single‐crystal‐to‐single‐crystal (SCSC) transformation of stable radical‐containing MOF Gd‐IHEP‐7 generates Gd‐IHEP‐8. It is accompanied by a marked increase in efficiency of sacrificial agent‐free photocatalytic nitrogen fixation to yield NH3 from H2O and N2 under simulated solar light irradiation at ambient temperature. The NH3 production rate of 220 μmol h−1 g−1 for Gd‐IHEP‐8 is a new record for MOF photocatalysts.
Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a single‐crystal‐to‐single‐crystal transformation to generate Gd‐IHEP‐8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical‐radical interactions, and their long‐lifetime radicals result in wide spectral absorption in the range 200–2500 nm. Gd‐IHEP‐7 and Gd‐IHEP‐8 show excellent activity toward solar‐driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h −1  g −1 , respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd‐IHEP‐8 versus Gd‐IHEP‐7 is attributed to intermediates stabilized by enhanced hydrogen bonding.
Herein we present a new viologen-based radical-containing metal-organic framework (RMOF) Gd-IHEP-7, which upon heating in air undergoes a single-crystal-to-single-crystal transformation to generate Gd-IHEP-8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical-radical interactions, and their long-lifetime radicals result in wide spectral absorption in the range 200-2500 nm. Gd-IHEP-7 and Gd-IHEP-8 show excellent activity toward solar-driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h-1  g-1 , respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd-IHEP-8 versus Gd-IHEP-7 is attributed to intermediates stabilized by enhanced hydrogen bonding.Herein we present a new viologen-based radical-containing metal-organic framework (RMOF) Gd-IHEP-7, which upon heating in air undergoes a single-crystal-to-single-crystal transformation to generate Gd-IHEP-8. Both RMOFs exhibit excellent air and water stability as a result of favorable radical-radical interactions, and their long-lifetime radicals result in wide spectral absorption in the range 200-2500 nm. Gd-IHEP-7 and Gd-IHEP-8 show excellent activity toward solar-driven nitrogen fixation, with ammonia production rates of 128 and 220 μmol h-1  g-1 , respectively. Experiments and theoretical calculations indicate that both RMOFs have similar nitrogen fixation pathways. The enhanced catalytic efficiency of Gd-IHEP-8 versus Gd-IHEP-7 is attributed to intermediates stabilized by enhanced hydrogen bonding.
Author Hu, Kong‐Qiu
An, Shu‐Wen
Zhang, Zhi‐Hui
Bu, Yun‐Fei
Zeng, Li‐Wen
Chai, Zhi‐Fang
Xu, Zhong‐Fei
Lan, Jian‐Hui
Yu, Ji‐Pan
Shi, Wei‐Qun
Mei, Lei
Huang, Zhi‐Wei
Kong, Xiang‐He
Gibson, John K.
Hu, Shu‐Xian
Qiu, Peng‐Xiang
Author_xml – sequence: 1
  givenname: Kong‐Qiu
  surname: Hu
  fullname: Hu, Kong‐Qiu
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Peng‐Xiang
  surname: Qiu
  fullname: Qiu, Peng‐Xiang
  organization: Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Li‐Wen
  surname: Zeng
  fullname: Zeng, Li‐Wen
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Shu‐Xian
  surname: Hu
  fullname: Hu, Shu‐Xian
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Lei
  surname: Mei
  fullname: Mei, Lei
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Shu‐Wen
  surname: An
  fullname: An, Shu‐Wen
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Zhi‐Wei
  surname: Huang
  fullname: Huang, Zhi‐Wei
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Xiang‐He
  surname: Kong
  fullname: Kong, Xiang‐He
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Jian‐Hui
  surname: Lan
  fullname: Lan, Jian‐Hui
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Ji‐Pan
  surname: Yu
  fullname: Yu, Ji‐Pan
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Zhi‐Hui
  surname: Zhang
  fullname: Zhang, Zhi‐Hui
  organization: Changzhou University
– sequence: 12
  givenname: Zhong‐Fei
  surname: Xu
  fullname: Xu, Zhong‐Fei
  organization: University of Science and Technology Beijing
– sequence: 13
  givenname: John K.
  surname: Gibson
  fullname: Gibson, John K.
  organization: Lawrence Berkeley National Laboratory (LBNL)
– sequence: 14
  givenname: Zhi‐Fang
  surname: Chai
  fullname: Chai, Zhi‐Fang
  organization: Chinese Academy of Sciences
– sequence: 15
  givenname: Yun‐Fei
  surname: Bu
  fullname: Bu, Yun‐Fei
  organization: Nanjing University of Information Science and Technology
– sequence: 16
  givenname: Wei‐Qun
  orcidid: 0000-0001-9929-9732
  surname: Shi
  fullname: Shi, Wei‐Qun
  email: shiwq@ihep.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkU9vFCEYh4mpif3j1TOJFy-zhQEGxluz7tpNapvYep68wzANDQsVmOp48uzJz-gnkXYbTZoYT7yH5_nxwu8A7fngDUKvKFlQQupj8NYsalIT0jaMPEP7VNS0YlKyvTJzxiqpBH2BDlK6KbxSpNlHPy6Dg_jr-8930d4Zj89tjuG6DGv7FbINHi8hg5u_mQH3M77M0DuDP8JgNbiiLYPPYL311_jDxTq9xZvtbQx3hV6No9XWeD3jjR8mvQuAEhEnnacIDl9F8GkMcftw0xF6PoJL5uXjeYg-rVdXy9Pq7OL9ZnlyVmkuGKloP1JqBOeNEUpKqUamDGFa6VGw8hF8VFK3A9QD1Y3kmhnoh1r0QLWWxWGH6M0utyz6eTIpd1ubtHEOvAlT6mrOOBGCqbqgr5-gN2GKvmxXKNEwRVraForvKB1DStGMnbb54Uk5gnUdJd19Qd19Qd2fgoq2eKLdRruFOP9baHfCF-vM_B-6OznfrP66vwERQ6ju
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c02760
crossref_primary_10_1016_j_cej_2023_142275
crossref_primary_10_1002_adfm_202404126
crossref_primary_10_3390_catal12091005
crossref_primary_10_1002_adsu_202400225
crossref_primary_10_1002_aesr_202000097
crossref_primary_10_1039_D4TC00977K
crossref_primary_10_1002_smll_202108055
crossref_primary_10_1002_ejic_202100748
crossref_primary_10_1126_sciadv_ade1383
crossref_primary_10_1016_j_mtchem_2023_101419
crossref_primary_10_1002_anie_202401766
crossref_primary_10_1016_S1872_5813_24_60468_8
crossref_primary_10_1016_j_nanoen_2024_110109
crossref_primary_10_1007_s12274_024_6453_4
crossref_primary_10_1016_j_apcatb_2022_122148
crossref_primary_10_1016_j_apcatb_2023_123474
crossref_primary_10_1021_jacs_2c06216
crossref_primary_10_1039_D4CE00360H
crossref_primary_10_1002_cssc_202200297
crossref_primary_10_1016_S1872_2067_24_60006_9
crossref_primary_10_1016_j_cclet_2021_06_077
crossref_primary_10_1016_j_cej_2023_145256
crossref_primary_10_1002_anie_202117244
crossref_primary_10_1002_smll_202402779
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1016_j_jcat_2023_115249
crossref_primary_10_1002_smll_202410939
crossref_primary_10_1016_j_ccr_2024_216064
crossref_primary_10_1021_acscatal_2c02282
crossref_primary_10_1021_acssuschemeng_1c05107
crossref_primary_10_1002_adma_202412924
crossref_primary_10_1016_j_enchem_2022_100078
crossref_primary_10_1016_j_mattod_2023_12_014
crossref_primary_10_1039_D0NJ06296K
crossref_primary_10_1016_j_apcatb_2021_119990
crossref_primary_10_1002_ange_202108318
crossref_primary_10_2139_ssrn_4184969
crossref_primary_10_1016_j_chempr_2022_03_023
crossref_primary_10_1002_anie_202108318
crossref_primary_10_1002_adfm_202308534
crossref_primary_10_1016_j_microc_2024_111492
crossref_primary_10_1039_D2TA09799K
crossref_primary_10_1016_j_apcatb_2025_125034
crossref_primary_10_1021_acs_inorgchem_3c04625
crossref_primary_10_1039_D4TA01126K
crossref_primary_10_1016_j_apsusc_2023_156781
crossref_primary_10_1016_j_apsusc_2023_158443
crossref_primary_10_1016_j_ccr_2025_216543
crossref_primary_10_1021_acs_cgd_4c00765
crossref_primary_10_1002_chem_202301575
crossref_primary_10_1021_acs_inorgchem_3c02202
crossref_primary_10_1039_D1SC03709A
crossref_primary_10_1016_j_cplett_2024_141292
crossref_primary_10_1002_smll_202302738
crossref_primary_10_1039_D2RA03464F
crossref_primary_10_1039_D4CC01152J
crossref_primary_10_1002_ange_202117244
crossref_primary_10_1002_chem_202302397
crossref_primary_10_1016_j_checat_2024_100929
crossref_primary_10_1038_s41467_023_40091_6
crossref_primary_10_1021_jacs_2c10233
crossref_primary_10_1016_j_xcrp_2023_101306
crossref_primary_10_1038_s41467_022_35489_7
crossref_primary_10_1016_j_fuel_2024_131928
crossref_primary_10_1016_j_jcis_2024_09_027
crossref_primary_10_1002_smtd_202201258
crossref_primary_10_1016_j_apcatb_2021_120680
crossref_primary_10_1021_acs_inorgchem_1c00217
crossref_primary_10_1039_D3GC02996D
crossref_primary_10_1002_adfm_202213039
crossref_primary_10_1039_D0DT04358C
crossref_primary_10_1002_ange_202401766
crossref_primary_10_1039_D4QI03182B
crossref_primary_10_1039_D4QI02128B
crossref_primary_10_1016_j_cplett_2021_139291
crossref_primary_10_1021_acs_inorgchem_0c03586
crossref_primary_10_1021_acs_inorgchem_1c01832
crossref_primary_10_1002_adma_202106400
crossref_primary_10_1021_acsami_0c20036
crossref_primary_10_1093_ce_zkac095
crossref_primary_10_1002_ejic_202100819
crossref_primary_10_1016_j_apcata_2022_118978
crossref_primary_10_1021_acs_iecr_3c02831
crossref_primary_10_1016_j_ccr_2024_216292
crossref_primary_10_1002_adfm_202315548
crossref_primary_10_1016_j_apcatb_2021_120106
crossref_primary_10_1021_acsami_4c01412
crossref_primary_10_1038_s41467_021_23190_0
crossref_primary_10_1016_j_jece_2024_112142
crossref_primary_10_1021_acs_energyfuels_2c01083
crossref_primary_10_1016_j_jallcom_2022_164751
crossref_primary_10_1021_acs_jpcc_4c05246
crossref_primary_10_1016_j_seppur_2021_119627
crossref_primary_10_1016_j_apcatb_2024_124537
crossref_primary_10_1002_cssc_202301730
crossref_primary_10_1016_j_inoche_2023_111210
crossref_primary_10_1016_j_mtchem_2022_100973
crossref_primary_10_1039_D2TA07042A
crossref_primary_10_1021_acsaem_2c01346
Cites_doi 10.1039/C7CS00543A
10.1016/j.ccr.2015.09.002
10.1002/aenm.202000659
10.1016/j.jre.2020.01.012
10.1039/C8CS00829A
10.1021/ar1000617
10.1002/anie.201814729
10.1038/46248
10.1038/s41467-020-14986-7
10.1021/ja3037355
10.1039/C6CS00250A
10.1038/s41929-018-0206-2
10.1021/acsami.6b15540
10.1038/s41560-017-0018-7
10.1039/c3cc42268b
10.1126/science.1106435
10.1021/cr3002824
10.1039/C5CC08168H
10.1016/j.apcatb.2020.118686
10.1016/j.enchem.2019.100005
10.1016/j.ccr.2018.03.015
10.1021/acsami.9b08682
10.1126/science.1228429
10.1016/j.ccr.2019.03.005
10.1021/acs.accounts.8b00521
10.1021/acs.chemrev.9b00223
10.1021/ja306044r
10.1039/C0CS00031K
10.1039/C9SC03348C
10.1039/C6SC04579K
10.1021/ar400161z
10.1038/358656a0
10.1002/admi.201900091
10.1021/jacs.0c01861
10.1126/science.1230444
10.1016/j.apcata.2016.10.017
10.1021/jacs.8b07472
10.1021/acscatal.9b03246
10.1002/ange.201814729
10.1016/j.mattod.2018.10.038
10.1039/C7MH00557A
10.1039/C6QI00013D
10.1021/ja310060n
10.1021/jacs.9b04930
10.1007/s12274-018-2268-5
10.1016/j.ccr.2017.10.029
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202009630
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 20671
ExternalDocumentID 10_1002_anie_202009630
ANIE202009630
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 21925603
– fundername: Heavy Element Chemistry program at LBNL
  funderid: DE-AC02-05CH11231
– fundername: National Natural Science Foundation of China
  funderid: 21836001, 11875057, 21701006, 21976014 and U1930402; 51908294; 21706132
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4530-1bf11e5446e587778f38e03c8cf531004f87c9da2d1c674c3eabd25ba1cc76e53
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:40:24 EDT 2025
Sun Jul 13 04:43:14 EDT 2025
Thu Apr 24 22:54:09 EDT 2025
Tue Jul 01 01:17:46 EDT 2025
Wed Jan 22 16:32:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4530-1bf11e5446e587778f38e03c8cf531004f87c9da2d1c674c3eabd25ba1cc76e53
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9929-9732
PQID 2456380919
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2434055382
proquest_journals_2456380919
crossref_citationtrail_10_1002_anie_202009630
crossref_primary_10_1002_anie_202009630
wiley_primary_10_1002_anie_202009630_ANIE202009630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 9, 2020
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: November 9, 2020
  day: 09
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2017; 8
2017; 2
2019; 6
2018; 140
2013; 49
2016; 307
2019; 52
2020; 142
2020; 120
2019; 2
2019; 11
2019; 1
2019; 10
2019; 12
2017; 46
2011; 40
2020; 38
2019; 388
2016; 52
2014; 47
2013; 341
2020; 11
2020; 10
2020; 267
2019; 141
1999; 402
2017; 9
2019 2019; 58 131
2018; 47
2010; 43
2017; 529
2018; 5
2012; 134
2016; 3
2013; 339
2019; 48
1992; 358
2019; 27
2005; 307
2019; 378
2013; 113
2013; 135
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_30_3
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_47_2
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_52_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_1
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_27_2
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 5503
  year: 2017
  end-page: 5512
  publication-title: ACS Appl. Mater. Interfaces
– volume: 120
  start-page: 1438
  year: 2020
  end-page: 1511
  publication-title: Chem. Rev.
– volume: 11
  start-page: 29917
  year: 2019
  end-page: 29923
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 814
  year: 2016
  end-page: 820
  publication-title: Inorg. Chem. Front.
– volume: 388
  start-page: 268
  year: 2019
  end-page: 292
  publication-title: Coord. Chem. Rev.
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  publication-title: Chem. Soc. Rev.
– volume: 113
  start-page: 734
  year: 2013
  end-page: 777
  publication-title: Chem. Rev.
– volume: 141
  start-page: 12663
  year: 2019
  end-page: 12672
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 525
  year: 2016
  end-page: 528
  publication-title: Chem. Commun.
– volume: 49
  start-page: 7711
  year: 2013
  end-page: 7713
  publication-title: Chem. Commun.
– volume: 12
  start-page: 1229
  year: 2019
  end-page: 1249
  publication-title: Nano Res.
– volume: 10
  start-page: 8558
  year: 2019
  end-page: 8565
  publication-title: Chem. Sci.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 9
  year: 2018
  end-page: 27
  publication-title: Mater. Horiz.
– volume: 43
  start-page: 1166
  year: 2010
  end-page: 1175
  publication-title: Acc. Chem. Res.
– volume: 307
  start-page: 361
  year: 2016
  end-page: 381
  publication-title: Coord. Chem. Rev.
– volume: 140
  start-page: 14161
  year: 2018
  end-page: 14168
  publication-title: J. Am. Chem. Soc.
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  publication-title: Nature
– volume: 378
  start-page: 17
  year: 2019
  end-page: 31
  publication-title: Coord. Chem. Rev.
– volume: 529
  start-page: 91
  year: 2017
  end-page: 97
  publication-title: Appl. Catal. A
– volume: 47
  start-page: 482
  year: 2014
  end-page: 493
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 8142
  year: 2020
  end-page: 8146
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 456
  year: 2013
  end-page: 467
  publication-title: J. Am. Chem. Soc.
– volume: 378
  start-page: 533
  year: 2019
  end-page: 560
  publication-title: Coord. Chem. Rev.
– volume: 52
  start-page: 356
  year: 2019
  end-page: 366
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 1179
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 2758
  year: 2017
  end-page: 2768
  publication-title: Chem. Sci.
– volume: 339
  start-page: 429
  year: 2013
  end-page: 433
  publication-title: Science
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 341
  year: 2013
  publication-title: Science
– volume: 38
  start-page: 801
  year: 2020
  end-page: 808
  publication-title: J. Rare Earths
– volume: 267
  year: 2020
  publication-title: Appl. Catal. B
– volume: 307
  start-page: 555
  year: 2005
  end-page: 558
  publication-title: Science
– volume: 47
  start-page: 2322
  year: 2018
  end-page: 2356
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 9739
  year: 2019
  end-page: 9750
  publication-title: ACS Catal.
– volume: 58 131
  start-page: 5226 5280
  year: 2019 2019
  end-page: 5231 5285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 358
  start-page: 656
  year: 1992
  end-page: 658
  publication-title: Nature
– volume: 134
  start-page: 16275
  year: 2012
  end-page: 16288
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 877
  year: 2017
  end-page: 883
  publication-title: Nat. Energy
– volume: 134
  start-page: 11709
  year: 2012
  end-page: 11720
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 498
  year: 2011
  end-page: 519
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 2783
  year: 2019
  end-page: 2828
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 142
  year: 2019
  end-page: 148
  publication-title: Nat. Catal.
– volume: 27
  start-page: 43
  year: 2019
  end-page: 68
  publication-title: Mater. Today
– ident: e_1_2_6_12_2
  doi: 10.1039/C7CS00543A
– ident: e_1_2_6_15_2
  doi: 10.1016/j.ccr.2015.09.002
– ident: e_1_2_6_4_2
  doi: 10.1002/aenm.202000659
– ident: e_1_2_6_26_2
  doi: 10.1016/j.jre.2020.01.012
– ident: e_1_2_6_27_2
  doi: 10.1039/C8CS00829A
– ident: e_1_2_6_31_1
– ident: e_1_2_6_18_2
  doi: 10.1021/ar1000617
– ident: e_1_2_6_30_2
  doi: 10.1002/anie.201814729
– ident: e_1_2_6_21_2
  doi: 10.1038/46248
– ident: e_1_2_6_43_1
  doi: 10.1038/s41467-020-14986-7
– ident: e_1_2_6_53_1
– ident: e_1_2_6_48_2
  doi: 10.1021/ja3037355
– ident: e_1_2_6_14_2
  doi: 10.1039/C6CS00250A
– ident: e_1_2_6_29_2
  doi: 10.1038/s41929-018-0206-2
– ident: e_1_2_6_44_1
  doi: 10.1021/acsami.6b15540
– ident: e_1_2_6_16_2
  doi: 10.1038/s41560-017-0018-7
– ident: e_1_2_6_42_2
  doi: 10.1039/c3cc42268b
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1106435
– ident: e_1_2_6_20_2
  doi: 10.1021/cr3002824
– ident: e_1_2_6_40_2
  doi: 10.1039/C5CC08168H
– ident: e_1_2_6_32_2
  doi: 10.1016/j.apcatb.2020.118686
– ident: e_1_2_6_34_1
  doi: 10.1016/j.enchem.2019.100005
– ident: e_1_2_6_6_1
– ident: e_1_2_6_13_2
  doi: 10.1016/j.ccr.2018.03.015
– ident: e_1_2_6_33_2
  doi: 10.1021/acsami.9b08682
– ident: e_1_2_6_45_1
  doi: 10.1126/science.1228429
– ident: e_1_2_6_23_2
  doi: 10.1016/j.ccr.2019.03.005
– ident: e_1_2_6_1_1
– ident: e_1_2_6_28_2
  doi: 10.1021/acs.accounts.8b00521
– ident: e_1_2_6_25_2
  doi: 10.1021/acs.chemrev.9b00223
– ident: e_1_2_6_49_1
  doi: 10.1021/ja306044r
– ident: e_1_2_6_11_1
– ident: e_1_2_6_19_2
  doi: 10.1039/C0CS00031K
– ident: e_1_2_6_51_1
  doi: 10.1039/C9SC03348C
– ident: e_1_2_6_38_2
  doi: 10.1039/C6SC04579K
– ident: e_1_2_6_50_1
  doi: 10.1021/ar400161z
– ident: e_1_2_6_39_2
  doi: 10.1038/358656a0
– ident: e_1_2_6_2_2
  doi: 10.1002/admi.201900091
– ident: e_1_2_6_9_2
  doi: 10.1021/jacs.0c01861
– ident: e_1_2_6_17_2
  doi: 10.1126/science.1230444
– ident: e_1_2_6_52_1
  doi: 10.1016/j.apcata.2016.10.017
– ident: e_1_2_6_10_2
  doi: 10.1021/jacs.8b07472
– ident: e_1_2_6_24_1
– ident: e_1_2_6_7_2
  doi: 10.1021/acscatal.9b03246
– ident: e_1_2_6_30_3
  doi: 10.1002/ange.201814729
– ident: e_1_2_6_22_2
  doi: 10.1016/j.mattod.2018.10.038
– ident: e_1_2_6_46_1
– ident: e_1_2_6_8_2
  doi: 10.1039/C7MH00557A
– ident: e_1_2_6_41_2
  doi: 10.1039/C6QI00013D
– ident: e_1_2_6_35_1
– ident: e_1_2_6_47_2
  doi: 10.1021/ja310060n
– ident: e_1_2_6_37_2
  doi: 10.1021/jacs.9b04930
– ident: e_1_2_6_3_2
  doi: 10.1007/s12274-018-2268-5
– ident: e_1_2_6_36_2
  doi: 10.1016/j.ccr.2017.10.029
SSID ssj0028806
Score 2.6071472
Snippet Herein we present a new viologen‐based radical‐containing metal–organic framework (RMOF) Gd‐IHEP‐7, which upon heating in air undergoes a...
Herein we present a new viologen-based radical-containing metal-organic framework (RMOF) Gd-IHEP-7, which upon heating in air undergoes a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20666
SubjectTerms Absorption spectra
Ammonia
Gadolinium
Hydrogen bonding
hydrogen bonds
Intermediates
Metal-organic frameworks
Nitrogen
Nitrogen fixation
Nitrogenation
photocatalytic nitrogen fixation
radical-containing MOFs
single-crystal-to-single-crystal
viologen
Water stability
Title Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202009630
https://www.proquest.com/docview/2456380919
https://www.proquest.com/docview/2434055382
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--xfVFBMFTdZs029abrLuo4Ao-wFtJ0gTEpSvuCu6ePHvyN_pLnEm2dRVE0FtLk7TNzCTfJJlvCNnFFFRhmotAMaaCKLUCbC6XQRwZZR1fiGNiOu80Tm6is1txOxHF7_khqgU3tAw3XqOBS9U_-CQNxQhs8O9wdb_B0WnHA1uIii4r_igGyunDizgPMAt9ydpYZwdfq3-dlT6h5iRgdTNOe57I8lv9QZP7_aeB2tejbzSO__mZBTI3hqP0yOvPIpkyxRKZaZZZ4JbJ6xX6vu8vb8ePOC7Szt3gsQdKR9t3z06otIkLQMORyakaUsCuqmvopXTbP1AN2a98Egp6ftHuH1K_igGlW468AiM_KeYP0b4BSa8coy2ygdDrCVTdK1bITbt13TwJxvkbAh0JXg9CZcPQCHA4jUDawcTyBFRDJ9oK3FeIbBLrNJcsD3UjjjQ3UuVMKBlqHUMdvkqmi15h1ggVxhhhbV2n0kZ5rJJYAe5oWJbk0KaIaiQo5ZfpMbk55tjoZp6WmWXYw1nVwzWyV5V_8LQeP5bcLNUhG5t3P8PdYp4A1EprZKd6DJLB3RZZmN4TluEAhmE-YTXCnOx_eVN21DltVXfrf6m0QWbx2sVKpptkGgRmtgA0DdS2M4wPL4sRvg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hOLCX5bna8vRKK3EKNHbcJNxQaVUeLRIUaW9R7NgSWpSuoEjAiTMnfiO_hBm7CQ8JrbR7TGI7iWfG_jz2fAPwk1JQhWkhA8W5CqLUSrS5Ig_iyCjr-EIcE1N_0OqdR4e_ZHWakGJhPD9E7XAjy3DjNRk4OaR3XllDKQQbF3jk3m8JXLXPUFpvos_fP60ZpDiqpw8wEiKgPPQVb2OT77yv_35eegWbbyGrm3O6c6Cqr_VHTX5v34zVtr7_QOT4X78zD18niJTteRVagClTLsJsu0oEtwSPZ7T8fX542r-ioZENLsZXI9Q71r24dXJlbfIB3d2bgqk7hvBVXRp2mrsdIKxGBFg-DwXrn3Svd5l3ZGDpjuOvoOBPRilEtG8gZ2eO1JYIQdjwDbAelctw3u0M271gksIh0JEUzSBUNgyNxDWnkcQ8mFiRoHboRFtJWwuRTWKdFjkvQt2KIy1MrgouVR5qHWMd8Q2my1FpvgOTxhhpbVOnuY2KWCWxQujRsjwpsE0ZNSCoBJjpCb85pdm4zDwzM8-oh7O6hxuwVZf_45k9Pi25VulDNrHw64w2jEWCaCttwI_6MUqGNlzy0oxuqIxAPIxTCm8Ad8L_y5uyvcFBp75a-ZdKmzDbG_aPs-ODwdEqfKH7LnQyXYNpFJ5ZRww1VhvOSl4APVIV2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYALjwLq0gKuhMQp7caPPHqrdjdqgS6oD6m3yE9p1SpbtVup7Ykzp_5Gfgkz9ibdIiEkOCbxOIlnJv48znxDyAcsQZWWViaaMZ2I0kvwOauSXDjtA19IYGLaG2c7R-LTsTxeyOKP_BBdwA09I3yv0cHPrN-8Iw3FDGxY32F0P-OwaH8osn6JxRuG-x2BFAPrjPlFnCdYhr6lbeyzzfvy96elO6y5iFjDlFM9I6p92PinycnG5UxvmJvfeBz_522ek6dzPEq3owG9IA9cs0weD9oycC_JjwNc_P78fjs8xw8jHU9m51OwOlpNroJW6QAjQNc3zlJ9TQG86lNH91XY_wExpL-KVSjo3tfqYovGMAa0HgX2Ckz9pFhAxMQOFD0IlLZIB0IPF2D1tHlFjqrR4WAnmRdwSIyQvJ-k2qepk7DidBJ5BwvPC7ANUxgvcWNB-CI3pVXMpibLheFOacukVqkxOcjw12SpmTZuhVDpnJPe902pvLC5LnINwCPzrLDQpxQ9krT6q82c3RyLbJzWkZeZ1TjCdTfCPfKxa38WeT3-2HKtNYd67t8XNW4X8wKwVtkj691l0Axut6jGTS-xDQc0DBMK6xEWdP-XO9Xb491Rd_TmX4Tek0ffhlX9ZXf8eZU8wdMhb7JcI0ugO_cWANRMvws-8gvtYhSJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar%E2%80%90Driven+Nitrogen+Fixation+Catalyzed+by+Stable+Radical%E2%80%90Containing+MOFs%3A+Improved+Efficiency+Induced+by+a+Structural+Transformation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hu%2C+Kong%E2%80%90Qiu&rft.au=Qiu%2C+Peng%E2%80%90Xiang&rft.au=Zeng%2C+Li%E2%80%90Wen&rft.au=Hu%2C+Shu%E2%80%90Xian&rft.date=2020-11-09&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=46&rft.spage=20666&rft.epage=20671&rft_id=info:doi/10.1002%2Fanie.202009630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202009630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon