Decision Tree Modeling for Osteoporosis Screening in Postmenopausal Thai Women

Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required for rapid diagnosis. This study constructs and confirms an osteoporosis screening tool-based decision tree (DT) model. Four DT algorithms, name...

Full description

Saved in:
Bibliographic Details
Published inInformatics (Basel) Vol. 9; no. 4; p. 83
Main Authors Makond, Bunjira, Pornsawad, Pornsarp, Thawnashom, Kittisak
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2227-9709
2227-9709
DOI10.3390/informatics9040083

Cover

Loading…
Abstract Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required for rapid diagnosis. This study constructs and confirms an osteoporosis screening tool-based decision tree (DT) model. Four DT algorithms, namely, classification and regression tree; chi-squared automatic interaction detection (CHAID); quick, unbiased, efficient statistical tree; and C4.5, were implemented on 356 patients, of whom 266 were abnormal and 90 normal. The investigation revealed that the DT algorithms have insignificantly different performances regarding the accuracy, sensitivity, specificity, and area under the curve. Each algorithm possesses its characteristic performance. The optimal model is selected according to the performance of blind data testing and compared with traditional screening tools: Osteoporosis Self-Assessment for Asians and the Khon Kaen Osteoporosis Study. The Decision Tree for Postmenopausal Osteoporosis Screening (DTPOS) tool was developed from the best performance of CHAID’s algorithms. The age of 58 years and weight at a cutoff of 57.8 kg were the essential predictors of our tool. DTPOS provides a sensitivity of 92.3% and a positive predictive value of 82.8%, which might be used to rule in subjects at risk of osteopenia and osteoporosis in a community-based screening as it is simple to conduct.
AbstractList Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required for rapid diagnosis. This study constructs and confirms an osteoporosis screening tool-based decision tree (DT) model. Four DT algorithms, namely, classification and regression tree; chi-squared automatic interaction detection (CHAID); quick, unbiased, efficient statistical tree; and C4.5, were implemented on 356 patients, of whom 266 were abnormal and 90 normal. The investigation revealed that the DT algorithms have insignificantly different performances regarding the accuracy, sensitivity, specificity, and area under the curve. Each algorithm possesses its characteristic performance. The optimal model is selected according to the performance of blind data testing and compared with traditional screening tools: Osteoporosis Self-Assessment for Asians and the Khon Kaen Osteoporosis Study. The Decision Tree for Postmenopausal Osteoporosis Screening (DTPOS) tool was developed from the best performance of CHAID’s algorithms. The age of 58 years and weight at a cutoff of 57.8 kg were the essential predictors of our tool. DTPOS provides a sensitivity of 92.3% and a positive predictive value of 82.8%, which might be used to rule in subjects at risk of osteopenia and osteoporosis in a community-based screening as it is simple to conduct.
Audience Academic
Author Pornsawad, Pornsarp
Makond, Bunjira
Thawnashom, Kittisak
Author_xml – sequence: 1
  givenname: Bunjira
  orcidid: 0000-0002-1718-3021
  surname: Makond
  fullname: Makond, Bunjira
– sequence: 2
  givenname: Pornsarp
  orcidid: 0000-0001-7254-2448
  surname: Pornsawad
  fullname: Pornsawad, Pornsarp
– sequence: 3
  givenname: Kittisak
  orcidid: 0000-0001-8450-1619
  surname: Thawnashom
  fullname: Thawnashom, Kittisak
BookMark eNp9UcluFDEUtFCQCCE_wKklzhPcXtvHKGyRAkFiEEfrtZfBo257sHsO-XveZIJYhX2wVa-q9FT1lJzkkgMhz3t6wbmhL1OOpc6wJNcMFZQO_BE5ZYzpldHUnPzyf0LOW9tSPKbnA9en5MOr4FJLJXfrGkL3vvgwpbzp0LG7bUsou1JLS6375HCeD6OUu4-lLXPIZQf7BlO3_gqp-1IQeUYeR5haOH94z8jnN6_XV-9WN7dvr68ub1ZOSLasouCSjSOMuL_xUkTwnFPnlWYjH3ofpNfCKcVooG4MhoHrdeyV8YzK4ICfkeujry-wtbuaZqh3tkCy90CpGwsVA5mC1VKGwQktjBvFGL2BGEFROYBWo_Q9er04eu1q-bYPbbHbsq8Z17dMS6V7g1v-ZG0ATQ-RLxXcnJqzl1oIJbXSHFkX_2Dh9WFODmuLCfHfBMNR4DDmVkO0Li1YZckoTJPtqT10bP_uGKXsD-mPHP4j-g7EG69X
CitedBy_id crossref_primary_10_3390_s23177612
crossref_primary_10_3390_app13064024
crossref_primary_10_1016_j_ibmed_2023_100099
Cites_doi 10.1016/j.bone.2018.04.020
10.1002/jbm4.10337
10.1016/j.ijinfomgt.2017.10.002
10.1186/s12859-022-04596-z
10.3349/ymj.2013.54.6.1321
10.1016/j.afos.2016.10.002
10.1111/j.1447-0756.2004.00224.x
10.1007/s00198-015-3025-1
10.1097/MD.0000000000003415
10.1007/0-387-25465-X_9
10.1016/j.afos.2019.09.001
10.1061/(ASCE)0887-3801(2005)19:4(387)
10.1016/j.cmpb.2017.04.011
10.1016/j.eswa.2007.12.002
10.1007/s001980170072
10.4103/2230-8210.137485
10.3390/medicina56090455
10.1007/s001980170070
10.1080/13697137.2016.1231176
10.1067/mob.2000.106594
10.1016/j.afos.2015.09.003
10.1016/j.nut.2009.12.001
10.1097/00042192-200101000-00011
10.1007/5584_2019_413
10.1080/gye.16.3.245.250
10.1016/j.compbiomed.2020.103991
10.1007/s11739-018-1874-2
10.1061/(ASCE)0887-3801(2004)18:2(132)
10.1136/bmjopen-2016-013336
10.1371/journal.pone.0266452
10.1016/j.cmpb.2017.02.001
10.1016/j.artmed.2010.05.002
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.3390/informatics9040083
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Public Health
EISSN 2227-9709
ExternalDocumentID oai_doaj_org_article_755e8c4749cb4bfd9affa6058a76b5d1
A744657673
10_3390_informatics9040083
GeographicLocations Thailand
Bangkok Thailand
GeographicLocations_xml – name: Thailand
– name: Bangkok Thailand
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c452t-f4352bbab3399d54fad330cd672b381de5d74c6620e0cbe92ac17f169d205eca3
IEDL.DBID BENPR
ISSN 2227-9709
IngestDate Wed Aug 27 01:31:10 EDT 2025
Mon Jul 14 08:11:31 EDT 2025
Tue Jun 17 22:23:46 EDT 2025
Tue Jun 10 21:24:03 EDT 2025
Tue Jul 01 00:56:31 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-f4352bbab3399d54fad330cd672b381de5d74c6620e0cbe92ac17f169d205eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7254-2448
0000-0002-1718-3021
0000-0001-8450-1619
OpenAccessLink https://www.proquest.com/docview/2756719339?pq-origsite=%requestingapplication%
PQID 2756719339
PQPubID 2032385
ParticipantIDs doaj_primary_oai_doaj_org_article_755e8c4749cb4bfd9affa6058a76b5d1
proquest_journals_2756719339
gale_infotracmisc_A744657673
gale_infotracacademiconefile_A744657673
crossref_citationtrail_10_3390_informatics9040083
crossref_primary_10_3390_informatics9040083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221001
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Informatics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lee (ref_25) 2004; 18
Ramezankhani (ref_28) 2016; 6
Pongchaiyakul (ref_4) 2004; 87
Varlamis (ref_27) 2017; 145
Nuti (ref_51) 2019; 14
Chavda (ref_49) 2022; 14
Zhang (ref_8) 2007; 21
Pongchaiyakul (ref_43) 2008; 91
Yingyuenyong (ref_10) 2012; 20
Yeo (ref_23) 2018; 38
Toh (ref_46) 2019; 5
Chailurkit (ref_48) 2011; 27
Nayak (ref_44) 2015; 26
Cadarette (ref_12) 2000; 162
Black (ref_15) 2001; 12
ref_26
Jabarpour (ref_16) 2020; 9
Wang (ref_20) 2005; 2006
Indhavivadhana (ref_41) 2016; 19
Chaysri (ref_38) 2015; 98
Lydick (ref_14) 1998; 4
ref_35
Songpatanasilp (ref_37) 2016; 2
Arditi (ref_24) 2005; 19
Koh (ref_6) 2001; 12
ref_32
ref_31
Prommahachai (ref_7) 2009; 24
Weinstein (ref_11) 2000; 183
Sreejith (ref_29) 2020; 126
Panichkul (ref_5) 2004; 30
Limpaphayom (ref_36) 2001; 8
Kass (ref_33) 1975; 24
Kim (ref_17) 2018; 116
ref_47
Ture (ref_30) 2009; 36
Chen (ref_45) 2016; 95
Jerez (ref_34) 2010; 50
ref_42
Kong (ref_18) 2020; 4
ref_40
ref_1
ref_3
ref_2
Moudani (ref_19) 2011; 32
ref_9
Yoo (ref_21) 2013; 54
Tayefi (ref_22) 2017; 141
Suwan (ref_39) 2015; 1
Mitek (ref_50) 2019; 1211
Sedrine (ref_13) 2002; 16
References_xml – volume: 116
  start-page: 207
  year: 2018
  ident: ref_17
  article-title: Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report
  publication-title: Bone
  doi: 10.1016/j.bone.2018.04.020
– ident: ref_9
– volume: 24
  start-page: 178
  year: 1975
  ident: ref_33
  article-title: Significance testing in automatic interaction detection (AID)
  publication-title: J. R. Stat. Soc. Ser. C
– volume: 91
  start-page: 261
  year: 2008
  ident: ref_43
  article-title: Burden of osteoporosis in Thailand
  publication-title: J. Med. Assoc. Thail.
– volume: 4
  start-page: e10337
  year: 2020
  ident: ref_18
  article-title: A Novel Fracture Prediction Model Using Machine Learning in a Community-Based Cohort
  publication-title: JBMR Plus
  doi: 10.1002/jbm4.10337
– volume: 38
  start-page: 288
  year: 2018
  ident: ref_23
  article-title: Predicting service industry performance using decision tree analysis
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2017.10.002
– ident: ref_26
  doi: 10.1186/s12859-022-04596-z
– ident: ref_1
– volume: 54
  start-page: 1321
  year: 2013
  ident: ref_21
  article-title: Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2013.54.6.1321
– volume: 14
  start-page: e26518
  year: 2022
  ident: ref_49
  article-title: Osteoporosis Screening and Fracture Risk Assessment Tool: Its Scope and Role in General Clinical Practice
  publication-title: Cureus
– volume: 2
  start-page: 191
  year: 2016
  ident: ref_37
  article-title: Thai Osteoporosis Foundation (TOPF) position statements on management of osteoporosis
  publication-title: Osteoporos. Sarcopenia
  doi: 10.1016/j.afos.2016.10.002
– volume: 30
  start-page: 418
  year: 2004
  ident: ref_5
  article-title: Diagnostic performance of quantitative ultrasound calcaneus measurement in case finding for osteoporosis in Thai postmenopausal women
  publication-title: J. Obstet. Gynaecol. Res.
  doi: 10.1111/j.1447-0756.2004.00224.x
– volume: 26
  start-page: 1543
  year: 2015
  ident: ref_44
  article-title: Systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for osteoporosis or low bone density
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-015-3025-1
– volume: 4
  start-page: 37
  year: 1998
  ident: ref_14
  article-title: Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density
  publication-title: Am. J. Manag. Care
– volume: 95
  start-page: e3415
  year: 2016
  ident: ref_45
  article-title: Comparisons of different screening tools for identifying fracture/osteoporosis risk among community-dwelling older people
  publication-title: Medicine
  doi: 10.1097/MD.0000000000003415
– volume: 162
  start-page: 1289
  year: 2000
  ident: ref_12
  article-title: Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry
  publication-title: CMAJ
– ident: ref_31
– volume: 87
  start-page: 910
  year: 2004
  ident: ref_4
  article-title: Development and validation of a new clinical risk index for prediction of osteoporosis in Thai women
  publication-title: J. Med. Assoc. Thail.
– ident: ref_32
  doi: 10.1007/0-387-25465-X_9
– volume: 5
  start-page: 87
  year: 2019
  ident: ref_46
  article-title: A comparison of 6 osteoporosis risk assessment tools among postmenopausal women in Kuala Lumpur, Malaysia
  publication-title: Osteoporos. Sarcopenia
  doi: 10.1016/j.afos.2019.09.001
– volume: 19
  start-page: 387
  year: 2005
  ident: ref_24
  article-title: Predicting the outcome of construction litigation using boosted decision trees
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2005)19:4(387)
– volume: 145
  start-page: 73
  year: 2017
  ident: ref_27
  article-title: Application of data mining techniques and data analysis methods to measure cancer morbidity and mortality data in a regional cancer registry: The case of the island of Crete, Greece
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.04.011
– volume: 36
  start-page: 2017
  year: 2009
  ident: ref_30
  article-title: Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4. 5 and ID3) in determining recurrence-free survival of breast cancer patients
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.002
– volume: 12
  start-page: 519
  year: 2001
  ident: ref_15
  article-title: An assessment tool for predicting fracture risk in postmenopausal women
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980170072
– ident: ref_42
  doi: 10.4103/2230-8210.137485
– ident: ref_35
  doi: 10.3390/medicina56090455
– volume: 32
  start-page: 28
  year: 2011
  ident: ref_19
  article-title: Intelligent predictive osteoporosis system
  publication-title: Int. J. Comput. Appl.
– volume: 12
  start-page: 699
  year: 2001
  ident: ref_6
  article-title: A simple tool to identify Asian women at increased risk of osteoporosis
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980170070
– volume: 19
  start-page: 588
  year: 2016
  ident: ref_41
  article-title: Validation of osteoporosis risk assessment tools in middle-aged Thai women
  publication-title: Climacteric
  doi: 10.1080/13697137.2016.1231176
– volume: 183
  start-page: 547
  year: 2000
  ident: ref_11
  article-title: Identification of at-risk women for osteoporosis screening
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1067/mob.2000.106594
– volume: 1
  start-page: 103
  year: 2015
  ident: ref_39
  article-title: Validation of the thai osteoporosis foundation and royal college of orthopaedic surgeons of Thailand clinical practice guideline for bone mineral density measurement in postmenopausal women
  publication-title: Osteoporos. Sarcopenia
  doi: 10.1016/j.afos.2015.09.003
– volume: 20
  start-page: 111
  year: 2012
  ident: ref_10
  article-title: Validation of FRAX® WHO Fracture Risk Assessment Tool with and without the Alara Metriscan Phalangeal Densitometer as a screening tool to identify osteoporosis in Thai postmenopausal women
  publication-title: Thai J. Obstet. Gynaecol.
– volume: 9
  start-page: 69
  year: 2020
  ident: ref_16
  article-title: Osteoporosis Risk Prediction Using Data Mining Algorithms
  publication-title: J. Community Health Res.
– ident: ref_3
– volume: 98
  start-page: 59
  year: 2015
  ident: ref_38
  article-title: Factors related to mortality after osteoporotic hip fracture treatment at Chiang Mai University Hospital, Thailand, during 2006 and 2007
  publication-title: J. Med. Assoc. Thai
– volume: 27
  start-page: 160
  year: 2011
  ident: ref_48
  article-title: Vitamin D status and bone health in healthy Thai elderly women
  publication-title: Nutrition
  doi: 10.1016/j.nut.2009.12.001
– volume: 8
  start-page: 65
  year: 2001
  ident: ref_36
  article-title: Prevalence of osteopenia and osteoporosis in Thai women
  publication-title: Menopause
  doi: 10.1097/00042192-200101000-00011
– ident: ref_40
– volume: 1211
  start-page: 17
  year: 2019
  ident: ref_50
  article-title: Genetic Predisposition for Osteoporosis and Fractures in Postmenopausal Women
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/5584_2019_413
– volume: 16
  start-page: 245
  year: 2002
  ident: ref_13
  article-title: Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry
  publication-title: Gynecol. Endocrinol.
  doi: 10.1080/gye.16.3.245.250
– volume: 126
  start-page: 103991
  year: 2020
  ident: ref_29
  article-title: Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103991
– volume: 14
  start-page: 85
  year: 2019
  ident: ref_51
  article-title: Guidelines for the management of osteoporosis and fragility fractures
  publication-title: Intern. Emerg. Med.
  doi: 10.1007/s11739-018-1874-2
– volume: 21
  start-page: 86
  year: 2007
  ident: ref_8
  article-title: A study on osteoporosis screening tool for Chinese women
  publication-title: Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi = Zhongguo Xiufu Chongjian Waike Zazhi Chin. J. Reparative Reconstr. Surg.
– volume: 18
  start-page: 132
  year: 2004
  ident: ref_25
  article-title: Decision tree approach to classify and quantify cumulative impact of change orders on productivity
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2004)18:2(132)
– volume: 2006
  start-page: 886
  year: 2005
  ident: ref_20
  article-title: Wang, W.; Richards, G.; Rea, S. Hybrid data mining ensemble for predicting osteoporosis risk
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 6
  start-page: e013336
  year: 2016
  ident: ref_28
  article-title: Decision tree-based modelling for identification of potential interactions between type 2 diabetes risk factors: A decade follow-up in a Middle East prospective cohort study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2016-013336
– ident: ref_47
  doi: 10.1371/journal.pone.0266452
– volume: 141
  start-page: 105
  year: 2017
  ident: ref_22
  article-title: hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.02.001
– ident: ref_2
– volume: 24
  start-page: 9
  year: 2009
  ident: ref_7
  article-title: Validation of the KKOS scoring system for Screening of Osteoporosis in Thai Elderly Woman aged 60 years and older
  publication-title: Srinagarind Med. J.
– volume: 50
  start-page: 105
  year: 2010
  ident: ref_34
  article-title: Missing data imputation using statistical and machine learning methods in a real breast cancer problem
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2010.05.002
SSID ssj0000913837
Score 2.2257843
Snippet Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 83
SubjectTerms Age
Algorithms
Bone density
Classification
Data analysis
Data science
Datasets
Decision tree
Decision trees
Diagnosis
Disease
Endocrine therapy
Estrogens
Fractures
Health aspects
Hospitals
Machine learning
Medical screening
Missing data
Osteoporosis
Patients
Postmenopausal women
Public health
Regression analysis
Self assessment
Sensitivity
Statistical analysis
Technology application
Variables
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4xPoiB9GDLO4j2TRHn6igXip4WyYvLMhWbP3_zmTT0iLqxeNuJq_JTDKzm_mGsSOFNqzXRqEi2ZAJCJAhZR8VD63ZkKOXa-jTwMNjffss7l_ky1yqL7oT1sEDd4w7U1L6vhVKaGuECU5DCED_8kDVRrro-OCZN-dMxT1YF-R6dVEyFfr1ZwmHlLCPNQluv1o4iSJg_0_bcjxrbtbYajIS-Xk3uHW25NsNdpBCDPgxv2tnMYc8Kecme7xK6XL44MN7TknOKNScIyl_wrUcoaU9Gg_HWIPu2lDRsOWUrJcAw9_hc4xdDl5hyGNWyy32fHM9uLzNUraEzApZTrKAhk9pDBicrnZSBHBVlVtXq9Lgsey8dErYui5zn1vjdQm2UKGotStz6S1U22y5HbV-h3EA6QBwnUA7oSqnJbZV6j4-FMIURY8VU841NkGJU0aLtwZdCuJ2853bPXY6q_PeAWn8Sn1BCzKjJBDs-AJFo0mi0fwlGj12QssZm8fhWUgRBzhJAr1qzhWhxalaYXf7C5SoYnaxeCoQTVLxcUO4-QrN30rv_sdg99hKSZEV8Z7gPluefHz6A7R3JuYwivYX-gUBSw
  priority: 102
  providerName: Directory of Open Access Journals
Title Decision Tree Modeling for Osteoporosis Screening in Postmenopausal Thai Women
URI https://www.proquest.com/docview/2756719339
https://doaj.org/article/755e8c4749cb4bfd9affa6058a76b5d1
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY94I0TTBAG9sqP6DxgKLlw47jJ7TBykBaQaiT9hadv6ASSrqm-_93l7hFFWKPic-O47uzz2ff7xh7p9CG9dooVCQbEgEBEqSsUPHQmg0p7nINuQZupuX1rfh2J--iw62L1yrXc2I_UbvWko_8nGDKFVobhf64uE8oaxSdrsYUGjtsF6fgSo7Y7uXV9MfPjZeFUC9xCzZEy2Dd9DzikRIGsiYBroqtFakH7v_f9NyvOZMXbD8ai_xi4O5L9sw3B-w0hhrwM_612cQe8qikB2xv8MTxIcDoFZt-jml0-GzpPafkZxSCzrEq_448btECb7t5hy3QHRwqmjeckvgSkPgCHjrswuw3zHmf7fI1u51czT5dJzGLQmKFzFdJQIMoNwYM_r52UgRwRZFaV6rc4HLtvHRK2LLMU59a43UONlMhK7XLU-ktFG_YqGkbf8g4gHQAyD_QTqjCaYlt5brCh0yYLDti2XokaxshxinTxZ8atxo0-vW_o3_EPmzqLAaAjSepL4lBG0oCx-5ftMtfddS1WknpKyuU0NYIE5yGEICOf0GVRjrs5ntib988ds9CjETAnyQwrPpCEYqcKhV-7mSLElXPbhevBaSOqt_VfwX17dPFx-x5TrEU_c3AEzZaLR_8KVo4KzNmO9XkyzgK87j3EzwCu98AGg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAJISgg-gIfeBxQ1MRrx-sDQi1ttUvbBaGt1FvqJ6xUJdvNVqh_qr-RmcRZtEL01mNiZ-LYM_aM4_k-Qt5K8GG9MhIMyYaE66ATqNkHwwNvNqQQ5RrcGjgd5YMz_vVcnK-Q2y4XBo9VdnNiM1G7yuIe-S7ClEvwNnrq8_QqQdYo_LvaUWi0anHsb35DyFZ_Gh7A-L5j7Ohw_GWQRFaBxHLB5kkAB4EZow2IUk7woB3E9NblkhlYvpwXTnKb5yz1qTVeMW0zGbJcOZYKb3UP5D4gayBFgRWt7R-Ovv9Y7OogyiaEfG12Drwg3Y34p4i5rNBg-r2lFbAhCvjfctCscUdPyZPonNK9VpuekRVfrpOdmNpA39Nhuch1pHFSWCeP250_2iY0PSejg0jbQ8cz7ymSrWHKO4VH6TfQqQo8_qqe1CABz_xg0aSkSBqMwOVTfV1DE8a_9IQ27JovyNm99O9LslpWpX9FqNbCaQ36opXjsueUAFlM9eEi4ybLNkjW9WRhI6Q5MmtcFhDaYO8X__b-Bvm4eGbaAnrcWXsfB2hRE8G4mxvV7GcRbbuQQvi-5ZIra7gJTukQNP5u1jI3wkEzP-DwNuKheVbHzAf4SATfKvYkotbJXMLrtpdqgqnb5eJOQYo41dTFX8PYvLv4DXk4GJ-eFCfD0fEWecQwj6M5lbhNVueza78D3tXcvI4qTcnFfVvRH5plO-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyEkhGCAGGzgBz4eUNTEteP6AU0bXbUyKBPqpL0Ff0IllJSmE-Jf46_bXeIUVYi97TGxfXHsO9-d7fsdIS8l2LBeGQmCZEPCddAJ1ByC4IE1G1Lwcg1uDXya5ifn_MOFuNgif7pYGLxW2a2JzULtKot75H2EKZdgbQxUP8RrEWej8cHiZ4IZpPCktUun0bLIqf_9C9y3-t1kBHP9irHx8ez9SRIzDCSWC7ZKAhgLzBhtgKxyggftwL-3LpfMgCpzXjjJbZ6z1KfWeMW0zWTIcuVYKrzVA6B7i2xL0IrDHtk-Op6efVnv8CDiJrh_baQOfCDtRyxUxF9WKDzDwYY2bJIG_E81NPpufJ_ci4YqPWw56wHZ8uUO2Y9hDvQ1nZTruEcaF4gdcrfdBaRtcNNDMh3FFD50tvSeYuI1DH-n0JR-Bv6qwPqv6nkNFPD-DxbNS4oJhBHEfKEva-jC7Lue0ybT5iNyfiPj-5j0yqr0TwjVWjitgXe0clwOnBJAi6khPGTcZNkuybqRLGyEN8csGz8KcHNw9It_R3-XvF23WbTgHtfWPsIJWtdEYO7mRbX8VkQ5L6QQfmi55MoaboJTOgSNR89a5kY46OYbnN6GPHTP6hgFAT-JQFzFoUQEO5lL-NzeRk0Qe7tZ3DFIEZeduvgrJE-vL35BboP0FB8n09Nn5A7DkI7mguIe6a2Wl34fDK2VeR45mpKvNy1EV-VbQBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+Tree+Modeling+for+Osteoporosis+Screening+in+Postmenopausal+Thai+Women&rft.jtitle=Informatics+%28Basel%29&rft.au=Makond%2C+Bunjira&rft.au=Pornsawad%2C+Pornsarp&rft.au=Thawnashom%2C+Kittisak&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2227-9709&rft.volume=9&rft.issue=4&rft.spage=83&rft_id=info:doi/10.3390%2Finformatics9040083&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9709&client=summon