Decision Tree Modeling for Osteoporosis Screening in Postmenopausal Thai Women
Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required for rapid diagnosis. This study constructs and confirms an osteoporosis screening tool-based decision tree (DT) model. Four DT algorithms, name...
Saved in:
Published in | Informatics (Basel) Vol. 9; no. 4; p. 83 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-9709 2227-9709 |
DOI | 10.3390/informatics9040083 |
Cover
Loading…
Abstract | Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required for rapid diagnosis. This study constructs and confirms an osteoporosis screening tool-based decision tree (DT) model. Four DT algorithms, namely, classification and regression tree; chi-squared automatic interaction detection (CHAID); quick, unbiased, efficient statistical tree; and C4.5, were implemented on 356 patients, of whom 266 were abnormal and 90 normal. The investigation revealed that the DT algorithms have insignificantly different performances regarding the accuracy, sensitivity, specificity, and area under the curve. Each algorithm possesses its characteristic performance. The optimal model is selected according to the performance of blind data testing and compared with traditional screening tools: Osteoporosis Self-Assessment for Asians and the Khon Kaen Osteoporosis Study. The Decision Tree for Postmenopausal Osteoporosis Screening (DTPOS) tool was developed from the best performance of CHAID’s algorithms. The age of 58 years and weight at a cutoff of 57.8 kg were the essential predictors of our tool. DTPOS provides a sensitivity of 92.3% and a positive predictive value of 82.8%, which might be used to rule in subjects at risk of osteopenia and osteoporosis in a community-based screening as it is simple to conduct. |
---|---|
AbstractList | Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required for rapid diagnosis. This study constructs and confirms an osteoporosis screening tool-based decision tree (DT) model. Four DT algorithms, namely, classification and regression tree; chi-squared automatic interaction detection (CHAID); quick, unbiased, efficient statistical tree; and C4.5, were implemented on 356 patients, of whom 266 were abnormal and 90 normal. The investigation revealed that the DT algorithms have insignificantly different performances regarding the accuracy, sensitivity, specificity, and area under the curve. Each algorithm possesses its characteristic performance. The optimal model is selected according to the performance of blind data testing and compared with traditional screening tools: Osteoporosis Self-Assessment for Asians and the Khon Kaen Osteoporosis Study. The Decision Tree for Postmenopausal Osteoporosis Screening (DTPOS) tool was developed from the best performance of CHAID’s algorithms. The age of 58 years and weight at a cutoff of 57.8 kg were the essential predictors of our tool. DTPOS provides a sensitivity of 92.3% and a positive predictive value of 82.8%, which might be used to rule in subjects at risk of osteopenia and osteoporosis in a community-based screening as it is simple to conduct. |
Audience | Academic |
Author | Pornsawad, Pornsarp Makond, Bunjira Thawnashom, Kittisak |
Author_xml | – sequence: 1 givenname: Bunjira orcidid: 0000-0002-1718-3021 surname: Makond fullname: Makond, Bunjira – sequence: 2 givenname: Pornsarp orcidid: 0000-0001-7254-2448 surname: Pornsawad fullname: Pornsawad, Pornsarp – sequence: 3 givenname: Kittisak orcidid: 0000-0001-8450-1619 surname: Thawnashom fullname: Thawnashom, Kittisak |
BookMark | eNp9UcluFDEUtFCQCCE_wKklzhPcXtvHKGyRAkFiEEfrtZfBo257sHsO-XveZIJYhX2wVa-q9FT1lJzkkgMhz3t6wbmhL1OOpc6wJNcMFZQO_BE5ZYzpldHUnPzyf0LOW9tSPKbnA9en5MOr4FJLJXfrGkL3vvgwpbzp0LG7bUsou1JLS6375HCeD6OUu4-lLXPIZQf7BlO3_gqp-1IQeUYeR5haOH94z8jnN6_XV-9WN7dvr68ub1ZOSLasouCSjSOMuL_xUkTwnFPnlWYjH3ofpNfCKcVooG4MhoHrdeyV8YzK4ICfkeujry-wtbuaZqh3tkCy90CpGwsVA5mC1VKGwQktjBvFGL2BGEFROYBWo_Q9er04eu1q-bYPbbHbsq8Z17dMS6V7g1v-ZG0ATQ-RLxXcnJqzl1oIJbXSHFkX_2Dh9WFODmuLCfHfBMNR4DDmVkO0Li1YZckoTJPtqT10bP_uGKXsD-mPHP4j-g7EG69X |
CitedBy_id | crossref_primary_10_3390_s23177612 crossref_primary_10_3390_app13064024 crossref_primary_10_1016_j_ibmed_2023_100099 |
Cites_doi | 10.1016/j.bone.2018.04.020 10.1002/jbm4.10337 10.1016/j.ijinfomgt.2017.10.002 10.1186/s12859-022-04596-z 10.3349/ymj.2013.54.6.1321 10.1016/j.afos.2016.10.002 10.1111/j.1447-0756.2004.00224.x 10.1007/s00198-015-3025-1 10.1097/MD.0000000000003415 10.1007/0-387-25465-X_9 10.1016/j.afos.2019.09.001 10.1061/(ASCE)0887-3801(2005)19:4(387) 10.1016/j.cmpb.2017.04.011 10.1016/j.eswa.2007.12.002 10.1007/s001980170072 10.4103/2230-8210.137485 10.3390/medicina56090455 10.1007/s001980170070 10.1080/13697137.2016.1231176 10.1067/mob.2000.106594 10.1016/j.afos.2015.09.003 10.1016/j.nut.2009.12.001 10.1097/00042192-200101000-00011 10.1007/5584_2019_413 10.1080/gye.16.3.245.250 10.1016/j.compbiomed.2020.103991 10.1007/s11739-018-1874-2 10.1061/(ASCE)0887-3801(2004)18:2(132) 10.1136/bmjopen-2016-013336 10.1371/journal.pone.0266452 10.1016/j.cmpb.2017.02.001 10.1016/j.artmed.2010.05.002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
DOI | 10.3390/informatics9040083 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science Public Health |
EISSN | 2227-9709 |
ExternalDocumentID | oai_doaj_org_article_755e8c4749cb4bfd9affa6058a76b5d1 A744657673 10_3390_informatics9040083 |
GeographicLocations | Thailand Bangkok Thailand |
GeographicLocations_xml | – name: Thailand – name: Bangkok Thailand |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO IGS ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PMFND 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c452t-f4352bbab3399d54fad330cd672b381de5d74c6620e0cbe92ac17f169d205eca3 |
IEDL.DBID | BENPR |
ISSN | 2227-9709 |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Mon Jul 14 08:11:31 EDT 2025 Tue Jun 17 22:23:46 EDT 2025 Tue Jun 10 21:24:03 EDT 2025 Tue Jul 01 00:56:31 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-f4352bbab3399d54fad330cd672b381de5d74c6620e0cbe92ac17f169d205eca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7254-2448 0000-0002-1718-3021 0000-0001-8450-1619 |
OpenAccessLink | https://www.proquest.com/docview/2756719339?pq-origsite=%requestingapplication% |
PQID | 2756719339 |
PQPubID | 2032385 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_755e8c4749cb4bfd9affa6058a76b5d1 proquest_journals_2756719339 gale_infotracmisc_A744657673 gale_infotracacademiconefile_A744657673 crossref_citationtrail_10_3390_informatics9040083 crossref_primary_10_3390_informatics9040083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Informatics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lee (ref_25) 2004; 18 Ramezankhani (ref_28) 2016; 6 Pongchaiyakul (ref_4) 2004; 87 Varlamis (ref_27) 2017; 145 Nuti (ref_51) 2019; 14 Chavda (ref_49) 2022; 14 Zhang (ref_8) 2007; 21 Pongchaiyakul (ref_43) 2008; 91 Yingyuenyong (ref_10) 2012; 20 Yeo (ref_23) 2018; 38 Toh (ref_46) 2019; 5 Chailurkit (ref_48) 2011; 27 Nayak (ref_44) 2015; 26 Cadarette (ref_12) 2000; 162 Black (ref_15) 2001; 12 ref_26 Jabarpour (ref_16) 2020; 9 Wang (ref_20) 2005; 2006 Indhavivadhana (ref_41) 2016; 19 Chaysri (ref_38) 2015; 98 Lydick (ref_14) 1998; 4 ref_35 Songpatanasilp (ref_37) 2016; 2 Arditi (ref_24) 2005; 19 Koh (ref_6) 2001; 12 ref_32 ref_31 Prommahachai (ref_7) 2009; 24 Weinstein (ref_11) 2000; 183 Sreejith (ref_29) 2020; 126 Panichkul (ref_5) 2004; 30 Limpaphayom (ref_36) 2001; 8 Kass (ref_33) 1975; 24 Kim (ref_17) 2018; 116 ref_47 Ture (ref_30) 2009; 36 Chen (ref_45) 2016; 95 Jerez (ref_34) 2010; 50 ref_42 Kong (ref_18) 2020; 4 ref_40 ref_1 ref_3 ref_2 Moudani (ref_19) 2011; 32 ref_9 Yoo (ref_21) 2013; 54 Tayefi (ref_22) 2017; 141 Suwan (ref_39) 2015; 1 Mitek (ref_50) 2019; 1211 Sedrine (ref_13) 2002; 16 |
References_xml | – volume: 116 start-page: 207 year: 2018 ident: ref_17 article-title: Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report publication-title: Bone doi: 10.1016/j.bone.2018.04.020 – ident: ref_9 – volume: 24 start-page: 178 year: 1975 ident: ref_33 article-title: Significance testing in automatic interaction detection (AID) publication-title: J. R. Stat. Soc. Ser. C – volume: 91 start-page: 261 year: 2008 ident: ref_43 article-title: Burden of osteoporosis in Thailand publication-title: J. Med. Assoc. Thail. – volume: 4 start-page: e10337 year: 2020 ident: ref_18 article-title: A Novel Fracture Prediction Model Using Machine Learning in a Community-Based Cohort publication-title: JBMR Plus doi: 10.1002/jbm4.10337 – volume: 38 start-page: 288 year: 2018 ident: ref_23 article-title: Predicting service industry performance using decision tree analysis publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2017.10.002 – ident: ref_26 doi: 10.1186/s12859-022-04596-z – ident: ref_1 – volume: 54 start-page: 1321 year: 2013 ident: ref_21 article-title: Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning publication-title: Yonsei Med. J. doi: 10.3349/ymj.2013.54.6.1321 – volume: 14 start-page: e26518 year: 2022 ident: ref_49 article-title: Osteoporosis Screening and Fracture Risk Assessment Tool: Its Scope and Role in General Clinical Practice publication-title: Cureus – volume: 2 start-page: 191 year: 2016 ident: ref_37 article-title: Thai Osteoporosis Foundation (TOPF) position statements on management of osteoporosis publication-title: Osteoporos. Sarcopenia doi: 10.1016/j.afos.2016.10.002 – volume: 30 start-page: 418 year: 2004 ident: ref_5 article-title: Diagnostic performance of quantitative ultrasound calcaneus measurement in case finding for osteoporosis in Thai postmenopausal women publication-title: J. Obstet. Gynaecol. Res. doi: 10.1111/j.1447-0756.2004.00224.x – volume: 26 start-page: 1543 year: 2015 ident: ref_44 article-title: Systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for osteoporosis or low bone density publication-title: Osteoporos. Int. doi: 10.1007/s00198-015-3025-1 – volume: 4 start-page: 37 year: 1998 ident: ref_14 article-title: Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density publication-title: Am. J. Manag. Care – volume: 95 start-page: e3415 year: 2016 ident: ref_45 article-title: Comparisons of different screening tools for identifying fracture/osteoporosis risk among community-dwelling older people publication-title: Medicine doi: 10.1097/MD.0000000000003415 – volume: 162 start-page: 1289 year: 2000 ident: ref_12 article-title: Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry publication-title: CMAJ – ident: ref_31 – volume: 87 start-page: 910 year: 2004 ident: ref_4 article-title: Development and validation of a new clinical risk index for prediction of osteoporosis in Thai women publication-title: J. Med. Assoc. Thail. – ident: ref_32 doi: 10.1007/0-387-25465-X_9 – volume: 5 start-page: 87 year: 2019 ident: ref_46 article-title: A comparison of 6 osteoporosis risk assessment tools among postmenopausal women in Kuala Lumpur, Malaysia publication-title: Osteoporos. Sarcopenia doi: 10.1016/j.afos.2019.09.001 – volume: 19 start-page: 387 year: 2005 ident: ref_24 article-title: Predicting the outcome of construction litigation using boosted decision trees publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2005)19:4(387) – volume: 145 start-page: 73 year: 2017 ident: ref_27 article-title: Application of data mining techniques and data analysis methods to measure cancer morbidity and mortality data in a regional cancer registry: The case of the island of Crete, Greece publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.04.011 – volume: 36 start-page: 2017 year: 2009 ident: ref_30 article-title: Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4. 5 and ID3) in determining recurrence-free survival of breast cancer patients publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.002 – volume: 12 start-page: 519 year: 2001 ident: ref_15 article-title: An assessment tool for predicting fracture risk in postmenopausal women publication-title: Osteoporos. Int. doi: 10.1007/s001980170072 – ident: ref_42 doi: 10.4103/2230-8210.137485 – ident: ref_35 doi: 10.3390/medicina56090455 – volume: 32 start-page: 28 year: 2011 ident: ref_19 article-title: Intelligent predictive osteoporosis system publication-title: Int. J. Comput. Appl. – volume: 12 start-page: 699 year: 2001 ident: ref_6 article-title: A simple tool to identify Asian women at increased risk of osteoporosis publication-title: Osteoporos. Int. doi: 10.1007/s001980170070 – volume: 19 start-page: 588 year: 2016 ident: ref_41 article-title: Validation of osteoporosis risk assessment tools in middle-aged Thai women publication-title: Climacteric doi: 10.1080/13697137.2016.1231176 – volume: 183 start-page: 547 year: 2000 ident: ref_11 article-title: Identification of at-risk women for osteoporosis screening publication-title: Am. J. Obstet. Gynecol. doi: 10.1067/mob.2000.106594 – volume: 1 start-page: 103 year: 2015 ident: ref_39 article-title: Validation of the thai osteoporosis foundation and royal college of orthopaedic surgeons of Thailand clinical practice guideline for bone mineral density measurement in postmenopausal women publication-title: Osteoporos. Sarcopenia doi: 10.1016/j.afos.2015.09.003 – volume: 20 start-page: 111 year: 2012 ident: ref_10 article-title: Validation of FRAX® WHO Fracture Risk Assessment Tool with and without the Alara Metriscan Phalangeal Densitometer as a screening tool to identify osteoporosis in Thai postmenopausal women publication-title: Thai J. Obstet. Gynaecol. – volume: 9 start-page: 69 year: 2020 ident: ref_16 article-title: Osteoporosis Risk Prediction Using Data Mining Algorithms publication-title: J. Community Health Res. – ident: ref_3 – volume: 98 start-page: 59 year: 2015 ident: ref_38 article-title: Factors related to mortality after osteoporotic hip fracture treatment at Chiang Mai University Hospital, Thailand, during 2006 and 2007 publication-title: J. Med. Assoc. Thai – volume: 27 start-page: 160 year: 2011 ident: ref_48 article-title: Vitamin D status and bone health in healthy Thai elderly women publication-title: Nutrition doi: 10.1016/j.nut.2009.12.001 – volume: 8 start-page: 65 year: 2001 ident: ref_36 article-title: Prevalence of osteopenia and osteoporosis in Thai women publication-title: Menopause doi: 10.1097/00042192-200101000-00011 – ident: ref_40 – volume: 1211 start-page: 17 year: 2019 ident: ref_50 article-title: Genetic Predisposition for Osteoporosis and Fractures in Postmenopausal Women publication-title: Adv. Exp. Med. Biol. doi: 10.1007/5584_2019_413 – volume: 16 start-page: 245 year: 2002 ident: ref_13 article-title: Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry publication-title: Gynecol. Endocrinol. doi: 10.1080/gye.16.3.245.250 – volume: 126 start-page: 103991 year: 2020 ident: ref_29 article-title: Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103991 – volume: 14 start-page: 85 year: 2019 ident: ref_51 article-title: Guidelines for the management of osteoporosis and fragility fractures publication-title: Intern. Emerg. Med. doi: 10.1007/s11739-018-1874-2 – volume: 21 start-page: 86 year: 2007 ident: ref_8 article-title: A study on osteoporosis screening tool for Chinese women publication-title: Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi = Zhongguo Xiufu Chongjian Waike Zazhi Chin. J. Reparative Reconstr. Surg. – volume: 18 start-page: 132 year: 2004 ident: ref_25 article-title: Decision tree approach to classify and quantify cumulative impact of change orders on productivity publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2004)18:2(132) – volume: 2006 start-page: 886 year: 2005 ident: ref_20 article-title: Wang, W.; Richards, G.; Rea, S. Hybrid data mining ensemble for predicting osteoporosis risk publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 6 start-page: e013336 year: 2016 ident: ref_28 article-title: Decision tree-based modelling for identification of potential interactions between type 2 diabetes risk factors: A decade follow-up in a Middle East prospective cohort study publication-title: BMJ Open doi: 10.1136/bmjopen-2016-013336 – ident: ref_47 doi: 10.1371/journal.pone.0266452 – volume: 141 start-page: 105 year: 2017 ident: ref_22 article-title: hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.02.001 – ident: ref_2 – volume: 24 start-page: 9 year: 2009 ident: ref_7 article-title: Validation of the KKOS scoring system for Screening of Osteoporosis in Thai Elderly Woman aged 60 years and older publication-title: Srinagarind Med. J. – volume: 50 start-page: 105 year: 2010 ident: ref_34 article-title: Missing data imputation using statistical and machine learning methods in a real breast cancer problem publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2010.05.002 |
SSID | ssj0000913837 |
Score | 2.2257843 |
Snippet | Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal women; meanwhile, new effective screening tools are required... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 83 |
SubjectTerms | Age Algorithms Bone density Classification Data analysis Data science Datasets Decision tree Decision trees Diagnosis Disease Endocrine therapy Estrogens Fractures Health aspects Hospitals Machine learning Medical screening Missing data Osteoporosis Patients Postmenopausal women Public health Regression analysis Self assessment Sensitivity Statistical analysis Technology application Variables Womens health |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4xPoiB9GDLO4j2TRHn6igXip4WyYvLMhWbP3_zmTT0iLqxeNuJq_JTDKzm_mGsSOFNqzXRqEi2ZAJCJAhZR8VD63ZkKOXa-jTwMNjffss7l_ky1yqL7oT1sEDd4w7U1L6vhVKaGuECU5DCED_8kDVRrro-OCZN-dMxT1YF-R6dVEyFfr1ZwmHlLCPNQluv1o4iSJg_0_bcjxrbtbYajIS-Xk3uHW25NsNdpBCDPgxv2tnMYc8Kecme7xK6XL44MN7TknOKNScIyl_wrUcoaU9Gg_HWIPu2lDRsOWUrJcAw9_hc4xdDl5hyGNWyy32fHM9uLzNUraEzApZTrKAhk9pDBicrnZSBHBVlVtXq9Lgsey8dErYui5zn1vjdQm2UKGotStz6S1U22y5HbV-h3EA6QBwnUA7oSqnJbZV6j4-FMIURY8VU841NkGJU0aLtwZdCuJ2853bPXY6q_PeAWn8Sn1BCzKjJBDs-AJFo0mi0fwlGj12QssZm8fhWUgRBzhJAr1qzhWhxalaYXf7C5SoYnaxeCoQTVLxcUO4-QrN30rv_sdg99hKSZEV8Z7gPluefHz6A7R3JuYwivYX-gUBSw priority: 102 providerName: Directory of Open Access Journals |
Title | Decision Tree Modeling for Osteoporosis Screening in Postmenopausal Thai Women |
URI | https://www.proquest.com/docview/2756719339 https://doaj.org/article/755e8c4749cb4bfd9affa6058a76b5d1 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY94I0TTBAG9sqP6DxgKLlw47jJ7TBykBaQaiT9hadv6ASSrqm-_93l7hFFWKPic-O47uzz2ff7xh7p9CG9dooVCQbEgEBEqSsUPHQmg0p7nINuQZupuX1rfh2J--iw62L1yrXc2I_UbvWko_8nGDKFVobhf64uE8oaxSdrsYUGjtsF6fgSo7Y7uXV9MfPjZeFUC9xCzZEy2Dd9DzikRIGsiYBroqtFakH7v_f9NyvOZMXbD8ai_xi4O5L9sw3B-w0hhrwM_612cQe8qikB2xv8MTxIcDoFZt-jml0-GzpPafkZxSCzrEq_448btECb7t5hy3QHRwqmjeckvgSkPgCHjrswuw3zHmf7fI1u51czT5dJzGLQmKFzFdJQIMoNwYM_r52UgRwRZFaV6rc4HLtvHRK2LLMU59a43UONlMhK7XLU-ktFG_YqGkbf8g4gHQAyD_QTqjCaYlt5brCh0yYLDti2XokaxshxinTxZ8atxo0-vW_o3_EPmzqLAaAjSepL4lBG0oCx-5ftMtfddS1WknpKyuU0NYIE5yGEICOf0GVRjrs5ntib988ds9CjETAnyQwrPpCEYqcKhV-7mSLElXPbhevBaSOqt_VfwX17dPFx-x5TrEU_c3AEzZaLR_8KVo4KzNmO9XkyzgK87j3EzwCu98AGg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAJISgg-gIfeBxQ1MRrx-sDQi1ttUvbBaGt1FvqJ6xUJdvNVqh_qr-RmcRZtEL01mNiZ-LYM_aM4_k-Qt5K8GG9MhIMyYaE66ATqNkHwwNvNqQQ5RrcGjgd5YMz_vVcnK-Q2y4XBo9VdnNiM1G7yuIe-S7ClEvwNnrq8_QqQdYo_LvaUWi0anHsb35DyFZ_Gh7A-L5j7Ohw_GWQRFaBxHLB5kkAB4EZow2IUk7woB3E9NblkhlYvpwXTnKb5yz1qTVeMW0zGbJcOZYKb3UP5D4gayBFgRWt7R-Ovv9Y7OogyiaEfG12Drwg3Y34p4i5rNBg-r2lFbAhCvjfctCscUdPyZPonNK9VpuekRVfrpOdmNpA39Nhuch1pHFSWCeP250_2iY0PSejg0jbQ8cz7ymSrWHKO4VH6TfQqQo8_qqe1CABz_xg0aSkSBqMwOVTfV1DE8a_9IQ27JovyNm99O9LslpWpX9FqNbCaQ36opXjsueUAFlM9eEi4ybLNkjW9WRhI6Q5MmtcFhDaYO8X__b-Bvm4eGbaAnrcWXsfB2hRE8G4mxvV7GcRbbuQQvi-5ZIra7gJTukQNP5u1jI3wkEzP-DwNuKheVbHzAf4SATfKvYkotbJXMLrtpdqgqnb5eJOQYo41dTFX8PYvLv4DXk4GJ-eFCfD0fEWecQwj6M5lbhNVueza78D3tXcvI4qTcnFfVvRH5plO-4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyEkhGCAGGzgBz4eUNTEteP6AU0bXbUyKBPqpL0Ff0IllJSmE-Jf46_bXeIUVYi97TGxfXHsO9-d7fsdIS8l2LBeGQmCZEPCddAJ1ByC4IE1G1Lwcg1uDXya5ifn_MOFuNgif7pYGLxW2a2JzULtKot75H2EKZdgbQxUP8RrEWej8cHiZ4IZpPCktUun0bLIqf_9C9y3-t1kBHP9irHx8ez9SRIzDCSWC7ZKAhgLzBhtgKxyggftwL-3LpfMgCpzXjjJbZ6z1KfWeMW0zWTIcuVYKrzVA6B7i2xL0IrDHtk-Op6efVnv8CDiJrh_baQOfCDtRyxUxF9WKDzDwYY2bJIG_E81NPpufJ_ci4YqPWw56wHZ8uUO2Y9hDvQ1nZTruEcaF4gdcrfdBaRtcNNDMh3FFD50tvSeYuI1DH-n0JR-Bv6qwPqv6nkNFPD-DxbNS4oJhBHEfKEva-jC7Lue0ybT5iNyfiPj-5j0yqr0TwjVWjitgXe0clwOnBJAi6khPGTcZNkuybqRLGyEN8csGz8KcHNw9It_R3-XvF23WbTgHtfWPsIJWtdEYO7mRbX8VkQ5L6QQfmi55MoaboJTOgSNR89a5kY46OYbnN6GPHTP6hgFAT-JQFzFoUQEO5lL-NzeRk0Qe7tZ3DFIEZeduvgrJE-vL35BboP0FB8n09Nn5A7DkI7mguIe6a2Wl34fDK2VeR45mpKvNy1EV-VbQBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+Tree+Modeling+for+Osteoporosis+Screening+in+Postmenopausal+Thai+Women&rft.jtitle=Informatics+%28Basel%29&rft.au=Makond%2C+Bunjira&rft.au=Pornsawad%2C+Pornsarp&rft.au=Thawnashom%2C+Kittisak&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2227-9709&rft.volume=9&rft.issue=4&rft.spage=83&rft_id=info:doi/10.3390%2Finformatics9040083&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9709&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9709&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9709&client=summon |