The adaptive BerHu penalty in robust regression

We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the pres...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonparametric statistics Vol. 28; no. 3; pp. 487 - 514
Main Authors Lambert-Lacroix, Sophie, Zwald, Laurent
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.07.2016
Taylor & Francis Ltd
American Statistical Association
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data.
AbstractList We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their [Image omitted.] norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data.
We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their [Formula omitted.] norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data.
We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data.
We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their 1 norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularization methods such as adaptive elastic net and is illustrated via simulation studies and real data.
Author Lambert-Lacroix, Sophie
Zwald, Laurent
Author_xml – sequence: 1
  givenname: Sophie
  surname: Lambert-Lacroix
  fullname: Lambert-Lacroix, Sophie
  email: sophie.lambert@imag.fr
  organization: UJF-Grenoble 1/CNRS/UPMF/TIMC-IMAG
– sequence: 2
  givenname: Laurent
  surname: Zwald
  fullname: Zwald, Laurent
  organization: LJK, Université de Grenoble et CNRS
BackLink https://hal.science/hal-01882461$$DView record in HAL
BookMark eNqFkE1r3DAQhkVJoPnoTygYekkP3szowyuTS9PQdgMLuaRnMStLiYLX2kpyyv772myaQw7taYbheWek55QdDXFwjH1EWCBouESQWnHFFxywWSC2IFT7jp0g8LYGgXg091LXM_Seneb8BICiEXDCLu8fXUUd7Up4dtVXl1ZjtXMD9WVfhaFKcTPmUiX3kFzOIQ7n7NhTn92Hl3rGfn7_dn-zqtd3P25vrte1lYqX2iOR7FoAjULabiM74W3rQfGOwOqNVY0EYVsnFAdFziuBHpoOuOfCykacsc-HvY_Um10KW0p7EymY1fXazDNArbls8Bkn9uLA7lL8NbpczDZk6_qeBhfHbFBzpfhywif00xv0KY5p-u5ELVu9VK3m83F1oGyKOSfnX1-AYGbl5q9yMys3L8qn3NWbnA2FyqStJAr9f9NfDukw-Ji29DumvjOF9n1MPtFgQzbi3yv-AO9UmJM
CitedBy_id crossref_primary_10_1007_s41095_023_0358_0
crossref_primary_10_1049_cvi2_12144
crossref_primary_10_1016_j_cag_2024_103907
crossref_primary_10_1214_19_EJS1662
crossref_primary_10_1137_23M1583430
crossref_primary_10_1016_j_orl_2024_107194
crossref_primary_10_1109_TIE_2022_3204953
crossref_primary_10_1137_22M1542313
crossref_primary_10_1039_D4DD00099D
crossref_primary_10_1007_s11228_017_0407_x
crossref_primary_10_1109_TVCG_2023_3320219
crossref_primary_10_1109_TIP_2024_3386403
crossref_primary_10_1109_TVCG_2022_3202999
Cites_doi 10.1198/073500106000000251
10.1016/S0167-7152(97)00115-6
10.1109/78.923297
10.1090/S0002-9947-1981-0628449-5
10.1016/j.jspi.2012.12.009
10.1214/07-AOS584
10.1198/016214506000000735
10.1002/0471725250
10.1080/10556789908805766
10.1214/11-EJS635
10.1214/08-AOS625
10.1080/03610926.2011.615438
10.4310/SII.2009.v2.n4.a9
10.1214/aos/1176344136
10.1111/j.1467-9868.2005.00532.x
10.1214/aos/1176325768
10.1017/CBO9780511802256
10.1007/978-1-4757-2545-2
10.1214/aos/1015957397
10.1016/S0022-5347(17)41175-X
10.1198/016214501753208942
10.1198/016214507000000509
10.1093/biomet/asm053
10.1111/j.2517-6161.1996.tb02080.x
10.1111/j.1467-9868.2005.00503.x
ContentType Journal Article
Copyright American Statistical Association and Taylor & Francis 2016 2016
American Statistical Association and Taylor & Francis 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: American Statistical Association and Taylor & Francis 2016 2016
– notice: American Statistical Association and Taylor & Francis 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1080/10485252.2016.1190359
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-0311
EndPage 514
ExternalDocumentID oai_HAL_hal_01882461v1
4096466261
10_1080_10485252_2016_1190359
1190359
Genre Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
1XC
VOOES
ID FETCH-LOGICAL-c452t-f1aa4d9008134cdb4d3fc9f052da0c8bc56403c9e35205aef531f06d02f23c463
ISSN 1048-5252
IngestDate Fri May 09 12:25:55 EDT 2025
Mon Jul 21 11:38:26 EDT 2025
Wed Aug 13 09:58:23 EDT 2025
Tue Jul 01 01:04:57 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Wed Dec 25 08:58:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords elastic net penalty
Huber's criterion
concomitant scale
Adaptive BerHu penalty
oracle property
robust estimation Availability
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-f1aa4d9008134cdb4d3fc9f052da0c8bc56403c9e35205aef531f06d02f23c463
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hal.science/hal-01882461
PQID 1798759826
PQPubID 53053
PageCount 28
ParticipantIDs crossref_primary_10_1080_10485252_2016_1190359
proquest_journals_1798759826
crossref_citationtrail_10_1080_10485252_2016_1190359
hal_primary_oai_HAL_hal_01882461v1
proquest_miscellaneous_1825527824
informaworld_taylorfrancis_310_1080_10485252_2016_1190359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-02
PublicationDateYYYYMMDD 2016-07-02
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of nonparametric statistics
PublicationYear 2016
Publisher Taylor & Francis
Taylor & Francis Ltd
American Statistical Association
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: American Statistical Association
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Tibshirani R. (CIT0029) 1996; 58
Hastie T. (CIT0012) 2003
Rockafellar R. (CIT0024) 1970
CIT0035
CIT0038
Hiriart-Urruty J.B. (CIT0013) 1991
CIT0015
CIT0037
Fan J. (CIT0007) 2001; 96
CIT0018
CIT0017
CIT0039
CIT0041
CIT0040
CIT0021
CIT0020
CIT0001
Stamey T.A. (CIT0027) 1989; 141
CIT0025
CIT0002
CIT0005
CIT0026
CIT0028
CIT0008
References_xml – ident: CIT0033
  doi: 10.1198/073500106000000251
– ident: CIT0002
  doi: 10.1016/S0167-7152(97)00115-6
– ident: CIT0025
  doi: 10.1109/78.923297
– ident: CIT0021
  doi: 10.1090/S0002-9947-1981-0628449-5
– ident: CIT0038
  doi: 10.1016/j.jspi.2012.12.009
– ident: CIT0037
  doi: 10.1214/07-AOS584
– ident: CIT0039
  doi: 10.1198/016214506000000735
– ident: CIT0015
  doi: 10.1002/0471725250
– ident: CIT0028
  doi: 10.1080/10556789908805766
– volume-title: Convex Analysis and Minimization Algorithms I
  year: 1991
  ident: CIT0013
– ident: CIT0018
  doi: 10.1214/11-EJS635
– ident: CIT0041
  doi: 10.1214/08-AOS625
– ident: CIT0005
  doi: 10.1080/03610926.2011.615438
– ident: CIT0020
  doi: 10.4310/SII.2009.v2.n4.a9
– ident: CIT0026
  doi: 10.1214/aos/1176344136
– ident: CIT0035
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: CIT0008
  doi: 10.1214/aos/1176325768
– volume-title: Convex Analysis, Princeton Landmarks in Mathematics
  year: 1970
  ident: CIT0024
– ident: CIT0030
  doi: 10.1017/CBO9780511802256
– ident: CIT0031
  doi: 10.1007/978-1-4757-2545-2
– ident: CIT0017
  doi: 10.1214/aos/1015957397
– volume-title: The Elements of Statistical Learning
  year: 2003
  ident: CIT0012
– volume: 96
  start-page: 1438
  year: 2001
  ident: CIT0007
  publication-title: Journal of the American Statistical Association
– volume: 141
  start-page: 1076
  issue: 5
  year: 1989
  ident: CIT0027
  publication-title: Journal of Urology
  doi: 10.1016/S0022-5347(17)41175-X
– ident: CIT0001
  doi: 10.1198/016214501753208942
– ident: CIT0032
  doi: 10.1198/016214507000000509
– ident: CIT0034
  doi: 10.1093/biomet/asm053
– volume: 58
  start-page: 267
  year: 1996
  ident: CIT0029
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: CIT0040
  doi: 10.1111/j.1467-9868.2005.00503.x
SSID ssj0013630
Score 2.1710827
Snippet We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 487
SubjectTerms adaptive BerHu penalty
Applications
concomitant scale
Estimators
Huber's criterion
Mathematical models
Nonparametric statistics
Norms
Operators
oracle property
Regression
Regression analysis
Ridges
robust estimation
Simulation
Statistics
Statistics Theory
Title The adaptive BerHu penalty in robust regression
URI https://www.tandfonline.com/doi/abs/10.1080/10485252.2016.1190359
https://www.proquest.com/docview/1798759826
https://www.proquest.com/docview/1825527824
https://hal.science/hal-01882461
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbYdhmHCQaIsoEC4jali2PHtY8FNlWojMNaUe1iOY7NKkFatSlI_HqeYycN2tAGl6hy7Tr19_z8bL_3PYTe4sQYRbSOaUbgoU0aC53ksebcuYXlAtvaQfaCjab04yybNbnkQ3RJlff1r1vjSv4HVSgDXF2U7D8g2_4oFMBnwBeegDA8742xKtSydv95Z1ajzcnSQKuqDuZbLfLNujpZma_e17X8iyFaLkpHAP7d5dbS7myh8uTNra-OcklDqnisQGnP68XqcrG8nrcicfUzHC-7IOvGkSacJGBWe512DhdhZ8ZhY-oZZfsmlKUihomPuxoz5R3JIB31R8Pi6VfSzIeH3lDS3qvR9eY6c-51DDS3cGSC21WpuYm_-CzPp-OxnJzNJjtoL4XdAKizveHow9WX7XURI4F2wv-BJlSLJ6e3dvOHEbJzXbvAdolqbyzMtbUxeYQOAjrR0GP-GD0w5SF6-Knl2F0fov3LFqkn6BREIWpEIapFIQqiEM3LyItCtBWFp2h6fjZ5P4pDLoxY0yytYouVooVwFhyhushpQawWNsnSQiWa5zpjNCFaGDCok0wZC7rVJqxIUpsSTRl5hnZBnMxzFGEG7agdMAOmZKEsFznXBBsuVIYHBe8h2gyO1IEo3uUr-SZx4JNtxlS6MZVhTHuo3zZbeqaUuxq8gZFv6zqe89FwLF1ZgmHjRxn-gXtIdIGRVX2OZX3SGUnu6OC4QVGGWbuWjqBv4FgrWQ-9br8GneouylRpFhuow1NHTAiv8OIedY7Q_nY2HaPdarUxL8FSrfJXQU5_A1vMi-Y
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB615UA58CggFkpJEdcsdvxY-1gQVQrbPbVSb5bj2G0Fyq52EyT49XjyWBaqqodeEin2xLI9Mx7bnz8DfKDEe8ucS7lg8eF8lmpHitQphbCwQtPQAmRnMj_nXy_ExcZZGIRV4hw6dEQRra9G48bF6AESF99ciUzgOSoqo9Fr5KHbhgdCywnqOiOzvzsJkvWMBCpFmeEUz22_-Wd82r5q0ZGbHKY3fHY7EB0_ATdUocOffB83dTF2v_9jd7xfHZ_C4z5OTY46xXoGW77ag0ena5LX1R7sYqDa8Tw_h49R3xJb2gW6z-STX-ZNsvDxF_Wv5LpKlvOiWdXJ0l92uNvqBZwffzn7nKf9ZQyp4yKr00Ct5aXGEIJxVxa8ZMHpQERWWuJU4YTkhDntY0RHhPUhGncgsiRZyJjjkr2EnWpe-VeQUBnleJhIH2OZ0galC-UY9UpbQSelGgEfusC4nqkcL8z4YWhPaDo0jsHGMX3jjGC8Flt0VB13CbyP_bvOi0Tb-dHU4DdC48yDS_qTjkBvdr-p24WU0N16YtgdBewPumJ617AyyBA3QdpEOYLDdXI0atypsZWfNzFPnLeLLAZv_PU9in8HD_Oz06mZnsy-vYFdTGqBxtk-7NTLxr-N4VRdHLT28gdOsA1_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xi4SWA48FRGGBgLim2PGj9nF5VAWWigMrcbP8BARKqzZBgl-PJ4-ygNAe9pJIsceWHzMex998BnhKSYyWeV9ywfLDx6rUnrjSK4WwMKdp6gCyS7k45W8-ihFNuB1glbiHTj1RRGerUbnXIY2IuPzmSlQCw6iozDqvkYZuDy5LDLTEKA6y_H2QINlASKBKlBmDeP5XzB_L097nDhx5lsL0H5PdrUPz6-DGFvTwk6_TtnFT__MvcscLNfEGXBu81OK4n1Y34VKsD-Hqux3F6_YQDtBN7Vmeb8GzPNsKG-wajWfxPG4WbbGOuYjmR_GlLjYr126bYhM_9ajb-jaczl99eLEoh6sYSs9F1ZSJWsuDRgeCcR8cDyx5nYiogiVeOS8kJ8zrmP05ImxMWbUTkYFUqWKeS3YH9utVHe9CQWWW42kmY_Zkgk1KO-UZjUpbQWdBTYCPI2D8wFOO12V8M3SgMx07x2DnmKFzJjDdia17oo7zBJ7k4d3lRZrtxfGJwW-E5n0Hl_Q7nYA-O_qm6X6jpP7OE8POqeBonCpmMAxbg_xwMyRNlBN4vEvOKo3nNLaOqzbnybt2UWXXjd-7QPWP4Mr7l3Nz8nr59j4cYEqHMq6OYL_ZtPFB9qUa97DTll_dlgwj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+adaptive+BerHu+penalty+in+robust+regression&rft.jtitle=Journal+of+nonparametric+statistics&rft.au=Lambert-Lacroix%2C+Sophie&rft.au=Zwald%2C+Laurent&rft.date=2016-07-02&rft.issn=1048-5252&rft.eissn=1029-0311&rft.volume=28&rft.issue=3&rft.spage=487&rft.epage=514&rft_id=info:doi/10.1080%2F10485252.2016.1190359&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1048-5252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1048-5252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1048-5252&client=summon