The adaptive BerHu penalty in robust regression
We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the pres...
Saved in:
Published in | Journal of nonparametric statistics Vol. 28; no. 3; pp. 487 - 514 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.07.2016
Taylor & Francis Ltd American Statistical Association |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their
norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data. |
---|---|
AbstractList | We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their [Image omitted.] norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data. We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their [Formula omitted.] norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data. We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in the presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty the adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with the adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularisation methods such as adaptive elastic net and is illustrated via simulation studies and real data. We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their 1 norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularization methods such as adaptive elastic net and is illustrated via simulation studies and real data. |
Author | Lambert-Lacroix, Sophie Zwald, Laurent |
Author_xml | – sequence: 1 givenname: Sophie surname: Lambert-Lacroix fullname: Lambert-Lacroix, Sophie email: sophie.lambert@imag.fr organization: UJF-Grenoble 1/CNRS/UPMF/TIMC-IMAG – sequence: 2 givenname: Laurent surname: Zwald fullname: Zwald, Laurent organization: LJK, Université de Grenoble et CNRS |
BackLink | https://hal.science/hal-01882461$$DView record in HAL |
BookMark | eNqFkE1r3DAQhkVJoPnoTygYekkP3szowyuTS9PQdgMLuaRnMStLiYLX2kpyyv772myaQw7taYbheWek55QdDXFwjH1EWCBouESQWnHFFxywWSC2IFT7jp0g8LYGgXg091LXM_Seneb8BICiEXDCLu8fXUUd7Up4dtVXl1ZjtXMD9WVfhaFKcTPmUiX3kFzOIQ7n7NhTn92Hl3rGfn7_dn-zqtd3P25vrte1lYqX2iOR7FoAjULabiM74W3rQfGOwOqNVY0EYVsnFAdFziuBHpoOuOfCykacsc-HvY_Um10KW0p7EymY1fXazDNArbls8Bkn9uLA7lL8NbpczDZk6_qeBhfHbFBzpfhywif00xv0KY5p-u5ELVu9VK3m83F1oGyKOSfnX1-AYGbl5q9yMys3L8qn3NWbnA2FyqStJAr9f9NfDukw-Ji29DumvjOF9n1MPtFgQzbi3yv-AO9UmJM |
CitedBy_id | crossref_primary_10_1007_s41095_023_0358_0 crossref_primary_10_1049_cvi2_12144 crossref_primary_10_1016_j_cag_2024_103907 crossref_primary_10_1214_19_EJS1662 crossref_primary_10_1137_23M1583430 crossref_primary_10_1016_j_orl_2024_107194 crossref_primary_10_1109_TIE_2022_3204953 crossref_primary_10_1137_22M1542313 crossref_primary_10_1039_D4DD00099D crossref_primary_10_1007_s11228_017_0407_x crossref_primary_10_1109_TVCG_2023_3320219 crossref_primary_10_1109_TIP_2024_3386403 crossref_primary_10_1109_TVCG_2022_3202999 |
Cites_doi | 10.1198/073500106000000251 10.1016/S0167-7152(97)00115-6 10.1109/78.923297 10.1090/S0002-9947-1981-0628449-5 10.1016/j.jspi.2012.12.009 10.1214/07-AOS584 10.1198/016214506000000735 10.1002/0471725250 10.1080/10556789908805766 10.1214/11-EJS635 10.1214/08-AOS625 10.1080/03610926.2011.615438 10.4310/SII.2009.v2.n4.a9 10.1214/aos/1176344136 10.1111/j.1467-9868.2005.00532.x 10.1214/aos/1176325768 10.1017/CBO9780511802256 10.1007/978-1-4757-2545-2 10.1214/aos/1015957397 10.1016/S0022-5347(17)41175-X 10.1198/016214501753208942 10.1198/016214507000000509 10.1093/biomet/asm053 10.1111/j.2517-6161.1996.tb02080.x 10.1111/j.1467-9868.2005.00503.x |
ContentType | Journal Article |
Copyright | American Statistical Association and Taylor & Francis 2016 2016 American Statistical Association and Taylor & Francis 2016 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: American Statistical Association and Taylor & Francis 2016 2016 – notice: American Statistical Association and Taylor & Francis 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1080/10485252.2016.1190359 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1029-0311 |
EndPage | 514 |
ExternalDocumentID | oai_HAL_hal_01882461v1 4096466261 10_1080_10485252_2016_1190359 1190359 |
Genre | Article Feature |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS 1XC VOOES |
ID | FETCH-LOGICAL-c452t-f1aa4d9008134cdb4d3fc9f052da0c8bc56403c9e35205aef531f06d02f23c463 |
ISSN | 1048-5252 |
IngestDate | Fri May 09 12:25:55 EDT 2025 Mon Jul 21 11:38:26 EDT 2025 Wed Aug 13 09:58:23 EDT 2025 Tue Jul 01 01:04:57 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Wed Dec 25 08:58:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | elastic net penalty Huber's criterion concomitant scale Adaptive BerHu penalty oracle property robust estimation Availability |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c452t-f1aa4d9008134cdb4d3fc9f052da0c8bc56403c9e35205aef531f06d02f23c463 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://hal.science/hal-01882461 |
PQID | 1798759826 |
PQPubID | 53053 |
PageCount | 28 |
ParticipantIDs | crossref_primary_10_1080_10485252_2016_1190359 proquest_journals_1798759826 crossref_citationtrail_10_1080_10485252_2016_1190359 hal_primary_oai_HAL_hal_01882461v1 proquest_miscellaneous_1825527824 informaworld_taylorfrancis_310_1080_10485252_2016_1190359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-02 |
PublicationDateYYYYMMDD | 2016-07-02 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of nonparametric statistics |
PublicationYear | 2016 |
Publisher | Taylor & Francis Taylor & Francis Ltd American Statistical Association |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: American Statistical Association |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Tibshirani R. (CIT0029) 1996; 58 Hastie T. (CIT0012) 2003 Rockafellar R. (CIT0024) 1970 CIT0035 CIT0038 Hiriart-Urruty J.B. (CIT0013) 1991 CIT0015 CIT0037 Fan J. (CIT0007) 2001; 96 CIT0018 CIT0017 CIT0039 CIT0041 CIT0040 CIT0021 CIT0020 CIT0001 Stamey T.A. (CIT0027) 1989; 141 CIT0025 CIT0002 CIT0005 CIT0026 CIT0028 CIT0008 |
References_xml | – ident: CIT0033 doi: 10.1198/073500106000000251 – ident: CIT0002 doi: 10.1016/S0167-7152(97)00115-6 – ident: CIT0025 doi: 10.1109/78.923297 – ident: CIT0021 doi: 10.1090/S0002-9947-1981-0628449-5 – ident: CIT0038 doi: 10.1016/j.jspi.2012.12.009 – ident: CIT0037 doi: 10.1214/07-AOS584 – ident: CIT0039 doi: 10.1198/016214506000000735 – ident: CIT0015 doi: 10.1002/0471725250 – ident: CIT0028 doi: 10.1080/10556789908805766 – volume-title: Convex Analysis and Minimization Algorithms I year: 1991 ident: CIT0013 – ident: CIT0018 doi: 10.1214/11-EJS635 – ident: CIT0041 doi: 10.1214/08-AOS625 – ident: CIT0005 doi: 10.1080/03610926.2011.615438 – ident: CIT0020 doi: 10.4310/SII.2009.v2.n4.a9 – ident: CIT0026 doi: 10.1214/aos/1176344136 – ident: CIT0035 doi: 10.1111/j.1467-9868.2005.00532.x – ident: CIT0008 doi: 10.1214/aos/1176325768 – volume-title: Convex Analysis, Princeton Landmarks in Mathematics year: 1970 ident: CIT0024 – ident: CIT0030 doi: 10.1017/CBO9780511802256 – ident: CIT0031 doi: 10.1007/978-1-4757-2545-2 – ident: CIT0017 doi: 10.1214/aos/1015957397 – volume-title: The Elements of Statistical Learning year: 2003 ident: CIT0012 – volume: 96 start-page: 1438 year: 2001 ident: CIT0007 publication-title: Journal of the American Statistical Association – volume: 141 start-page: 1076 issue: 5 year: 1989 ident: CIT0027 publication-title: Journal of Urology doi: 10.1016/S0022-5347(17)41175-X – ident: CIT0001 doi: 10.1198/016214501753208942 – ident: CIT0032 doi: 10.1198/016214507000000509 – ident: CIT0034 doi: 10.1093/biomet/asm053 – volume: 58 start-page: 267 year: 1996 ident: CIT0029 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: CIT0040 doi: 10.1111/j.1467-9868.2005.00503.x |
SSID | ssj0013630 |
Score | 2.1710827 |
Snippet | We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator... |
SourceID | hal proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 487 |
SubjectTerms | adaptive BerHu penalty Applications concomitant scale Estimators Huber's criterion Mathematical models Nonparametric statistics Norms Operators oracle property Regression Regression analysis Ridges robust estimation Simulation Statistics Statistics Theory |
Title | The adaptive BerHu penalty in robust regression |
URI | https://www.tandfonline.com/doi/abs/10.1080/10485252.2016.1190359 https://www.proquest.com/docview/1798759826 https://www.proquest.com/docview/1825527824 https://hal.science/hal-01882461 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbYdhmHCQaIsoEC4jali2PHtY8FNlWojMNaUe1iOY7NKkFatSlI_HqeYycN2tAGl6hy7Tr19_z8bL_3PYTe4sQYRbSOaUbgoU0aC53ksebcuYXlAtvaQfaCjab04yybNbnkQ3RJlff1r1vjSv4HVSgDXF2U7D8g2_4oFMBnwBeegDA8742xKtSydv95Z1ajzcnSQKuqDuZbLfLNujpZma_e17X8iyFaLkpHAP7d5dbS7myh8uTNra-OcklDqnisQGnP68XqcrG8nrcicfUzHC-7IOvGkSacJGBWe512DhdhZ8ZhY-oZZfsmlKUihomPuxoz5R3JIB31R8Pi6VfSzIeH3lDS3qvR9eY6c-51DDS3cGSC21WpuYm_-CzPp-OxnJzNJjtoL4XdAKizveHow9WX7XURI4F2wv-BJlSLJ6e3dvOHEbJzXbvAdolqbyzMtbUxeYQOAjrR0GP-GD0w5SF6-Knl2F0fov3LFqkn6BREIWpEIapFIQqiEM3LyItCtBWFp2h6fjZ5P4pDLoxY0yytYouVooVwFhyhushpQawWNsnSQiWa5zpjNCFaGDCok0wZC7rVJqxIUpsSTRl5hnZBnMxzFGEG7agdMAOmZKEsFznXBBsuVIYHBe8h2gyO1IEo3uUr-SZx4JNtxlS6MZVhTHuo3zZbeqaUuxq8gZFv6zqe89FwLF1ZgmHjRxn-gXtIdIGRVX2OZX3SGUnu6OC4QVGGWbuWjqBv4FgrWQ-9br8GneouylRpFhuow1NHTAiv8OIedY7Q_nY2HaPdarUxL8FSrfJXQU5_A1vMi-Y |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB615UA58CggFkpJEdcsdvxY-1gQVQrbPbVSb5bj2G0Fyq52EyT49XjyWBaqqodeEin2xLI9Mx7bnz8DfKDEe8ucS7lg8eF8lmpHitQphbCwQtPQAmRnMj_nXy_ExcZZGIRV4hw6dEQRra9G48bF6AESF99ciUzgOSoqo9Fr5KHbhgdCywnqOiOzvzsJkvWMBCpFmeEUz22_-Wd82r5q0ZGbHKY3fHY7EB0_ATdUocOffB83dTF2v_9jd7xfHZ_C4z5OTY46xXoGW77ag0ena5LX1R7sYqDa8Tw_h49R3xJb2gW6z-STX-ZNsvDxF_Wv5LpKlvOiWdXJ0l92uNvqBZwffzn7nKf9ZQyp4yKr00Ct5aXGEIJxVxa8ZMHpQERWWuJU4YTkhDntY0RHhPUhGncgsiRZyJjjkr2EnWpe-VeQUBnleJhIH2OZ0galC-UY9UpbQSelGgEfusC4nqkcL8z4YWhPaDo0jsHGMX3jjGC8Flt0VB13CbyP_bvOi0Tb-dHU4DdC48yDS_qTjkBvdr-p24WU0N16YtgdBewPumJ617AyyBA3QdpEOYLDdXI0atypsZWfNzFPnLeLLAZv_PU9in8HD_Oz06mZnsy-vYFdTGqBxtk-7NTLxr-N4VRdHLT28gdOsA1_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xi4SWA48FRGGBgLim2PGj9nF5VAWWigMrcbP8BARKqzZBgl-PJ4-ygNAe9pJIsceWHzMex998BnhKSYyWeV9ywfLDx6rUnrjSK4WwMKdp6gCyS7k45W8-ihFNuB1glbiHTj1RRGerUbnXIY2IuPzmSlQCw6iozDqvkYZuDy5LDLTEKA6y_H2QINlASKBKlBmDeP5XzB_L097nDhx5lsL0H5PdrUPz6-DGFvTwk6_TtnFT__MvcscLNfEGXBu81OK4n1Y34VKsD-Hqux3F6_YQDtBN7Vmeb8GzPNsKG-wajWfxPG4WbbGOuYjmR_GlLjYr126bYhM_9ajb-jaczl99eLEoh6sYSs9F1ZSJWsuDRgeCcR8cDyx5nYiogiVeOS8kJ8zrmP05ImxMWbUTkYFUqWKeS3YH9utVHe9CQWWW42kmY_Zkgk1KO-UZjUpbQWdBTYCPI2D8wFOO12V8M3SgMx07x2DnmKFzJjDdia17oo7zBJ7k4d3lRZrtxfGJwW-E5n0Hl_Q7nYA-O_qm6X6jpP7OE8POqeBonCpmMAxbg_xwMyRNlBN4vEvOKo3nNLaOqzbnybt2UWXXjd-7QPWP4Mr7l3Nz8nr59j4cYEqHMq6OYL_ZtPFB9qUa97DTll_dlgwj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+adaptive+BerHu+penalty+in+robust+regression&rft.jtitle=Journal+of+nonparametric+statistics&rft.au=Lambert-Lacroix%2C+Sophie&rft.au=Zwald%2C+Laurent&rft.date=2016-07-02&rft.issn=1048-5252&rft.eissn=1029-0311&rft.volume=28&rft.issue=3&rft.spage=487&rft.epage=514&rft_id=info:doi/10.1080%2F10485252.2016.1190359&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1048-5252&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1048-5252&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1048-5252&client=summon |