Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN
On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrate...
Saved in:
Published in | International journal of naval architecture and ocean engineering Vol. 11; no. 1; pp. 22 - 32 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2019
Elsevier 대한조선학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2092-6782 2092-6790 |
DOI | 10.1016/j.ijnaoe.2017.12.001 |
Cover
Loading…
Abstract | On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)—using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)—for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms. |
---|---|
AbstractList | On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)—using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)—for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms. Keywords: Offshore platform, DEMATEL, Bayesian network, Accident, Leakage, Quantitative risk, Dynamic On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)dusing the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)dfor evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms. KCI Citation Count: 0 On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)—using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)—for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms. |
Author | Zhu, Yuan Zhu, Gaogeng Chen, Guoming Meng, Xiangkun |
Author_xml | – sequence: 1 givenname: Xiangkun surname: Meng fullname: Meng, Xiangkun email: wsdy1002@163.com – sequence: 2 givenname: Guoming surname: Chen fullname: Chen, Guoming email: offshore@126.com – sequence: 3 givenname: Gaogeng surname: Zhu fullname: Zhu, Gaogeng – sequence: 4 givenname: Yuan surname: Zhu fullname: Zhu, Yuan |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002434606$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqFkcFu1DAURSNUJErpH7DwlkWCnxM7CQukoR3oSANIaFhbjvM8OMnYxc5Umr_HnVRdsABv3pN175Hs8zq7cN5hlr0FWgAF8X4o7OCUx4JRqAtgBaXwIrtktGW5qFt68bw37FV2HeNA06koqyq4zMbbk1MHq8nvo3KzndVsH5AEG0eiYsQYD-hm4g1RWts-7ZFY1x819qQ7kQnVqPZIvEsRE3_5gOR-UrPx4RDJMVq3J7frr6vdept_-vYme2nUFPH6aV5lPz-vdzd3-fb7l83NapvrirM5N1S0mtetQi4qVfcNN62iaDrglcEem67smOhKZAAMBAUmOLZdzVDxvmZQXmXvFq4LRo7aSq_see69HINc_dhtZAUcSsZTdrNke68GeR_sQYXTuXC-8GEvVZitnlDyBgyUpehFU1dN2bcgGiG6nlPVYVl2iVUtLB18jAHNMw-ofHQlB7m4ko-uJDCZXKXah79q-uzBuzkoO_2v_HEpY_rQB4tBRm3RJT82oJ7TK-y_AX8A_lmzYg |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2020_122852 crossref_primary_10_3390_ma12203372 crossref_primary_10_1016_j_jlp_2021_104518 crossref_primary_10_1016_j_ress_2022_108719 crossref_primary_10_1016_j_ssci_2021_105184 crossref_primary_10_1002_qre_2848 crossref_primary_10_1007_s42452_019_1106_z crossref_primary_10_1016_j_psep_2019_04_015 crossref_primary_10_1016_j_ress_2024_110526 crossref_primary_10_3390_buildings12101665 crossref_primary_10_1016_j_psep_2023_03_072 crossref_primary_10_1016_j_oceaneng_2023_115637 crossref_primary_10_3389_feart_2022_906486 crossref_primary_10_1680_jinam_22_00020 crossref_primary_10_1016_j_evalprogplan_2022_102172 crossref_primary_10_1080_01969722_2022_2146926 crossref_primary_10_1016_j_egyr_2022_05_159 crossref_primary_10_1016_j_oceaneng_2020_107827 crossref_primary_10_1016_j_jlp_2024_105470 crossref_primary_10_3390_ma12223722 crossref_primary_10_1016_j_ress_2020_107255 crossref_primary_10_1016_j_psep_2024_10_110 crossref_primary_10_1016_j_psep_2023_03_026 crossref_primary_10_1108_ECAM_06_2022_0546 crossref_primary_10_1002_prs_12420 crossref_primary_10_1016_j_ress_2025_110875 crossref_primary_10_3390_su12187294 crossref_primary_10_1016_j_oceaneng_2023_113786 crossref_primary_10_52547_jhehp_8_1_35 crossref_primary_10_1016_j_ssci_2020_104705 crossref_primary_10_1080_10803548_2021_1985303 crossref_primary_10_1016_j_oceaneng_2023_116611 crossref_primary_10_3390_ijerph19127216 crossref_primary_10_3846_jcem_2020_12322 crossref_primary_10_1016_j_oceaneng_2022_113021 crossref_primary_10_52547_johe_8_2_32 crossref_primary_10_1016_j_ocecoaman_2024_107311 crossref_primary_10_1016_j_oceaneng_2023_113617 crossref_primary_10_1016_j_oceaneng_2022_112006 crossref_primary_10_3390_ijerph191610271 crossref_primary_10_1016_j_compchemeng_2020_107197 crossref_primary_10_1016_j_jnlssr_2024_06_012 crossref_primary_10_3390_pr12040730 crossref_primary_10_3390_pr8060685 crossref_primary_10_1016_j_ijnaoe_2020_09_003 crossref_primary_10_1016_j_psep_2020_11_010 crossref_primary_10_3390_pr12122930 crossref_primary_10_1016_j_jclepro_2021_130249 crossref_primary_10_1016_j_engfailanal_2020_104959 crossref_primary_10_1016_j_oceaneng_2025_120597 crossref_primary_10_1016_j_oceaneng_2021_109410 crossref_primary_10_1016_j_ress_2021_108022 crossref_primary_10_1016_j_compchemeng_2022_107914 |
Cites_doi | 10.1016/j.ssci.2015.01.010 10.1007/s11431-012-5060-x 10.1016/j.engappai.2013.08.011 10.1016/j.psep.2010.01.004 10.1016/j.psep.2016.05.004 10.1016/j.ssci.2015.05.004 10.1016/j.ssci.2010.07.010 10.1016/j.ress.2015.10.009 10.1016/j.psep.2013.03.004 10.1016/j.coche.2016.07.003 10.1016/j.jlp.2015.08.004 10.1016/j.jhazmat.2016.09.074 10.1016/j.marstruc.2011.02.002 10.1016/j.cherd.2016.04.013 10.1111/j.1539-6924.2012.01918.x 10.1016/j.jlp.2015.10.006 10.1016/j.jlp.2009.04.006 10.1016/j.psep.2017.08.005 10.1016/j.psep.2012.01.005 10.1016/j.jlp.2014.05.002 10.1016/S0951-8320(00)00077-6 10.1016/j.ress.2016.06.004 10.1016/j.psep.2016.06.006 10.1016/j.ress.2012.04.003 10.1016/j.ssci.2016.10.001 10.1016/j.jlp.2013.01.001 10.1016/j.energy.2015.10.068 10.1016/j.jlp.2014.10.010 10.1016/j.compchemeng.2007.03.006 10.1016/j.ress.2014.01.015 10.1016/j.psep.2015.07.005 10.1016/j.ces.2006.07.007 10.1016/j.ssci.2016.09.013 |
ContentType | Journal Article |
Copyright | 2018 Society of Naval Architects of Korea |
Copyright_xml | – notice: 2018 Society of Naval Architects of Korea |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.ijnaoe.2017.12.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 2092-6790 |
EndPage | 32 |
ExternalDocumentID | oai_kci_go_kr_ARTI_4151325 oai_doaj_org_article_581f1336d687483d916866bd50abe33b 10_1016_j_ijnaoe_2017_12_001 S2092678217303400 |
GroupedDBID | .UV 0R~ 0SF 4.4 5VS 6I. 9ZL AACTN AAEDW AAFTH AAFWJ AALRI AAXUO ABFKT ABMAC ACGFS ACYCR ADBBV AENEX AEXQZ AFPKN AFTJW AIKXB AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV DBRKI EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ JDI KQ8 KVFHK M41 NCXOZ O9- OK1 P2P QD8 RIG ROL SSZ TDB AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c452t-f069c579ae564a7d85f9a0efb154fede8b3b26b3e21121601265e9b72ea5d7213 |
IEDL.DBID | DOA |
ISSN | 2092-6782 |
IngestDate | Sun Mar 09 07:51:17 EDT 2025 Wed Aug 27 01:05:13 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 04:04:28 EDT 2025 Fri Feb 23 02:14:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Quantitative risk QRA Dynamic DEMATEL D CPT I BN M BP FT R T X DRAM GeNIe DQRA f(x) Bayesian network f(x|data) Offshore platform Leakage f ET s Accident g(data|x) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-f069c579ae564a7d85f9a0efb154fede8b3b26b3e21121601265e9b72ea5d7213 |
OpenAccessLink | https://doaj.org/article/581f1336d687483d916866bd50abe33b |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_4151325 doaj_primary_oai_doaj_org_article_581f1336d687483d916866bd50abe33b crossref_primary_10_1016_j_ijnaoe_2017_12_001 crossref_citationtrail_10_1016_j_ijnaoe_2017_12_001 elsevier_sciencedirect_doi_10_1016_j_ijnaoe_2017_12_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 2019-01-01 2019-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | International journal of naval architecture and ocean engineering |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier 대한조선학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 대한조선학회 |
References | Cai, Liu, Ma, Huang, Liu (bib13) 2015; 93 Li, Chen, Zhu (bib25) 2016; 103 Adedigba, Khan, Yang (bib3) 2016; 111 Bobbio, Portinale, Minichino, Ciancamerla (bib10) 2001; 71 Khan, Rathnayaka, Ahmed (bib23) 2015; 98 Paik, Czujko, Kim, Seo, Ryu, Ha, Musial (bib31) 2011; 24 Bhandari, Abbassi, Garaniya, Khan (bib9) 2015; 38 Adedigba, Khan, Yang (bib5) 2017; 111 Meel, Seider (bib26) 2006; 61 Kalantarnia, Khan, Hawboldt (bib17) 2009; 22 OGP UK (bib29) 2010 OREDA Participants (bib30) 2002 Zarei, Azadeh, Khakzad, Aliabadi, Mohammadfam (bib41) 2017; 321 Deyab, Mohammed, Khan (bib16) 2018; vol. 113 Wang, Su, Ma, Tian (bib40) 2012; 55 Vinnem (bib37) 2014 Amyotte, Berger, Edwards, Gupta, Hendershot, Khan, Willey (bib6) 2016; 14 Khakzad, Reniers, Abbassi, Khan (bib22) 2016; 154 Kalantarnia, Khan, Hawboldt (bib18) 2010; 88 Khakzad, Khan, Amyotte (bib19) 2012; 104 Vinnem (bib38) 2014; 32 Meel, Seider (bib27) 2008; 32 Khakzad, Khan, Amyotte (bib20) 2013; 91 Pranesh, Palanichamy, Saidat, Peter (bib33) 2017; 92 Tan, Chen, Zhang, Fu, Li (bib35) 2014; 92 Abimbola, Khan, Khakzad (bib2) 2014; 30 Berner, Flage (bib8) 2016; 151 Tan, Chen, Chang, Fu (bib34) 2013; 37 Adedigba, Khan, Yang (bib4) 2016; 102 Cai, Liu, Fan, Zhang, Yu, Liu, Dong (bib11) 2013; 26 Cai, Liu, Liu, Tian, Zhang, Ji (bib12) 2013; 33 Akyuz, Celik (bib7) 2015; 38 Cai, Liu, Zhang, Fan, Liu, Tian (bib14) 2013; 26 Abimbola, Khan, Khakzad, Butt (bib1) 2015; 76 Li, Zhang, Liang (bib24) 2017; 92 Mentes, Akyildiz, Yetkin, Turkoglu (bib28) 2015; 79 Khakzad, Khan, Paltrinieri (bib21) 2014; 126 Paltrinieri, Khan (bib32) 2016 Vinnem (bib36) 2011; 49 Meel (10.1016/j.ijnaoe.2017.12.001_bib27) 2008; 32 Khakzad (10.1016/j.ijnaoe.2017.12.001_bib20) 2013; 91 Vinnem (10.1016/j.ijnaoe.2017.12.001_bib38) 2014; 32 Khakzad (10.1016/j.ijnaoe.2017.12.001_bib21) 2014; 126 Cai (10.1016/j.ijnaoe.2017.12.001_bib14) 2013; 26 Abimbola (10.1016/j.ijnaoe.2017.12.001_bib2) 2014; 30 Li (10.1016/j.ijnaoe.2017.12.001_bib25) 2016; 103 Mentes (10.1016/j.ijnaoe.2017.12.001_bib28) 2015; 79 Deyab (10.1016/j.ijnaoe.2017.12.001_bib16) 2018; vol. 113 Pranesh (10.1016/j.ijnaoe.2017.12.001_bib33) 2017; 92 Tan (10.1016/j.ijnaoe.2017.12.001_bib34) 2013; 37 Akyuz (10.1016/j.ijnaoe.2017.12.001_bib7) 2015; 38 Berner (10.1016/j.ijnaoe.2017.12.001_bib8) 2016; 151 Bhandari (10.1016/j.ijnaoe.2017.12.001_bib9) 2015; 38 Vinnem (10.1016/j.ijnaoe.2017.12.001_bib37) 2014 Abimbola (10.1016/j.ijnaoe.2017.12.001_bib1) 2015; 76 Bobbio (10.1016/j.ijnaoe.2017.12.001_bib10) 2001; 71 Cai (10.1016/j.ijnaoe.2017.12.001_bib13) 2015; 93 Khakzad (10.1016/j.ijnaoe.2017.12.001_bib22) 2016; 154 Cai (10.1016/j.ijnaoe.2017.12.001_bib12) 2013; 33 Li (10.1016/j.ijnaoe.2017.12.001_bib24) 2017; 92 Wang (10.1016/j.ijnaoe.2017.12.001_bib40) 2012; 55 Adedigba (10.1016/j.ijnaoe.2017.12.001_bib5) 2017; 111 Kalantarnia (10.1016/j.ijnaoe.2017.12.001_bib17) 2009; 22 Adedigba (10.1016/j.ijnaoe.2017.12.001_bib4) 2016; 102 Khan (10.1016/j.ijnaoe.2017.12.001_bib23) 2015; 98 OGP UK (10.1016/j.ijnaoe.2017.12.001_bib29) 2010 Kalantarnia (10.1016/j.ijnaoe.2017.12.001_bib18) 2010; 88 Tan (10.1016/j.ijnaoe.2017.12.001_bib35) 2014; 92 Amyotte (10.1016/j.ijnaoe.2017.12.001_bib6) 2016; 14 Paltrinieri (10.1016/j.ijnaoe.2017.12.001_bib32) 2016 Cai (10.1016/j.ijnaoe.2017.12.001_bib11) 2013; 26 OREDA Participants (10.1016/j.ijnaoe.2017.12.001_bib30) 2002 Adedigba (10.1016/j.ijnaoe.2017.12.001_bib3) 2016; 111 Paik (10.1016/j.ijnaoe.2017.12.001_bib31) 2011; 24 Zarei (10.1016/j.ijnaoe.2017.12.001_bib41) 2017; 321 Khakzad (10.1016/j.ijnaoe.2017.12.001_bib19) 2012; 104 Meel (10.1016/j.ijnaoe.2017.12.001_bib26) 2006; 61 Vinnem (10.1016/j.ijnaoe.2017.12.001_bib36) 2011; 49 |
References_xml | – volume: 22 start-page: 600 year: 2009 end-page: 606 ident: bib17 article-title: Dynamic risk assessment using failure assessment and Bayesian theory publication-title: J. Loss Prev. Process. Ind. – volume: 88 start-page: 191 year: 2010 end-page: 199 ident: bib18 article-title: Modelling of BP Texas City refinery accident using dynamic risk assessment approach publication-title: Process Saf. Environ. Protect. – volume: 111 start-page: 529 year: 2017 end-page: 543 ident: bib5 article-title: Dynamic failure analysis of process systems using neural networks publication-title: Process Saf. Environ. Protect. – volume: 104 start-page: 36 year: 2012 end-page: 44 ident: bib19 article-title: Dynamic risk analysis using bow-tie approach publication-title: Reliab. Eng. Syst. Saf. – volume: 32 start-page: 827 year: 2008 end-page: 840 ident: bib27 article-title: Real-time risk analysis of safety systems publication-title: Comput. Chem. Eng. – volume: 26 start-page: 2661 year: 2013 end-page: 2672 ident: bib11 article-title: Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance publication-title: Eng. Appl. Artif. Intell. – volume: 14 start-page: 1 year: 2016 end-page: 8 ident: bib6 article-title: Why major accidents are still occurring publication-title: Cur. Opin. Chem. Eng. – volume: 76 start-page: 133 year: 2015 end-page: 144 ident: bib1 article-title: Safety and risk analysis of managed pressure drilling operation using Bayesian network publication-title: Saf. Sci. – volume: 30 start-page: 74 year: 2014 end-page: 85 ident: bib2 article-title: Dynamic safety risk analysis of offshore drilling publication-title: J. Loss Prev. Process. Ind. – volume: 32 start-page: 367 year: 2014 end-page: 376 ident: bib38 article-title: Uncertainties in a risk management context in early phases of offshore petroleum field development publication-title: J. Loss Prev. Process. Ind. – volume: 71 start-page: 249 year: 2001 end-page: 260 ident: bib10 article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks publication-title: Reliab. Eng. Syst. Saf. – volume: 154 start-page: 127 year: 2016 end-page: 136 ident: bib22 article-title: Vulnerability analysis of process plants subject to dominoeffects publication-title: Reliab. Eng. Syst. Saf. – volume: 111 start-page: 169 year: 2016 end-page: 183 ident: bib3 article-title: Dynamic safety analysis of process systems using nonlinear and non-sequential accident model publication-title: Chem. Eng. Res. Des. – volume: 38 start-page: 11 year: 2015 end-page: 23 ident: bib9 article-title: Risk analysis of deepwater drilling operations using Bayesian network publication-title: J. Loss Prev. Process. Ind. – volume: 26 start-page: 639 year: 2013 end-page: 649 ident: bib14 article-title: A dynamic Bayesian networks modeling of human factors on offshore blowouts publication-title: J. Loss Prev. Process. Ind. – volume: 37 start-page: 129 year: 2013 end-page: 134 ident: bib34 article-title: Dynamic risk analysis of high-sulfur wellhead gas-liquid separator based on Bayesian method publication-title: . J. China Univ. Petrol. – volume: vol. 113 start-page: 220 year: 2018 end-page: 232 ident: bib16 publication-title: Failure Analysis of the Offshore Process Component Considering Causation Dependence – year: 2014 ident: bib37 article-title: Offshore Risk Assessment: Principles, Modelling and Applications of QRA Studies – year: 2010 ident: bib29 article-title: Risk Assessment Data Directory: Risers and Pipeline Release Frequencies – volume: 33 start-page: 1293 year: 2013 end-page: 1311 ident: bib12 article-title: Application of Bayesian networks in quantitative risk assessment of subsea blowout preventer operations publication-title: Risk Anal. – volume: 103 start-page: 163 year: 2016 end-page: 173 ident: bib25 article-title: Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network publication-title: Process Saf. Environ. Protect. – volume: 93 start-page: 1308 year: 2015 end-page: 1320 ident: bib13 article-title: A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults publication-title: Energy – volume: 151 start-page: 46 year: 2016 end-page: 59 ident: bib8 article-title: Strengthening quantitative risk assessments by systematic treatment of uncertain assumptions publication-title: Reliab. Eng. Syst. Saf. – year: 2002 ident: bib30 article-title: Offshore Reliability Data Handbook – volume: 92 start-page: 565 year: 2014 end-page: 576 ident: bib35 article-title: Dynamic accident modeling for high-sulfur natural gas gathering station publication-title: Process Saf. Environ. Protect. – year: 2016 ident: bib32 article-title: Dynamic Risk Analysis in the Chemical and Petroleum Industry – volume: 38 start-page: 243 year: 2015 end-page: 253 ident: bib7 article-title: A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers publication-title: J. Loss Prev. Process. Ind. – volume: 98 start-page: 116 year: 2015 end-page: 147 ident: bib23 article-title: Methods and models in process safety and risk management: past, present and future publication-title: Process Saf. Environ. Protect. – volume: 91 start-page: 46 year: 2013 end-page: 53 ident: bib20 article-title: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network publication-title: Process Saf. Environ. Protect. – volume: 61 start-page: 7036 year: 2006 end-page: 7056 ident: bib26 article-title: Plant-specific dynamic failure assessment using Bayesian theory publication-title: Chem. Eng. Sci. – volume: 24 start-page: 73 year: 2011 end-page: 96 ident: bib31 article-title: Quantitative assessment of hydrocarbon explosion and fire risks in offshore installations publication-title: Mar. Struct. – volume: 92 start-page: 94 year: 2017 end-page: 103 ident: bib24 article-title: An accident causation analysis and taxonomy (ACAT) model of complex industrial system from both system safety and control theory perspectives publication-title: Saf. Sci. – volume: 49 start-page: 178 year: 2011 end-page: 191 ident: bib36 article-title: Evaluation of offshore emergency preparedness in view of rare accidents publication-title: Saf. Sci. – volume: 55 start-page: 3344 year: 2012 end-page: 3351 ident: bib40 article-title: Integrated risk assessment of complex disaster system based on a non-linear information dynamics model publication-title: Sci. China Technol. Sci. – volume: 126 start-page: 116 year: 2014 end-page: 125 ident: bib21 article-title: On the application of near accident data to risk analysis of major accidents publication-title: Reliab. Eng. Syst. Saf. – volume: 79 start-page: 1 year: 2015 end-page: 10 ident: bib28 article-title: A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey publication-title: Saf. Sci. – volume: 102 start-page: 633 year: 2016 end-page: 647 ident: bib4 article-title: Process accident model considering dependency among contributory factors publication-title: Process Saf. Environ. Protect. – volume: 92 start-page: 85 year: 2017 end-page: 93 ident: bib33 article-title: Lack of dynamic leadership skills and human failure contribution analysis to manage risk in deep water horizon oil platform publication-title: Saf. Sci. – volume: 321 start-page: 830 year: 2017 end-page: 840 ident: bib41 article-title: Dynamic safety assessment of natural gas stations using Bayesian network publication-title: J. Hazard Mater. – year: 2002 ident: 10.1016/j.ijnaoe.2017.12.001_bib30 – volume: 76 start-page: 133 year: 2015 ident: 10.1016/j.ijnaoe.2017.12.001_bib1 article-title: Safety and risk analysis of managed pressure drilling operation using Bayesian network publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.01.010 – volume: 55 start-page: 3344 issue: 12 year: 2012 ident: 10.1016/j.ijnaoe.2017.12.001_bib40 article-title: Integrated risk assessment of complex disaster system based on a non-linear information dynamics model publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-012-5060-x – volume: 26 start-page: 2661 issue: 10 year: 2013 ident: 10.1016/j.ijnaoe.2017.12.001_bib11 article-title: Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.08.011 – volume: 88 start-page: 191 issue: 3 year: 2010 ident: 10.1016/j.ijnaoe.2017.12.001_bib18 article-title: Modelling of BP Texas City refinery accident using dynamic risk assessment approach publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2010.01.004 – volume: 102 start-page: 633 year: 2016 ident: 10.1016/j.ijnaoe.2017.12.001_bib4 article-title: Process accident model considering dependency among contributory factors publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2016.05.004 – volume: 79 start-page: 1 year: 2015 ident: 10.1016/j.ijnaoe.2017.12.001_bib28 article-title: A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.05.004 – volume: 49 start-page: 178 issue: 2 year: 2011 ident: 10.1016/j.ijnaoe.2017.12.001_bib36 article-title: Evaluation of offshore emergency preparedness in view of rare accidents publication-title: Saf. Sci. doi: 10.1016/j.ssci.2010.07.010 – volume: 151 start-page: 46 year: 2016 ident: 10.1016/j.ijnaoe.2017.12.001_bib8 article-title: Strengthening quantitative risk assessments by systematic treatment of uncertain assumptions publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.10.009 – volume: vol. 113 start-page: 220 year: 2018 ident: 10.1016/j.ijnaoe.2017.12.001_bib16 – volume: 92 start-page: 565 issue: 6 year: 2014 ident: 10.1016/j.ijnaoe.2017.12.001_bib35 article-title: Dynamic accident modeling for high-sulfur natural gas gathering station publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2013.03.004 – volume: 14 start-page: 1 year: 2016 ident: 10.1016/j.ijnaoe.2017.12.001_bib6 article-title: Why major accidents are still occurring publication-title: Cur. Opin. Chem. Eng. doi: 10.1016/j.coche.2016.07.003 – volume: 38 start-page: 11 year: 2015 ident: 10.1016/j.ijnaoe.2017.12.001_bib9 article-title: Risk analysis of deepwater drilling operations using Bayesian network publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2015.08.004 – volume: 321 start-page: 830 year: 2017 ident: 10.1016/j.ijnaoe.2017.12.001_bib41 article-title: Dynamic safety assessment of natural gas stations using Bayesian network publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.09.074 – volume: 24 start-page: 73 issue: 2 year: 2011 ident: 10.1016/j.ijnaoe.2017.12.001_bib31 article-title: Quantitative assessment of hydrocarbon explosion and fire risks in offshore installations publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2011.02.002 – year: 2010 ident: 10.1016/j.ijnaoe.2017.12.001_bib29 – volume: 111 start-page: 169 year: 2016 ident: 10.1016/j.ijnaoe.2017.12.001_bib3 article-title: Dynamic safety analysis of process systems using nonlinear and non-sequential accident model publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.04.013 – volume: 33 start-page: 1293 issue: 7 year: 2013 ident: 10.1016/j.ijnaoe.2017.12.001_bib12 article-title: Application of Bayesian networks in quantitative risk assessment of subsea blowout preventer operations publication-title: Risk Anal. doi: 10.1111/j.1539-6924.2012.01918.x – volume: 38 start-page: 243 year: 2015 ident: 10.1016/j.ijnaoe.2017.12.001_bib7 article-title: A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2015.10.006 – volume: 37 start-page: 129 issue: 6 year: 2013 ident: 10.1016/j.ijnaoe.2017.12.001_bib34 article-title: Dynamic risk analysis of high-sulfur wellhead gas-liquid separator based on Bayesian method publication-title: . J. China Univ. Petrol. – volume: 22 start-page: 600 issue: 5 year: 2009 ident: 10.1016/j.ijnaoe.2017.12.001_bib17 article-title: Dynamic risk assessment using failure assessment and Bayesian theory publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2009.04.006 – volume: 111 start-page: 529 year: 2017 ident: 10.1016/j.ijnaoe.2017.12.001_bib5 article-title: Dynamic failure analysis of process systems using neural networks publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2017.08.005 – volume: 91 start-page: 46 year: 2013 ident: 10.1016/j.ijnaoe.2017.12.001_bib20 article-title: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2012.01.005 – volume: 30 start-page: 74 year: 2014 ident: 10.1016/j.ijnaoe.2017.12.001_bib2 article-title: Dynamic safety risk analysis of offshore drilling publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2014.05.002 – volume: 71 start-page: 249 issue: 3 year: 2001 ident: 10.1016/j.ijnaoe.2017.12.001_bib10 article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/S0951-8320(00)00077-6 – volume: 154 start-page: 127 year: 2016 ident: 10.1016/j.ijnaoe.2017.12.001_bib22 article-title: Vulnerability analysis of process plants subject to dominoeffects publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2016.06.004 – year: 2014 ident: 10.1016/j.ijnaoe.2017.12.001_bib37 – volume: 103 start-page: 163 year: 2016 ident: 10.1016/j.ijnaoe.2017.12.001_bib25 article-title: Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2016.06.006 – volume: 104 start-page: 36 year: 2012 ident: 10.1016/j.ijnaoe.2017.12.001_bib19 article-title: Dynamic risk analysis using bow-tie approach publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.04.003 – volume: 92 start-page: 94 year: 2017 ident: 10.1016/j.ijnaoe.2017.12.001_bib24 article-title: An accident causation analysis and taxonomy (ACAT) model of complex industrial system from both system safety and control theory perspectives publication-title: Saf. Sci. doi: 10.1016/j.ssci.2016.10.001 – volume: 26 start-page: 639 issue: 4 year: 2013 ident: 10.1016/j.ijnaoe.2017.12.001_bib14 article-title: A dynamic Bayesian networks modeling of human factors on offshore blowouts publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2013.01.001 – volume: 93 start-page: 1308 year: 2015 ident: 10.1016/j.ijnaoe.2017.12.001_bib13 article-title: A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults publication-title: Energy doi: 10.1016/j.energy.2015.10.068 – volume: 32 start-page: 367 year: 2014 ident: 10.1016/j.ijnaoe.2017.12.001_bib38 article-title: Uncertainties in a risk management context in early phases of offshore petroleum field development publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2014.10.010 – year: 2016 ident: 10.1016/j.ijnaoe.2017.12.001_bib32 – volume: 32 start-page: 827 year: 2008 ident: 10.1016/j.ijnaoe.2017.12.001_bib27 article-title: Real-time risk analysis of safety systems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2007.03.006 – volume: 126 start-page: 116 year: 2014 ident: 10.1016/j.ijnaoe.2017.12.001_bib21 article-title: On the application of near accident data to risk analysis of major accidents publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2014.01.015 – volume: 98 start-page: 116 year: 2015 ident: 10.1016/j.ijnaoe.2017.12.001_bib23 article-title: Methods and models in process safety and risk management: past, present and future publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2015.07.005 – volume: 61 start-page: 7036 year: 2006 ident: 10.1016/j.ijnaoe.2017.12.001_bib26 article-title: Plant-specific dynamic failure assessment using Bayesian theory publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.07.007 – volume: 92 start-page: 85 year: 2017 ident: 10.1016/j.ijnaoe.2017.12.001_bib33 article-title: Lack of dynamic leadership skills and human failure contribution analysis to manage risk in deep water horizon oil platform publication-title: Saf. Sci. doi: 10.1016/j.ssci.2016.09.013 |
SSID | ssj0000402441 |
Score | 2.379937 |
Snippet | On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage.... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 22 |
SubjectTerms | Accident Bayesian network DEMATEL Dynamic Leakage Offshore platform Quantitative risk 조선공학 |
Title | Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN |
URI | https://dx.doi.org/10.1016/j.ijnaoe.2017.12.001 https://doaj.org/article/581f1336d687483d916866bd50abe33b https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002434606 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1), , pp.22-32 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaTr1ULbRi-0AjVPUWNQ8_j1BAtCp7AombZTs2XXaVQDYc-PcdO8lqOe2lp0SOE1ueycx81vgbQr7l1AvnLMtcZCCkvPCZVfEux-Zc0iBTtvvVnF_e0N-37Har1FfMCRvogYeF-8FkERBH8ZpLQWVVYzgjObc1y431VWWj9UWftwWmkg1GWERT2Up8WGZokcvp3FxK7lrcN6aNLJmFSLuBY02YyS8l-v4X7ul104Utx3PxjrwdI0Y4GWb6nrzyzT45vErs2t0zfIe5QW2B8Sc9IMuzocg8PD6ZJh0hQ4MGMYUczIaGE9oAxrlYUbRfA-JylHAN9hlW3izRxEDbYJew_tt2Hh5Wpo-x7RpilvwdoOxOrs__ZKfzD-Tm4vz652U2llTIHGVln4WcK8eEMp5xakQtWVAm98FiJBV87aWtbMlt5REXlgWCtZIzr6wovWE1gsXqI9lr2sYfEhBByMJF8p_C0YIKlXsE5tbUSlkWrJuRalpQ7Ua-8Vj2YqWnxLJ7PYhBRzHoooz5dTOSbd56GPg2dvQ_jbLa9I1s2akBdUiPOqR36dCMiEnSegw8hoACP7XYMfwxKoZeukUaOV7vWr3sNKKRXxqDIwT77NP_mONn8gbHVcPuzxey13dP_ivGQ709Sqr_D2-jBDg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+quantitative+risk+assessment+of+accidents+induced+by+leakage+on+offshore+platforms+using+DEMATEL-BN&rft.jtitle=International+journal+of+naval+architecture+and+ocean+engineering&rft.au=Xiangkun+Meng&rft.au=Guoming+Chen&rft.au=Gaogeng+Zhu&rft.au=Yuan+Zhu&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=2092-6782&rft.volume=11&rft.issue=1&rft.spage=22&rft.epage=32&rft_id=info:doi/10.1016%2Fj.ijnaoe.2017.12.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_581f1336d687483d916866bd50abe33b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6782&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6782&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6782&client=summon |