Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enric...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 196; no. 12; pp. 1571 - 1581 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Thoracic Society
15.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF.
We aimed to define an association between mtDNA and fibroblast responses in IPF.
We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects.
Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival.
These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF. |
---|---|
AbstractList | Rationale:
Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin–expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF.
Objectives:
We aimed to define an association between mtDNA and fibroblast responses in IPF.
Methods:
We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects.
Measurements and Main Results:
Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival.
Conclusions:
These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF. [...]given the pivotal contribution of mechanotransductive signaling to fibroblast activation (31), we thought biophysical influences might also be involved. [...]NHLFs were cultured for 7 days on tunable hydrogels constructed to approximate the mean stiffness of the normal (1 kPa) and fibrotic (20 kPa) human lung (26). [...]we analyzed the cell-free supernatant of archived BAL samples from subjects with newly diagnosed IPF (n = 4) and demographically matched control subjects lacking known interstitial lung disease (n = 10). Following covariate adjustments for age, sex, race, FVC percent predicted, Dlco percent predicted, and GAP index score, the 3,614.24 copies per microliter cutoff was an even stronger predictor of all-cause mortality (adjusted HR, 3.79; 95% CI, 1.53-9.43; P = 0.004) (Figure 6C and Table E2). Because of missing data, an effect of smoking could not be assessed. Because stiffness-induced a-SMA expression is known to be at least partially TGF-ß1 dependent (52), our work suggests that changes in mitochondrial function could occur via a similar mechanism through additional mechanotransductive signaling pathways, such as Rho-associated kinase 1, YAP/TAZ, and Hippo (11). Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF.RATIONALEIdiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF.We aimed to define an association between mtDNA and fibroblast responses in IPF.OBJECTIVESWe aimed to define an association between mtDNA and fibroblast responses in IPF.We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects.METHODSWe evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects.Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival.MEASUREMENTS AND MAIN RESULTSExposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival.These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.CONCLUSIONSThese findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF. Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF. We aimed to define an association between mtDNA and fibroblast responses in IPF. We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects. Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF. |
Author | Brandsdorfer, Caitlin Herazo-Maya, Jose D. Trujillo, Glenda Feghali-Bostwick, Carol Mehal, Wajahat Herzog, Erica L. Bogenhagen, Daniel F. Gibson, Kevin Sun, Huanxing Antin-Ozerkis, Danielle E. Kirillov, Varvara Tzouvelekis, Argyrios Gonzalez, Anjelica L. Slade, Martin Ryu, Changwan Woolard, Tony Puchalski, Jonathan T. Osafo-Addo, Awo Kaminski, Naftali Herzog, Raimund I. Dela Cruz, Charles S. Lindell, Kathleen Chen, Yonglin Winkler, Julia Blaul, Christina Pan, Hongyi Gulati, Mridu Faunce, Jaden |
Author_xml | – sequence: 1 givenname: Changwan surname: Ryu fullname: Ryu, Changwan organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 2 givenname: Huanxing orcidid: 0000-0003-2397-4652 surname: Sun fullname: Sun, Huanxing organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 3 givenname: Mridu surname: Gulati fullname: Gulati, Mridu organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 4 givenname: Jose D. surname: Herazo-Maya fullname: Herazo-Maya, Jose D. organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 5 givenname: Yonglin surname: Chen fullname: Chen, Yonglin organization: Yale University School of Bioengineering, New Haven, Connecticut – sequence: 6 givenname: Awo surname: Osafo-Addo fullname: Osafo-Addo, Awo organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 7 givenname: Caitlin surname: Brandsdorfer fullname: Brandsdorfer, Caitlin organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 8 givenname: Julia surname: Winkler fullname: Winkler, Julia organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 9 givenname: Christina surname: Blaul fullname: Blaul, Christina organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 10 givenname: Jaden surname: Faunce fullname: Faunce, Jaden organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 11 givenname: Hongyi surname: Pan fullname: Pan, Hongyi organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 12 givenname: Tony surname: Woolard fullname: Woolard, Tony organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 13 givenname: Argyrios surname: Tzouvelekis fullname: Tzouvelekis, Argyrios organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 14 givenname: Danielle E. surname: Antin-Ozerkis fullname: Antin-Ozerkis, Danielle E. organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 15 givenname: Jonathan T. surname: Puchalski fullname: Puchalski, Jonathan T. organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 16 givenname: Martin surname: Slade fullname: Slade, Martin organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 17 givenname: Anjelica L. surname: Gonzalez fullname: Gonzalez, Anjelica L. organization: Yale University School of Bioengineering, New Haven, Connecticut – sequence: 18 givenname: Daniel F. surname: Bogenhagen fullname: Bogenhagen, Daniel F. organization: Department of Pharmacology and – sequence: 19 givenname: Varvara surname: Kirillov fullname: Kirillov, Varvara organization: Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York – sequence: 20 givenname: Carol surname: Feghali-Bostwick fullname: Feghali-Bostwick, Carol organization: Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; and – sequence: 21 givenname: Kevin surname: Gibson fullname: Gibson, Kevin organization: Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania – sequence: 22 givenname: Kathleen surname: Lindell fullname: Lindell, Kathleen organization: Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania – sequence: 23 givenname: Raimund I. surname: Herzog fullname: Herzog, Raimund I. organization: Section of Endocrinology and Metabolism, and – sequence: 24 givenname: Charles S. surname: Dela Cruz fullname: Dela Cruz, Charles S. organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 25 givenname: Wajahat surname: Mehal fullname: Mehal, Wajahat organization: Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut – sequence: 26 givenname: Naftali surname: Kaminski fullname: Kaminski, Naftali organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 27 givenname: Erica L. surname: Herzog fullname: Herzog, Erica L. organization: Section of Pulmonary, Critical Care, and Sleep Medicine – sequence: 28 givenname: Glenda orcidid: 0000-0002-6061-5264 surname: Trujillo fullname: Trujillo, Glenda organization: Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28783377$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctqHDEQFMEhfiQ_kEMQ5OLLOGo9RjOXgFm_Fvw6xOCb0Gg0WZkZaSNpQvL30bJrk_iQU3fTVUV11yHa88FbhD4COQGo-ZdozHRCCdRAK8obcrd4gw5AMFHxVpK90hPJKs7bx310mNITIUAbIO_QPm1kw5iUByic_8pRGzuO86gjvnE5mFXwfXR6xGe3p3iZ8KX1Nupse9z9xheui6EbdcoJa9_j-2h7Z8pwZnVeYefxsndhXXpn8P08TsHruKMll96jt4Mek_2wq0fo4eL82-Kqur67XC5OryvDBc2VZYZ10NfAZdebdhC6HZigAwFDqQBtYOhqUpa06QSvJfBa25pYBgSg45Ydoa9b3fXcTbY31pczR7WObip2VNBO_bvxbqW-h59KSME5J0XgeCcQw4_ZpqwmlzZ_0t6GOSloqWRE8kYU6OdX0KcwR1_OU5RQzhlhsi6oT387erHynEUBNFuAKZ9K0Q7KuKyzCxuDblRA1CZ2tYldbWNX29gLlb6iPqv_h_QHtb6yIQ |
CitedBy_id | crossref_primary_10_1038_nm_4447 crossref_primary_10_1111_jcmm_13855 crossref_primary_10_1042_CS20191160 crossref_primary_10_1016_j_mito_2018_10_004 crossref_primary_10_1183_23120541_00194_2018 crossref_primary_10_2478_rir_2024_0019 crossref_primary_10_3390_ijms22136856 crossref_primary_10_1186_s12931_019_1196_6 crossref_primary_10_1093_qjmed_hcaa281 crossref_primary_10_1038_s41598_019_41933_4 crossref_primary_10_1007_s10787_024_01485_0 crossref_primary_10_3389_fmolb_2021_676569 crossref_primary_10_1007_s10565_019_09473_9 crossref_primary_10_1002_advs_202301635 crossref_primary_10_1016_j_matbio_2018_01_023 crossref_primary_10_1016_j_intimp_2023_110754 crossref_primary_10_1016_j_joca_2023_03_013 crossref_primary_10_1165_rcmb_2019_0051OC crossref_primary_10_1152_ajplung_00062_2019 crossref_primary_10_1165_rcmb_2020_0387OC crossref_primary_10_1164_rccm_202112_2746PP crossref_primary_10_3390_ijms21165595 crossref_primary_10_1016_j_it_2019_06_001 crossref_primary_10_1016_j_matbio_2018_03_014 crossref_primary_10_1038_s41598_024_68433_4 crossref_primary_10_1126_scisignal_aay1027 crossref_primary_10_1155_2021_9932442 crossref_primary_10_1155_2019_4506303 crossref_primary_10_1016_j_jphs_2019_03_002 crossref_primary_10_3390_diagnostics13061166 crossref_primary_10_3390_cells11213483 crossref_primary_10_1183_13993003_01769_2020 crossref_primary_10_3390_arm91010005 crossref_primary_10_1097_BOR_0000000000000542 crossref_primary_10_1016_j_pharmthera_2023_108436 crossref_primary_10_3389_fmed_2018_00010 crossref_primary_10_1165_rcmb_2022_0203MA crossref_primary_10_1172_jci_insight_122211 crossref_primary_10_3389_fphys_2023_1236651 crossref_primary_10_1007_s40674_023_00211_1 crossref_primary_10_1007_s11926_020_00920_9 crossref_primary_10_1136_thoraxjnl_2021_217315 crossref_primary_10_1172_jci_insight_158100 crossref_primary_10_1186_s12951_019_0478_y crossref_primary_10_1186_s13027_022_00434_2 crossref_primary_10_1038_s41418_023_01124_1 crossref_primary_10_1111_jcmm_17007 crossref_primary_10_1152_ajplung_00574_2020 crossref_primary_10_1016_S2213_2600_17_30349_1 crossref_primary_10_1016_j_chest_2023_11_020 crossref_primary_10_1007_s12272_023_01452_3 crossref_primary_10_1016_j_biocel_2021_106073 crossref_primary_10_1165_rcmb_2018_0083ED crossref_primary_10_3389_fmed_2018_00142 crossref_primary_10_1186_s12931_024_02828_9 crossref_primary_10_1139_cjm_2019_0481 crossref_primary_10_1242_jcs_258944 crossref_primary_10_3390_jcm10010077 crossref_primary_10_1164_rccm_202401_0065OC crossref_primary_10_1016_j_arr_2021_101405 crossref_primary_10_1183_16000617_0165_2020 crossref_primary_10_1016_j_ejphar_2019_172875 crossref_primary_10_14336_AD_2018_0601 crossref_primary_10_1016_j_bbadis_2023_166960 crossref_primary_10_1016_S1470_2045_19_30171_8 crossref_primary_10_1002_adhm_201801243 crossref_primary_10_1016_j_tox_2023_153638 crossref_primary_10_1172_JCI157338 crossref_primary_10_1002_ctm2_529 crossref_primary_10_1186_s41232_018_0077_6 crossref_primary_10_3390_ijms241512148 crossref_primary_10_1186_s12931_023_02658_1 crossref_primary_10_1152_ajplung_00119_2022 crossref_primary_10_1096_fj_202001607R crossref_primary_10_1152_ajplung_00320_2018 crossref_primary_10_1183_13993003_01346_2020 crossref_primary_10_3389_fimmu_2021_760138 crossref_primary_10_1016_j_ebiom_2023_104766 crossref_primary_10_1039_D0FO03001E crossref_primary_10_1089_ars_2019_7742 crossref_primary_10_1513_AnnalsATS_201808_585MG crossref_primary_10_1016_j_chest_2020_03_037 crossref_primary_10_3389_fphar_2021_643980 crossref_primary_10_1164_rccm_201809_1700RR crossref_primary_10_1183_16000617_0029_2019 crossref_primary_10_1183_13993003_01762_2018 crossref_primary_10_3389_fmed_2021_680997 crossref_primary_10_1038_s41467_018_07425_1 crossref_primary_10_1016_j_resinv_2018_06_001 crossref_primary_10_3389_fimmu_2024_1383503 crossref_primary_10_3389_fimmu_2020_588799 crossref_primary_10_1111_febs_16563 crossref_primary_10_3389_fmed_2018_00043 crossref_primary_10_1016_j_cell_2021_09_034 crossref_primary_10_1186_s12931_023_02644_7 crossref_primary_10_1155_2021_5188306 crossref_primary_10_1016_j_chest_2024_10_042 crossref_primary_10_3389_fimmu_2023_1273248 crossref_primary_10_1016_j_mucimm_2025_01_008 crossref_primary_10_1152_ajplung_00069_2019 crossref_primary_10_1152_ajplung_00324_2019 crossref_primary_10_1183_13993003_00075_2020 crossref_primary_10_1136_thoraxjnl_2019_214158 crossref_primary_10_1152_physrev_00058_2021 crossref_primary_10_3390_ijms26031378 crossref_primary_10_1371_journal_pone_0249047 crossref_primary_10_1007_s12272_019_01182_5 crossref_primary_10_3390_antiox10030447 crossref_primary_10_1183_13993003_00652_2020 crossref_primary_10_1136_thoraxjnl_2019_213064 crossref_primary_10_32902_2663_0338_2019_3_5_15 crossref_primary_10_3389_fmed_2017_00246 crossref_primary_10_1007_s00018_020_03693_7 crossref_primary_10_18632_aging_101793 crossref_primary_10_1111_jcmm_17600 crossref_primary_10_1002_art_41418 crossref_primary_10_1152_ajplung_00128_2022 crossref_primary_10_1016_j_trsl_2018_05_005 crossref_primary_10_1016_j_pupt_2018_01_006 crossref_primary_10_3390_bioengineering11080747 crossref_primary_10_3389_fimmu_2021_753789 crossref_primary_10_1164_rccm_201708_1593ED crossref_primary_10_3390_ijms241210196 |
Cites_doi | 10.1126/scitranslmed.3005964 10.1055/s-2007-991522 10.1164/rccm.201006-0894CI 10.4049/jimmunol.1600265 10.1164/rccm.201508-1546OC 10.3892/ijmm.2014.1650 10.1164/rccm.201101-0058OC 10.1172/JCI74942 10.1038/srep22579 10.1164/rccm.201306-1141WS 10.1002/art.39575 10.3389/fimmu.2016.00311 10.1038/cdd.2009.96 10.1016/j.bbagrm.2011.11.005 10.1196/annals.1348.005 10.1016/j.ajpath.2014.12.011 10.1513/pats.201203-023AW 10.1038/nature10992 10.1016/S2213-2600(13)70045-6 10.1002/path.4359 10.1152/ajplung.00014.2014 10.1038/nmat4358 10.1165/rcmb.2013-0094TR 10.1164/rccm.201504-0780OC 10.2741/3982 10.1371/journal.pone.0123046 10.1126/scitranslmed.3001510 10.1074/jbc.M111.276311 10.4049/jimmunol.1101375 10.1038/ni1457 10.1038/cddis.2014.277 10.1164/ajrccm.165.2.ats01 10.1091/mbc.12.9.2730 10.1038/nature08780 10.1038/ni.1980 10.1074/jbc.M115.712380 10.1097/CCM.0000000000001311 10.1083/jcb.200508058 10.1164/rccm.201204-0754OC 10.7326/0003-4819-156-10-201205150-00004 10.1016/j.ajpath.2014.02.003 10.1371/journal.pone.0083593 10.1046/j.1365-2567.2000.00979.x 10.1002/art.38702 10.1083/jcb.201004082 10.1016/j.coi.2012.12.006 10.1164/rccm.2009-040GL 10.1165/rcmb.2013-0366TR 10.1016/j.freeradbiomed.2015.02.034 10.1371/journal.pmed.1001577 10.1172/JCI83885 |
ContentType | Journal Article |
Copyright | Copyright American Thoracic Society Dec 15, 2017 Copyright © 2017 by the American Thoracic Society 2017 |
Copyright_xml | – notice: Copyright American Thoracic Society Dec 15, 2017 – notice: Copyright © 2017 by the American Thoracic Society 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA AN0 BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1164/rccm.201612-2480OC |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-4970 |
EndPage | 1581 |
ExternalDocumentID | PMC5754440 28783377 10_1164_rccm_201612_2480OC |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL127349 – fundername: NIH HHS grantid: S10 OD016405 – fundername: NHLBI NIH HHS grantid: T32 HL007778 – fundername: NHLBI NIH HHS grantid: R01 HL125850 – fundername: NHLBI NIH HHS grantid: K08 HL103770 – fundername: NHLBI NIH HHS grantid: R01 HL109233 – fundername: NHLBI NIH HHS grantid: U01 HL112702 – fundername: NCATS NIH HHS grantid: UL1 TR000005 – fundername: NIDDK NIH HHS grantid: R01 DK101984 – fundername: NHLBI NIH HHS grantid: UH3 HL123886 |
GroupedDBID | --- -~X .55 0R~ 23M 2WC 34G 39C 53G 5GY 5RE 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8FW 8R4 8R5 AAWTL AAYXX ABJNI ABOCM ABPMR ABUWG ACGFO ACGFS ADBBV AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 BAWUL BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CCPQU CITATION CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 H13 HMCUK HZ~ IH2 J5H KQ8 L7B M1P M5~ NAPCQ O9- OBH OFXIZ OGEVE OK1 OVD OVIDX P2P PCD PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RWL SJN TAE TEORI THO TR2 UKHRP W8F WH7 WOQ WOW X7M ~02 3V. CGR CUY CVF ECM EIF NPM RPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c452t-e3c3b1d6147bdc9f5a9f352f01c2251ac1fb6047b28b5467146ae60e31011b4e3 |
IEDL.DBID | 7X7 |
ISSN | 1073-449X 1535-4970 |
IngestDate | Thu Aug 21 18:15:52 EDT 2025 Fri Jul 11 16:55:18 EDT 2025 Fri Jul 25 07:05:00 EDT 2025 Wed Feb 19 02:35:04 EST 2025 Thu Apr 24 23:04:55 EDT 2025 Tue Jul 01 02:01:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | interstitial lung disease biomarkers mechanotransduction mitochondria |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-e3c3b1d6147bdc9f5a9f352f01c2251ac1fb6047b28b5467146ae60e31011b4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-6061-5264 0000-0003-2397-4652 |
PMID | 28783377 |
PQID | 2024430376 |
PQPubID | 40575 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754440 proquest_miscellaneous_1927307485 proquest_journals_2024430376 pubmed_primary_28783377 crossref_citationtrail_10_1164_rccm_201612_2480OC crossref_primary_10_1164_rccm_201612_2480OC |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 20171215 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | American journal of respiratory and critical care medicine |
PublicationTitleAlternate | Am J Respir Crit Care Med |
PublicationYear | 2017 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | bib36 bib37 bib34 Ellson CD (bib15) 2014; 51 bib35 bib32 bib33 bib30 bib31 bib29 bib27 bib28 Ryu C (bib23) 2017; 195 bib40 bib47 bib48 bib45 bib46 bib43 bib44 bib41 bib42 bib9 bib7 bib8 bib5 bib6 bib3 bib38 bib4 bib39 bib1 bib2 bib50 bib51 bib14 bib12 bib13 bib10 bib11 bib52 bib53 bib49 bib25 bib24 bib21 bib22 bib20 bib18 bib19 bib16 bib17 Sun H (bib26) 2016; 68 28813161 - Am J Respir Crit Care Med. 2017 Dec 15;196(12):1502-1504 |
References_xml | – ident: bib5 doi: 10.1126/scitranslmed.3005964 – ident: bib33 doi: 10.1055/s-2007-991522 – ident: bib2 doi: 10.1164/rccm.201006-0894CI – ident: bib20 doi: 10.4049/jimmunol.1600265 – ident: bib53 doi: 10.1164/rccm.201508-1546OC – ident: bib43 doi: 10.3892/ijmm.2014.1650 – ident: bib6 doi: 10.1164/rccm.201101-0058OC – ident: bib32 doi: 10.1172/JCI74942 – ident: bib46 doi: 10.1038/srep22579 – ident: bib1 doi: 10.1164/rccm.201306-1141WS – volume: 68 start-page: 1251 year: 2016 ident: bib26 publication-title: Arthritis Rheumatol doi: 10.1002/art.39575 – ident: bib48 doi: 10.3389/fimmu.2016.00311 – ident: bib29 doi: 10.1038/cdd.2009.96 – ident: bib28 doi: 10.1016/j.bbagrm.2011.11.005 – ident: bib45 doi: 10.1196/annals.1348.005 – ident: bib14 doi: 10.1016/j.ajpath.2014.12.011 – ident: bib10 doi: 10.1513/pats.201203-023AW – ident: bib37 doi: 10.1038/nature10992 – ident: bib12 doi: 10.1016/S2213-2600(13)70045-6 – ident: bib19 doi: 10.1002/path.4359 – ident: bib34 doi: 10.1152/ajplung.00014.2014 – ident: bib51 doi: 10.1038/nmat4358 – ident: bib7 doi: 10.1165/rcmb.2013-0094TR – ident: bib9 doi: 10.1164/rccm.201504-0780OC – ident: bib47 doi: 10.2741/3982 – ident: bib8 doi: 10.1371/journal.pone.0123046 – ident: bib13 doi: 10.1126/scitranslmed.3001510 – volume: 195 start-page: A6917 year: 2017 ident: bib23 publication-title: Am J Respir Crit Care Med – ident: bib38 doi: 10.1074/jbc.M111.276311 – ident: bib40 doi: 10.4049/jimmunol.1101375 – ident: bib44 doi: 10.1038/ni1457 – ident: bib27 doi: 10.1164/rccm.201504-0780OC – ident: bib16 doi: 10.1038/cddis.2014.277 – ident: bib25 doi: 10.1164/ajrccm.165.2.ats01 – ident: bib52 doi: 10.1091/mbc.12.9.2730 – ident: bib36 doi: 10.1038/nature08780 – ident: bib39 doi: 10.1038/ni.1980 – ident: bib49 doi: 10.1074/jbc.M115.712380 – ident: bib21 doi: 10.1097/CCM.0000000000001311 – ident: bib41 doi: 10.1083/jcb.200508058 – ident: bib50 doi: 10.1164/rccm.201204-0754OC – ident: bib4 doi: 10.7326/0003-4819-156-10-201205150-00004 – ident: bib11 doi: 10.1016/j.ajpath.2014.02.003 – ident: bib35 doi: 10.1371/journal.pone.0083593 – ident: bib30 doi: 10.1046/j.1365-2567.2000.00979.x – ident: bib3 doi: 10.1002/art.38702 – ident: bib31 doi: 10.1083/jcb.201004082 – ident: bib42 doi: 10.1016/j.coi.2012.12.006 – ident: bib24 doi: 10.1164/rccm.2009-040GL – volume: 51 start-page: 163 year: 2014 ident: bib15 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2013-0366TR – ident: bib18 doi: 10.1016/j.freeradbiomed.2015.02.034 – ident: bib22 doi: 10.1371/journal.pmed.1001577 – ident: bib17 doi: 10.1172/JCI83885 – reference: 28813161 - Am J Respir Crit Care Med. 2017 Dec 15;196(12):1502-1504 |
SSID | ssj0012810 |
Score | 2.5823812 |
Snippet | Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble... [...]given the pivotal contribution of mechanotransductive signaling to fibroblast activation (31), we thought biophysical influences might also be involved.... Rationale: Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin–expressing myofibroblasts arising from interactions with... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1571 |
SubjectTerms | Aged Biomarkers Clinical outcomes Deoxyribonucleic acid Disease-Free Survival DNA DNA, Mitochondrial - metabolism Female Fibroblasts Fibroblasts - metabolism Genotype & phenotype Growth factors Humans Idiopathic Pulmonary Fibrosis - metabolism Idiopathic Pulmonary Fibrosis - mortality Lung diseases Male Metabolism Mitochondrial DNA Mortality Neutrophils Original Pulmonary fibrosis Smooth muscle |
Title | Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28783377 https://www.proquest.com/docview/2024430376 https://www.proquest.com/docview/1927307485 https://pubmed.ncbi.nlm.nih.gov/PMC5754440 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66C-KLeLe6LhF8k2DaJE36JOvsDLvCjIO4MG-luZQdWNp1OgP67z2nzVRHYV8KIZeGnNt3cjmHkPe-dqGWOmdeac6kFJrZXHhWV5YbDwbMFfh2eL7IL67kl5VaxQ23Ll6r3OvEXlH71uEeOTrpMBIHefh0-4Nh1ig8XY0pNO6TYwxdhlytV6PDhYdEQzQCLWAaxWr_aCaXHzfO4Tt0wDsZy6ThXyeHhuk_tPnvpcm_rNDsMXkU4SM9G-j9hNwLzVPyYB4PyJ-RdvoTuuFuPF4vpXOQV9BvjUc2o-eLM3rZ0SHSNCBNan_RGbjLrQUIve1o1Xi63OBYUDhHbEjXDb3067bPW-zocncDy1BtYrdu3T0nV7Pp98kFizkVmJMq27IgnLCpB6OsrXdFraqiBgxW89SBZKeVS2ubc6jMjFWgREGRViHnAVBgmloZxAty1LRNeEVonSkbhKmKHBaUS2tcxovKFFYHKFmekHS_oKWLAccx78VN2TseuSyRCOVAhHIgQkI-jH1uh3Abd7Y-2dOpjKLXlX8YJSHvxmoQGlz7qgntrisB1oJm09KohLwcyDr-DlxII4TWCdEHBB8bYEDuw5pmfd0H5lYYTVDy13dP6w15mCE2AM5L1Qk52m524S0gm6097dkXvmaSnpLjz9PF8ttvoe36Tw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgGXqrxKSgEjwQlZOInzOlRVtdvVLu0uPbTS3kL8iFipSspmV9A_xW_sTF6wIPXWo-VHnJnx-BvbMwPwweTa5jIKuQkiwaX0I65C3_A8UyI2uIHphHyHp7NwfCm_zIP5FvzufGHoWWWnE2tFbUpNZ-RkpONIAtfD0fUPTlmj6Ha1S6HRiMWpvfmJJlt1OBkifz963ujkYjDmbVYBrmXgrbj1ta9cg9tSpIxO8iBLckQhuXA1yrabaTdXocBKL1YBqhFUJZkNhUUc5LpKWh_HfQAPpY9TIc_0Qf-khC6lmugHkY-_ncw7J51Qfl5qTX7viK887slYfB1sboT_odt_H2n-teuNdmGnhavsuJGvp7Bli2fwaNpeyD-H8uQXdqPTf3rOyqaoH1CfFobEmg1nx2xSsSayNSJbpm7YCM3zUiFkX1UsKww7X9JYWBgSFmWLgk3MoqzzJGt2vr5CsmfLtlu1qF7A5b1Q-yVsF2VhXwHLvUBZP86SEAkqpIq1J5IsTlRksaSEA25H0FS3Ac4pz8ZVWhs6oUyJCWnDhLRhggOf-j7XTXiPO1sfdHxK26VepX8E04H3fTUuUqJ9VthyXaUIo1GTRjIOHNhr2Np_Dk3WGGUpciDaYHjfgAKAb9YUi-91IPCAohdKsX_3tN7B4_HF9Cw9m8xOX8MTj3AJSqEbHMD2arm2bxBVrdTbWpQZfLvvtXMLqZ4zwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8CBYwEJxTViZ3YOSBU7XbVpeyyByrtLcSOI1aqkrLZFfSv8euYyQsWpN56tBw70bz8TWY8A_AmL6wrpIr9PFLcl1Io38Qi94vMcJ3jAWYTujs8m8en5_LjMlruwa_-LgylVfY2sTHUeWXpHzk56bgTR304Krq0iMV48uHyu08dpCjS2rfTaEXkzF39QPetfj8dI6_fhuHk5Mvo1O86DPhWRuHGd8IKE-R4RCmT26SIsqRARFLwwKKcB5kNChNznAy1idCkoFnJXMwdYqIgMNIJ3PcW3FZCadIxPRrSSyhA1VZCUAJJkCz7CzuxPFpbS3fgEWuFfig1_zzaPRT_Q7r_Jmz-dQJO7sHdDrqy41bW7sOeKx_AwawLzj-E6uQnLqNIAKW2shnaCrStZU4izsbzYzatWVvlGlEuM1dsgq56ZRC-b2qWlTlbrGkvHIwJl7JVyab5qmp6Jlu22F4g2bN1t6xe1Y_g_Eao_Rj2y6p0T4EVYWSc0FkSI0G5NNqGPMl0YpTDkeEeBD1BU9sVO6eeGxdp4_TEMiUmpC0T0pYJHrwb1ly2pT6uffqw51PaqX2d_hFSD14P06iwRPusdNW2ThFSo1VVUkcePGnZOrwO3VcthFIeqB2GDw9QMfDdmXL1rSkKHlElQ8mfXf9Zr-AAtSb9NJ2fPYc7IUEUFMIgOoT9zXrrXiDA2piXjSQz-HrTqvMb8S039g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Mitochondrial+DNA+Is+Generated+by+Fibroblasts+and+Predicts+Death+in+Idiopathic+Pulmonary+Fibrosis&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Ryu%2C+Changwan&rft.au=Sun%2C+Huanxing&rft.au=Gulati%2C+Mridu&rft.au=Herazo-Maya%2C+Jose+D&rft.date=2017-12-15&rft.issn=1535-4970&rft.eissn=1535-4970&rft.volume=196&rft.issue=12&rft.spage=1571&rft_id=info:doi/10.1164%2Frccm.201612-2480OC&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |