Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enric...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 196; no. 12; pp. 1571 - 1581
Main Authors Ryu, Changwan, Sun, Huanxing, Gulati, Mridu, Herazo-Maya, Jose D., Chen, Yonglin, Osafo-Addo, Awo, Brandsdorfer, Caitlin, Winkler, Julia, Blaul, Christina, Faunce, Jaden, Pan, Hongyi, Woolard, Tony, Tzouvelekis, Argyrios, Antin-Ozerkis, Danielle E., Puchalski, Jonathan T., Slade, Martin, Gonzalez, Anjelica L., Bogenhagen, Daniel F., Kirillov, Varvara, Feghali-Bostwick, Carol, Gibson, Kevin, Lindell, Kathleen, Herzog, Raimund I., Dela Cruz, Charles S., Mehal, Wajahat, Kaminski, Naftali, Herzog, Erica L., Trujillo, Glenda
Format Journal Article
LanguageEnglish
Published United States American Thoracic Society 15.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF. We aimed to define an association between mtDNA and fibroblast responses in IPF. We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects. Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.
AbstractList Rationale: Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin–expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF. Objectives: We aimed to define an association between mtDNA and fibroblast responses in IPF. Methods: We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects. Measurements and Main Results: Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. Conclusions: These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.
[...]given the pivotal contribution of mechanotransductive signaling to fibroblast activation (31), we thought biophysical influences might also be involved. [...]NHLFs were cultured for 7 days on tunable hydrogels constructed to approximate the mean stiffness of the normal (1 kPa) and fibrotic (20 kPa) human lung (26). [...]we analyzed the cell-free supernatant of archived BAL samples from subjects with newly diagnosed IPF (n = 4) and demographically matched control subjects lacking known interstitial lung disease (n = 10). Following covariate adjustments for age, sex, race, FVC percent predicted, Dlco percent predicted, and GAP index score, the 3,614.24 copies per microliter cutoff was an even stronger predictor of all-cause mortality (adjusted HR, 3.79; 95% CI, 1.53-9.43; P = 0.004) (Figure 6C and Table E2). Because of missing data, an effect of smoking could not be assessed. Because stiffness-induced a-SMA expression is known to be at least partially TGF-ß1 dependent (52), our work suggests that changes in mitochondrial function could occur via a similar mechanism through additional mechanotransductive signaling pathways, such as Rho-associated kinase 1, YAP/TAZ, and Hippo (11).
Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF.RATIONALEIdiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF.We aimed to define an association between mtDNA and fibroblast responses in IPF.OBJECTIVESWe aimed to define an association between mtDNA and fibroblast responses in IPF.We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects.METHODSWe evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects.Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival.MEASUREMENTS AND MAIN RESULTSExposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival.These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.CONCLUSIONSThese findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.
Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-β1 (TGF-β1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF. We aimed to define an association between mtDNA and fibroblast responses in IPF. We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-β1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects. Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-β1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.
Author Brandsdorfer, Caitlin
Herazo-Maya, Jose D.
Trujillo, Glenda
Feghali-Bostwick, Carol
Mehal, Wajahat
Herzog, Erica L.
Bogenhagen, Daniel F.
Gibson, Kevin
Sun, Huanxing
Antin-Ozerkis, Danielle E.
Kirillov, Varvara
Tzouvelekis, Argyrios
Gonzalez, Anjelica L.
Slade, Martin
Ryu, Changwan
Woolard, Tony
Puchalski, Jonathan T.
Osafo-Addo, Awo
Kaminski, Naftali
Herzog, Raimund I.
Dela Cruz, Charles S.
Lindell, Kathleen
Chen, Yonglin
Winkler, Julia
Blaul, Christina
Pan, Hongyi
Gulati, Mridu
Faunce, Jaden
Author_xml – sequence: 1
  givenname: Changwan
  surname: Ryu
  fullname: Ryu, Changwan
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 2
  givenname: Huanxing
  orcidid: 0000-0003-2397-4652
  surname: Sun
  fullname: Sun, Huanxing
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 3
  givenname: Mridu
  surname: Gulati
  fullname: Gulati, Mridu
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 4
  givenname: Jose D.
  surname: Herazo-Maya
  fullname: Herazo-Maya, Jose D.
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 5
  givenname: Yonglin
  surname: Chen
  fullname: Chen, Yonglin
  organization: Yale University School of Bioengineering, New Haven, Connecticut
– sequence: 6
  givenname: Awo
  surname: Osafo-Addo
  fullname: Osafo-Addo, Awo
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 7
  givenname: Caitlin
  surname: Brandsdorfer
  fullname: Brandsdorfer, Caitlin
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 8
  givenname: Julia
  surname: Winkler
  fullname: Winkler, Julia
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 9
  givenname: Christina
  surname: Blaul
  fullname: Blaul, Christina
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 10
  givenname: Jaden
  surname: Faunce
  fullname: Faunce, Jaden
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 11
  givenname: Hongyi
  surname: Pan
  fullname: Pan, Hongyi
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 12
  givenname: Tony
  surname: Woolard
  fullname: Woolard, Tony
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 13
  givenname: Argyrios
  surname: Tzouvelekis
  fullname: Tzouvelekis, Argyrios
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 14
  givenname: Danielle E.
  surname: Antin-Ozerkis
  fullname: Antin-Ozerkis, Danielle E.
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 15
  givenname: Jonathan T.
  surname: Puchalski
  fullname: Puchalski, Jonathan T.
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 16
  givenname: Martin
  surname: Slade
  fullname: Slade, Martin
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 17
  givenname: Anjelica L.
  surname: Gonzalez
  fullname: Gonzalez, Anjelica L.
  organization: Yale University School of Bioengineering, New Haven, Connecticut
– sequence: 18
  givenname: Daniel F.
  surname: Bogenhagen
  fullname: Bogenhagen, Daniel F.
  organization: Department of Pharmacology and
– sequence: 19
  givenname: Varvara
  surname: Kirillov
  fullname: Kirillov, Varvara
  organization: Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York
– sequence: 20
  givenname: Carol
  surname: Feghali-Bostwick
  fullname: Feghali-Bostwick, Carol
  organization: Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; and
– sequence: 21
  givenname: Kevin
  surname: Gibson
  fullname: Gibson, Kevin
  organization: Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
– sequence: 22
  givenname: Kathleen
  surname: Lindell
  fullname: Lindell, Kathleen
  organization: Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
– sequence: 23
  givenname: Raimund I.
  surname: Herzog
  fullname: Herzog, Raimund I.
  organization: Section of Endocrinology and Metabolism, and
– sequence: 24
  givenname: Charles S.
  surname: Dela Cruz
  fullname: Dela Cruz, Charles S.
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 25
  givenname: Wajahat
  surname: Mehal
  fullname: Mehal, Wajahat
  organization: Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
– sequence: 26
  givenname: Naftali
  surname: Kaminski
  fullname: Kaminski, Naftali
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 27
  givenname: Erica L.
  surname: Herzog
  fullname: Herzog, Erica L.
  organization: Section of Pulmonary, Critical Care, and Sleep Medicine
– sequence: 28
  givenname: Glenda
  orcidid: 0000-0002-6061-5264
  surname: Trujillo
  fullname: Trujillo, Glenda
  organization: Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28783377$$D View this record in MEDLINE/PubMed
BookMark eNp9UctqHDEQFMEhfiQ_kEMQ5OLLOGo9RjOXgFm_Fvw6xOCb0Gg0WZkZaSNpQvL30bJrk_iQU3fTVUV11yHa88FbhD4COQGo-ZdozHRCCdRAK8obcrd4gw5AMFHxVpK90hPJKs7bx310mNITIUAbIO_QPm1kw5iUByic_8pRGzuO86gjvnE5mFXwfXR6xGe3p3iZ8KX1Nupse9z9xheui6EbdcoJa9_j-2h7Z8pwZnVeYefxsndhXXpn8P08TsHruKMll96jt4Mek_2wq0fo4eL82-Kqur67XC5OryvDBc2VZYZ10NfAZdebdhC6HZigAwFDqQBtYOhqUpa06QSvJfBa25pYBgSg45Ydoa9b3fXcTbY31pczR7WObip2VNBO_bvxbqW-h59KSME5J0XgeCcQw4_ZpqwmlzZ_0t6GOSloqWRE8kYU6OdX0KcwR1_OU5RQzhlhsi6oT387erHynEUBNFuAKZ9K0Q7KuKyzCxuDblRA1CZ2tYldbWNX29gLlb6iPqv_h_QHtb6yIQ
CitedBy_id crossref_primary_10_1038_nm_4447
crossref_primary_10_1111_jcmm_13855
crossref_primary_10_1042_CS20191160
crossref_primary_10_1016_j_mito_2018_10_004
crossref_primary_10_1183_23120541_00194_2018
crossref_primary_10_2478_rir_2024_0019
crossref_primary_10_3390_ijms22136856
crossref_primary_10_1186_s12931_019_1196_6
crossref_primary_10_1093_qjmed_hcaa281
crossref_primary_10_1038_s41598_019_41933_4
crossref_primary_10_1007_s10787_024_01485_0
crossref_primary_10_3389_fmolb_2021_676569
crossref_primary_10_1007_s10565_019_09473_9
crossref_primary_10_1002_advs_202301635
crossref_primary_10_1016_j_matbio_2018_01_023
crossref_primary_10_1016_j_intimp_2023_110754
crossref_primary_10_1016_j_joca_2023_03_013
crossref_primary_10_1165_rcmb_2019_0051OC
crossref_primary_10_1152_ajplung_00062_2019
crossref_primary_10_1165_rcmb_2020_0387OC
crossref_primary_10_1164_rccm_202112_2746PP
crossref_primary_10_3390_ijms21165595
crossref_primary_10_1016_j_it_2019_06_001
crossref_primary_10_1016_j_matbio_2018_03_014
crossref_primary_10_1038_s41598_024_68433_4
crossref_primary_10_1126_scisignal_aay1027
crossref_primary_10_1155_2021_9932442
crossref_primary_10_1155_2019_4506303
crossref_primary_10_1016_j_jphs_2019_03_002
crossref_primary_10_3390_diagnostics13061166
crossref_primary_10_3390_cells11213483
crossref_primary_10_1183_13993003_01769_2020
crossref_primary_10_3390_arm91010005
crossref_primary_10_1097_BOR_0000000000000542
crossref_primary_10_1016_j_pharmthera_2023_108436
crossref_primary_10_3389_fmed_2018_00010
crossref_primary_10_1165_rcmb_2022_0203MA
crossref_primary_10_1172_jci_insight_122211
crossref_primary_10_3389_fphys_2023_1236651
crossref_primary_10_1007_s40674_023_00211_1
crossref_primary_10_1007_s11926_020_00920_9
crossref_primary_10_1136_thoraxjnl_2021_217315
crossref_primary_10_1172_jci_insight_158100
crossref_primary_10_1186_s12951_019_0478_y
crossref_primary_10_1186_s13027_022_00434_2
crossref_primary_10_1038_s41418_023_01124_1
crossref_primary_10_1111_jcmm_17007
crossref_primary_10_1152_ajplung_00574_2020
crossref_primary_10_1016_S2213_2600_17_30349_1
crossref_primary_10_1016_j_chest_2023_11_020
crossref_primary_10_1007_s12272_023_01452_3
crossref_primary_10_1016_j_biocel_2021_106073
crossref_primary_10_1165_rcmb_2018_0083ED
crossref_primary_10_3389_fmed_2018_00142
crossref_primary_10_1186_s12931_024_02828_9
crossref_primary_10_1139_cjm_2019_0481
crossref_primary_10_1242_jcs_258944
crossref_primary_10_3390_jcm10010077
crossref_primary_10_1164_rccm_202401_0065OC
crossref_primary_10_1016_j_arr_2021_101405
crossref_primary_10_1183_16000617_0165_2020
crossref_primary_10_1016_j_ejphar_2019_172875
crossref_primary_10_14336_AD_2018_0601
crossref_primary_10_1016_j_bbadis_2023_166960
crossref_primary_10_1016_S1470_2045_19_30171_8
crossref_primary_10_1002_adhm_201801243
crossref_primary_10_1016_j_tox_2023_153638
crossref_primary_10_1172_JCI157338
crossref_primary_10_1002_ctm2_529
crossref_primary_10_1186_s41232_018_0077_6
crossref_primary_10_3390_ijms241512148
crossref_primary_10_1186_s12931_023_02658_1
crossref_primary_10_1152_ajplung_00119_2022
crossref_primary_10_1096_fj_202001607R
crossref_primary_10_1152_ajplung_00320_2018
crossref_primary_10_1183_13993003_01346_2020
crossref_primary_10_3389_fimmu_2021_760138
crossref_primary_10_1016_j_ebiom_2023_104766
crossref_primary_10_1039_D0FO03001E
crossref_primary_10_1089_ars_2019_7742
crossref_primary_10_1513_AnnalsATS_201808_585MG
crossref_primary_10_1016_j_chest_2020_03_037
crossref_primary_10_3389_fphar_2021_643980
crossref_primary_10_1164_rccm_201809_1700RR
crossref_primary_10_1183_16000617_0029_2019
crossref_primary_10_1183_13993003_01762_2018
crossref_primary_10_3389_fmed_2021_680997
crossref_primary_10_1038_s41467_018_07425_1
crossref_primary_10_1016_j_resinv_2018_06_001
crossref_primary_10_3389_fimmu_2024_1383503
crossref_primary_10_3389_fimmu_2020_588799
crossref_primary_10_1111_febs_16563
crossref_primary_10_3389_fmed_2018_00043
crossref_primary_10_1016_j_cell_2021_09_034
crossref_primary_10_1186_s12931_023_02644_7
crossref_primary_10_1155_2021_5188306
crossref_primary_10_1016_j_chest_2024_10_042
crossref_primary_10_3389_fimmu_2023_1273248
crossref_primary_10_1016_j_mucimm_2025_01_008
crossref_primary_10_1152_ajplung_00069_2019
crossref_primary_10_1152_ajplung_00324_2019
crossref_primary_10_1183_13993003_00075_2020
crossref_primary_10_1136_thoraxjnl_2019_214158
crossref_primary_10_1152_physrev_00058_2021
crossref_primary_10_3390_ijms26031378
crossref_primary_10_1371_journal_pone_0249047
crossref_primary_10_1007_s12272_019_01182_5
crossref_primary_10_3390_antiox10030447
crossref_primary_10_1183_13993003_00652_2020
crossref_primary_10_1136_thoraxjnl_2019_213064
crossref_primary_10_32902_2663_0338_2019_3_5_15
crossref_primary_10_3389_fmed_2017_00246
crossref_primary_10_1007_s00018_020_03693_7
crossref_primary_10_18632_aging_101793
crossref_primary_10_1111_jcmm_17600
crossref_primary_10_1002_art_41418
crossref_primary_10_1152_ajplung_00128_2022
crossref_primary_10_1016_j_trsl_2018_05_005
crossref_primary_10_1016_j_pupt_2018_01_006
crossref_primary_10_3390_bioengineering11080747
crossref_primary_10_3389_fimmu_2021_753789
crossref_primary_10_1164_rccm_201708_1593ED
crossref_primary_10_3390_ijms241210196
Cites_doi 10.1126/scitranslmed.3005964
10.1055/s-2007-991522
10.1164/rccm.201006-0894CI
10.4049/jimmunol.1600265
10.1164/rccm.201508-1546OC
10.3892/ijmm.2014.1650
10.1164/rccm.201101-0058OC
10.1172/JCI74942
10.1038/srep22579
10.1164/rccm.201306-1141WS
10.1002/art.39575
10.3389/fimmu.2016.00311
10.1038/cdd.2009.96
10.1016/j.bbagrm.2011.11.005
10.1196/annals.1348.005
10.1016/j.ajpath.2014.12.011
10.1513/pats.201203-023AW
10.1038/nature10992
10.1016/S2213-2600(13)70045-6
10.1002/path.4359
10.1152/ajplung.00014.2014
10.1038/nmat4358
10.1165/rcmb.2013-0094TR
10.1164/rccm.201504-0780OC
10.2741/3982
10.1371/journal.pone.0123046
10.1126/scitranslmed.3001510
10.1074/jbc.M111.276311
10.4049/jimmunol.1101375
10.1038/ni1457
10.1038/cddis.2014.277
10.1164/ajrccm.165.2.ats01
10.1091/mbc.12.9.2730
10.1038/nature08780
10.1038/ni.1980
10.1074/jbc.M115.712380
10.1097/CCM.0000000000001311
10.1083/jcb.200508058
10.1164/rccm.201204-0754OC
10.7326/0003-4819-156-10-201205150-00004
10.1016/j.ajpath.2014.02.003
10.1371/journal.pone.0083593
10.1046/j.1365-2567.2000.00979.x
10.1002/art.38702
10.1083/jcb.201004082
10.1016/j.coi.2012.12.006
10.1164/rccm.2009-040GL
10.1165/rcmb.2013-0366TR
10.1016/j.freeradbiomed.2015.02.034
10.1371/journal.pmed.1001577
10.1172/JCI83885
ContentType Journal Article
Copyright Copyright American Thoracic Society Dec 15, 2017
Copyright © 2017 by the American Thoracic Society 2017
Copyright_xml – notice: Copyright American Thoracic Society Dec 15, 2017
– notice: Copyright © 2017 by the American Thoracic Society 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1164/rccm.201612-2480OC
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Academic Middle East (New)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 1581
ExternalDocumentID PMC5754440
28783377
10_1164_rccm_201612_2480OC
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL127349
– fundername: NIH HHS
  grantid: S10 OD016405
– fundername: NHLBI NIH HHS
  grantid: T32 HL007778
– fundername: NHLBI NIH HHS
  grantid: R01 HL125850
– fundername: NHLBI NIH HHS
  grantid: K08 HL103770
– fundername: NHLBI NIH HHS
  grantid: R01 HL109233
– fundername: NHLBI NIH HHS
  grantid: U01 HL112702
– fundername: NCATS NIH HHS
  grantid: UL1 TR000005
– fundername: NIDDK NIH HHS
  grantid: R01 DK101984
– fundername: NHLBI NIH HHS
  grantid: UH3 HL123886
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
W8F
WH7
WOQ
WOW
X7M
~02
3V.
CGR
CUY
CVF
ECM
EIF
NPM
RPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c452t-e3c3b1d6147bdc9f5a9f352f01c2251ac1fb6047b28b5467146ae60e31011b4e3
IEDL.DBID 7X7
ISSN 1073-449X
1535-4970
IngestDate Thu Aug 21 18:15:52 EDT 2025
Fri Jul 11 16:55:18 EDT 2025
Fri Jul 25 07:05:00 EDT 2025
Wed Feb 19 02:35:04 EST 2025
Thu Apr 24 23:04:55 EDT 2025
Tue Jul 01 02:01:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords interstitial lung disease
biomarkers
mechanotransduction
mitochondria
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-e3c3b1d6147bdc9f5a9f352f01c2251ac1fb6047b28b5467146ae60e31011b4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-6061-5264
0000-0003-2397-4652
PMID 28783377
PQID 2024430376
PQPubID 40575
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754440
proquest_miscellaneous_1927307485
proquest_journals_2024430376
pubmed_primary_28783377
crossref_citationtrail_10_1164_rccm_201612_2480OC
crossref_primary_10_1164_rccm_201612_2480OC
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
20171215
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2017
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References bib36
bib37
bib34
Ellson CD (bib15) 2014; 51
bib35
bib32
bib33
bib30
bib31
bib29
bib27
bib28
Ryu C (bib23) 2017; 195
bib40
bib47
bib48
bib45
bib46
bib43
bib44
bib41
bib42
bib9
bib7
bib8
bib5
bib6
bib3
bib38
bib4
bib39
bib1
bib2
bib50
bib51
bib14
bib12
bib13
bib10
bib11
bib52
bib53
bib49
bib25
bib24
bib21
bib22
bib20
bib18
bib19
bib16
bib17
Sun H (bib26) 2016; 68
28813161 - Am J Respir Crit Care Med. 2017 Dec 15;196(12):1502-1504
References_xml – ident: bib5
  doi: 10.1126/scitranslmed.3005964
– ident: bib33
  doi: 10.1055/s-2007-991522
– ident: bib2
  doi: 10.1164/rccm.201006-0894CI
– ident: bib20
  doi: 10.4049/jimmunol.1600265
– ident: bib53
  doi: 10.1164/rccm.201508-1546OC
– ident: bib43
  doi: 10.3892/ijmm.2014.1650
– ident: bib6
  doi: 10.1164/rccm.201101-0058OC
– ident: bib32
  doi: 10.1172/JCI74942
– ident: bib46
  doi: 10.1038/srep22579
– ident: bib1
  doi: 10.1164/rccm.201306-1141WS
– volume: 68
  start-page: 1251
  year: 2016
  ident: bib26
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.39575
– ident: bib48
  doi: 10.3389/fimmu.2016.00311
– ident: bib29
  doi: 10.1038/cdd.2009.96
– ident: bib28
  doi: 10.1016/j.bbagrm.2011.11.005
– ident: bib45
  doi: 10.1196/annals.1348.005
– ident: bib14
  doi: 10.1016/j.ajpath.2014.12.011
– ident: bib10
  doi: 10.1513/pats.201203-023AW
– ident: bib37
  doi: 10.1038/nature10992
– ident: bib12
  doi: 10.1016/S2213-2600(13)70045-6
– ident: bib19
  doi: 10.1002/path.4359
– ident: bib34
  doi: 10.1152/ajplung.00014.2014
– ident: bib51
  doi: 10.1038/nmat4358
– ident: bib7
  doi: 10.1165/rcmb.2013-0094TR
– ident: bib9
  doi: 10.1164/rccm.201504-0780OC
– ident: bib47
  doi: 10.2741/3982
– ident: bib8
  doi: 10.1371/journal.pone.0123046
– ident: bib13
  doi: 10.1126/scitranslmed.3001510
– volume: 195
  start-page: A6917
  year: 2017
  ident: bib23
  publication-title: Am J Respir Crit Care Med
– ident: bib38
  doi: 10.1074/jbc.M111.276311
– ident: bib40
  doi: 10.4049/jimmunol.1101375
– ident: bib44
  doi: 10.1038/ni1457
– ident: bib27
  doi: 10.1164/rccm.201504-0780OC
– ident: bib16
  doi: 10.1038/cddis.2014.277
– ident: bib25
  doi: 10.1164/ajrccm.165.2.ats01
– ident: bib52
  doi: 10.1091/mbc.12.9.2730
– ident: bib36
  doi: 10.1038/nature08780
– ident: bib39
  doi: 10.1038/ni.1980
– ident: bib49
  doi: 10.1074/jbc.M115.712380
– ident: bib21
  doi: 10.1097/CCM.0000000000001311
– ident: bib41
  doi: 10.1083/jcb.200508058
– ident: bib50
  doi: 10.1164/rccm.201204-0754OC
– ident: bib4
  doi: 10.7326/0003-4819-156-10-201205150-00004
– ident: bib11
  doi: 10.1016/j.ajpath.2014.02.003
– ident: bib35
  doi: 10.1371/journal.pone.0083593
– ident: bib30
  doi: 10.1046/j.1365-2567.2000.00979.x
– ident: bib3
  doi: 10.1002/art.38702
– ident: bib31
  doi: 10.1083/jcb.201004082
– ident: bib42
  doi: 10.1016/j.coi.2012.12.006
– ident: bib24
  doi: 10.1164/rccm.2009-040GL
– volume: 51
  start-page: 163
  year: 2014
  ident: bib15
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2013-0366TR
– ident: bib18
  doi: 10.1016/j.freeradbiomed.2015.02.034
– ident: bib22
  doi: 10.1371/journal.pmed.1001577
– ident: bib17
  doi: 10.1172/JCI83885
– reference: 28813161 - Am J Respir Crit Care Med. 2017 Dec 15;196(12):1502-1504
SSID ssj0012810
Score 2.5823812
Snippet Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble...
[...]given the pivotal contribution of mechanotransductive signaling to fibroblast activation (31), we thought biophysical influences might also be involved....
Rationale: Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin–expressing myofibroblasts arising from interactions with...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1571
SubjectTerms Aged
Biomarkers
Clinical outcomes
Deoxyribonucleic acid
Disease-Free Survival
DNA
DNA, Mitochondrial - metabolism
Female
Fibroblasts
Fibroblasts - metabolism
Genotype & phenotype
Growth factors
Humans
Idiopathic Pulmonary Fibrosis - metabolism
Idiopathic Pulmonary Fibrosis - mortality
Lung diseases
Male
Metabolism
Mitochondrial DNA
Mortality
Neutrophils
Original
Pulmonary fibrosis
Smooth muscle
Title Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis
URI https://www.ncbi.nlm.nih.gov/pubmed/28783377
https://www.proquest.com/docview/2024430376
https://www.proquest.com/docview/1927307485
https://pubmed.ncbi.nlm.nih.gov/PMC5754440
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66C-KLeLe6LhF8k2DaJE36JOvsDLvCjIO4MG-luZQdWNp1OgP67z2nzVRHYV8KIZeGnNt3cjmHkPe-dqGWOmdeac6kFJrZXHhWV5YbDwbMFfh2eL7IL67kl5VaxQ23Ll6r3OvEXlH71uEeOTrpMBIHefh0-4Nh1ig8XY0pNO6TYwxdhlytV6PDhYdEQzQCLWAaxWr_aCaXHzfO4Tt0wDsZy6ThXyeHhuk_tPnvpcm_rNDsMXkU4SM9G-j9hNwLzVPyYB4PyJ-RdvoTuuFuPF4vpXOQV9BvjUc2o-eLM3rZ0SHSNCBNan_RGbjLrQUIve1o1Xi63OBYUDhHbEjXDb3067bPW-zocncDy1BtYrdu3T0nV7Pp98kFizkVmJMq27IgnLCpB6OsrXdFraqiBgxW89SBZKeVS2ubc6jMjFWgREGRViHnAVBgmloZxAty1LRNeEVonSkbhKmKHBaUS2tcxovKFFYHKFmekHS_oKWLAccx78VN2TseuSyRCOVAhHIgQkI-jH1uh3Abd7Y-2dOpjKLXlX8YJSHvxmoQGlz7qgntrisB1oJm09KohLwcyDr-DlxII4TWCdEHBB8bYEDuw5pmfd0H5lYYTVDy13dP6w15mCE2AM5L1Qk52m524S0gm6097dkXvmaSnpLjz9PF8ttvoe36Tw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgGXqrxKSgEjwQlZOInzOlRVtdvVLu0uPbTS3kL8iFipSspmV9A_xW_sTF6wIPXWo-VHnJnx-BvbMwPwweTa5jIKuQkiwaX0I65C3_A8UyI2uIHphHyHp7NwfCm_zIP5FvzufGHoWWWnE2tFbUpNZ-RkpONIAtfD0fUPTlmj6Ha1S6HRiMWpvfmJJlt1OBkifz963ujkYjDmbVYBrmXgrbj1ta9cg9tSpIxO8iBLckQhuXA1yrabaTdXocBKL1YBqhFUJZkNhUUc5LpKWh_HfQAPpY9TIc_0Qf-khC6lmugHkY-_ncw7J51Qfl5qTX7viK887slYfB1sboT_odt_H2n-teuNdmGnhavsuJGvp7Bli2fwaNpeyD-H8uQXdqPTf3rOyqaoH1CfFobEmg1nx2xSsSayNSJbpm7YCM3zUiFkX1UsKww7X9JYWBgSFmWLgk3MoqzzJGt2vr5CsmfLtlu1qF7A5b1Q-yVsF2VhXwHLvUBZP86SEAkqpIq1J5IsTlRksaSEA25H0FS3Ac4pz8ZVWhs6oUyJCWnDhLRhggOf-j7XTXiPO1sfdHxK26VepX8E04H3fTUuUqJ9VthyXaUIo1GTRjIOHNhr2Np_Dk3WGGUpciDaYHjfgAKAb9YUi-91IPCAohdKsX_3tN7B4_HF9Cw9m8xOX8MTj3AJSqEbHMD2arm2bxBVrdTbWpQZfLvvtXMLqZ4zwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8CBYwEJxTViZ3YOSBU7XbVpeyyByrtLcSOI1aqkrLZFfSv8euYyQsWpN56tBw70bz8TWY8A_AmL6wrpIr9PFLcl1Io38Qi94vMcJ3jAWYTujs8m8en5_LjMlruwa_-LgylVfY2sTHUeWXpHzk56bgTR304Krq0iMV48uHyu08dpCjS2rfTaEXkzF39QPetfj8dI6_fhuHk5Mvo1O86DPhWRuHGd8IKE-R4RCmT26SIsqRARFLwwKKcB5kNChNznAy1idCkoFnJXMwdYqIgMNIJ3PcW3FZCadIxPRrSSyhA1VZCUAJJkCz7CzuxPFpbS3fgEWuFfig1_zzaPRT_Q7r_Jmz-dQJO7sHdDrqy41bW7sOeKx_AwawLzj-E6uQnLqNIAKW2shnaCrStZU4izsbzYzatWVvlGlEuM1dsgq56ZRC-b2qWlTlbrGkvHIwJl7JVyab5qmp6Jlu22F4g2bN1t6xe1Y_g_Eao_Rj2y6p0T4EVYWSc0FkSI0G5NNqGPMl0YpTDkeEeBD1BU9sVO6eeGxdp4_TEMiUmpC0T0pYJHrwb1ly2pT6uffqw51PaqX2d_hFSD14P06iwRPusdNW2ThFSo1VVUkcePGnZOrwO3VcthFIeqB2GDw9QMfDdmXL1rSkKHlElQ8mfXf9Zr-AAtSb9NJ2fPYc7IUEUFMIgOoT9zXrrXiDA2piXjSQz-HrTqvMb8S039g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Mitochondrial+DNA+Is+Generated+by+Fibroblasts+and+Predicts+Death+in+Idiopathic+Pulmonary+Fibrosis&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Ryu%2C+Changwan&rft.au=Sun%2C+Huanxing&rft.au=Gulati%2C+Mridu&rft.au=Herazo-Maya%2C+Jose+D&rft.date=2017-12-15&rft.issn=1535-4970&rft.eissn=1535-4970&rft.volume=196&rft.issue=12&rft.spage=1571&rft_id=info:doi/10.1164%2Frccm.201612-2480OC&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon