Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition
The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression, processing, transmission and power effectiveness with precision are the key terms. A novel technique is presented for arrhythmia identification...
Saved in:
Published in | Journal of King Saud University. Computer and information sciences Vol. 35; no. 1; pp. 26 - 37 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
Elsevier Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression, processing, transmission and power effectiveness with precision are the key terms. A novel technique is presented for arrhythmia identification by processing the electrocardiogram signals. The solution is based on an effective hybridization of the multirate processing, QRS selection, variational mode decomposition, features mining from Modes, Metaheuristic optimization based features selection, and machine learning algorithms. The MIT-BIH dataset is used for experimentation. Performance of the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms is investigated for features selection. A multi-subjects and multi-class dataset is used for testing the performance of classification by following the 10-fold cross validation strategy. The multirate processing with QRS selection and Metaheuristic optimization dependent features selection bring compression and aptitude for the processing and data transmission efficiencies. The system efficiently incorporates the multirate processing while securing an effective signal reconstruction. The respective compression gains and classification accuracies for the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms are 27-fold, 29.45-fold & 46.29-fold and 99.14%, 99.08% & 98.65%. |
---|---|
AbstractList | The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression, processing, transmission and power effectiveness with precision are the key terms. A novel technique is presented for arrhythmia identification by processing the electrocardiogram signals. The solution is based on an effective hybridization of the multirate processing, QRS selection, variational mode decomposition, features mining from Modes, Metaheuristic optimization based features selection, and machine learning algorithms. The MIT-BIH dataset is used for experimentation. Performance of the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms is investigated for features selection. A multi-subjects and multi-class dataset is used for testing the performance of classification by following the 10-fold cross validation strategy. The multirate processing with QRS selection and Metaheuristic optimization dependent features selection bring compression and aptitude for the processing and data transmission efficiencies. The system efficiently incorporates the multirate processing while securing an effective signal reconstruction. The respective compression gains and classification accuracies for the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms are 27-fold, 29.45-fold & 46.29-fold and 99.14%, 99.08% & 98.65%. |
Author | Srinivasan, Kathiravan Mian Qaisar, Saeed I. Khan, Sibghatulla Krichen, Moez |
Author_xml | – sequence: 1 givenname: Saeed surname: Mian Qaisar fullname: Mian Qaisar, Saeed email: sqaisar@effatuniversity.edu.sa organization: Department of Electrical and Computer Engineering, Effat University, 22332 Jeddah, Saudi Arabia – sequence: 2 givenname: Sibghatulla surname: I. Khan fullname: I. Khan, Sibghatulla organization: Department of Electronics and Communication Engineering, Sreenidhi Institute of Science and Technology, Hyderabad, 501301, India – sequence: 3 givenname: Kathiravan surname: Srinivasan fullname: Srinivasan, Kathiravan organization: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India – sequence: 4 givenname: Moez surname: Krichen fullname: Krichen, Moez email: moez.krichen@redcad.org organization: ReDCAD Laboratory, University of Sfax, Sfax, 3029, Tunisia |
BackLink | https://inria.hal.science/hal-04354213$$DView record in HAL |
BookMark | eNqFkU9v1DAQxSNUpJa236CHXDls8P_EHJBWFdBKK3GhZ8vY4-6EJF7Z3pXKp292g6rCAU7jeZrf03jeu-psihNU1Q0lDSVUfeib_mfeO2wYYawhsiFEv6kuKKd6RWXbnb16n1fXOfeEENoqKbi6qNI6pe1T2Y5oazfYnDGgswXjVO8zTo_1uB8KJlug3qXoIC8iFLuFfcJc0NVxV3DEXwtlJ18fbMJTZ4d6jB5qDy6Ou5jxKF5Vb4MdMlz_rpfVw5fP32_vVptvX-9v15uVE5KVlQ_We8UsAylpF4KUTiuvpRCtFIRJLsMPIpRwQQat204oRZzuPCOu7ZwK_LK6X3x9tL3ZJRxtejLRojkJMT0am-b9BzBBgwDwggcOggLXrdQEaKdb3ynpxOz1fvHa2uEPq7v1xhw1IrgUjPIDnWfFMutSzDlBeAEoMcfITG-WyMwxMkOkmSObsY9_YQ7L6YolWRz-B39aYJgPekBIJjuEyYHHBK7MP8Z_GzwD7N65Jw |
CitedBy_id | crossref_primary_10_1016_j_patter_2023_100795 crossref_primary_10_1109_ACCESS_2023_3333666 crossref_primary_10_2478_jsiot_2023_0010 crossref_primary_10_1007_s42235_024_00481_y crossref_primary_10_1016_j_imu_2024_101510 crossref_primary_10_1007_s10489_023_05147_6 crossref_primary_10_48175_IJARSCT_12471 crossref_primary_10_7759_s44388_024_02145_3 crossref_primary_10_1080_1448837X_2024_2326272 crossref_primary_10_1093_jcde_qwae046 |
Cites_doi | 10.1007/s10916-016-0644-9 10.1016/j.neucom.2015.06.083 10.1016/j.ins.2016.01.082 10.1016/j.eswa.2020.113697 10.3390/s21041511 10.1109/RBME.2018.2840336 10.1007/s11045-019-00651-w 10.1016/j.bbe.2021.12.009 10.1016/j.cmpb.2019.05.004 10.1161/CIR.0000000000000659 10.1016/j.compbiomed.2018.06.002 10.3390/e18080285 10.1016/j.compbiomed.2017.08.022 10.1016/j.measurement.2017.05.022 10.1109/JBHI.2019.2919732 10.1109/JIOT.2018.2844090 10.1007/s00034-019-01196-w 10.1049/htl.2019.0116 10.3390/app8091521 10.3390/s20092700 10.1016/j.eswa.2018.08.051 10.1109/TSP.2013.2288675 10.1109/ACCESS.2019.2928017 10.1109/51.932724 10.1109/JBHI.2018.2871510 10.1371/journal.pone.0157243 10.1109/TIM.2013.2279001 10.1016/j.knosys.2020.106560 10.1007/s00521-020-05560-9 10.1016/j.cmpb.2020.105607 10.1007/s12652-020-02259-6 10.1016/j.eswa.2021.115131 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Attribution |
Copyright_xml | – notice: 2022 The Author(s) – notice: Attribution |
DBID | 6I. AAFTH AAYXX CITATION 1XC DOA |
DOI | 10.1016/j.jksuci.2022.05.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1319-1578 |
EndPage | 37 |
ExternalDocumentID | oai_doaj_org_article_f9e4eed43f3e41e397590e1897d865c4 oai_HAL_hal_04354213v1 10_1016_j_jksuci_2022_05_009 S1319157822001586 |
GroupedDBID | --K 0R~ 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAJSJ AALRI AAQXK AASML AAXUO ABEEZ ABMAC ABWVN ACGFS ACULB ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BCNDV C6C EBS EJD FDB FEDTE FGOYB GROUPED_DOAJ HVGLF HZ~ IPNFZ IXB KQ8 M41 O-L O9- OK1 R2- RIG ROL SES SSZ XH2 AAYWO AAYXX AFGXO AGQPQ APXCP CITATION SOJ 1XC |
ID | FETCH-LOGICAL-c452t-dfadd62a2e5518ff55c96d954475402535fb0464cf5f99784660c98d20c78c6f3 |
IEDL.DBID | IXB |
ISSN | 1319-1578 |
IngestDate | Wed Aug 27 00:55:15 EDT 2025 Thu May 29 08:22:50 EDT 2025 Thu Apr 24 22:55:27 EDT 2025 Tue Jul 01 04:25:20 EDT 2025 Sun Apr 06 06:54:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Metaheuristic optimization Compression Multirate processing Arrhythmia Electrocardiogram Classification Machine learning Mobile healthcare Variational mode decomposition Modes features selection Computational complexity Oscillatory Modes Feature selection |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-dfadd62a2e5518ff55c96d954475402535fb0464cf5f99784660c98d20c78c6f3 |
ORCID | 0000-0002-4268-3482 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1319157822001586 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f9e4eed43f3e41e397590e1897d865c4 hal_primary_oai_HAL_hal_04354213v1 crossref_primary_10_1016_j_jksuci_2022_05_009 crossref_citationtrail_10_1016_j_jksuci_2022_05_009 elsevier_sciencedirect_doi_10_1016_j_jksuci_2022_05_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-01 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of King Saud University. Computer and information sciences |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier Springer |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Springer |
References | Dhiman, Oliva, Kaur, Singh, Vimal, Sharma, Cengiz (b0055) 2021; 211 Zhang, Telesford, Giusti, Lim, Bassett, Hayasaka (b0225) 2016; 11 Malleswari, Bindu, Prasad (b0130) 2021 Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (b0005) 2017; 89 Arora, Anand (b0020) 2019; 116 Benjamin, Muntner, Alonso, Bittencourt, Callaway, Carson, Chamberlain, Chang, Cheng, Das, Delling, Djousse, Elkind, Ferguson, Fornage, Jordan, Khan, Kissela, Knutson, Kwan, Lackland, Lewis, Lichtman, Longenecker, Loop, Lutsey, Martin, Matsushita, Moran, Mussolino, O’Flaherty, Pandey, Perak, Rosamond, Roth, Sampson, Satou, Schroeder, Shah, Spartano, Stokes, Tirschwell, Tsao, Turakhia, VanWagner, Wilkins, Wong, Virani (b0040) 2019; 139 Mazaheri, Khodadadi (b0135) 2020; 161 Lu, Jiang, Ma, Chen, Wu, Gong, Jiang, Fan (b0120) 2021 Salankar, Qaisar, Pławiak, Tadeusiewicz, Hammad (b0190) 2022; 42 Yang, Zhou, Lei, Zheng, Xiang (b0215) 2016; 40 Al Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b0010) 2016; 345 Basu, Khan (b0035) 2015 Yildirim, Baloglu, Tan, Ciaccio, Acharya (b0220) 2019; 176 Sahoo, Kanungo, Behera, Sabut (b0185) 2017; 108 Atal, Singh (b0025) 2020; 196 Mohanty, Biswal, Sabut (b0140) 2020; 31 Qaisar (b0165) 2020; 7 Majumder, Chen, Marinov, Chen, Mondal, Deen (b0125) 2018; 11 Qaisar, Mihoub, Krichen, Nisar (b0175) 2021; 21 Xu, Mak, Cheung (b0205) 2018; 23 Deepu, Zhang, Heng, Lian (b0050) 2016; 63 Subasi (b0195) 2019 Gupta, Mittal, Mittal, Chaturvedi (b0075) 2021 Ialongo (b0095) 2019; 29 Ghosh, Guha, Bera, Kumar, Sarkar (b0070) 2021; 33 Moody, Mark (b0145) 2001; 20 Pandagre (b0160) 2020; 6 Qaisar, Hussain (b0170) 2021 Dragomiretskiy, Zosso (b0060) 2014; 62 Nascimento, Marinho, Peixoto, do Vale Madeiro, de Albuquerque, Filho (b0150) 2020; 39 Jiang, Qi, Wang, Bent, Avram, Olgin, Dunn (b0100) 2020; 20 Ramesh, Satyanarayana, Sailaja (b0180) 2021; 12 Oh, Ng, San Tan, Acharya (b0155) 2018; 102 Huang, Chen, Yao, He (b0085) 2019; 7 Antoniou (b0015) 2016 Houssein, Ibrahim, Neggaz, Hassaballah, Wazery (b0080) 2021; 181 Brezočnik, Fister, Podgorelec (b0045) 2018; 8 Xu, Mak, Cheung (b0210) 2019; 24 Liu, Zhang, Zhao, Liu, Chen, Yao, Li (b0115) 2018; 6 Timer, W., Mac, E., Rom, B. (n.d.). ADSP-BF534/ADSP-BF536/ADSP-BF537. Banerjee, Mitra (b0030) 2013; 63 Emary, Zawbaa, Hassanien (b0065) 2016; 172 Huang, Chen, Zeng, Cao, Li (b0090) 2020 Kumar (b0105) 2021; 12 Li, Zhou (b0110) 2016; 18 Houssein (10.1016/j.jksuci.2022.05.009_b0080) 2021; 181 Yildirim (10.1016/j.jksuci.2022.05.009_b0220) 2019; 176 Al Rahhal (10.1016/j.jksuci.2022.05.009_b0010) 2016; 345 Atal (10.1016/j.jksuci.2022.05.009_b0025) 2020; 196 Benjamin (10.1016/j.jksuci.2022.05.009_b0040) 2019; 139 Gupta (10.1016/j.jksuci.2022.05.009_b0075) 2021 Sahoo (10.1016/j.jksuci.2022.05.009_b0185) 2017; 108 Yang (10.1016/j.jksuci.2022.05.009_b0215) 2016; 40 Liu (10.1016/j.jksuci.2022.05.009_b0115) 2018; 6 Oh (10.1016/j.jksuci.2022.05.009_b0155) 2018; 102 Dragomiretskiy (10.1016/j.jksuci.2022.05.009_b0060) 2014; 62 Qaisar (10.1016/j.jksuci.2022.05.009_b0170) 2021 Salankar (10.1016/j.jksuci.2022.05.009_b0190) 2022; 42 Xu (10.1016/j.jksuci.2022.05.009_b0210) 2019; 24 Banerjee (10.1016/j.jksuci.2022.05.009_b0030) 2013; 63 Dhiman (10.1016/j.jksuci.2022.05.009_b0055) 2021; 211 Nascimento (10.1016/j.jksuci.2022.05.009_b0150) 2020; 39 Deepu (10.1016/j.jksuci.2022.05.009_b0050) 2016; 63 Moody (10.1016/j.jksuci.2022.05.009_b0145) 2001; 20 Huang (10.1016/j.jksuci.2022.05.009_b0085) 2019; 7 Qaisar (10.1016/j.jksuci.2022.05.009_b0175) 2021; 21 Li (10.1016/j.jksuci.2022.05.009_b0110) 2016; 18 Emary (10.1016/j.jksuci.2022.05.009_b0065) 2016; 172 Ghosh (10.1016/j.jksuci.2022.05.009_b0070) 2021; 33 Mazaheri (10.1016/j.jksuci.2022.05.009_b0135) 2020; 161 Huang (10.1016/j.jksuci.2022.05.009_b0090) 2020 Mohanty (10.1016/j.jksuci.2022.05.009_b0140) 2020; 31 Pandagre (10.1016/j.jksuci.2022.05.009_b0160) 2020; 6 Ialongo (10.1016/j.jksuci.2022.05.009_b0095) 2019; 29 Kumar (10.1016/j.jksuci.2022.05.009_b0105) 2021; 12 Qaisar (10.1016/j.jksuci.2022.05.009_b0165) 2020; 7 Jiang (10.1016/j.jksuci.2022.05.009_b0100) 2020; 20 Malleswari (10.1016/j.jksuci.2022.05.009_b0130) 2021 Ramesh (10.1016/j.jksuci.2022.05.009_b0180) 2021; 12 Basu (10.1016/j.jksuci.2022.05.009_b0035) 2015 Acharya (10.1016/j.jksuci.2022.05.009_b0005) 2017; 89 Antoniou (10.1016/j.jksuci.2022.05.009_b0015) 2016 Xu (10.1016/j.jksuci.2022.05.009_b0205) 2018; 23 Zhang (10.1016/j.jksuci.2022.05.009_b0225) 2016; 11 Majumder (10.1016/j.jksuci.2022.05.009_b0125) 2018; 11 Brezočnik (10.1016/j.jksuci.2022.05.009_b0045) 2018; 8 Subasi (10.1016/j.jksuci.2022.05.009_b0195) 2019 10.1016/j.jksuci.2022.05.009_b0200 Arora (10.1016/j.jksuci.2022.05.009_b0020) 2019; 116 Lu (10.1016/j.jksuci.2022.05.009_b0120) 2021 |
References_xml | – volume: 116 start-page: 147 year: 2019 end-page: 160 ident: b0020 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst. Appl. – year: 2016 ident: b0015 article-title: Digital signal processing – volume: 161 year: 2020 ident: b0135 article-title: Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm publication-title: Expert Syst. Appl. – volume: 42 start-page: 173 year: 2022 end-page: 186 ident: b0190 article-title: EEG based alcoholism detection by oscillatory modes decomposition second order difference plots and machine learning publication-title: Biocybern. Biomed. Eng. – volume: 7 start-page: 92871 year: 2019 end-page: 92880 ident: b0085 article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network publication-title: IEEE Access – volume: 40 start-page: 286 year: 2016 ident: b0215 article-title: An IoT-cloud based wearable ECG monitoring system for smart healthcare publication-title: J. Med. Syst. – volume: 176 start-page: 121 year: 2019 end-page: 133 ident: b0220 article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks publication-title: Comput. Methods Programs Biomed. – volume: 196 year: 2020 ident: b0025 article-title: Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network publication-title: Comput. Methods Programs Biomed. – volume: 24 start-page: 717 year: 2019 end-page: 727 ident: b0210 article-title: I-vector-based patient adaptation of deep neural networks for automatic heartbeat classification publication-title: IEEE J. Biomed. Health. Inf. – volume: 21 start-page: 1511 year: 2021 ident: b0175 article-title: Multirate processing with selective subbands and machine learning for efficient arrhythmia classification publication-title: Sensors – year: 2019 ident: b0195 article-title: Practical guide for biomedical signals analysis using machine learning techniques: A MATLAB based approach – volume: 63 start-page: 326 year: 2013 end-page: 333 ident: b0030 article-title: Application of cross wavelet transform for ECG pattern analysis and classification publication-title: IEEE Trans. Instrum. Meas. – volume: 12 start-page: 2297 year: 2021 end-page: 2308 ident: b0105 article-title: Hybrid Metaheuristic Optimization based Feature Subset Selection with Classification Model for Intrusion Detection in Big Data Environment publication-title: Turk. J. Comput. Math. Educ. – volume: 11 start-page: 306 year: 2018 end-page: 321 ident: b0125 article-title: Noncontact wearable wireless ECG systems for long-term monitoring publication-title: IEEE Rev. Biomed. Eng. – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b0065 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 23 start-page: 1574 year: 2018 end-page: 1584 ident: b0205 article-title: Towards end-to-end ECG classification with raw signal extraction and deep neural networks publication-title: IEEE J. Biomed. Health. Inf. – volume: 6 start-page: 1363 year: 2018 end-page: 1374 ident: b0115 article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system publication-title: IEEE Internet Things J. – start-page: 1 year: 2021 end-page: 11 ident: b0120 article-title: An arrhythmia classification algorithm using C-LSTM in physiological parameters monitoring system under internet of health things environment publication-title: J. Ambient Intell. Hum. Comput. – volume: 18 start-page: 285 year: 2016 ident: b0110 article-title: ECG classification using wavelet packet entropy and random forests publication-title: Entropy – volume: 33 start-page: 11027 year: 2021 end-page: 11041 ident: b0070 article-title: S-shaped versus V-shaped transfer functions for binary manta ray foraging optimization in feature selection problem publication-title: Neural Comput. Appl. – volume: 31 start-page: 49 year: 2020 end-page: 71 ident: b0140 article-title: Machine learning approach to recognize ventricular arrhythmias using VMD based features publication-title: Multidimension. Syst. Signal Process. – volume: 39 start-page: 631 year: 2020 end-page: 650 ident: b0150 article-title: Heart arrhythmia classification based on statistical moments and structural co-occurrence publication-title: Circuits Syst. Signal Process. – start-page: 1 year: 2021 end-page: 15 ident: b0170 article-title: An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection publication-title: J. Ambient Intell. Hum. Comput. – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: b0005 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 63 start-page: 1151 year: 2016 end-page: 1155 ident: b0050 article-title: A 3-lead ECG-on-chip with QRS detection and lossless compression for wireless sensors publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 11 year: 2016 ident: b0225 article-title: Choosing wavelet methods, filters, and lengths for functional brain network construction publication-title: PLoS ONE – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0060 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – start-page: 190 year: 2015 end-page: 193 ident: b0035 article-title: On the aspect of feature extraction and classification of the ECG signal publication-title: 2015 Communication, Control and Intelligent Systems (CCIS) – volume: 139 year: 2019 ident: b0040 article-title: Heart disease and stroke Statistics-2019 update a report from the American Heart Association publication-title: Circulation – start-page: 1 year: 2020 end-page: 18 ident: b0090 article-title: Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks publication-title: J. Ambient Intell. Hum. Comput. – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b0145 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 29 year: 2019 ident: b0095 article-title: Confidence interval for quantiles and percentiles publication-title: Biochemia Med. – volume: 12 start-page: 6465 year: 2021 end-page: 6478 ident: b0180 article-title: Composite feature vector based cardiac arrhythmia classification using convolutional neural networks publication-title: J. Ambient Intell. Hum. Comput. – volume: 181 year: 2021 ident: b0080 article-title: An efficient ECG arrhythmia classification method based on Manta ray foraging optimization publication-title: Expert Syst. Appl. – volume: 211 year: 2021 ident: b0055 article-title: BEPO: A novel binary emperor penguin optimizer for automatic feature selection publication-title: Knowl.-Based Syst. – reference: Timer, W., Mac, E., Rom, B. (n.d.). ADSP-BF534/ADSP-BF536/ADSP-BF537. – volume: 345 start-page: 340 year: 2016 end-page: 354 ident: b0010 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inf. Sci. – volume: 8 start-page: 1521 year: 2018 ident: b0045 article-title: Swarm intelligence algorithms for feature selection: A review publication-title: Appl. Sci. – volume: 6 year: 2020 ident: b0160 article-title: Detection of Arrhythmia Disease in Ecg Signal Using Optimal Features publication-title: Int. J. Inf. Technol. – start-page: 1 year: 2021 end-page: 9 ident: b0130 article-title: A hybrid EMD-DWT based algorithm for detection of QRS complex in electrocardiogram signal publication-title: J. Ambient Intell. Hum. Comput. – volume: 7 start-page: 114 year: 2020 end-page: 118 ident: b0165 article-title: Baseline wander and power-line interference elimination of ECG signals using efficient signal-piloted filtering publication-title: Healthcare Technol. Lett. – volume: 20 start-page: 2700 year: 2020 ident: b0100 article-title: EventDTW: An Improved Dynamic Time Warping Algorithm for Aligning Biomedical Signals of Nonuniform Sampling Frequencies publication-title: Sensors – start-page: 1 year: 2021 end-page: 12 ident: b0075 article-title: Detection of R-peaks using fractional Fourier transform and principal component analysis publication-title: J. Ambient Intell. Hum. Comput. – volume: 108 start-page: 55 year: 2017 end-page: 66 ident: b0185 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement – volume: 102 start-page: 278 year: 2018 end-page: 287 ident: b0155 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – start-page: 1 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0130 article-title: A hybrid EMD-DWT based algorithm for detection of QRS complex in electrocardiogram signal publication-title: J. Ambient Intell. Hum. Comput. – start-page: 190 year: 2015 ident: 10.1016/j.jksuci.2022.05.009_b0035 article-title: On the aspect of feature extraction and classification of the ECG signal – volume: 40 start-page: 286 issue: 12 year: 2016 ident: 10.1016/j.jksuci.2022.05.009_b0215 article-title: An IoT-cloud based wearable ECG monitoring system for smart healthcare publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0644-9 – volume: 6 issue: 5 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0160 article-title: Detection of Arrhythmia Disease in Ecg Signal Using Optimal Features publication-title: Int. J. Inf. Technol. – start-page: 1 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0170 article-title: An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection publication-title: J. Ambient Intell. Hum. Comput. – volume: 29 issue: 1 year: 2019 ident: 10.1016/j.jksuci.2022.05.009_b0095 article-title: Confidence interval for quantiles and percentiles publication-title: Biochemia Med. – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.jksuci.2022.05.009_b0065 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 345 start-page: 340 year: 2016 ident: 10.1016/j.jksuci.2022.05.009_b0010 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.082 – volume: 161 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0135 article-title: Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113697 – volume: 21 start-page: 1511 issue: 4 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0175 article-title: Multirate processing with selective subbands and machine learning for efficient arrhythmia classification publication-title: Sensors doi: 10.3390/s21041511 – volume: 11 start-page: 306 year: 2018 ident: 10.1016/j.jksuci.2022.05.009_b0125 article-title: Noncontact wearable wireless ECG systems for long-term monitoring publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2018.2840336 – volume: 31 start-page: 49 issue: 1 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0140 article-title: Machine learning approach to recognize ventricular arrhythmias using VMD based features publication-title: Multidimension. Syst. Signal Process. doi: 10.1007/s11045-019-00651-w – volume: 42 start-page: 173 issue: 1 year: 2022 ident: 10.1016/j.jksuci.2022.05.009_b0190 article-title: EEG based alcoholism detection by oscillatory modes decomposition second order difference plots and machine learning publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2021.12.009 – volume: 176 start-page: 121 year: 2019 ident: 10.1016/j.jksuci.2022.05.009_b0220 article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.05.004 – volume: 139 issue: 10 year: 2019 ident: 10.1016/j.jksuci.2022.05.009_b0040 article-title: Heart disease and stroke Statistics-2019 update a report from the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000659 – volume: 102 start-page: 278 year: 2018 ident: 10.1016/j.jksuci.2022.05.009_b0155 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.002 – volume: 18 start-page: 285 issue: 8 year: 2016 ident: 10.1016/j.jksuci.2022.05.009_b0110 article-title: ECG classification using wavelet packet entropy and random forests publication-title: Entropy doi: 10.3390/e18080285 – volume: 89 start-page: 389 year: 2017 ident: 10.1016/j.jksuci.2022.05.009_b0005 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – volume: 108 start-page: 55 year: 2017 ident: 10.1016/j.jksuci.2022.05.009_b0185 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement doi: 10.1016/j.measurement.2017.05.022 – volume: 63 start-page: 1151 issue: 12 year: 2016 ident: 10.1016/j.jksuci.2022.05.009_b0050 article-title: A 3-lead ECG-on-chip with QRS detection and lossless compression for wireless sensors publication-title: IEEE Trans. Circuits Syst. II Express Briefs – start-page: 1 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0120 article-title: An arrhythmia classification algorithm using C-LSTM in physiological parameters monitoring system under internet of health things environment publication-title: J. Ambient Intell. Hum. Comput. – volume: 24 start-page: 717 issue: 3 year: 2019 ident: 10.1016/j.jksuci.2022.05.009_b0210 article-title: I-vector-based patient adaptation of deep neural networks for automatic heartbeat classification publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2019.2919732 – volume: 12 start-page: 2297 issue: 12 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0105 article-title: Hybrid Metaheuristic Optimization based Feature Subset Selection with Classification Model for Intrusion Detection in Big Data Environment publication-title: Turk. J. Comput. Math. Educ. – year: 2019 ident: 10.1016/j.jksuci.2022.05.009_b0195 – ident: 10.1016/j.jksuci.2022.05.009_b0200 – volume: 6 start-page: 1363 issue: 2 year: 2018 ident: 10.1016/j.jksuci.2022.05.009_b0115 article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2844090 – volume: 39 start-page: 631 issue: 2 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0150 article-title: Heart arrhythmia classification based on statistical moments and structural co-occurrence publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-019-01196-w – volume: 7 start-page: 114 issue: 4 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0165 article-title: Baseline wander and power-line interference elimination of ECG signals using efficient signal-piloted filtering publication-title: Healthcare Technol. Lett. doi: 10.1049/htl.2019.0116 – volume: 8 start-page: 1521 issue: 9 year: 2018 ident: 10.1016/j.jksuci.2022.05.009_b0045 article-title: Swarm intelligence algorithms for feature selection: A review publication-title: Appl. Sci. doi: 10.3390/app8091521 – start-page: 1 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0090 article-title: Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks publication-title: J. Ambient Intell. Hum. Comput. – volume: 20 start-page: 2700 issue: 9 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0100 article-title: EventDTW: An Improved Dynamic Time Warping Algorithm for Aligning Biomedical Signals of Nonuniform Sampling Frequencies publication-title: Sensors doi: 10.3390/s20092700 – volume: 116 start-page: 147 year: 2019 ident: 10.1016/j.jksuci.2022.05.009_b0020 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.051 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.jksuci.2022.05.009_b0060 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 7 start-page: 92871 year: 2019 ident: 10.1016/j.jksuci.2022.05.009_b0085 article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928017 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.jksuci.2022.05.009_b0145 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – volume: 23 start-page: 1574 issue: 4 year: 2018 ident: 10.1016/j.jksuci.2022.05.009_b0205 article-title: Towards end-to-end ECG classification with raw signal extraction and deep neural networks publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2018.2871510 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.jksuci.2022.05.009_b0225 article-title: Choosing wavelet methods, filters, and lengths for functional brain network construction publication-title: PLoS ONE doi: 10.1371/journal.pone.0157243 – volume: 63 start-page: 326 issue: 2 year: 2013 ident: 10.1016/j.jksuci.2022.05.009_b0030 article-title: Application of cross wavelet transform for ECG pattern analysis and classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2279001 – volume: 211 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0055 article-title: BEPO: A novel binary emperor penguin optimizer for automatic feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106560 – volume: 33 start-page: 11027 issue: 17 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0070 article-title: S-shaped versus V-shaped transfer functions for binary manta ray foraging optimization in feature selection problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05560-9 – volume: 196 year: 2020 ident: 10.1016/j.jksuci.2022.05.009_b0025 article-title: Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105607 – year: 2016 ident: 10.1016/j.jksuci.2022.05.009_b0015 – start-page: 1 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0075 article-title: Detection of R-peaks using fractional Fourier transform and principal component analysis publication-title: J. Ambient Intell. Hum. Comput. – volume: 12 start-page: 6465 issue: 6 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0180 article-title: Composite feature vector based cardiac arrhythmia classification using convolutional neural networks publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02259-6 – volume: 181 year: 2021 ident: 10.1016/j.jksuci.2022.05.009_b0080 article-title: An efficient ECG arrhythmia classification method based on Manta ray foraging optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115131 |
SSID | ssj0001765436 |
Score | 2.2859552 |
Snippet | The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression,... |
SourceID | doaj hal crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 26 |
SubjectTerms | Arrhythmia Classification Compression Computational complexity Computer Science Electrocardiogram Engineering Sciences Machine learning Metaheuristic optimization Mobile healthcare Modes features selection Multirate processing Variational mode decomposition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYoJy59QdWUtrIqrit2_Vr7mFagCKGeisTNcvxoQktA6QaJf8-M7UXhlEuvlndteWY9j_3mG0JOBHd9i5SzXDjdiLkXjfaBNRx88WCSjrqgfH-q2ZW4uJbXW62-EBNW6IHLwZ0mEwXc44InHkUXwXxK08ZOmz5oJX1mAgWbtxVM5exKjzWTubQIq3Q60Muxbi6Du27-_Nv4JYSHjGXiTsQjbtmlTN__wjy9WoyJ1mx4zt-S19VjpNOy03dkL67ekzdjNwZaP85Dsp6u14vHYXG7dNSjT4wgoHzuFMHtv2nGDiIzBL0v1QF5MA5uETeFr5newQVyWyszqVsF-gChdE0XUmyaQ0NEEHpFeh2Rq_OzXz9mTe2o0Hgh2dCEBNeZYo5FJGJLSUpvQCQSWf8gkJRcpjn-6_RJJgPxpVCq9UYH1vpee5X4B7K_ulvFj4Q6L5Vh2sUoHGbndAxesQgOjAlz1bMJ4eN5Wl_pxrHrxV874spubJGCRSnYVlqQwoQ0z0_dF7qNHfO_o6ie5yJZdh4AFbJVhewuFZqQfhS0rX5H8SfgVcsdy38DvXix-mx6aXGsBT9UsI4_dJ_-xx6PyQE2ui_Jn89kf1hv4hdwh4b516z5TwMaCDc priority: 102 providerName: Directory of Open Access Journals |
Title | Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition |
URI | https://dx.doi.org/10.1016/j.jksuci.2022.05.009 https://inria.hal.science/hal-04354213 https://doaj.org/article/f9e4eed43f3e41e397590e1897d865c4 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67rLL2r2wbF0gDLsasfWydHSLFUEw7NIVyE1Q9GjcrUngOQX67yfKcrecCuwq6GGYNEXSHz8i9IVRU5dAOUuZkQVbWVZI60hBoy_uVJBeDijf72J-zRZLvjxCF2MtDMAqs-0fbHqy1nlklt_mbNe2s6sqak8FbOwAC-ISaLcpk6mIb3n-N89SQ_VkKjKCeh1YMFbQJZjX7c_fe9vGQJGQROEJyMR_bqhE5H9wUT1bjynXdAVdnqKX2XfEzfB4r9CR37xGJ2NfBpw_0zeoa7pu_dCv71qDLXjHAAdKEsAAc7_BCUUIHBF4N9QJpEHfm7XfD8zNeBtNyV2u0cRm4_B9DKpz4hBD-xzsPMDRM-brLbq-_PrjYl7k3gqFZZz0hQvRsAliiAdKthA4tyoKhwP_XwwpOeVhBX89beBBxUiTCVFaJR0pbS2tCPQdOt5sN_49wsZyoYg03jMDeTrpnRXER1dGuZWoyQTR8X1qm4nHof_FLz0izG71IAUNUtAl11EKE1Q8rtoNxBtPzD8HUT3OBdrsNLDtbnTWGx2UZ9EpYDRQzyoffTGuSl9JVTspuGUTVI-C1gdaGLdqnzj-c9SLg9PnzTcNY2X0SBmp6H314b-3_4heQJ_7Ifdzho77bu8_RW-oX03R86ZZXC2mKZswTcr_B66tDAg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWS9NBeuhd1V6LoVbDETeTRCRI4rZtLE8A3guYSK2lsQ5UD9O_Loag0PgXolSAlQTMaPo7evEHoK6OmLkFyljIjC7awrJDWkYJGLO5UkF72LN8zMb1g3-Z8voeOhloYoFXm2N_H9BSt88g4v83xpmnGP6voPRWosQMtiEuxjx5FNFBD_4bT-eG_REsN5ZOpyggKdmDFUEKXeF5X17-3toknRUKShidQE-9tUUnJf2en2l8OOde0B508R08zeMST_vleoD2_eomeDY0ZcP5OX6F20rbLP93ypjHYAjwGPlAyAQae-yVONEIQicCbvlAgDfrOLP22l27G6xhLbnKRJjYrh2_jqTpnDjH0z8HOAx89k75eo4uT4_OjaZGbKxSWcdIVLsTIJoghHjTZQuDcqmgdDgKA8UzJKQ8L-O1pAw8qHjWZEKVV0pHS1tKKQN-gg9V65d8ibCwXikjjPTOQqJPeWUF8xDLKLURNRogO71PbrDwODTB-6YFidqV7K2iwgi65jlYYoeJu1aZX3nhg_iGY6m4u6GangXV7qbPj6KA8i6iA0UA9q3wEY1yVvpKqdlJwy0aoHgytd9wwXqp54PZfol_s3H06mWkYKyMkZaSit9W7_778Z_R4ev5jpmenZ9_foyfQ9L5PBH1AB1279R8jNOoWn5Lr_wVt1Aym |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arrhythmia+classification+using+multirate+processing+metaheuristic+optimization+and+variational+mode+decomposition&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Mian+Qaisar%2C+Saeed&rft.au=I.+Khan%2C+Sibghatulla&rft.au=Srinivasan%2C+Kathiravan&rft.au=Krichen%2C+Moez&rft.date=2023-01-01&rft.issn=1319-1578&rft.volume=35&rft.issue=1&rft.spage=26&rft.epage=37&rft_id=info:doi/10.1016%2Fj.jksuci.2022.05.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jksuci_2022_05_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon |