Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition

The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression, processing, transmission and power effectiveness with precision are the key terms. A novel technique is presented for arrhythmia identification...

Full description

Saved in:
Bibliographic Details
Published inJournal of King Saud University. Computer and information sciences Vol. 35; no. 1; pp. 26 - 37
Main Authors Mian Qaisar, Saeed, I. Khan, Sibghatulla, Srinivasan, Kathiravan, Krichen, Moez
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Elsevier
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression, processing, transmission and power effectiveness with precision are the key terms. A novel technique is presented for arrhythmia identification by processing the electrocardiogram signals. The solution is based on an effective hybridization of the multirate processing, QRS selection, variational mode decomposition, features mining from Modes, Metaheuristic optimization based features selection, and machine learning algorithms. The MIT-BIH dataset is used for experimentation. Performance of the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms is investigated for features selection. A multi-subjects and multi-class dataset is used for testing the performance of classification by following the 10-fold cross validation strategy. The multirate processing with QRS selection and Metaheuristic optimization dependent features selection bring compression and aptitude for the processing and data transmission efficiencies. The system efficiently incorporates the multirate processing while securing an effective signal reconstruction. The respective compression gains and classification accuracies for the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms are 27-fold, 29.45-fold & 46.29-fold and 99.14%, 99.08% & 98.65%.
AbstractList The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression, processing, transmission and power effectiveness with precision are the key terms. A novel technique is presented for arrhythmia identification by processing the electrocardiogram signals. The solution is based on an effective hybridization of the multirate processing, QRS selection, variational mode decomposition, features mining from Modes, Metaheuristic optimization based features selection, and machine learning algorithms. The MIT-BIH dataset is used for experimentation. Performance of the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms is investigated for features selection. A multi-subjects and multi-class dataset is used for testing the performance of classification by following the 10-fold cross validation strategy. The multirate processing with QRS selection and Metaheuristic optimization dependent features selection bring compression and aptitude for the processing and data transmission efficiencies. The system efficiently incorporates the multirate processing while securing an effective signal reconstruction. The respective compression gains and classification accuracies for the Butterfly Optimization Algorithm, Manta Ray Foraging Optimization, and Emperor Penguin Optimization algorithms are 27-fold, 29.45-fold & 46.29-fold and 99.14%, 99.08% & 98.65%.
Author Srinivasan, Kathiravan
Mian Qaisar, Saeed
I. Khan, Sibghatulla
Krichen, Moez
Author_xml – sequence: 1
  givenname: Saeed
  surname: Mian Qaisar
  fullname: Mian Qaisar, Saeed
  email: sqaisar@effatuniversity.edu.sa
  organization: Department of Electrical and Computer Engineering, Effat University, 22332 Jeddah, Saudi Arabia
– sequence: 2
  givenname: Sibghatulla
  surname: I. Khan
  fullname: I. Khan, Sibghatulla
  organization: Department of Electronics and Communication Engineering, Sreenidhi Institute of Science and Technology, Hyderabad, 501301, India
– sequence: 3
  givenname: Kathiravan
  surname: Srinivasan
  fullname: Srinivasan, Kathiravan
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
– sequence: 4
  givenname: Moez
  surname: Krichen
  fullname: Krichen, Moez
  email: moez.krichen@redcad.org
  organization: ReDCAD Laboratory, University of Sfax, Sfax, 3029, Tunisia
BackLink https://inria.hal.science/hal-04354213$$DView record in HAL
BookMark eNqFkU9v1DAQxSNUpJa236CHXDls8P_EHJBWFdBKK3GhZ8vY4-6EJF7Z3pXKp292g6rCAU7jeZrf03jeu-psihNU1Q0lDSVUfeib_mfeO2wYYawhsiFEv6kuKKd6RWXbnb16n1fXOfeEENoqKbi6qNI6pe1T2Y5oazfYnDGgswXjVO8zTo_1uB8KJlug3qXoIC8iFLuFfcJc0NVxV3DEXwtlJ18fbMJTZ4d6jB5qDy6Ou5jxKF5Vb4MdMlz_rpfVw5fP32_vVptvX-9v15uVE5KVlQ_We8UsAylpF4KUTiuvpRCtFIRJLsMPIpRwQQat204oRZzuPCOu7ZwK_LK6X3x9tL3ZJRxtejLRojkJMT0am-b9BzBBgwDwggcOggLXrdQEaKdb3ynpxOz1fvHa2uEPq7v1xhw1IrgUjPIDnWfFMutSzDlBeAEoMcfITG-WyMwxMkOkmSObsY9_YQ7L6YolWRz-B39aYJgPekBIJjuEyYHHBK7MP8Z_GzwD7N65Jw
CitedBy_id crossref_primary_10_1016_j_patter_2023_100795
crossref_primary_10_1109_ACCESS_2023_3333666
crossref_primary_10_2478_jsiot_2023_0010
crossref_primary_10_1007_s42235_024_00481_y
crossref_primary_10_1016_j_imu_2024_101510
crossref_primary_10_1007_s10489_023_05147_6
crossref_primary_10_48175_IJARSCT_12471
crossref_primary_10_7759_s44388_024_02145_3
crossref_primary_10_1080_1448837X_2024_2326272
crossref_primary_10_1093_jcde_qwae046
Cites_doi 10.1007/s10916-016-0644-9
10.1016/j.neucom.2015.06.083
10.1016/j.ins.2016.01.082
10.1016/j.eswa.2020.113697
10.3390/s21041511
10.1109/RBME.2018.2840336
10.1007/s11045-019-00651-w
10.1016/j.bbe.2021.12.009
10.1016/j.cmpb.2019.05.004
10.1161/CIR.0000000000000659
10.1016/j.compbiomed.2018.06.002
10.3390/e18080285
10.1016/j.compbiomed.2017.08.022
10.1016/j.measurement.2017.05.022
10.1109/JBHI.2019.2919732
10.1109/JIOT.2018.2844090
10.1007/s00034-019-01196-w
10.1049/htl.2019.0116
10.3390/app8091521
10.3390/s20092700
10.1016/j.eswa.2018.08.051
10.1109/TSP.2013.2288675
10.1109/ACCESS.2019.2928017
10.1109/51.932724
10.1109/JBHI.2018.2871510
10.1371/journal.pone.0157243
10.1109/TIM.2013.2279001
10.1016/j.knosys.2020.106560
10.1007/s00521-020-05560-9
10.1016/j.cmpb.2020.105607
10.1007/s12652-020-02259-6
10.1016/j.eswa.2021.115131
ContentType Journal Article
Copyright 2022 The Author(s)
Attribution
Copyright_xml – notice: 2022 The Author(s)
– notice: Attribution
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
DOA
DOI 10.1016/j.jksuci.2022.05.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1319-1578
EndPage 37
ExternalDocumentID oai_doaj_org_article_f9e4eed43f3e41e397590e1897d865c4
oai_HAL_hal_04354213v1
10_1016_j_jksuci_2022_05_009
S1319157822001586
GroupedDBID --K
0R~
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAJSJ
AALRI
AAQXK
AASML
AAXUO
ABEEZ
ABMAC
ABWVN
ACGFS
ACULB
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BCNDV
C6C
EBS
EJD
FDB
FEDTE
FGOYB
GROUPED_DOAJ
HVGLF
HZ~
IPNFZ
IXB
KQ8
M41
O-L
O9-
OK1
R2-
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
AFGXO
AGQPQ
APXCP
CITATION
SOJ
1XC
ID FETCH-LOGICAL-c452t-dfadd62a2e5518ff55c96d954475402535fb0464cf5f99784660c98d20c78c6f3
IEDL.DBID IXB
ISSN 1319-1578
IngestDate Wed Aug 27 00:55:15 EDT 2025
Thu May 29 08:22:50 EDT 2025
Thu Apr 24 22:55:27 EDT 2025
Tue Jul 01 04:25:20 EDT 2025
Sun Apr 06 06:54:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metaheuristic optimization
Compression
Multirate processing
Arrhythmia
Electrocardiogram
Classification
Machine learning
Mobile healthcare
Variational mode decomposition
Modes features selection
Computational complexity
Oscillatory Modes
Feature selection
Language English
License This is an open access article under the CC BY-NC-ND license.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-dfadd62a2e5518ff55c96d954475402535fb0464cf5f99784660c98d20c78c6f3
ORCID 0000-0002-4268-3482
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1319157822001586
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_f9e4eed43f3e41e397590e1897d865c4
hal_primary_oai_HAL_hal_04354213v1
crossref_primary_10_1016_j_jksuci_2022_05_009
crossref_citationtrail_10_1016_j_jksuci_2022_05_009
elsevier_sciencedirect_doi_10_1016_j_jksuci_2022_05_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-01
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Journal of King Saud University. Computer and information sciences
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Springer
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Springer
References Dhiman, Oliva, Kaur, Singh, Vimal, Sharma, Cengiz (b0055) 2021; 211
Zhang, Telesford, Giusti, Lim, Bassett, Hayasaka (b0225) 2016; 11
Malleswari, Bindu, Prasad (b0130) 2021
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (b0005) 2017; 89
Arora, Anand (b0020) 2019; 116
Benjamin, Muntner, Alonso, Bittencourt, Callaway, Carson, Chamberlain, Chang, Cheng, Das, Delling, Djousse, Elkind, Ferguson, Fornage, Jordan, Khan, Kissela, Knutson, Kwan, Lackland, Lewis, Lichtman, Longenecker, Loop, Lutsey, Martin, Matsushita, Moran, Mussolino, O’Flaherty, Pandey, Perak, Rosamond, Roth, Sampson, Satou, Schroeder, Shah, Spartano, Stokes, Tirschwell, Tsao, Turakhia, VanWagner, Wilkins, Wong, Virani (b0040) 2019; 139
Mazaheri, Khodadadi (b0135) 2020; 161
Lu, Jiang, Ma, Chen, Wu, Gong, Jiang, Fan (b0120) 2021
Salankar, Qaisar, Pławiak, Tadeusiewicz, Hammad (b0190) 2022; 42
Yang, Zhou, Lei, Zheng, Xiang (b0215) 2016; 40
Al Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b0010) 2016; 345
Basu, Khan (b0035) 2015
Yildirim, Baloglu, Tan, Ciaccio, Acharya (b0220) 2019; 176
Sahoo, Kanungo, Behera, Sabut (b0185) 2017; 108
Atal, Singh (b0025) 2020; 196
Mohanty, Biswal, Sabut (b0140) 2020; 31
Qaisar (b0165) 2020; 7
Majumder, Chen, Marinov, Chen, Mondal, Deen (b0125) 2018; 11
Qaisar, Mihoub, Krichen, Nisar (b0175) 2021; 21
Xu, Mak, Cheung (b0205) 2018; 23
Deepu, Zhang, Heng, Lian (b0050) 2016; 63
Subasi (b0195) 2019
Gupta, Mittal, Mittal, Chaturvedi (b0075) 2021
Ialongo (b0095) 2019; 29
Ghosh, Guha, Bera, Kumar, Sarkar (b0070) 2021; 33
Moody, Mark (b0145) 2001; 20
Pandagre (b0160) 2020; 6
Qaisar, Hussain (b0170) 2021
Dragomiretskiy, Zosso (b0060) 2014; 62
Nascimento, Marinho, Peixoto, do Vale Madeiro, de Albuquerque, Filho (b0150) 2020; 39
Jiang, Qi, Wang, Bent, Avram, Olgin, Dunn (b0100) 2020; 20
Ramesh, Satyanarayana, Sailaja (b0180) 2021; 12
Oh, Ng, San Tan, Acharya (b0155) 2018; 102
Huang, Chen, Yao, He (b0085) 2019; 7
Antoniou (b0015) 2016
Houssein, Ibrahim, Neggaz, Hassaballah, Wazery (b0080) 2021; 181
Brezočnik, Fister, Podgorelec (b0045) 2018; 8
Xu, Mak, Cheung (b0210) 2019; 24
Liu, Zhang, Zhao, Liu, Chen, Yao, Li (b0115) 2018; 6
Timer, W., Mac, E., Rom, B. (n.d.). ADSP-BF534/ADSP-BF536/ADSP-BF537.
Banerjee, Mitra (b0030) 2013; 63
Emary, Zawbaa, Hassanien (b0065) 2016; 172
Huang, Chen, Zeng, Cao, Li (b0090) 2020
Kumar (b0105) 2021; 12
Li, Zhou (b0110) 2016; 18
Houssein (10.1016/j.jksuci.2022.05.009_b0080) 2021; 181
Yildirim (10.1016/j.jksuci.2022.05.009_b0220) 2019; 176
Al Rahhal (10.1016/j.jksuci.2022.05.009_b0010) 2016; 345
Atal (10.1016/j.jksuci.2022.05.009_b0025) 2020; 196
Benjamin (10.1016/j.jksuci.2022.05.009_b0040) 2019; 139
Gupta (10.1016/j.jksuci.2022.05.009_b0075) 2021
Sahoo (10.1016/j.jksuci.2022.05.009_b0185) 2017; 108
Yang (10.1016/j.jksuci.2022.05.009_b0215) 2016; 40
Liu (10.1016/j.jksuci.2022.05.009_b0115) 2018; 6
Oh (10.1016/j.jksuci.2022.05.009_b0155) 2018; 102
Dragomiretskiy (10.1016/j.jksuci.2022.05.009_b0060) 2014; 62
Qaisar (10.1016/j.jksuci.2022.05.009_b0170) 2021
Salankar (10.1016/j.jksuci.2022.05.009_b0190) 2022; 42
Xu (10.1016/j.jksuci.2022.05.009_b0210) 2019; 24
Banerjee (10.1016/j.jksuci.2022.05.009_b0030) 2013; 63
Dhiman (10.1016/j.jksuci.2022.05.009_b0055) 2021; 211
Nascimento (10.1016/j.jksuci.2022.05.009_b0150) 2020; 39
Deepu (10.1016/j.jksuci.2022.05.009_b0050) 2016; 63
Moody (10.1016/j.jksuci.2022.05.009_b0145) 2001; 20
Huang (10.1016/j.jksuci.2022.05.009_b0085) 2019; 7
Qaisar (10.1016/j.jksuci.2022.05.009_b0175) 2021; 21
Li (10.1016/j.jksuci.2022.05.009_b0110) 2016; 18
Emary (10.1016/j.jksuci.2022.05.009_b0065) 2016; 172
Ghosh (10.1016/j.jksuci.2022.05.009_b0070) 2021; 33
Mazaheri (10.1016/j.jksuci.2022.05.009_b0135) 2020; 161
Huang (10.1016/j.jksuci.2022.05.009_b0090) 2020
Mohanty (10.1016/j.jksuci.2022.05.009_b0140) 2020; 31
Pandagre (10.1016/j.jksuci.2022.05.009_b0160) 2020; 6
Ialongo (10.1016/j.jksuci.2022.05.009_b0095) 2019; 29
Kumar (10.1016/j.jksuci.2022.05.009_b0105) 2021; 12
Qaisar (10.1016/j.jksuci.2022.05.009_b0165) 2020; 7
Jiang (10.1016/j.jksuci.2022.05.009_b0100) 2020; 20
Malleswari (10.1016/j.jksuci.2022.05.009_b0130) 2021
Ramesh (10.1016/j.jksuci.2022.05.009_b0180) 2021; 12
Basu (10.1016/j.jksuci.2022.05.009_b0035) 2015
Acharya (10.1016/j.jksuci.2022.05.009_b0005) 2017; 89
Antoniou (10.1016/j.jksuci.2022.05.009_b0015) 2016
Xu (10.1016/j.jksuci.2022.05.009_b0205) 2018; 23
Zhang (10.1016/j.jksuci.2022.05.009_b0225) 2016; 11
Majumder (10.1016/j.jksuci.2022.05.009_b0125) 2018; 11
Brezočnik (10.1016/j.jksuci.2022.05.009_b0045) 2018; 8
Subasi (10.1016/j.jksuci.2022.05.009_b0195) 2019
10.1016/j.jksuci.2022.05.009_b0200
Arora (10.1016/j.jksuci.2022.05.009_b0020) 2019; 116
Lu (10.1016/j.jksuci.2022.05.009_b0120) 2021
References_xml – volume: 116
  start-page: 147
  year: 2019
  end-page: 160
  ident: b0020
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst. Appl.
– year: 2016
  ident: b0015
  article-title: Digital signal processing
– volume: 161
  year: 2020
  ident: b0135
  article-title: Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 173
  year: 2022
  end-page: 186
  ident: b0190
  article-title: EEG based alcoholism detection by oscillatory modes decomposition second order difference plots and machine learning
  publication-title: Biocybern. Biomed. Eng.
– volume: 7
  start-page: 92871
  year: 2019
  end-page: 92880
  ident: b0085
  article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network
  publication-title: IEEE Access
– volume: 40
  start-page: 286
  year: 2016
  ident: b0215
  article-title: An IoT-cloud based wearable ECG monitoring system for smart healthcare
  publication-title: J. Med. Syst.
– volume: 176
  start-page: 121
  year: 2019
  end-page: 133
  ident: b0220
  article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks
  publication-title: Comput. Methods Programs Biomed.
– volume: 196
  year: 2020
  ident: b0025
  article-title: Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network
  publication-title: Comput. Methods Programs Biomed.
– volume: 24
  start-page: 717
  year: 2019
  end-page: 727
  ident: b0210
  article-title: I-vector-based patient adaptation of deep neural networks for automatic heartbeat classification
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 21
  start-page: 1511
  year: 2021
  ident: b0175
  article-title: Multirate processing with selective subbands and machine learning for efficient arrhythmia classification
  publication-title: Sensors
– year: 2019
  ident: b0195
  article-title: Practical guide for biomedical signals analysis using machine learning techniques: A MATLAB based approach
– volume: 63
  start-page: 326
  year: 2013
  end-page: 333
  ident: b0030
  article-title: Application of cross wavelet transform for ECG pattern analysis and classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 12
  start-page: 2297
  year: 2021
  end-page: 2308
  ident: b0105
  article-title: Hybrid Metaheuristic Optimization based Feature Subset Selection with Classification Model for Intrusion Detection in Big Data Environment
  publication-title: Turk. J. Comput. Math. Educ.
– volume: 11
  start-page: 306
  year: 2018
  end-page: 321
  ident: b0125
  article-title: Noncontact wearable wireless ECG systems for long-term monitoring
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b0065
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 23
  start-page: 1574
  year: 2018
  end-page: 1584
  ident: b0205
  article-title: Towards end-to-end ECG classification with raw signal extraction and deep neural networks
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 6
  start-page: 1363
  year: 2018
  end-page: 1374
  ident: b0115
  article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2021
  end-page: 11
  ident: b0120
  article-title: An arrhythmia classification algorithm using C-LSTM in physiological parameters monitoring system under internet of health things environment
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 18
  start-page: 285
  year: 2016
  ident: b0110
  article-title: ECG classification using wavelet packet entropy and random forests
  publication-title: Entropy
– volume: 33
  start-page: 11027
  year: 2021
  end-page: 11041
  ident: b0070
  article-title: S-shaped versus V-shaped transfer functions for binary manta ray foraging optimization in feature selection problem
  publication-title: Neural Comput. Appl.
– volume: 31
  start-page: 49
  year: 2020
  end-page: 71
  ident: b0140
  article-title: Machine learning approach to recognize ventricular arrhythmias using VMD based features
  publication-title: Multidimension. Syst. Signal Process.
– volume: 39
  start-page: 631
  year: 2020
  end-page: 650
  ident: b0150
  article-title: Heart arrhythmia classification based on statistical moments and structural co-occurrence
  publication-title: Circuits Syst. Signal Process.
– start-page: 1
  year: 2021
  end-page: 15
  ident: b0170
  article-title: An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: b0005
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 63
  start-page: 1151
  year: 2016
  end-page: 1155
  ident: b0050
  article-title: A 3-lead ECG-on-chip with QRS detection and lossless compression for wireless sensors
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 11
  year: 2016
  ident: b0225
  article-title: Choosing wavelet methods, filters, and lengths for functional brain network construction
  publication-title: PLoS ONE
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0060
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– start-page: 190
  year: 2015
  end-page: 193
  ident: b0035
  article-title: On the aspect of feature extraction and classification of the ECG signal
  publication-title: 2015 Communication, Control and Intelligent Systems (CCIS)
– volume: 139
  year: 2019
  ident: b0040
  article-title: Heart disease and stroke Statistics-2019 update a report from the American Heart Association
  publication-title: Circulation
– start-page: 1
  year: 2020
  end-page: 18
  ident: b0090
  article-title: Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b0145
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 29
  year: 2019
  ident: b0095
  article-title: Confidence interval for quantiles and percentiles
  publication-title: Biochemia Med.
– volume: 12
  start-page: 6465
  year: 2021
  end-page: 6478
  ident: b0180
  article-title: Composite feature vector based cardiac arrhythmia classification using convolutional neural networks
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 181
  year: 2021
  ident: b0080
  article-title: An efficient ECG arrhythmia classification method based on Manta ray foraging optimization
  publication-title: Expert Syst. Appl.
– volume: 211
  year: 2021
  ident: b0055
  article-title: BEPO: A novel binary emperor penguin optimizer for automatic feature selection
  publication-title: Knowl.-Based Syst.
– reference: Timer, W., Mac, E., Rom, B. (n.d.). ADSP-BF534/ADSP-BF536/ADSP-BF537.
– volume: 345
  start-page: 340
  year: 2016
  end-page: 354
  ident: b0010
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inf. Sci.
– volume: 8
  start-page: 1521
  year: 2018
  ident: b0045
  article-title: Swarm intelligence algorithms for feature selection: A review
  publication-title: Appl. Sci.
– volume: 6
  year: 2020
  ident: b0160
  article-title: Detection of Arrhythmia Disease in Ecg Signal Using Optimal Features
  publication-title: Int. J. Inf. Technol.
– start-page: 1
  year: 2021
  end-page: 9
  ident: b0130
  article-title: A hybrid EMD-DWT based algorithm for detection of QRS complex in electrocardiogram signal
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 7
  start-page: 114
  year: 2020
  end-page: 118
  ident: b0165
  article-title: Baseline wander and power-line interference elimination of ECG signals using efficient signal-piloted filtering
  publication-title: Healthcare Technol. Lett.
– volume: 20
  start-page: 2700
  year: 2020
  ident: b0100
  article-title: EventDTW: An Improved Dynamic Time Warping Algorithm for Aligning Biomedical Signals of Nonuniform Sampling Frequencies
  publication-title: Sensors
– start-page: 1
  year: 2021
  end-page: 12
  ident: b0075
  article-title: Detection of R-peaks using fractional Fourier transform and principal component analysis
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 108
  start-page: 55
  year: 2017
  end-page: 66
  ident: b0185
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: b0155
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0130
  article-title: A hybrid EMD-DWT based algorithm for detection of QRS complex in electrocardiogram signal
  publication-title: J. Ambient Intell. Hum. Comput.
– start-page: 190
  year: 2015
  ident: 10.1016/j.jksuci.2022.05.009_b0035
  article-title: On the aspect of feature extraction and classification of the ECG signal
– volume: 40
  start-page: 286
  issue: 12
  year: 2016
  ident: 10.1016/j.jksuci.2022.05.009_b0215
  article-title: An IoT-cloud based wearable ECG monitoring system for smart healthcare
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0644-9
– volume: 6
  issue: 5
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0160
  article-title: Detection of Arrhythmia Disease in Ecg Signal Using Optimal Features
  publication-title: Int. J. Inf. Technol.
– start-page: 1
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0170
  article-title: An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.jksuci.2022.05.009_b0095
  article-title: Confidence interval for quantiles and percentiles
  publication-title: Biochemia Med.
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.jksuci.2022.05.009_b0065
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 345
  start-page: 340
  year: 2016
  ident: 10.1016/j.jksuci.2022.05.009_b0010
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.082
– volume: 161
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0135
  article-title: Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113697
– volume: 21
  start-page: 1511
  issue: 4
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0175
  article-title: Multirate processing with selective subbands and machine learning for efficient arrhythmia classification
  publication-title: Sensors
  doi: 10.3390/s21041511
– volume: 11
  start-page: 306
  year: 2018
  ident: 10.1016/j.jksuci.2022.05.009_b0125
  article-title: Noncontact wearable wireless ECG systems for long-term monitoring
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2840336
– volume: 31
  start-page: 49
  issue: 1
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0140
  article-title: Machine learning approach to recognize ventricular arrhythmias using VMD based features
  publication-title: Multidimension. Syst. Signal Process.
  doi: 10.1007/s11045-019-00651-w
– volume: 42
  start-page: 173
  issue: 1
  year: 2022
  ident: 10.1016/j.jksuci.2022.05.009_b0190
  article-title: EEG based alcoholism detection by oscillatory modes decomposition second order difference plots and machine learning
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.12.009
– volume: 176
  start-page: 121
  year: 2019
  ident: 10.1016/j.jksuci.2022.05.009_b0220
  article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.05.004
– volume: 139
  issue: 10
  year: 2019
  ident: 10.1016/j.jksuci.2022.05.009_b0040
  article-title: Heart disease and stroke Statistics-2019 update a report from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.jksuci.2022.05.009_b0155
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 18
  start-page: 285
  issue: 8
  year: 2016
  ident: 10.1016/j.jksuci.2022.05.009_b0110
  article-title: ECG classification using wavelet packet entropy and random forests
  publication-title: Entropy
  doi: 10.3390/e18080285
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.jksuci.2022.05.009_b0005
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 108
  start-page: 55
  year: 2017
  ident: 10.1016/j.jksuci.2022.05.009_b0185
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.05.022
– volume: 63
  start-page: 1151
  issue: 12
  year: 2016
  ident: 10.1016/j.jksuci.2022.05.009_b0050
  article-title: A 3-lead ECG-on-chip with QRS detection and lossless compression for wireless sensors
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– start-page: 1
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0120
  article-title: An arrhythmia classification algorithm using C-LSTM in physiological parameters monitoring system under internet of health things environment
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 24
  start-page: 717
  issue: 3
  year: 2019
  ident: 10.1016/j.jksuci.2022.05.009_b0210
  article-title: I-vector-based patient adaptation of deep neural networks for automatic heartbeat classification
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2019.2919732
– volume: 12
  start-page: 2297
  issue: 12
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0105
  article-title: Hybrid Metaheuristic Optimization based Feature Subset Selection with Classification Model for Intrusion Detection in Big Data Environment
  publication-title: Turk. J. Comput. Math. Educ.
– year: 2019
  ident: 10.1016/j.jksuci.2022.05.009_b0195
– ident: 10.1016/j.jksuci.2022.05.009_b0200
– volume: 6
  start-page: 1363
  issue: 2
  year: 2018
  ident: 10.1016/j.jksuci.2022.05.009_b0115
  article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2844090
– volume: 39
  start-page: 631
  issue: 2
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0150
  article-title: Heart arrhythmia classification based on statistical moments and structural co-occurrence
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-019-01196-w
– volume: 7
  start-page: 114
  issue: 4
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0165
  article-title: Baseline wander and power-line interference elimination of ECG signals using efficient signal-piloted filtering
  publication-title: Healthcare Technol. Lett.
  doi: 10.1049/htl.2019.0116
– volume: 8
  start-page: 1521
  issue: 9
  year: 2018
  ident: 10.1016/j.jksuci.2022.05.009_b0045
  article-title: Swarm intelligence algorithms for feature selection: A review
  publication-title: Appl. Sci.
  doi: 10.3390/app8091521
– start-page: 1
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0090
  article-title: Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 20
  start-page: 2700
  issue: 9
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0100
  article-title: EventDTW: An Improved Dynamic Time Warping Algorithm for Aligning Biomedical Signals of Nonuniform Sampling Frequencies
  publication-title: Sensors
  doi: 10.3390/s20092700
– volume: 116
  start-page: 147
  year: 2019
  ident: 10.1016/j.jksuci.2022.05.009_b0020
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.051
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.jksuci.2022.05.009_b0060
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 7
  start-page: 92871
  year: 2019
  ident: 10.1016/j.jksuci.2022.05.009_b0085
  article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928017
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.jksuci.2022.05.009_b0145
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 23
  start-page: 1574
  issue: 4
  year: 2018
  ident: 10.1016/j.jksuci.2022.05.009_b0205
  article-title: Towards end-to-end ECG classification with raw signal extraction and deep neural networks
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2018.2871510
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.jksuci.2022.05.009_b0225
  article-title: Choosing wavelet methods, filters, and lengths for functional brain network construction
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157243
– volume: 63
  start-page: 326
  issue: 2
  year: 2013
  ident: 10.1016/j.jksuci.2022.05.009_b0030
  article-title: Application of cross wavelet transform for ECG pattern analysis and classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2279001
– volume: 211
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0055
  article-title: BEPO: A novel binary emperor penguin optimizer for automatic feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106560
– volume: 33
  start-page: 11027
  issue: 17
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0070
  article-title: S-shaped versus V-shaped transfer functions for binary manta ray foraging optimization in feature selection problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05560-9
– volume: 196
  year: 2020
  ident: 10.1016/j.jksuci.2022.05.009_b0025
  article-title: Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105607
– year: 2016
  ident: 10.1016/j.jksuci.2022.05.009_b0015
– start-page: 1
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0075
  article-title: Detection of R-peaks using fractional Fourier transform and principal component analysis
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 12
  start-page: 6465
  issue: 6
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0180
  article-title: Composite feature vector based cardiac arrhythmia classification using convolutional neural networks
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02259-6
– volume: 181
  year: 2021
  ident: 10.1016/j.jksuci.2022.05.009_b0080
  article-title: An efficient ECG arrhythmia classification method based on Manta ray foraging optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115131
SSID ssj0001765436
Score 2.2859552
Snippet The concept of mobile healthcare systems is promising. It is based on the cloud connected wireless biomedical wearables. In this scenario, the compression,...
SourceID doaj
hal
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Arrhythmia
Classification
Compression
Computational complexity
Computer Science
Electrocardiogram
Engineering Sciences
Machine learning
Metaheuristic optimization
Mobile healthcare
Modes features selection
Multirate processing
Variational mode decomposition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYoJy59QdWUtrIqrit2_Vr7mFagCKGeisTNcvxoQktA6QaJf8-M7UXhlEuvlndteWY9j_3mG0JOBHd9i5SzXDjdiLkXjfaBNRx88WCSjrqgfH-q2ZW4uJbXW62-EBNW6IHLwZ0mEwXc44InHkUXwXxK08ZOmz5oJX1mAgWbtxVM5exKjzWTubQIq3Q60Muxbi6Du27-_Nv4JYSHjGXiTsQjbtmlTN__wjy9WoyJ1mx4zt-S19VjpNOy03dkL67ekzdjNwZaP85Dsp6u14vHYXG7dNSjT4wgoHzuFMHtv2nGDiIzBL0v1QF5MA5uETeFr5newQVyWyszqVsF-gChdE0XUmyaQ0NEEHpFeh2Rq_OzXz9mTe2o0Hgh2dCEBNeZYo5FJGJLSUpvQCQSWf8gkJRcpjn-6_RJJgPxpVCq9UYH1vpee5X4B7K_ulvFj4Q6L5Vh2sUoHGbndAxesQgOjAlz1bMJ4eN5Wl_pxrHrxV874spubJGCRSnYVlqQwoQ0z0_dF7qNHfO_o6ie5yJZdh4AFbJVhewuFZqQfhS0rX5H8SfgVcsdy38DvXix-mx6aXGsBT9UsI4_dJ_-xx6PyQE2ui_Jn89kf1hv4hdwh4b516z5TwMaCDc
  priority: 102
  providerName: Directory of Open Access Journals
Title Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition
URI https://dx.doi.org/10.1016/j.jksuci.2022.05.009
https://inria.hal.science/hal-04354213
https://doaj.org/article/f9e4eed43f3e41e397590e1897d865c4
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67rLL2r2wbF0gDLsasfWydHSLFUEw7NIVyE1Q9GjcrUngOQX67yfKcrecCuwq6GGYNEXSHz8i9IVRU5dAOUuZkQVbWVZI60hBoy_uVJBeDijf72J-zRZLvjxCF2MtDMAqs-0fbHqy1nlklt_mbNe2s6sqak8FbOwAC-ISaLcpk6mIb3n-N89SQ_VkKjKCeh1YMFbQJZjX7c_fe9vGQJGQROEJyMR_bqhE5H9wUT1bjynXdAVdnqKX2XfEzfB4r9CR37xGJ2NfBpw_0zeoa7pu_dCv71qDLXjHAAdKEsAAc7_BCUUIHBF4N9QJpEHfm7XfD8zNeBtNyV2u0cRm4_B9DKpz4hBD-xzsPMDRM-brLbq-_PrjYl7k3gqFZZz0hQvRsAliiAdKthA4tyoKhwP_XwwpOeVhBX89beBBxUiTCVFaJR0pbS2tCPQdOt5sN_49wsZyoYg03jMDeTrpnRXER1dGuZWoyQTR8X1qm4nHof_FLz0izG71IAUNUtAl11EKE1Q8rtoNxBtPzD8HUT3OBdrsNLDtbnTWGx2UZ9EpYDRQzyoffTGuSl9JVTspuGUTVI-C1gdaGLdqnzj-c9SLg9PnzTcNY2X0SBmp6H314b-3_4heQJ_7Ifdzho77bu8_RW-oX03R86ZZXC2mKZswTcr_B66tDAg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWS9NBeuhd1V6LoVbDETeTRCRI4rZtLE8A3guYSK2lsQ5UD9O_Loag0PgXolSAlQTMaPo7evEHoK6OmLkFyljIjC7awrJDWkYJGLO5UkF72LN8zMb1g3-Z8voeOhloYoFXm2N_H9BSt88g4v83xpmnGP6voPRWosQMtiEuxjx5FNFBD_4bT-eG_REsN5ZOpyggKdmDFUEKXeF5X17-3toknRUKShidQE-9tUUnJf2en2l8OOde0B508R08zeMST_vleoD2_eomeDY0ZcP5OX6F20rbLP93ypjHYAjwGPlAyAQae-yVONEIQicCbvlAgDfrOLP22l27G6xhLbnKRJjYrh2_jqTpnDjH0z8HOAx89k75eo4uT4_OjaZGbKxSWcdIVLsTIJoghHjTZQuDcqmgdDgKA8UzJKQ8L-O1pAw8qHjWZEKVV0pHS1tKKQN-gg9V65d8ibCwXikjjPTOQqJPeWUF8xDLKLURNRogO71PbrDwODTB-6YFidqV7K2iwgi65jlYYoeJu1aZX3nhg_iGY6m4u6GangXV7qbPj6KA8i6iA0UA9q3wEY1yVvpKqdlJwy0aoHgytd9wwXqp54PZfol_s3H06mWkYKyMkZaSit9W7_778Z_R4ev5jpmenZ9_foyfQ9L5PBH1AB1279R8jNOoWn5Lr_wVt1Aym
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arrhythmia+classification+using+multirate+processing+metaheuristic+optimization+and+variational+mode+decomposition&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Mian+Qaisar%2C+Saeed&rft.au=I.+Khan%2C+Sibghatulla&rft.au=Srinivasan%2C+Kathiravan&rft.au=Krichen%2C+Moez&rft.date=2023-01-01&rft.issn=1319-1578&rft.volume=35&rft.issue=1&rft.spage=26&rft.epage=37&rft_id=info:doi/10.1016%2Fj.jksuci.2022.05.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jksuci_2022_05_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon