A conserved site on Ndc80 complex facilitates dynamic recruitment of Mps1 to yeast kinetochores to promote accurate chromosome segregation

Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 34; no. 11; pp. 2294 - 2307.e4
Main Authors Parnell, Emily J., Jenson, Erin E., Miller, Matthew P.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 03.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other’s function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2’s CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this “interaction hub” exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation. [Display omitted] •Two segments of Nuf2’s CH domain recruit the Mps1 kinase to kinetochores•Other factors, including the Dam1 complex, also bind this “interaction hub”•Kinetochore-bound Mps1 promotes recruitment of the Dam1 complex•Association of Mps1 with the hub is essential for bi-orientation and cell viability Parnell et al. identify an “interaction hub” in the Ndc80 complex via mutational analysis in yeast, which associates with both Mps1 and Dam1 complex. Mutants at this site show inviability due to severe defects in bi-orientation and chromosome segregation; however, restoring Mps1-Ndc80c association rescues viability, highlighting its critical role.
AbstractList Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.
Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other’s function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2’s CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this “interaction hub” exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation. [Display omitted] •Two segments of Nuf2’s CH domain recruit the Mps1 kinase to kinetochores•Other factors, including the Dam1 complex, also bind this “interaction hub”•Kinetochore-bound Mps1 promotes recruitment of the Dam1 complex•Association of Mps1 with the hub is essential for bi-orientation and cell viability Parnell et al. identify an “interaction hub” in the Ndc80 complex via mutational analysis in yeast, which associates with both Mps1 and Dam1 complex. Mutants at this site show inviability due to severe defects in bi-orientation and chromosome segregation; however, restoring Mps1-Ndc80c association rescues viability, highlighting its critical role.
Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bioriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules, but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact, and regulate each other’s function, remains unknown – considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2’s CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain comprised of two segments in Nuf2’s CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this “interaction hub” exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore biorientation and accurate chromosome segregation. Parnell et al. identify an ‘interaction hub’ in the Ndc80 complex via mutational analysis in yeast, which associates with both Mps1 and Dam1 complex. Mutants at this site show inviability due to severe defects in biorientation and chromosome segregation; however, restoring Mps1-Ndc80c association rescues viability, highlighting its critical role.
Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.
Author Miller, Matthew P.
Jenson, Erin E.
Parnell, Emily J.
Author_xml – sequence: 1
  givenname: Emily J.
  surname: Parnell
  fullname: Parnell, Emily J.
  organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
– sequence: 2
  givenname: Erin E.
  surname: Jenson
  fullname: Jenson, Erin E.
  organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
– sequence: 3
  givenname: Matthew P.
  orcidid: 0000-0003-2012-7546
  surname: Miller
  fullname: Miller, Matthew P.
  email: matthew.miller@biochem.utah.edu
  organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38776906$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1vEzEQXaEimhZ-ABfkI5cE27te2-KAqgoKUoELnC3v7GzisGsH2xuRv8CvrqO0CDhUGsnS-H1o3ruoznzwWFUvGV0xyto32xXM3YpT3qxoGdE8qRZMSb2kTSPOqgXVLV1qxfl5dZHSllLGlW6fVee1krLVtF1Uv68IBJ8w7rEnyWUkwZMvPSha9tNuxF9ksOBGl23GRPqDt5MDEhHi7PKEPpMwkM-7xEgO5IA2ZfLDecwBNiEWRtnuYphCUbYAcywyBDbHTQoTkoTriGubXfDPq6eDHRO-uH8vq-8f3n-7_ri8_Xrz6frqdgmN4HkJreqk4NgzoYGD7GUnsYVWi6GjWAN2XAH0ndS6540e6kF1gqu6EYNtFKj6snp30t3N3YQ9lBuiHc0uusnGgwnWmX9_vNuYddgbxphUXLVF4fW9Qgw_Z0zZTC4BjqP1GOZkaio0F0rSI_TV32Z_XB4aKAB5AkAMKUUcDByzLnkUbzcaRs2xa7M1pWtz7NrQMqIpTPYf80H8Mc7bEwdLwHuH0SRw6AF7VyrNpg_uEfYdBF_F-w
CitedBy_id crossref_primary_10_1016_j_cub_2024_03_062
crossref_primary_10_1016_j_cub_2024_04_070
crossref_primary_10_1016_j_cub_2024_04_067
crossref_primary_10_1016_j_tibs_2025_02_005
Cites_doi 10.1007/s004380100533
10.1371/journal.pgen.1004411
10.1083/jcb.202107016
10.1016/S0960-9822(02)70783-5
10.1093/bioinformatics/17.8.700
10.1126/science.aaa4055
10.1083/jcb.200910027
10.3390/biology6010005
10.1038/s41592-022-01488-1
10.1016/j.cub.2007.11.032
10.1038/nmeth.1401
10.1038/nsmb.2411
10.1016/j.cub.2012.03.052
10.1126/science.adj8736
10.1126/science.1127205
10.1083/jcb.200912021
10.1091/mbc.e10-08-0671
10.1093/gbe/evx088
10.1038/ncb1341
10.1083/jcb.202106130
10.7554/eLife.61773
10.1016/0092-8674(89)90584-9
10.1126/science.aaa4029
10.1016/0076-6879(91)94022-5
10.1016/j.cub.2024.03.062
10.1534/genetics.112.143818
10.1101/gad.1040903
10.1038/ncb2515
10.1083/jcb.201001050
10.1016/j.cub.2008.11.007
10.1038/s41580-023-00593-z
10.1091/mbc.E17-08-0503
10.1126/science.1167000
10.1016/j.ab.2007.12.013
10.1091/mbc.9.4.759
10.1016/j.cub.2006.06.063
10.1101/gad.240291.114
10.1038/nmeth.2019
10.1038/nrm3133
10.1083/jcb.201905026
10.1126/science.273.5277.953
10.1016/j.celrep.2016.10.065
10.7554/eLife.21069
10.1083/jcb.201001036
10.1038/nature09594
10.1038/nmeth.1318
10.1016/j.cub.2003.10.057
10.1038/nsmb1186
10.1083/jcb.200910142
10.1038/nature09423
10.1016/j.cub.2020.08.054
10.1016/j.cell.2016.04.030
10.1083/jcb.200804170
10.1073/pnas.0501168102
10.1016/0003-2697(81)90281-5
10.1534/genetics.109.109041
10.1083/jcb.152.2.349
10.1098/rsob.220378
10.1091/mbc.e10-07-0626
10.7554/eLife.65389
10.1016/j.cub.2016.11.014
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
10.1073/pnas.1901653116
10.1242/jcs.214577
10.1093/nar/gkac240
10.1002/yea.3097
10.1083/jcb.201002133
10.1093/bioinformatics/btp033
10.15252/embr.202050257
10.1091/mbc.e10-08-0673
10.1371/journal.pgen.0030213
10.1016/j.cell.2006.09.039
10.1016/j.cell.2007.11.046
10.1083/jcb.200308100
10.1126/science.1232518
10.1002/pro.3235
10.1016/j.cell.2008.03.020
10.1038/ncb3179
10.1016/j.cub.2022.10.047
10.1016/0076-6879(91)94004-V
10.1073/pnas.1718553115
10.1186/1472-6750-8-91
10.1016/S0092-8674(00)00130-6
10.1083/jcb.201110013
10.1101/gad.13.5.532
10.1016/j.devcel.2017.03.025
10.1016/j.cub.2024.04.067
10.1038/s41467-022-29542-8
10.1016/j.molcel.2008.07.020
10.1371/journal.pone.0144673
10.1126/science.1101366
10.1016/j.cub.2005.01.010
10.1016/j.cub.2020.07.062
10.1016/j.cell.2006.09.047
10.1093/nar/25.17.3389
10.1016/j.cub.2008.08.012
10.1098/rsob.180109
10.1038/emboj.2009.62
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cub.2024.04.054
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 2307.e4
ExternalDocumentID PMC11178286
38776906
10_1016_j_cub_2024_04_054
S0960982224005281
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM142749
GroupedDBID ---
--K
-DZ
-~X
0R~
0SF
1RT
1~5
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAKRW
AALRI
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
AEFWE
AENEX
AFTJW
AGHSJ
AGKMS
AGUBO
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SEW
SSZ
TR2
29F
2WC
5VS
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
OZT
R2-
UHS
XIH
XPP
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c452t-c68b752ed159c2c7d7b7e6c695fb0e3ceb28ccdb799d249f3f8b528345fa48c83
IEDL.DBID IXB
ISSN 0960-9822
1879-0445
IngestDate Thu Aug 21 18:25:47 EDT 2025
Fri Jul 11 05:18:41 EDT 2025
Wed Jul 02 01:57:07 EDT 2025
Tue Aug 05 12:03:11 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Sat Aug 10 15:31:08 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Ndc80 complex
Dam1 complex
SAC
chromosome segregation
Mps1
Nuf2
spindle assembly checkpoint
kinetochore
bi-orientation
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-c68b752ed159c2c7d7b7e6c695fb0e3ceb28ccdb799d249f3f8b528345fa48c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
M.M., E.P. and E.J. conceptualized the study. E.P. and E.J. conducted the experiments and prepared the figures, methods and legends. M.M. wrote the manuscript, with assistance from E.P. and E.J. Funding was secured by M.M.
ORCID 0000-0003-2012-7546
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11178286
PMID 38776906
PQID 3059258706
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11178286
proquest_miscellaneous_3059258706
pubmed_primary_38776906
crossref_citationtrail_10_1016_j_cub_2024_04_054
crossref_primary_10_1016_j_cub_2024_04_054
elsevier_sciencedirect_doi_10_1016_j_cub_2024_04_054
PublicationCentury 2000
PublicationDate 2024-06-03
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Miller, Asbury, Biggins (bib39) 2016; 165
Shonn, Murray, Murray (bib96) 2003; 13
Akiyoshi, Sarangapani, Powers, Nelson, Reichow, Arellano-Santoyo, Gonen, Ranish, Asbury, Biggins (bib57) 2010; 468
Lorenz (bib90) 2015; 32
Sundin, Guimaraes, Deluca (bib15) 2011; 22
Yuan, Leontiou, Amin, May, Soper Ní Chafraidh, Zlámalová, Hardwick (bib47) 2017; 27
Meyer, Kim, Obeso, Straight, Winey, Dawson (bib36) 2013; 339
Santaguida, Tighe, D’Alise, Taylor, Musacchio (bib37) 2010; 190
Yamagishi, Yang, Tanno, Watanabe (bib46) 2012; 14
Araki, Gombos, Migueleti, Sivashanmugam, Antony, Schiebel (bib58) 2010; 189
Hayward, Bancroft, Mangat, Alfonso-Pérez, Dugdale, McCarthy, Barr, Gruneberg (bib48) 2019; 218
Maciejowski, Drechsler, Grundner-Culemann, Ballister, Rodriguez-Rodriguez, Rodriguez-Bravo, Jones, Foley, Lampson, Daub (bib26) 2017; 41
Herman, Miller, Biggins (bib41) 2020; 9
Alushin, Musinipally, Matson, Tooley, Stukenberg, Nogales (bib16) 2012; 19
Zahm, Stewart, Carrier, Harrison, Miller (bib40) 2021; 10
Nishimura, Fukagawa, Takisawa, Kakimoto, Kanemaki (bib99) 2009; 6
Aravamudhan, Goldfarb, Joglekar (bib64) 2015; 17
Uhlmann, Wernic, Poupart, Koonin, Nasmyth (bib97) 2000; 103
Hewitt, Tighe, Santaguida, White, Jones, Musacchio, Green, Taylor (bib33) 2010; 190
Hayward, Roberts, Gruneberg (bib38) 2022; 32
Pleuger, Cozma, Hohoff, Denkhaus, Dudziak, Kaschani, Kaiser, Musacchio, Vetter, Westermann (bib59) 2024
Zahm, Harrison (bib60) 2024
Schutz, Winey (bib61) 1998; 9
Jones, Huneycutt, Pearson, Zhang, Morgan, Shokat, Bloom, Winey (bib45) 2005; 15
Sherman, Fink, Lawrence (bib87) 1974
McCleland, Gardner, Kallio, Daum, Gorbsky, Burke, Stukenberg (bib5) 2003; 17
Gutierrez, Kim, Umbreit, Asbury, Davis, Miller, Biggins (bib18) 2020; 30
Hiruma, Sacristan, Pachis, Adamopoulos, Kuijt, Ubbink, von Castelmur, Perrakis, Kops (bib42) 2015; 348
Longtine, McKenzie, Demarini, Shah, Wach, Brachat, Philippsen, Pringle (bib91) 1998; 14
Storchová, Becker, Talarek, Kögelsberger, Pellman (bib72) 2011; 22
Biggins, Severin, Bhalla, Sassoon, Hyman, Murray (bib95) 1999; 13
Nerusheva, Galander, Fernius, Kelly, Marston (bib75) 2014; 28
Maure, Kitamura, Tanaka (bib35) 2007; 17
Wigge, Kilmartin (bib4) 2001; 152
Muir, Batters, Dendooven, Yang, Zhang, Burt, Barford (bib22) 2023; 382
Tseng, Lin, Wei, Fang (bib93) 2008; 375
Krenn, Wehenkel, Li, Santaguida, Musacchio (bib52) 2012; 196
Lampert, Westermann (bib10) 2011; 12
Jelluma, Brenkman, van den Broek, Cruijsen, van Osch, Lens, Medema, Kops (bib44) 2008; 132
Pachis, Kops (bib68) 2018; 8
Pei, Grishin (bib102) 2001; 17
Musacchio, Desai (bib1) 2017; 6
Fernius, Hardwick (bib73) 2007; 3
Lampert, Hornung, Westermann (bib70) 2010; 189
Kemmler, Stach, Knapp, Ortiz, Pfannstiel, Ruppert, Lechner (bib30) 2009; 28
Benzi, Camasses, Atsunori, Katou, Shirahige, Piatti (bib32) 2020; 21
Breit, Bange, Petrovic, Weir, Müller, Vogt, Musacchio (bib74) 2015; 10
Kim, Zelter, Umbreit, Bollozos, Riffle, Johnson, MacCoss, Asbury, Davis (bib20) 2017; 6
Hardwick, Weiss, Luca, Winey, Murray (bib65) 1996; 273
Cheeseman, Chappie, Wilson-Kubalek, Desai (bib28) 2006; 127
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib81) 2012; 9
Demirel, Keyes, Chaterjee, Remington, Burke (bib71) 2012; 192
Towbin, Staehelin, Gordon (bib101) 1992; 24
Zahm, Jenni, Harrison (bib19) 2023; 13
McAinsh, Kops (bib3) 2023; 24
Alushin, Ramey, Pasqualato, Ball, Grigorieff, Musacchio, Nogales (bib6) 2010; 467
Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib80) 2018; 27
Roberts, Farr, Hoyt (bib50) 1994; 14
Monda, Cheeseman (bib2) 2018; 131
Maciejowski, George, Terret, Zhang, Shokat, Jallepalli (bib34) 2010; 190
Wei, Sorger, Harrison (bib8) 2005; 102
de Regt, Clark, Asbury, Biggins (bib79) 2022; 13
Sherman (bib89) 1991; 194
Gibson, Young, Chuang, Venter, Hutchison, Smith (bib94) 2009; 6
Straight, Belmont, Robinett, Murray (bib55) 1996; 6
Tooley, Miller, Stukenberg (bib14) 2011; 22
Burnette (bib100) 1981; 112
Flores, Peterson, Zelter, Riffle, Asbury, Davis (bib21) 2022; 221
Rothstein (bib88) 1991; 194
Miller, Johnson, Stukenberg (bib13) 2008; 18
Wilson-Kubalek, Cheeseman, Yoshioka, Desai, Milligan (bib9) 2008; 182
Akiyoshi, Nelson, Ranish, Biggins (bib27) 2009; 183
Sarangapani, Koch, Nelson, Asbury, Biggins (bib31) 2021; 220
Palframan, Meehl, Jaspersen, Winey, Murray (bib66) 2006; 313
Ciferri, Pasqualato, Screpanti, Varetti, Santaguida, Dos Reis, Maiolica, Polka, De Luca, De Wulf (bib7) 2008; 133
Liu, Naismith (bib92) 2008; 8
Waterhouse, Procter, Martin, Clamp, Barton (bib85) 2009; 25
Meyer, Brown, Beck, Dawson (bib63) 2018; 29
DeLuca, Gall, Ciferri, Cimini, Musacchio, Salmon (bib29) 2006; 127
Indjeian, Stern, Murray (bib77) 2005; 307
Tien, Umbreit, Gestaut, Franck, Cooper, Wordeman, Gonen, Asbury, Davis (bib17) 2010; 189
Ji, Gao, Yu (bib43) 2015; 348
Mirdita, Schütze, Moriwaki, Heo, Ovchinnikov, Steinegger (bib82) 2022; 19
Haruki, Nishikawa, Laemmli (bib98) 2008; 31
Altschul, Madden, Schäffer, Zhang, Zhang, Miller, Lipman (bib83) 1997; 25
Koch, Opoku, Deng, Barber, Littleton, London, Biggins, Asbury (bib69) 2019; 116
Pinsky, Kung, Shokat, Biggins (bib54) 2006; 8
Wei, Al-Bassam, Harrison (bib11) 2007; 14
van Hooff, Snel, Kops (bib23) 2017; 9
Kuijt, Lambers, Weterings, Ponsioen, Bolhaqueiro, Staijen, Kops (bib56) 2020; 30
Fraschini, Beretta, Lucchini, Piatti (bib67) 2001; 266
Peplowska, Wallek, Storchova (bib76) 2014; 10
Shimogawa, Graczyk, Gardner, Francis, White, Ess, Molk, Ruse, Niessen, Yates (bib62) 2006; 16
Liu, Vader, Vromans, Lampson, Lens (bib78) 2009; 323
Helgeson, Zelter, Riffle, MacCoss, Asbury, Davis (bib25) 2018; 115
Huis In ’t Veld, Volkov, Stender, Musacchio, Dogterom (bib24) 2019; 8
Guimaraes, Dong, McEwen, Deluca (bib12) 2008; 18
Madeira, Pearce, Tivey, Basutkar, Lee, Edbali, Madhusoodanan, Kolesnikov, Lopez (bib84) 2022; 50
Valverde, Ingram, Harrison (bib49) 2016; 17
London, Ceto, Ranish, Biggins (bib53) 2012; 22
Gillett, Espelin, Sorger (bib51) 2004; 164
Thomas, Rothstein (bib86) 1989; 56
Liu (10.1016/j.cub.2024.04.054_bib78) 2009; 323
Zahm (10.1016/j.cub.2024.04.054_bib40) 2021; 10
Gibson (10.1016/j.cub.2024.04.054_bib94) 2009; 6
Peplowska (10.1016/j.cub.2024.04.054_bib76) 2014; 10
Hayward (10.1016/j.cub.2024.04.054_bib38) 2022; 32
Wilson-Kubalek (10.1016/j.cub.2024.04.054_bib9) 2008; 182
Shonn (10.1016/j.cub.2024.04.054_bib96) 2003; 13
Hiruma (10.1016/j.cub.2024.04.054_bib42) 2015; 348
Straight (10.1016/j.cub.2024.04.054_bib55) 1996; 6
Maciejowski (10.1016/j.cub.2024.04.054_bib26) 2017; 41
Hewitt (10.1016/j.cub.2024.04.054_bib33) 2010; 190
Gillett (10.1016/j.cub.2024.04.054_bib51) 2004; 164
Uhlmann (10.1016/j.cub.2024.04.054_bib97) 2000; 103
Burnette (10.1016/j.cub.2024.04.054_bib100) 1981; 112
Alushin (10.1016/j.cub.2024.04.054_bib16) 2012; 19
Araki (10.1016/j.cub.2024.04.054_bib58) 2010; 189
Lorenz (10.1016/j.cub.2024.04.054_bib90) 2015; 32
Gutierrez (10.1016/j.cub.2024.04.054_bib18) 2020; 30
Breit (10.1016/j.cub.2024.04.054_bib74) 2015; 10
Hayward (10.1016/j.cub.2024.04.054_bib48) 2019; 218
van Hooff (10.1016/j.cub.2024.04.054_bib23) 2017; 9
Sarangapani (10.1016/j.cub.2024.04.054_bib31) 2021; 220
Sundin (10.1016/j.cub.2024.04.054_bib15) 2011; 22
Storchová (10.1016/j.cub.2024.04.054_bib72) 2011; 22
Aravamudhan (10.1016/j.cub.2024.04.054_bib64) 2015; 17
Fernius (10.1016/j.cub.2024.04.054_bib73) 2007; 3
London (10.1016/j.cub.2024.04.054_bib53) 2012; 22
Ciferri (10.1016/j.cub.2024.04.054_bib7) 2008; 133
Zahm (10.1016/j.cub.2024.04.054_bib60) 2024
Kim (10.1016/j.cub.2024.04.054_bib20) 2017; 6
Miller (10.1016/j.cub.2024.04.054_bib39) 2016; 165
Madeira (10.1016/j.cub.2024.04.054_bib84) 2022; 50
McCleland (10.1016/j.cub.2024.04.054_bib5) 2003; 17
Jelluma (10.1016/j.cub.2024.04.054_bib44) 2008; 132
Ji (10.1016/j.cub.2024.04.054_bib43) 2015; 348
Fraschini (10.1016/j.cub.2024.04.054_bib67) 2001; 266
Altschul (10.1016/j.cub.2024.04.054_bib83) 1997; 25
Tien (10.1016/j.cub.2024.04.054_bib17) 2010; 189
DeLuca (10.1016/j.cub.2024.04.054_bib29) 2006; 127
Koch (10.1016/j.cub.2024.04.054_bib69) 2019; 116
Monda (10.1016/j.cub.2024.04.054_bib2) 2018; 131
Meyer (10.1016/j.cub.2024.04.054_bib36) 2013; 339
Musacchio (10.1016/j.cub.2024.04.054_bib1) 2017; 6
Krenn (10.1016/j.cub.2024.04.054_bib52) 2012; 196
Shimogawa (10.1016/j.cub.2024.04.054_bib62) 2006; 16
Alushin (10.1016/j.cub.2024.04.054_bib6) 2010; 467
de Regt (10.1016/j.cub.2024.04.054_bib79) 2022; 13
Schutz (10.1016/j.cub.2024.04.054_bib61) 1998; 9
Lampert (10.1016/j.cub.2024.04.054_bib70) 2010; 189
Hardwick (10.1016/j.cub.2024.04.054_bib65) 1996; 273
Huis In ’t Veld (10.1016/j.cub.2024.04.054_bib24) 2019; 8
Pinsky (10.1016/j.cub.2024.04.054_bib54) 2006; 8
Santaguida (10.1016/j.cub.2024.04.054_bib37) 2010; 190
Thomas (10.1016/j.cub.2024.04.054_bib86) 1989; 56
Longtine (10.1016/j.cub.2024.04.054_bib91) 1998; 14
Flores (10.1016/j.cub.2024.04.054_bib21) 2022; 221
Wigge (10.1016/j.cub.2024.04.054_bib4) 2001; 152
Valverde (10.1016/j.cub.2024.04.054_bib49) 2016; 17
Wei (10.1016/j.cub.2024.04.054_bib8) 2005; 102
Benzi (10.1016/j.cub.2024.04.054_bib32) 2020; 21
Kemmler (10.1016/j.cub.2024.04.054_bib30) 2009; 28
Pleuger (10.1016/j.cub.2024.04.054_bib59) 2024
Miller (10.1016/j.cub.2024.04.054_bib13) 2008; 18
McAinsh (10.1016/j.cub.2024.04.054_bib3) 2023; 24
Jones (10.1016/j.cub.2024.04.054_bib45) 2005; 15
Nerusheva (10.1016/j.cub.2024.04.054_bib75) 2014; 28
Pachis (10.1016/j.cub.2024.04.054_bib68) 2018; 8
Tooley (10.1016/j.cub.2024.04.054_bib14) 2011; 22
Pei (10.1016/j.cub.2024.04.054_bib102) 2001; 17
Demirel (10.1016/j.cub.2024.04.054_bib71) 2012; 192
Sherman (10.1016/j.cub.2024.04.054_bib89) 1991; 194
Cheeseman (10.1016/j.cub.2024.04.054_bib28) 2006; 127
Tseng (10.1016/j.cub.2024.04.054_bib93) 2008; 375
Helgeson (10.1016/j.cub.2024.04.054_bib25) 2018; 115
Yuan (10.1016/j.cub.2024.04.054_bib47) 2017; 27
Biggins (10.1016/j.cub.2024.04.054_bib95) 1999; 13
Meyer (10.1016/j.cub.2024.04.054_bib63) 2018; 29
Palframan (10.1016/j.cub.2024.04.054_bib66) 2006; 313
Lampert (10.1016/j.cub.2024.04.054_bib10) 2011; 12
Akiyoshi (10.1016/j.cub.2024.04.054_bib57) 2010; 468
Kuijt (10.1016/j.cub.2024.04.054_bib56) 2020; 30
Guimaraes (10.1016/j.cub.2024.04.054_bib12) 2008; 18
Muir (10.1016/j.cub.2024.04.054_bib22) 2023; 382
Maciejowski (10.1016/j.cub.2024.04.054_bib34) 2010; 190
Liu (10.1016/j.cub.2024.04.054_bib92) 2008; 8
Akiyoshi (10.1016/j.cub.2024.04.054_bib27) 2009; 183
Nishimura (10.1016/j.cub.2024.04.054_bib99) 2009; 6
Maure (10.1016/j.cub.2024.04.054_bib35) 2007; 17
Herman (10.1016/j.cub.2024.04.054_bib41) 2020; 9
Goddard (10.1016/j.cub.2024.04.054_bib80) 2018; 27
Towbin (10.1016/j.cub.2024.04.054_bib101) 1992; 24
Mirdita (10.1016/j.cub.2024.04.054_bib82) 2022; 19
Sherman (10.1016/j.cub.2024.04.054_bib87) 1974
Roberts (10.1016/j.cub.2024.04.054_bib50) 1994; 14
Zahm (10.1016/j.cub.2024.04.054_bib19) 2023; 13
Yamagishi (10.1016/j.cub.2024.04.054_bib46) 2012; 14
Schindelin (10.1016/j.cub.2024.04.054_bib81) 2012; 9
Indjeian (10.1016/j.cub.2024.04.054_bib77) 2005; 307
Haruki (10.1016/j.cub.2024.04.054_bib98) 2008; 31
Wei (10.1016/j.cub.2024.04.054_bib11) 2007; 14
Waterhouse (10.1016/j.cub.2024.04.054_bib85) 2009; 25
Rothstein (10.1016/j.cub.2024.04.054_bib88) 1991; 194
38834024 - Curr Biol. 2024 Jun 3;34(11):R530-R533. doi: 10.1016/j.cub.2024.04.070.
37986816 - bioRxiv. 2023 Nov 07:2023.11.07.566082. doi: 10.1101/2023.11.07.566082.
References_xml – volume: 313
  start-page: 680
  year: 2006
  end-page: 684
  ident: bib66
  article-title: Anaphase inactivation of the spindle checkpoint
  publication-title: Science
– volume: 22
  start-page: 1217
  year: 2011
  end-page: 1226
  ident: bib14
  article-title: The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement
  publication-title: Mol. Biol. Cell
– volume: 127
  start-page: 969
  year: 2006
  end-page: 982
  ident: bib29
  article-title: Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
  publication-title: Cell
– volume: 8
  start-page: 78
  year: 2006
  end-page: 83
  ident: bib54
  article-title: The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores
  publication-title: Nat. Cell Biol.
– year: 2024
  ident: bib59
  article-title: Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor
  publication-title: Curr. Biol.
– volume: 194
  start-page: 281
  year: 1991
  end-page: 301
  ident: bib88
  article-title: Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast
  publication-title: Methods Enzymol.
– volume: 30
  start-page: 3862
  year: 2020
  end-page: 3870.e6
  ident: bib56
  article-title: A biosensor for the mitotic kinase MPS1 reveals spatiotemporal activity dynamics and regulation
  publication-title: Curr. Biol.
– volume: 8
  year: 2018
  ident: bib68
  article-title: Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis
  publication-title: Open Biol.
– volume: 218
  start-page: 3188
  year: 2019
  end-page: 3199
  ident: bib48
  article-title: Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56
  publication-title: J. Cell Biol.
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: bib80
  article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
– volume: 13
  start-page: 532
  year: 1999
  end-page: 544
  ident: bib95
  article-title: The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast
  publication-title: Genes Dev.
– volume: 102
  start-page: 5363
  year: 2005
  end-page: 5367
  ident: bib8
  article-title: Molecular organization of the Ndc80 complex, an essential kinetochore component
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 375
  start-page: 376
  year: 2008
  end-page: 378
  ident: bib93
  article-title: A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method
  publication-title: Anal. Biochem.
– volume: 183
  start-page: 1591
  year: 2009
  end-page: 1595
  ident: bib27
  article-title: Analysis of Ipl1-mediated phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 164
  start-page: 535
  year: 2004
  end-page: 546
  ident: bib51
  article-title: Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast
  publication-title: J. Cell Biol.
– volume: 41
  start-page: 143
  year: 2017
  end-page: 156.e6
  ident: bib26
  article-title: Mps1 regulates kinetochore-microtubule attachment stability via the Ska complex to ensure error-free chromosome segregation
  publication-title: Dev. Cell
– volume: 165
  start-page: 1428
  year: 2016
  end-page: 1439
  ident: bib39
  article-title: A TOG protein confers tension sensitivity to kinetochore-microtubule attachments
  publication-title: Cell
– volume: 14
  start-page: 953
  year: 1998
  end-page: 961
  ident: bib91
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
  publication-title: Yeast
– volume: 220
  year: 2021
  ident: bib31
  article-title: Kinetochore-bound Mps1 regulates kinetochore-microtubule attachments via Ndc80 phosphorylation
  publication-title: J. Cell Biol.
– volume: 12
  start-page: 407
  year: 2011
  end-page: 412
  ident: bib10
  article-title: A blueprint for kinetochores - new insights into the molecular mechanics of cell division
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 194
  start-page: 3
  year: 1991
  end-page: 21
  ident: bib89
  article-title: Getting started with yeast
  publication-title: Methods Enzymol.
– volume: 50
  start-page: W276
  year: 2022
  end-page: W279
  ident: bib84
  article-title: Search and sequence analysis tools services from EMBL-EBI in 2022
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 343
  year: 2009
  end-page: 345
  ident: bib94
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat. Methods
– volume: 189
  start-page: 641
  year: 2010
  end-page: 649
  ident: bib70
  article-title: The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
  publication-title: J. Cell Biol.
– volume: 131
  year: 2018
  ident: bib2
  article-title: The kinetochore-microtubule interface at a glance
  publication-title: J. Cell Sci.
– volume: 25
  start-page: 1189
  year: 2009
  end-page: 1191
  ident: bib85
  article-title: Jalview Version 2--a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
– volume: 115
  start-page: 2740
  year: 2018
  end-page: 2745
  ident: bib25
  article-title: Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 127
  start-page: 983
  year: 2006
  end-page: 997
  ident: bib28
  article-title: The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
  publication-title: Cell
– volume: 8
  year: 2019
  ident: bib24
  article-title: Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling
  publication-title: eLife
– volume: 382
  start-page: 1184
  year: 2023
  end-page: 1190
  ident: bib22
  article-title: Structural mechanism of outer kinetochore Dam1-Ndc80 complex assembly on microtubules
  publication-title: Science
– volume: 221
  year: 2022
  ident: bib21
  article-title: Three interacting regions of the Ndc80 and Dam1 complexes support microtubule tip-coupling under load
  publication-title: J. Cell Biol.
– volume: 14
  start-page: 8282
  year: 1994
  end-page: 8291
  ident: bib50
  article-title: The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase
  publication-title: Mol. Cell Biol.
– volume: 182
  start-page: 1055
  year: 2008
  end-page: 1061
  ident: bib9
  article-title: Orientation and structure of the Ndc80 complex on the microtubule lattice
  publication-title: J. Cell Biol.
– volume: 56
  start-page: 619
  year: 1989
  end-page: 630
  ident: bib86
  article-title: Elevated recombination rates in transcriptionally active DNA
  publication-title: Cell
– volume: 196
  start-page: 451
  year: 2012
  end-page: 467
  ident: bib52
  article-title: Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction
  publication-title: J. Cell Biol.
– volume: 192
  start-page: 753
  year: 2012
  end-page: 756
  ident: bib71
  article-title: A redundant function for the N-terminal tail of Ndc80 in kinetochore-microtubule interaction in Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 133
  start-page: 427
  year: 2008
  end-page: 439
  ident: bib7
  article-title: Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
  publication-title: Cell
– volume: 116
  start-page: 17355
  year: 2019
  end-page: 17360
  ident: bib69
  article-title: Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 190
  start-page: 25
  year: 2010
  end-page: 34
  ident: bib33
  article-title: Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex
  publication-title: J. Cell Biol.
– volume: 24
  start-page: 145
  year: 1992
  end-page: 149
  ident: bib101
  article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979
  publication-title: Biotechnology
– volume: 323
  start-page: 1350
  year: 2009
  end-page: 1353
  ident: bib78
  article-title: Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates
  publication-title: Science
– volume: 28
  start-page: 1099
  year: 2009
  end-page: 1110
  ident: bib30
  article-title: Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling
  publication-title: EMBO J.
– volume: 14
  start-page: 746
  year: 2012
  end-page: 752
  ident: bib46
  article-title: MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
  publication-title: Nat. Cell Biol.
– volume: 18
  start-page: 1778
  year: 2008
  end-page: 1784
  ident: bib12
  article-title: Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
  publication-title: Curr. Biol.
– volume: 22
  start-page: 900
  year: 2012
  end-page: 906
  ident: bib53
  article-title: Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
  publication-title: Curr. Biol.
– volume: 28
  start-page: 1291
  year: 2014
  end-page: 1309
  ident: bib75
  article-title: Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation
  publication-title: Genes Dev.
– volume: 14
  start-page: 54
  year: 2007
  end-page: 59
  ident: bib11
  article-title: The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
  publication-title: Nat. Struct. Mol. Biol.
– volume: 22
  start-page: 759
  year: 2011
  end-page: 768
  ident: bib15
  article-title: The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis
  publication-title: Mol. Biol. Cell
– volume: 9
  year: 2020
  ident: bib41
  article-title: chTOG is a conserved mitotic error correction factor
  publication-title: eLife
– volume: 19
  start-page: 679
  year: 2022
  end-page: 682
  ident: bib82
  article-title: ColabFold: making protein folding accessible to all
  publication-title: Nat. Methods
– volume: 10
  year: 2014
  ident: bib76
  article-title: Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation
  publication-title: PLoS Genet.
– volume: 189
  start-page: 713
  year: 2010
  end-page: 723
  ident: bib17
  article-title: Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B
  publication-title: J. Cell Biol.
– volume: 190
  start-page: 73
  year: 2010
  end-page: 87
  ident: bib37
  article-title: Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine
  publication-title: J. Cell Biol.
– volume: 17
  start-page: 101
  year: 2003
  end-page: 114
  ident: bib5
  article-title: The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity
  publication-title: Genes Dev.
– volume: 24
  start-page: 543
  year: 2023
  end-page: 559
  ident: bib3
  article-title: Principles and dynamics of spindle assembly checkpoint signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 266
  start-page: 115
  year: 2001
  end-page: 125
  ident: bib67
  article-title: Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae
  publication-title: Mol. Genet. Genomics.
– year: 1974
  ident: bib87
  article-title: Methods in Yeast Genetics: Laboratory Manual
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  ident: bib83
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res.
– volume: 13
  year: 2023
  ident: bib19
  article-title: Structure of the Ndc80 complex and its interactions at the yeast kinetochore-microtubule interface
  publication-title: Open Biol.
– volume: 31
  start-page: 925
  year: 2008
  end-page: 932
  ident: bib98
  article-title: The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes
  publication-title: Mol. Cell
– volume: 21
  year: 2020
  ident: bib32
  article-title: A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint
  publication-title: EMBO Rep.
– volume: 467
  start-page: 805
  year: 2010
  end-page: 810
  ident: bib6
  article-title: The Ndc80 kinetochore complex forms oligomeric arrays along microtubules
  publication-title: Nature
– volume: 17
  start-page: 868
  year: 2015
  end-page: 879
  ident: bib64
  article-title: The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling
  publication-title: Nat. Cell Biol.
– volume: 6
  year: 2017
  ident: bib20
  article-title: The Ndc80 complex bridges two Dam1 complex rings
  publication-title: eLife
– volume: 6
  start-page: 5
  year: 2017
  ident: bib1
  article-title: A molecular view of kinetochore assembly and function
  publication-title: Biology
– volume: 339
  start-page: 1071
  year: 2013
  end-page: 1074
  ident: bib36
  article-title: Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast
  publication-title: Science
– volume: 9
  start-page: 759
  year: 1998
  end-page: 774
  ident: bib61
  article-title: New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication
  publication-title: Mol. Biol. Cell
– year: 2024
  ident: bib60
  article-title: A communication hub for phosphoregulation of kinetochore-microtubule attachment
  publication-title: Curr. Biol.
– volume: 132
  start-page: 233
  year: 2008
  end-page: 246
  ident: bib44
  article-title: Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment
  publication-title: Cell
– volume: 3
  year: 2007
  ident: bib73
  article-title: Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis
  publication-title: PLoS Genet.
– volume: 22
  start-page: 1473
  year: 2011
  end-page: 1485
  ident: bib72
  article-title: Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast
  publication-title: Mol. Biol. Cell
– volume: 17
  start-page: 1915
  year: 2016
  end-page: 1922
  ident: bib49
  article-title: Conserved tetramer junction in the kinetochore Ndc80 complex
  publication-title: Cell Rep.
– volume: 29
  start-page: 479
  year: 2018
  end-page: 489
  ident: bib63
  article-title: Mps1 promotes chromosome meiotic chromosome biorientation through Dam1
  publication-title: Mol. Biol. Cell
– volume: 32
  start-page: 703
  year: 2015
  end-page: 710
  ident: bib90
  article-title: New cassettes for single-step drug resistance and prototrophic marker switching in fission yeast
  publication-title: Yeast
– volume: 10
  year: 2021
  ident: bib40
  article-title: Structural basis of Stu2 recruitment to yeast kinetochores
  publication-title: eLife
– volume: 190
  start-page: 89
  year: 2010
  end-page: 100
  ident: bib34
  article-title: Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling
  publication-title: J. Cell Biol.
– volume: 112
  start-page: 195
  year: 1981
  end-page: 203
  ident: bib100
  article-title: “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A
  publication-title: Anal. Biochem.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib81
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 15
  start-page: 160
  year: 2005
  end-page: 165
  ident: bib45
  article-title: Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis
  publication-title: Curr. Biol.
– volume: 16
  start-page: 1489
  year: 2006
  end-page: 1501
  ident: bib62
  article-title: Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase
  publication-title: Curr. Biol.
– volume: 10
  year: 2015
  ident: bib74
  article-title: Role of intrinsic and extrinsic factors in the regulation of the mitotic checkpoint kinase Bub1
  publication-title: PLoS One
– volume: 19
  start-page: 1161
  year: 2012
  end-page: 1167
  ident: bib16
  article-title: Multimodal microtubule binding by the Ndc80 kinetochore complex
  publication-title: Nat. Struct. Mol. Biol.
– volume: 103
  start-page: 375
  year: 2000
  end-page: 386
  ident: bib97
  article-title: Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
  publication-title: Cell
– volume: 17
  start-page: 700
  year: 2001
  end-page: 712
  ident: bib102
  article-title: AL2CO: calculation of positional conservation in a protein sequence alignment
  publication-title: Bioinformatics
– volume: 189
  start-page: 41
  year: 2010
  end-page: 56
  ident: bib58
  article-title: N-terminal regions of Mps1 kinase determine functional bifurcation
  publication-title: J. Cell Biol.
– volume: 18
  start-page: 1785
  year: 2008
  end-page: 1791
  ident: bib13
  article-title: Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1)
  publication-title: Curr. Biol.
– volume: 17
  start-page: 2175
  year: 2007
  end-page: 2182
  ident: bib35
  article-title: Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism
  publication-title: Curr. Biol.
– volume: 152
  start-page: 349
  year: 2001
  end-page: 360
  ident: bib4
  article-title: The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation
  publication-title: J. Cell Biol.
– volume: 6
  start-page: 1599
  year: 1996
  end-page: 1608
  ident: bib55
  article-title: GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion
  publication-title: Curr. Biol.
– volume: 13
  start-page: 2152
  year: 2022
  ident: bib79
  article-title: Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments
  publication-title: Nat. Commun.
– volume: 27
  start-page: 137
  year: 2017
  end-page: 143
  ident: bib47
  article-title: Generation of a spindle checkpoint arrest from synthetic signaling assemblies
  publication-title: Curr. Biol.
– volume: 9
  start-page: 1295
  year: 2017
  end-page: 1303
  ident: bib23
  article-title: Unique phylogenetic distributions of the Ska and Dam1 complexes support functional analogy and suggest multiple parallel displacements of Ska by Dam1
  publication-title: Genome Biol. Evol.
– volume: 8
  start-page: 91
  year: 2008
  ident: bib92
  article-title: An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol
  publication-title: BMC Biotechnol.
– volume: 468
  start-page: 576
  year: 2010
  end-page: 579
  ident: bib57
  article-title: Tension directly stabilizes reconstituted kinetochore-microtubule attachments
  publication-title: Nature
– volume: 30
  start-page: 4491
  year: 2020
  end-page: 4499.e5
  ident: bib18
  article-title: Cdk1 phosphorylation of the Dam1 complex strengthens kinetochore-microtubule attachments
  publication-title: Curr. Biol.
– volume: 307
  start-page: 130
  year: 2005
  end-page: 133
  ident: bib77
  article-title: The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes
  publication-title: Science
– volume: 273
  start-page: 953
  year: 1996
  end-page: 956
  ident: bib65
  article-title: Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption
  publication-title: Science
– volume: 6
  start-page: 917
  year: 2009
  end-page: 922
  ident: bib99
  article-title: An auxin-based degron system for the rapid depletion of proteins in nonplant cells
  publication-title: Nat. Methods
– volume: 32
  start-page: 5200
  year: 2022
  end-page: 5208.e8
  ident: bib38
  article-title: MPS1 localizes to end-on microtubule-attached kinetochores to promote microtubule release
  publication-title: Curr. Biol.
– volume: 348
  start-page: 1260
  year: 2015
  end-page: 1264
  ident: bib43
  article-title: CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C
  publication-title: Science
– volume: 348
  start-page: 1264
  year: 2015
  end-page: 1267
  ident: bib42
  article-title: CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
  publication-title: Science
– volume: 13
  start-page: 1979
  year: 2003
  end-page: 1984
  ident: bib96
  article-title: Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes
  publication-title: Curr. Biol.
– volume: 266
  start-page: 115
  year: 2001
  ident: 10.1016/j.cub.2024.04.054_bib67
  article-title: Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae
  publication-title: Mol. Genet. Genomics.
  doi: 10.1007/s004380100533
– volume: 10
  year: 2014
  ident: 10.1016/j.cub.2024.04.054_bib76
  article-title: Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004411
– volume: 221
  year: 2022
  ident: 10.1016/j.cub.2024.04.054_bib21
  article-title: Three interacting regions of the Ndc80 and Dam1 complexes support microtubule tip-coupling under load
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202107016
– volume: 6
  start-page: 1599
  year: 1996
  ident: 10.1016/j.cub.2024.04.054_bib55
  article-title: GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)70783-5
– volume: 17
  start-page: 700
  year: 2001
  ident: 10.1016/j.cub.2024.04.054_bib102
  article-title: AL2CO: calculation of positional conservation in a protein sequence alignment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.8.700
– volume: 348
  start-page: 1264
  year: 2015
  ident: 10.1016/j.cub.2024.04.054_bib42
  article-title: CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
  publication-title: Science
  doi: 10.1126/science.aaa4055
– volume: 189
  start-page: 41
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib58
  article-title: N-terminal regions of Mps1 kinase determine functional bifurcation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200910027
– volume: 6
  start-page: 5
  year: 2017
  ident: 10.1016/j.cub.2024.04.054_bib1
  article-title: A molecular view of kinetochore assembly and function
  publication-title: Biology
  doi: 10.3390/biology6010005
– volume: 19
  start-page: 679
  year: 2022
  ident: 10.1016/j.cub.2024.04.054_bib82
  article-title: ColabFold: making protein folding accessible to all
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01488-1
– volume: 17
  start-page: 2175
  year: 2007
  ident: 10.1016/j.cub.2024.04.054_bib35
  article-title: Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.11.032
– volume: 6
  start-page: 917
  year: 2009
  ident: 10.1016/j.cub.2024.04.054_bib99
  article-title: An auxin-based degron system for the rapid depletion of proteins in nonplant cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1401
– volume: 19
  start-page: 1161
  year: 2012
  ident: 10.1016/j.cub.2024.04.054_bib16
  article-title: Multimodal microtubule binding by the Ndc80 kinetochore complex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2411
– volume: 22
  start-page: 900
  year: 2012
  ident: 10.1016/j.cub.2024.04.054_bib53
  article-title: Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.03.052
– volume: 382
  start-page: 1184
  year: 2023
  ident: 10.1016/j.cub.2024.04.054_bib22
  article-title: Structural mechanism of outer kinetochore Dam1-Ndc80 complex assembly on microtubules
  publication-title: Science
  doi: 10.1126/science.adj8736
– volume: 313
  start-page: 680
  year: 2006
  ident: 10.1016/j.cub.2024.04.054_bib66
  article-title: Anaphase inactivation of the spindle checkpoint
  publication-title: Science
  doi: 10.1126/science.1127205
– volume: 189
  start-page: 641
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib70
  article-title: The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200912021
– volume: 22
  start-page: 759
  year: 2011
  ident: 10.1016/j.cub.2024.04.054_bib15
  article-title: The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-08-0671
– volume: 8
  year: 2019
  ident: 10.1016/j.cub.2024.04.054_bib24
  article-title: Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling
  publication-title: eLife
– volume: 9
  start-page: 1295
  year: 2017
  ident: 10.1016/j.cub.2024.04.054_bib23
  article-title: Unique phylogenetic distributions of the Ska and Dam1 complexes support functional analogy and suggest multiple parallel displacements of Ska by Dam1
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evx088
– volume: 8
  start-page: 78
  year: 2006
  ident: 10.1016/j.cub.2024.04.054_bib54
  article-title: The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1341
– volume: 220
  year: 2021
  ident: 10.1016/j.cub.2024.04.054_bib31
  article-title: Kinetochore-bound Mps1 regulates kinetochore-microtubule attachments via Ndc80 phosphorylation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202106130
– volume: 9
  year: 2020
  ident: 10.1016/j.cub.2024.04.054_bib41
  article-title: chTOG is a conserved mitotic error correction factor
  publication-title: eLife
  doi: 10.7554/eLife.61773
– volume: 56
  start-page: 619
  year: 1989
  ident: 10.1016/j.cub.2024.04.054_bib86
  article-title: Elevated recombination rates in transcriptionally active DNA
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90584-9
– volume: 348
  start-page: 1260
  year: 2015
  ident: 10.1016/j.cub.2024.04.054_bib43
  article-title: CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C
  publication-title: Science
  doi: 10.1126/science.aaa4029
– volume: 194
  start-page: 281
  year: 1991
  ident: 10.1016/j.cub.2024.04.054_bib88
  article-title: Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(91)94022-5
– year: 2024
  ident: 10.1016/j.cub.2024.04.054_bib59
  article-title: Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2024.03.062
– volume: 192
  start-page: 753
  year: 2012
  ident: 10.1016/j.cub.2024.04.054_bib71
  article-title: A redundant function for the N-terminal tail of Ndc80 in kinetochore-microtubule interaction in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.112.143818
– volume: 17
  start-page: 101
  year: 2003
  ident: 10.1016/j.cub.2024.04.054_bib5
  article-title: The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity
  publication-title: Genes Dev.
  doi: 10.1101/gad.1040903
– volume: 14
  start-page: 746
  year: 2012
  ident: 10.1016/j.cub.2024.04.054_bib46
  article-title: MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2515
– volume: 190
  start-page: 89
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib34
  article-title: Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201001050
– volume: 18
  start-page: 1785
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib13
  article-title: Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1)
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.11.007
– volume: 24
  start-page: 543
  year: 2023
  ident: 10.1016/j.cub.2024.04.054_bib3
  article-title: Principles and dynamics of spindle assembly checkpoint signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-023-00593-z
– volume: 29
  start-page: 479
  year: 2018
  ident: 10.1016/j.cub.2024.04.054_bib63
  article-title: Mps1 promotes chromosome meiotic chromosome biorientation through Dam1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E17-08-0503
– volume: 323
  start-page: 1350
  year: 2009
  ident: 10.1016/j.cub.2024.04.054_bib78
  article-title: Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates
  publication-title: Science
  doi: 10.1126/science.1167000
– volume: 375
  start-page: 376
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib93
  article-title: A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2007.12.013
– volume: 9
  start-page: 759
  year: 1998
  ident: 10.1016/j.cub.2024.04.054_bib61
  article-title: New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.9.4.759
– volume: 16
  start-page: 1489
  year: 2006
  ident: 10.1016/j.cub.2024.04.054_bib62
  article-title: Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.06.063
– volume: 28
  start-page: 1291
  year: 2014
  ident: 10.1016/j.cub.2024.04.054_bib75
  article-title: Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation
  publication-title: Genes Dev.
  doi: 10.1101/gad.240291.114
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.cub.2024.04.054_bib81
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 12
  start-page: 407
  year: 2011
  ident: 10.1016/j.cub.2024.04.054_bib10
  article-title: A blueprint for kinetochores - new insights into the molecular mechanics of cell division
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3133
– volume: 218
  start-page: 3188
  year: 2019
  ident: 10.1016/j.cub.2024.04.054_bib48
  article-title: Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201905026
– volume: 273
  start-page: 953
  year: 1996
  ident: 10.1016/j.cub.2024.04.054_bib65
  article-title: Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption
  publication-title: Science
  doi: 10.1126/science.273.5277.953
– volume: 17
  start-page: 1915
  year: 2016
  ident: 10.1016/j.cub.2024.04.054_bib49
  article-title: Conserved tetramer junction in the kinetochore Ndc80 complex
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.10.065
– volume: 6
  year: 2017
  ident: 10.1016/j.cub.2024.04.054_bib20
  article-title: The Ndc80 complex bridges two Dam1 complex rings
  publication-title: eLife
  doi: 10.7554/eLife.21069
– volume: 190
  start-page: 73
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib37
  article-title: Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201001036
– volume: 468
  start-page: 576
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib57
  article-title: Tension directly stabilizes reconstituted kinetochore-microtubule attachments
  publication-title: Nature
  doi: 10.1038/nature09594
– volume: 6
  start-page: 343
  year: 2009
  ident: 10.1016/j.cub.2024.04.054_bib94
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1318
– volume: 13
  start-page: 1979
  year: 2003
  ident: 10.1016/j.cub.2024.04.054_bib96
  article-title: Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.10.057
– volume: 14
  start-page: 54
  year: 2007
  ident: 10.1016/j.cub.2024.04.054_bib11
  article-title: The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1186
– volume: 189
  start-page: 713
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib17
  article-title: Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200910142
– volume: 467
  start-page: 805
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib6
  article-title: The Ndc80 kinetochore complex forms oligomeric arrays along microtubules
  publication-title: Nature
  doi: 10.1038/nature09423
– volume: 30
  start-page: 4491
  year: 2020
  ident: 10.1016/j.cub.2024.04.054_bib18
  article-title: Cdk1 phosphorylation of the Dam1 complex strengthens kinetochore-microtubule attachments
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.08.054
– volume: 165
  start-page: 1428
  year: 2016
  ident: 10.1016/j.cub.2024.04.054_bib39
  article-title: A TOG protein confers tension sensitivity to kinetochore-microtubule attachments
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.030
– volume: 182
  start-page: 1055
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib9
  article-title: Orientation and structure of the Ndc80 complex on the microtubule lattice
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200804170
– volume: 102
  start-page: 5363
  year: 2005
  ident: 10.1016/j.cub.2024.04.054_bib8
  article-title: Molecular organization of the Ndc80 complex, an essential kinetochore component
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0501168102
– volume: 112
  start-page: 195
  year: 1981
  ident: 10.1016/j.cub.2024.04.054_bib100
  article-title: “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(81)90281-5
– volume: 183
  start-page: 1591
  year: 2009
  ident: 10.1016/j.cub.2024.04.054_bib27
  article-title: Analysis of Ipl1-mediated phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.109.109041
– volume: 152
  start-page: 349
  year: 2001
  ident: 10.1016/j.cub.2024.04.054_bib4
  article-title: The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.2.349
– volume: 13
  year: 2023
  ident: 10.1016/j.cub.2024.04.054_bib19
  article-title: Structure of the Ndc80 complex and its interactions at the yeast kinetochore-microtubule interface
  publication-title: Open Biol.
  doi: 10.1098/rsob.220378
– volume: 24
  start-page: 145
  year: 1992
  ident: 10.1016/j.cub.2024.04.054_bib101
  article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979
  publication-title: Biotechnology
– volume: 22
  start-page: 1217
  year: 2011
  ident: 10.1016/j.cub.2024.04.054_bib14
  article-title: The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-07-0626
– volume: 10
  year: 2021
  ident: 10.1016/j.cub.2024.04.054_bib40
  article-title: Structural basis of Stu2 recruitment to yeast kinetochores
  publication-title: eLife
  doi: 10.7554/eLife.65389
– volume: 27
  start-page: 137
  year: 2017
  ident: 10.1016/j.cub.2024.04.054_bib47
  article-title: Generation of a spindle checkpoint arrest from synthetic signaling assemblies
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.11.014
– volume: 14
  start-page: 953
  year: 1998
  ident: 10.1016/j.cub.2024.04.054_bib91
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
– volume: 116
  start-page: 17355
  year: 2019
  ident: 10.1016/j.cub.2024.04.054_bib69
  article-title: Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1901653116
– volume: 131
  year: 2018
  ident: 10.1016/j.cub.2024.04.054_bib2
  article-title: The kinetochore-microtubule interface at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.214577
– volume: 50
  start-page: W276
  year: 2022
  ident: 10.1016/j.cub.2024.04.054_bib84
  article-title: Search and sequence analysis tools services from EMBL-EBI in 2022
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac240
– volume: 32
  start-page: 703
  year: 2015
  ident: 10.1016/j.cub.2024.04.054_bib90
  article-title: New cassettes for single-step drug resistance and prototrophic marker switching in fission yeast
  publication-title: Yeast
  doi: 10.1002/yea.3097
– volume: 190
  start-page: 25
  year: 2010
  ident: 10.1016/j.cub.2024.04.054_bib33
  article-title: Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201002133
– volume: 25
  start-page: 1189
  year: 2009
  ident: 10.1016/j.cub.2024.04.054_bib85
  article-title: Jalview Version 2--a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp033
– volume: 21
  year: 2020
  ident: 10.1016/j.cub.2024.04.054_bib32
  article-title: A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202050257
– volume: 22
  start-page: 1473
  year: 2011
  ident: 10.1016/j.cub.2024.04.054_bib72
  article-title: Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-08-0673
– volume: 3
  year: 2007
  ident: 10.1016/j.cub.2024.04.054_bib73
  article-title: Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030213
– volume: 127
  start-page: 983
  year: 2006
  ident: 10.1016/j.cub.2024.04.054_bib28
  article-title: The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.039
– volume: 132
  start-page: 233
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib44
  article-title: Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.046
– volume: 164
  start-page: 535
  year: 2004
  ident: 10.1016/j.cub.2024.04.054_bib51
  article-title: Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200308100
– volume: 339
  start-page: 1071
  year: 2013
  ident: 10.1016/j.cub.2024.04.054_bib36
  article-title: Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast
  publication-title: Science
  doi: 10.1126/science.1232518
– volume: 27
  start-page: 14
  year: 2018
  ident: 10.1016/j.cub.2024.04.054_bib80
  article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 133
  start-page: 427
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib7
  article-title: Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.020
– volume: 17
  start-page: 868
  year: 2015
  ident: 10.1016/j.cub.2024.04.054_bib64
  article-title: The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3179
– volume: 32
  start-page: 5200
  year: 2022
  ident: 10.1016/j.cub.2024.04.054_bib38
  article-title: MPS1 localizes to end-on microtubule-attached kinetochores to promote microtubule release
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2022.10.047
– volume: 194
  start-page: 3
  year: 1991
  ident: 10.1016/j.cub.2024.04.054_bib89
  article-title: Getting started with yeast
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(91)94004-V
– volume: 115
  start-page: 2740
  year: 2018
  ident: 10.1016/j.cub.2024.04.054_bib25
  article-title: Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1718553115
– volume: 8
  start-page: 91
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib92
  article-title: An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-8-91
– volume: 103
  start-page: 375
  year: 2000
  ident: 10.1016/j.cub.2024.04.054_bib97
  article-title: Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00130-6
– volume: 196
  start-page: 451
  year: 2012
  ident: 10.1016/j.cub.2024.04.054_bib52
  article-title: Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201110013
– volume: 13
  start-page: 532
  year: 1999
  ident: 10.1016/j.cub.2024.04.054_bib95
  article-title: The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.5.532
– volume: 41
  start-page: 143
  year: 2017
  ident: 10.1016/j.cub.2024.04.054_bib26
  article-title: Mps1 regulates kinetochore-microtubule attachment stability via the Ska complex to ensure error-free chromosome segregation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.03.025
– year: 2024
  ident: 10.1016/j.cub.2024.04.054_bib60
  article-title: A communication hub for phosphoregulation of kinetochore-microtubule attachment
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2024.04.067
– volume: 13
  start-page: 2152
  year: 2022
  ident: 10.1016/j.cub.2024.04.054_bib79
  article-title: Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29542-8
– volume: 31
  start-page: 925
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib98
  article-title: The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.07.020
– year: 1974
  ident: 10.1016/j.cub.2024.04.054_bib87
– volume: 10
  year: 2015
  ident: 10.1016/j.cub.2024.04.054_bib74
  article-title: Role of intrinsic and extrinsic factors in the regulation of the mitotic checkpoint kinase Bub1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144673
– volume: 14
  start-page: 8282
  year: 1994
  ident: 10.1016/j.cub.2024.04.054_bib50
  article-title: The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase
  publication-title: Mol. Cell Biol.
– volume: 307
  start-page: 130
  year: 2005
  ident: 10.1016/j.cub.2024.04.054_bib77
  article-title: The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes
  publication-title: Science
  doi: 10.1126/science.1101366
– volume: 15
  start-page: 160
  year: 2005
  ident: 10.1016/j.cub.2024.04.054_bib45
  article-title: Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.01.010
– volume: 30
  start-page: 3862
  year: 2020
  ident: 10.1016/j.cub.2024.04.054_bib56
  article-title: A biosensor for the mitotic kinase MPS1 reveals spatiotemporal activity dynamics and regulation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.07.062
– volume: 127
  start-page: 969
  year: 2006
  ident: 10.1016/j.cub.2024.04.054_bib29
  article-title: Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.047
– volume: 25
  start-page: 3389
  year: 1997
  ident: 10.1016/j.cub.2024.04.054_bib83
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.17.3389
– volume: 18
  start-page: 1778
  year: 2008
  ident: 10.1016/j.cub.2024.04.054_bib12
  article-title: Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.08.012
– volume: 8
  year: 2018
  ident: 10.1016/j.cub.2024.04.054_bib68
  article-title: Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis
  publication-title: Open Biol.
  doi: 10.1098/rsob.180109
– volume: 28
  start-page: 1099
  year: 2009
  ident: 10.1016/j.cub.2024.04.054_bib30
  article-title: Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.62
– reference: 38834024 - Curr Biol. 2024 Jun 3;34(11):R530-R533. doi: 10.1016/j.cub.2024.04.070.
– reference: 37986816 - bioRxiv. 2023 Nov 07:2023.11.07.566082. doi: 10.1101/2023.11.07.566082.
SSID ssj0012896
Score 2.5005257
Snippet Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2294
SubjectTerms bi-orientation
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Chromosome Segregation
Dam1 complex
kinetochore
Kinetochores - metabolism
Mps1
Ndc80 complex
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nuf2
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
SAC
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
spindle assembly checkpoint
Title A conserved site on Ndc80 complex facilitates dynamic recruitment of Mps1 to yeast kinetochores to promote accurate chromosome segregation
URI https://dx.doi.org/10.1016/j.cub.2024.04.054
https://www.ncbi.nlm.nih.gov/pubmed/38776906
https://www.proquest.com/docview/3059258706
https://pubmed.ncbi.nlm.nih.gov/PMC11178286
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiDfLozISJ6RoU8eJ7eNSUVVU7QGo2FsUj226PJLVJkH0L_CrmXGSFQuiB6Rc4tiS5bHnkfn8DWMvjfGiEocucd5liSx8keAuMQlICEZq67JYDObsvDi5kG-X-XKPHU13YQhWOer-QadHbT22zMfVnK9Xq_n7SJZG9k3Sv814_TqTOl7iW77eZhIwoIj5SuycUO8psxkxXtBbDBGFjGynufyXbfrb9_wTQvmbTTq-w26PziRfDPO9y_Z8fY_dHMpLXt1nPxccCCy9-e4dpywxb2p-7kCnPCLJ_Q8eKhhoun3L3VCcnuN6bPpVRJ_zJvCzdXvIu4ZfUZUf_gW90q5BnYlhOrWuI5zP8wqgJ9YJDpfU0jbfPG89BvOfougfsIvjNx-OTpKx9gJKKRddAoW2KhfeobsDApRTVvkCCpMHm_oMMCDXAM4qYxxGcCEL2hJPjMxDJTXo7CHbr5vaP2ZcgxISNHo2TsvgRAXGWqsK51JQIVUzlk6rXsJITE71Mb6WEwLtc4mCKklQZYpPLmfs1XbIemDluK6znERZ7mytEq3GdcNeTGIv8chRHqWqfdO3JapII3JKEM_Yo2EbbGeRaaWI-3nG9M4G2XYgOu_dL_XqMtJ6o9VRdKn_yf_N9ym7RW8RxpY9Y_vdpvfP0WHq7AG7sTh99_H0IJ6MXwB3GWU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxJvlaSROSNGmiRM7x1JRbaG7F1ppb1Y8tukWSFabBNG_wK9mxklWLIgekHLyQ7I89jwyn79h7E1RuKRMDmxknU0jkbs8wlNSRCDAF0IZm4ZiMPNFPjsXH5bZco8djW9hCFY56P5epwdtPbRMh92crler6adAlkb2TdC_TXp-fQO9AUm382T5bptKwIgiJCxxdETDx9RmAHlBZzBGTESgO83Ev4zT387nnxjK34zS8V12Z_Am-WG_4Htsz1X32c2-vuTVA_bzkAOhpTffneWUJuZ1xRcWVMwDlNz94L6EnqfbNdz21ek5bsimWwX4Oa89n6-bA97W_IrK_PAv6Ja2NSpNjNOpdR3wfI6XAB3RTnC4oJam_uZ44zCa_xxk_5CdH78_O5pFQ_EFFFOWtBHkysgscRb9HUhAWmmkyyEvMm9ilwJG5ArAGlkUFkM4n3pliChGZL4UClT6iO1XdeWeMK5AJgIUujZWCW-TEgpjjMytjUH6WE5YPO66hoGZnApkfNUjBO1So6A0CUrH-GViwt5up6x7Wo7rBotRlHrnbGk0G9dNez2KXeOdo0RKWbm6azTqyCLJKEM8YY_7Y7BdRaqkJPLnCVM7B2Q7gPi8d3uq1UXg9UazI-lV_9P_W-8rdmt2Nj_VpyeLj8_YbeoJmLb0OdtvN517gd5Ta16G2_ELRsca4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conserved+site+on+Ndc80+complex+facilitates+dynamic+recruitment+of+Mps1+to+yeast+kinetochores+to+promote+accurate+chromosome+segregation&rft.jtitle=Current+biology&rft.au=Parnell%2C+Emily+J.&rft.au=Jenson%2C+Erin+E.&rft.au=Miller%2C+Matthew+P.&rft.date=2024-06-03&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=34&rft.issue=11&rft.spage=2294&rft.epage=2307.e4&rft_id=info:doi/10.1016%2Fj.cub.2024.04.054&rft.externalDocID=S0960982224005281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon