A conserved site on Ndc80 complex facilitates dynamic recruitment of Mps1 to yeast kinetochores to promote accurate chromosome segregation
Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the...
Saved in:
Published in | Current biology Vol. 34; no. 11; pp. 2294 - 2307.e4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
03.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other’s function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2’s CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this “interaction hub” exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.
[Display omitted]
•Two segments of Nuf2’s CH domain recruit the Mps1 kinase to kinetochores•Other factors, including the Dam1 complex, also bind this “interaction hub”•Kinetochore-bound Mps1 promotes recruitment of the Dam1 complex•Association of Mps1 with the hub is essential for bi-orientation and cell viability
Parnell et al. identify an “interaction hub” in the Ndc80 complex via mutational analysis in yeast, which associates with both Mps1 and Dam1 complex. Mutants at this site show inviability due to severe defects in bi-orientation and chromosome segregation; however, restoring Mps1-Ndc80c association rescues viability, highlighting its critical role. |
---|---|
AbstractList | Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation. Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other’s function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2’s CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this “interaction hub” exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation. [Display omitted] •Two segments of Nuf2’s CH domain recruit the Mps1 kinase to kinetochores•Other factors, including the Dam1 complex, also bind this “interaction hub”•Kinetochore-bound Mps1 promotes recruitment of the Dam1 complex•Association of Mps1 with the hub is essential for bi-orientation and cell viability Parnell et al. identify an “interaction hub” in the Ndc80 complex via mutational analysis in yeast, which associates with both Mps1 and Dam1 complex. Mutants at this site show inviability due to severe defects in bi-orientation and chromosome segregation; however, restoring Mps1-Ndc80c association rescues viability, highlighting its critical role. Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bioriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules, but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact, and regulate each other’s function, remains unknown – considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2’s CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain comprised of two segments in Nuf2’s CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this “interaction hub” exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore biorientation and accurate chromosome segregation. Parnell et al. identify an ‘interaction hub’ in the Ndc80 complex via mutational analysis in yeast, which associates with both Mps1 and Dam1 complex. Mutants at this site show inviability due to severe defects in biorientation and chromosome segregation; however, restoring Mps1-Ndc80c association rescues viability, highlighting its critical role. Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation. |
Author | Miller, Matthew P. Jenson, Erin E. Parnell, Emily J. |
Author_xml | – sequence: 1 givenname: Emily J. surname: Parnell fullname: Parnell, Emily J. organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – sequence: 2 givenname: Erin E. surname: Jenson fullname: Jenson, Erin E. organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – sequence: 3 givenname: Matthew P. orcidid: 0000-0003-2012-7546 surname: Miller fullname: Miller, Matthew P. email: matthew.miller@biochem.utah.edu organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38776906$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1vEzEQXaEimhZ-ABfkI5cE27te2-KAqgoKUoELnC3v7GzisGsH2xuRv8CvrqO0CDhUGsnS-H1o3ruoznzwWFUvGV0xyto32xXM3YpT3qxoGdE8qRZMSb2kTSPOqgXVLV1qxfl5dZHSllLGlW6fVee1krLVtF1Uv68IBJ8w7rEnyWUkwZMvPSha9tNuxF9ksOBGl23GRPqDt5MDEhHi7PKEPpMwkM-7xEgO5IA2ZfLDecwBNiEWRtnuYphCUbYAcywyBDbHTQoTkoTriGubXfDPq6eDHRO-uH8vq-8f3n-7_ri8_Xrz6frqdgmN4HkJreqk4NgzoYGD7GUnsYVWi6GjWAN2XAH0ndS6540e6kF1gqu6EYNtFKj6snp30t3N3YQ9lBuiHc0uusnGgwnWmX9_vNuYddgbxphUXLVF4fW9Qgw_Z0zZTC4BjqP1GOZkaio0F0rSI_TV32Z_XB4aKAB5AkAMKUUcDByzLnkUbzcaRs2xa7M1pWtz7NrQMqIpTPYf80H8Mc7bEwdLwHuH0SRw6AF7VyrNpg_uEfYdBF_F-w |
CitedBy_id | crossref_primary_10_1016_j_cub_2024_03_062 crossref_primary_10_1016_j_cub_2024_04_070 crossref_primary_10_1016_j_cub_2024_04_067 crossref_primary_10_1016_j_tibs_2025_02_005 |
Cites_doi | 10.1007/s004380100533 10.1371/journal.pgen.1004411 10.1083/jcb.202107016 10.1016/S0960-9822(02)70783-5 10.1093/bioinformatics/17.8.700 10.1126/science.aaa4055 10.1083/jcb.200910027 10.3390/biology6010005 10.1038/s41592-022-01488-1 10.1016/j.cub.2007.11.032 10.1038/nmeth.1401 10.1038/nsmb.2411 10.1016/j.cub.2012.03.052 10.1126/science.adj8736 10.1126/science.1127205 10.1083/jcb.200912021 10.1091/mbc.e10-08-0671 10.1093/gbe/evx088 10.1038/ncb1341 10.1083/jcb.202106130 10.7554/eLife.61773 10.1016/0092-8674(89)90584-9 10.1126/science.aaa4029 10.1016/0076-6879(91)94022-5 10.1016/j.cub.2024.03.062 10.1534/genetics.112.143818 10.1101/gad.1040903 10.1038/ncb2515 10.1083/jcb.201001050 10.1016/j.cub.2008.11.007 10.1038/s41580-023-00593-z 10.1091/mbc.E17-08-0503 10.1126/science.1167000 10.1016/j.ab.2007.12.013 10.1091/mbc.9.4.759 10.1016/j.cub.2006.06.063 10.1101/gad.240291.114 10.1038/nmeth.2019 10.1038/nrm3133 10.1083/jcb.201905026 10.1126/science.273.5277.953 10.1016/j.celrep.2016.10.065 10.7554/eLife.21069 10.1083/jcb.201001036 10.1038/nature09594 10.1038/nmeth.1318 10.1016/j.cub.2003.10.057 10.1038/nsmb1186 10.1083/jcb.200910142 10.1038/nature09423 10.1016/j.cub.2020.08.054 10.1016/j.cell.2016.04.030 10.1083/jcb.200804170 10.1073/pnas.0501168102 10.1016/0003-2697(81)90281-5 10.1534/genetics.109.109041 10.1083/jcb.152.2.349 10.1098/rsob.220378 10.1091/mbc.e10-07-0626 10.7554/eLife.65389 10.1016/j.cub.2016.11.014 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 10.1073/pnas.1901653116 10.1242/jcs.214577 10.1093/nar/gkac240 10.1002/yea.3097 10.1083/jcb.201002133 10.1093/bioinformatics/btp033 10.15252/embr.202050257 10.1091/mbc.e10-08-0673 10.1371/journal.pgen.0030213 10.1016/j.cell.2006.09.039 10.1016/j.cell.2007.11.046 10.1083/jcb.200308100 10.1126/science.1232518 10.1002/pro.3235 10.1016/j.cell.2008.03.020 10.1038/ncb3179 10.1016/j.cub.2022.10.047 10.1016/0076-6879(91)94004-V 10.1073/pnas.1718553115 10.1186/1472-6750-8-91 10.1016/S0092-8674(00)00130-6 10.1083/jcb.201110013 10.1101/gad.13.5.532 10.1016/j.devcel.2017.03.025 10.1016/j.cub.2024.04.067 10.1038/s41467-022-29542-8 10.1016/j.molcel.2008.07.020 10.1371/journal.pone.0144673 10.1126/science.1101366 10.1016/j.cub.2005.01.010 10.1016/j.cub.2020.07.062 10.1016/j.cell.2006.09.047 10.1093/nar/25.17.3389 10.1016/j.cub.2008.08.012 10.1098/rsob.180109 10.1038/emboj.2009.62 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cub.2024.04.054 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 2307.e4 |
ExternalDocumentID | PMC11178286 38776906 10_1016_j_cub_2024_04_054 S0960982224005281 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM142749 |
GroupedDBID | --- --K -DZ -~X 0R~ 0SF 1RT 1~5 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAFWJ AAKRW AALRI AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ADBBV ADEZE AEFWE AENEX AFTJW AGHSJ AGKMS AGUBO AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SEW SSZ TR2 29F 2WC 5VS AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKBMS AKYEP APXCP ASPBG AVWKF CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c452t-c68b752ed159c2c7d7b7e6c695fb0e3ceb28ccdb799d249f3f8b528345fa48c83 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 18:25:47 EDT 2025 Fri Jul 11 05:18:41 EDT 2025 Wed Jul 02 01:57:07 EDT 2025 Tue Aug 05 12:03:11 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Sat Aug 10 15:31:08 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Ndc80 complex Dam1 complex SAC chromosome segregation Mps1 Nuf2 spindle assembly checkpoint kinetochore bi-orientation |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-c68b752ed159c2c7d7b7e6c695fb0e3ceb28ccdb799d249f3f8b528345fa48c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS M.M., E.P. and E.J. conceptualized the study. E.P. and E.J. conducted the experiments and prepared the figures, methods and legends. M.M. wrote the manuscript, with assistance from E.P. and E.J. Funding was secured by M.M. |
ORCID | 0000-0003-2012-7546 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11178286 |
PMID | 38776906 |
PQID | 3059258706 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11178286 proquest_miscellaneous_3059258706 pubmed_primary_38776906 crossref_citationtrail_10_1016_j_cub_2024_04_054 crossref_primary_10_1016_j_cub_2024_04_054 elsevier_sciencedirect_doi_10_1016_j_cub_2024_04_054 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-03 |
PublicationDateYYYYMMDD | 2024-06-03 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Miller, Asbury, Biggins (bib39) 2016; 165 Shonn, Murray, Murray (bib96) 2003; 13 Akiyoshi, Sarangapani, Powers, Nelson, Reichow, Arellano-Santoyo, Gonen, Ranish, Asbury, Biggins (bib57) 2010; 468 Lorenz (bib90) 2015; 32 Sundin, Guimaraes, Deluca (bib15) 2011; 22 Yuan, Leontiou, Amin, May, Soper Ní Chafraidh, Zlámalová, Hardwick (bib47) 2017; 27 Meyer, Kim, Obeso, Straight, Winey, Dawson (bib36) 2013; 339 Santaguida, Tighe, D’Alise, Taylor, Musacchio (bib37) 2010; 190 Yamagishi, Yang, Tanno, Watanabe (bib46) 2012; 14 Araki, Gombos, Migueleti, Sivashanmugam, Antony, Schiebel (bib58) 2010; 189 Hayward, Bancroft, Mangat, Alfonso-Pérez, Dugdale, McCarthy, Barr, Gruneberg (bib48) 2019; 218 Maciejowski, Drechsler, Grundner-Culemann, Ballister, Rodriguez-Rodriguez, Rodriguez-Bravo, Jones, Foley, Lampson, Daub (bib26) 2017; 41 Herman, Miller, Biggins (bib41) 2020; 9 Alushin, Musinipally, Matson, Tooley, Stukenberg, Nogales (bib16) 2012; 19 Zahm, Stewart, Carrier, Harrison, Miller (bib40) 2021; 10 Nishimura, Fukagawa, Takisawa, Kakimoto, Kanemaki (bib99) 2009; 6 Aravamudhan, Goldfarb, Joglekar (bib64) 2015; 17 Uhlmann, Wernic, Poupart, Koonin, Nasmyth (bib97) 2000; 103 Hewitt, Tighe, Santaguida, White, Jones, Musacchio, Green, Taylor (bib33) 2010; 190 Hayward, Roberts, Gruneberg (bib38) 2022; 32 Pleuger, Cozma, Hohoff, Denkhaus, Dudziak, Kaschani, Kaiser, Musacchio, Vetter, Westermann (bib59) 2024 Zahm, Harrison (bib60) 2024 Schutz, Winey (bib61) 1998; 9 Jones, Huneycutt, Pearson, Zhang, Morgan, Shokat, Bloom, Winey (bib45) 2005; 15 Sherman, Fink, Lawrence (bib87) 1974 McCleland, Gardner, Kallio, Daum, Gorbsky, Burke, Stukenberg (bib5) 2003; 17 Gutierrez, Kim, Umbreit, Asbury, Davis, Miller, Biggins (bib18) 2020; 30 Hiruma, Sacristan, Pachis, Adamopoulos, Kuijt, Ubbink, von Castelmur, Perrakis, Kops (bib42) 2015; 348 Longtine, McKenzie, Demarini, Shah, Wach, Brachat, Philippsen, Pringle (bib91) 1998; 14 Storchová, Becker, Talarek, Kögelsberger, Pellman (bib72) 2011; 22 Biggins, Severin, Bhalla, Sassoon, Hyman, Murray (bib95) 1999; 13 Nerusheva, Galander, Fernius, Kelly, Marston (bib75) 2014; 28 Maure, Kitamura, Tanaka (bib35) 2007; 17 Wigge, Kilmartin (bib4) 2001; 152 Muir, Batters, Dendooven, Yang, Zhang, Burt, Barford (bib22) 2023; 382 Tseng, Lin, Wei, Fang (bib93) 2008; 375 Krenn, Wehenkel, Li, Santaguida, Musacchio (bib52) 2012; 196 Lampert, Westermann (bib10) 2011; 12 Jelluma, Brenkman, van den Broek, Cruijsen, van Osch, Lens, Medema, Kops (bib44) 2008; 132 Pachis, Kops (bib68) 2018; 8 Pei, Grishin (bib102) 2001; 17 Musacchio, Desai (bib1) 2017; 6 Fernius, Hardwick (bib73) 2007; 3 Lampert, Hornung, Westermann (bib70) 2010; 189 Kemmler, Stach, Knapp, Ortiz, Pfannstiel, Ruppert, Lechner (bib30) 2009; 28 Benzi, Camasses, Atsunori, Katou, Shirahige, Piatti (bib32) 2020; 21 Breit, Bange, Petrovic, Weir, Müller, Vogt, Musacchio (bib74) 2015; 10 Kim, Zelter, Umbreit, Bollozos, Riffle, Johnson, MacCoss, Asbury, Davis (bib20) 2017; 6 Hardwick, Weiss, Luca, Winey, Murray (bib65) 1996; 273 Cheeseman, Chappie, Wilson-Kubalek, Desai (bib28) 2006; 127 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib81) 2012; 9 Demirel, Keyes, Chaterjee, Remington, Burke (bib71) 2012; 192 Towbin, Staehelin, Gordon (bib101) 1992; 24 Zahm, Jenni, Harrison (bib19) 2023; 13 McAinsh, Kops (bib3) 2023; 24 Alushin, Ramey, Pasqualato, Ball, Grigorieff, Musacchio, Nogales (bib6) 2010; 467 Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib80) 2018; 27 Roberts, Farr, Hoyt (bib50) 1994; 14 Monda, Cheeseman (bib2) 2018; 131 Maciejowski, George, Terret, Zhang, Shokat, Jallepalli (bib34) 2010; 190 Wei, Sorger, Harrison (bib8) 2005; 102 de Regt, Clark, Asbury, Biggins (bib79) 2022; 13 Sherman (bib89) 1991; 194 Gibson, Young, Chuang, Venter, Hutchison, Smith (bib94) 2009; 6 Straight, Belmont, Robinett, Murray (bib55) 1996; 6 Tooley, Miller, Stukenberg (bib14) 2011; 22 Burnette (bib100) 1981; 112 Flores, Peterson, Zelter, Riffle, Asbury, Davis (bib21) 2022; 221 Rothstein (bib88) 1991; 194 Miller, Johnson, Stukenberg (bib13) 2008; 18 Wilson-Kubalek, Cheeseman, Yoshioka, Desai, Milligan (bib9) 2008; 182 Akiyoshi, Nelson, Ranish, Biggins (bib27) 2009; 183 Sarangapani, Koch, Nelson, Asbury, Biggins (bib31) 2021; 220 Palframan, Meehl, Jaspersen, Winey, Murray (bib66) 2006; 313 Ciferri, Pasqualato, Screpanti, Varetti, Santaguida, Dos Reis, Maiolica, Polka, De Luca, De Wulf (bib7) 2008; 133 Liu, Naismith (bib92) 2008; 8 Waterhouse, Procter, Martin, Clamp, Barton (bib85) 2009; 25 Meyer, Brown, Beck, Dawson (bib63) 2018; 29 DeLuca, Gall, Ciferri, Cimini, Musacchio, Salmon (bib29) 2006; 127 Indjeian, Stern, Murray (bib77) 2005; 307 Tien, Umbreit, Gestaut, Franck, Cooper, Wordeman, Gonen, Asbury, Davis (bib17) 2010; 189 Ji, Gao, Yu (bib43) 2015; 348 Mirdita, Schütze, Moriwaki, Heo, Ovchinnikov, Steinegger (bib82) 2022; 19 Haruki, Nishikawa, Laemmli (bib98) 2008; 31 Altschul, Madden, Schäffer, Zhang, Zhang, Miller, Lipman (bib83) 1997; 25 Koch, Opoku, Deng, Barber, Littleton, London, Biggins, Asbury (bib69) 2019; 116 Pinsky, Kung, Shokat, Biggins (bib54) 2006; 8 Wei, Al-Bassam, Harrison (bib11) 2007; 14 van Hooff, Snel, Kops (bib23) 2017; 9 Kuijt, Lambers, Weterings, Ponsioen, Bolhaqueiro, Staijen, Kops (bib56) 2020; 30 Fraschini, Beretta, Lucchini, Piatti (bib67) 2001; 266 Peplowska, Wallek, Storchova (bib76) 2014; 10 Shimogawa, Graczyk, Gardner, Francis, White, Ess, Molk, Ruse, Niessen, Yates (bib62) 2006; 16 Liu, Vader, Vromans, Lampson, Lens (bib78) 2009; 323 Helgeson, Zelter, Riffle, MacCoss, Asbury, Davis (bib25) 2018; 115 Huis In ’t Veld, Volkov, Stender, Musacchio, Dogterom (bib24) 2019; 8 Guimaraes, Dong, McEwen, Deluca (bib12) 2008; 18 Madeira, Pearce, Tivey, Basutkar, Lee, Edbali, Madhusoodanan, Kolesnikov, Lopez (bib84) 2022; 50 Valverde, Ingram, Harrison (bib49) 2016; 17 London, Ceto, Ranish, Biggins (bib53) 2012; 22 Gillett, Espelin, Sorger (bib51) 2004; 164 Thomas, Rothstein (bib86) 1989; 56 Liu (10.1016/j.cub.2024.04.054_bib78) 2009; 323 Zahm (10.1016/j.cub.2024.04.054_bib40) 2021; 10 Gibson (10.1016/j.cub.2024.04.054_bib94) 2009; 6 Peplowska (10.1016/j.cub.2024.04.054_bib76) 2014; 10 Hayward (10.1016/j.cub.2024.04.054_bib38) 2022; 32 Wilson-Kubalek (10.1016/j.cub.2024.04.054_bib9) 2008; 182 Shonn (10.1016/j.cub.2024.04.054_bib96) 2003; 13 Hiruma (10.1016/j.cub.2024.04.054_bib42) 2015; 348 Straight (10.1016/j.cub.2024.04.054_bib55) 1996; 6 Maciejowski (10.1016/j.cub.2024.04.054_bib26) 2017; 41 Hewitt (10.1016/j.cub.2024.04.054_bib33) 2010; 190 Gillett (10.1016/j.cub.2024.04.054_bib51) 2004; 164 Uhlmann (10.1016/j.cub.2024.04.054_bib97) 2000; 103 Burnette (10.1016/j.cub.2024.04.054_bib100) 1981; 112 Alushin (10.1016/j.cub.2024.04.054_bib16) 2012; 19 Araki (10.1016/j.cub.2024.04.054_bib58) 2010; 189 Lorenz (10.1016/j.cub.2024.04.054_bib90) 2015; 32 Gutierrez (10.1016/j.cub.2024.04.054_bib18) 2020; 30 Breit (10.1016/j.cub.2024.04.054_bib74) 2015; 10 Hayward (10.1016/j.cub.2024.04.054_bib48) 2019; 218 van Hooff (10.1016/j.cub.2024.04.054_bib23) 2017; 9 Sarangapani (10.1016/j.cub.2024.04.054_bib31) 2021; 220 Sundin (10.1016/j.cub.2024.04.054_bib15) 2011; 22 Storchová (10.1016/j.cub.2024.04.054_bib72) 2011; 22 Aravamudhan (10.1016/j.cub.2024.04.054_bib64) 2015; 17 Fernius (10.1016/j.cub.2024.04.054_bib73) 2007; 3 London (10.1016/j.cub.2024.04.054_bib53) 2012; 22 Ciferri (10.1016/j.cub.2024.04.054_bib7) 2008; 133 Zahm (10.1016/j.cub.2024.04.054_bib60) 2024 Kim (10.1016/j.cub.2024.04.054_bib20) 2017; 6 Miller (10.1016/j.cub.2024.04.054_bib39) 2016; 165 Madeira (10.1016/j.cub.2024.04.054_bib84) 2022; 50 McCleland (10.1016/j.cub.2024.04.054_bib5) 2003; 17 Jelluma (10.1016/j.cub.2024.04.054_bib44) 2008; 132 Ji (10.1016/j.cub.2024.04.054_bib43) 2015; 348 Fraschini (10.1016/j.cub.2024.04.054_bib67) 2001; 266 Altschul (10.1016/j.cub.2024.04.054_bib83) 1997; 25 Tien (10.1016/j.cub.2024.04.054_bib17) 2010; 189 DeLuca (10.1016/j.cub.2024.04.054_bib29) 2006; 127 Koch (10.1016/j.cub.2024.04.054_bib69) 2019; 116 Monda (10.1016/j.cub.2024.04.054_bib2) 2018; 131 Meyer (10.1016/j.cub.2024.04.054_bib36) 2013; 339 Musacchio (10.1016/j.cub.2024.04.054_bib1) 2017; 6 Krenn (10.1016/j.cub.2024.04.054_bib52) 2012; 196 Shimogawa (10.1016/j.cub.2024.04.054_bib62) 2006; 16 Alushin (10.1016/j.cub.2024.04.054_bib6) 2010; 467 de Regt (10.1016/j.cub.2024.04.054_bib79) 2022; 13 Schutz (10.1016/j.cub.2024.04.054_bib61) 1998; 9 Lampert (10.1016/j.cub.2024.04.054_bib70) 2010; 189 Hardwick (10.1016/j.cub.2024.04.054_bib65) 1996; 273 Huis In ’t Veld (10.1016/j.cub.2024.04.054_bib24) 2019; 8 Pinsky (10.1016/j.cub.2024.04.054_bib54) 2006; 8 Santaguida (10.1016/j.cub.2024.04.054_bib37) 2010; 190 Thomas (10.1016/j.cub.2024.04.054_bib86) 1989; 56 Longtine (10.1016/j.cub.2024.04.054_bib91) 1998; 14 Flores (10.1016/j.cub.2024.04.054_bib21) 2022; 221 Wigge (10.1016/j.cub.2024.04.054_bib4) 2001; 152 Valverde (10.1016/j.cub.2024.04.054_bib49) 2016; 17 Wei (10.1016/j.cub.2024.04.054_bib8) 2005; 102 Benzi (10.1016/j.cub.2024.04.054_bib32) 2020; 21 Kemmler (10.1016/j.cub.2024.04.054_bib30) 2009; 28 Pleuger (10.1016/j.cub.2024.04.054_bib59) 2024 Miller (10.1016/j.cub.2024.04.054_bib13) 2008; 18 McAinsh (10.1016/j.cub.2024.04.054_bib3) 2023; 24 Jones (10.1016/j.cub.2024.04.054_bib45) 2005; 15 Nerusheva (10.1016/j.cub.2024.04.054_bib75) 2014; 28 Pachis (10.1016/j.cub.2024.04.054_bib68) 2018; 8 Tooley (10.1016/j.cub.2024.04.054_bib14) 2011; 22 Pei (10.1016/j.cub.2024.04.054_bib102) 2001; 17 Demirel (10.1016/j.cub.2024.04.054_bib71) 2012; 192 Sherman (10.1016/j.cub.2024.04.054_bib89) 1991; 194 Cheeseman (10.1016/j.cub.2024.04.054_bib28) 2006; 127 Tseng (10.1016/j.cub.2024.04.054_bib93) 2008; 375 Helgeson (10.1016/j.cub.2024.04.054_bib25) 2018; 115 Yuan (10.1016/j.cub.2024.04.054_bib47) 2017; 27 Biggins (10.1016/j.cub.2024.04.054_bib95) 1999; 13 Meyer (10.1016/j.cub.2024.04.054_bib63) 2018; 29 Palframan (10.1016/j.cub.2024.04.054_bib66) 2006; 313 Lampert (10.1016/j.cub.2024.04.054_bib10) 2011; 12 Akiyoshi (10.1016/j.cub.2024.04.054_bib57) 2010; 468 Kuijt (10.1016/j.cub.2024.04.054_bib56) 2020; 30 Guimaraes (10.1016/j.cub.2024.04.054_bib12) 2008; 18 Muir (10.1016/j.cub.2024.04.054_bib22) 2023; 382 Maciejowski (10.1016/j.cub.2024.04.054_bib34) 2010; 190 Liu (10.1016/j.cub.2024.04.054_bib92) 2008; 8 Akiyoshi (10.1016/j.cub.2024.04.054_bib27) 2009; 183 Nishimura (10.1016/j.cub.2024.04.054_bib99) 2009; 6 Maure (10.1016/j.cub.2024.04.054_bib35) 2007; 17 Herman (10.1016/j.cub.2024.04.054_bib41) 2020; 9 Goddard (10.1016/j.cub.2024.04.054_bib80) 2018; 27 Towbin (10.1016/j.cub.2024.04.054_bib101) 1992; 24 Mirdita (10.1016/j.cub.2024.04.054_bib82) 2022; 19 Sherman (10.1016/j.cub.2024.04.054_bib87) 1974 Roberts (10.1016/j.cub.2024.04.054_bib50) 1994; 14 Zahm (10.1016/j.cub.2024.04.054_bib19) 2023; 13 Yamagishi (10.1016/j.cub.2024.04.054_bib46) 2012; 14 Schindelin (10.1016/j.cub.2024.04.054_bib81) 2012; 9 Indjeian (10.1016/j.cub.2024.04.054_bib77) 2005; 307 Haruki (10.1016/j.cub.2024.04.054_bib98) 2008; 31 Wei (10.1016/j.cub.2024.04.054_bib11) 2007; 14 Waterhouse (10.1016/j.cub.2024.04.054_bib85) 2009; 25 Rothstein (10.1016/j.cub.2024.04.054_bib88) 1991; 194 38834024 - Curr Biol. 2024 Jun 3;34(11):R530-R533. doi: 10.1016/j.cub.2024.04.070. 37986816 - bioRxiv. 2023 Nov 07:2023.11.07.566082. doi: 10.1101/2023.11.07.566082. |
References_xml | – volume: 313 start-page: 680 year: 2006 end-page: 684 ident: bib66 article-title: Anaphase inactivation of the spindle checkpoint publication-title: Science – volume: 22 start-page: 1217 year: 2011 end-page: 1226 ident: bib14 article-title: The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement publication-title: Mol. Biol. Cell – volume: 127 start-page: 969 year: 2006 end-page: 982 ident: bib29 article-title: Kinetochore microtubule dynamics and attachment stability are regulated by Hec1 publication-title: Cell – volume: 8 start-page: 78 year: 2006 end-page: 83 ident: bib54 article-title: The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores publication-title: Nat. Cell Biol. – year: 2024 ident: bib59 article-title: Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor publication-title: Curr. Biol. – volume: 194 start-page: 281 year: 1991 end-page: 301 ident: bib88 article-title: Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast publication-title: Methods Enzymol. – volume: 30 start-page: 3862 year: 2020 end-page: 3870.e6 ident: bib56 article-title: A biosensor for the mitotic kinase MPS1 reveals spatiotemporal activity dynamics and regulation publication-title: Curr. Biol. – volume: 8 year: 2018 ident: bib68 article-title: Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis publication-title: Open Biol. – volume: 218 start-page: 3188 year: 2019 end-page: 3199 ident: bib48 article-title: Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 publication-title: J. Cell Biol. – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: bib80 article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 13 start-page: 532 year: 1999 end-page: 544 ident: bib95 article-title: The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast publication-title: Genes Dev. – volume: 102 start-page: 5363 year: 2005 end-page: 5367 ident: bib8 article-title: Molecular organization of the Ndc80 complex, an essential kinetochore component publication-title: Proc. Natl. Acad. Sci. USA – volume: 375 start-page: 376 year: 2008 end-page: 378 ident: bib93 article-title: A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method publication-title: Anal. Biochem. – volume: 183 start-page: 1591 year: 2009 end-page: 1595 ident: bib27 article-title: Analysis of Ipl1-mediated phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae publication-title: Genetics – volume: 164 start-page: 535 year: 2004 end-page: 546 ident: bib51 article-title: Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast publication-title: J. Cell Biol. – volume: 41 start-page: 143 year: 2017 end-page: 156.e6 ident: bib26 article-title: Mps1 regulates kinetochore-microtubule attachment stability via the Ska complex to ensure error-free chromosome segregation publication-title: Dev. Cell – volume: 165 start-page: 1428 year: 2016 end-page: 1439 ident: bib39 article-title: A TOG protein confers tension sensitivity to kinetochore-microtubule attachments publication-title: Cell – volume: 14 start-page: 953 year: 1998 end-page: 961 ident: bib91 article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae publication-title: Yeast – volume: 220 year: 2021 ident: bib31 article-title: Kinetochore-bound Mps1 regulates kinetochore-microtubule attachments via Ndc80 phosphorylation publication-title: J. Cell Biol. – volume: 12 start-page: 407 year: 2011 end-page: 412 ident: bib10 article-title: A blueprint for kinetochores - new insights into the molecular mechanics of cell division publication-title: Nat. Rev. Mol. Cell Biol. – volume: 194 start-page: 3 year: 1991 end-page: 21 ident: bib89 article-title: Getting started with yeast publication-title: Methods Enzymol. – volume: 50 start-page: W276 year: 2022 end-page: W279 ident: bib84 article-title: Search and sequence analysis tools services from EMBL-EBI in 2022 publication-title: Nucleic Acids Res. – volume: 6 start-page: 343 year: 2009 end-page: 345 ident: bib94 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat. Methods – volume: 189 start-page: 641 year: 2010 end-page: 649 ident: bib70 article-title: The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex publication-title: J. Cell Biol. – volume: 131 year: 2018 ident: bib2 article-title: The kinetochore-microtubule interface at a glance publication-title: J. Cell Sci. – volume: 25 start-page: 1189 year: 2009 end-page: 1191 ident: bib85 article-title: Jalview Version 2--a multiple sequence alignment editor and analysis workbench publication-title: Bioinformatics – volume: 115 start-page: 2740 year: 2018 end-page: 2745 ident: bib25 article-title: Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments publication-title: Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 983 year: 2006 end-page: 997 ident: bib28 article-title: The conserved KMN network constitutes the core microtubule-binding site of the kinetochore publication-title: Cell – volume: 8 year: 2019 ident: bib24 article-title: Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling publication-title: eLife – volume: 382 start-page: 1184 year: 2023 end-page: 1190 ident: bib22 article-title: Structural mechanism of outer kinetochore Dam1-Ndc80 complex assembly on microtubules publication-title: Science – volume: 221 year: 2022 ident: bib21 article-title: Three interacting regions of the Ndc80 and Dam1 complexes support microtubule tip-coupling under load publication-title: J. Cell Biol. – volume: 14 start-page: 8282 year: 1994 end-page: 8291 ident: bib50 article-title: The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase publication-title: Mol. Cell Biol. – volume: 182 start-page: 1055 year: 2008 end-page: 1061 ident: bib9 article-title: Orientation and structure of the Ndc80 complex on the microtubule lattice publication-title: J. Cell Biol. – volume: 56 start-page: 619 year: 1989 end-page: 630 ident: bib86 article-title: Elevated recombination rates in transcriptionally active DNA publication-title: Cell – volume: 196 start-page: 451 year: 2012 end-page: 467 ident: bib52 article-title: Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction publication-title: J. Cell Biol. – volume: 192 start-page: 753 year: 2012 end-page: 756 ident: bib71 article-title: A redundant function for the N-terminal tail of Ndc80 in kinetochore-microtubule interaction in Saccharomyces cerevisiae publication-title: Genetics – volume: 133 start-page: 427 year: 2008 end-page: 439 ident: bib7 article-title: Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex publication-title: Cell – volume: 116 start-page: 17355 year: 2019 end-page: 17360 ident: bib69 article-title: Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores publication-title: Proc. Natl. Acad. Sci. USA – volume: 190 start-page: 25 year: 2010 end-page: 34 ident: bib33 article-title: Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex publication-title: J. Cell Biol. – volume: 24 start-page: 145 year: 1992 end-page: 149 ident: bib101 article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979 publication-title: Biotechnology – volume: 323 start-page: 1350 year: 2009 end-page: 1353 ident: bib78 article-title: Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates publication-title: Science – volume: 28 start-page: 1099 year: 2009 end-page: 1110 ident: bib30 article-title: Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling publication-title: EMBO J. – volume: 14 start-page: 746 year: 2012 end-page: 752 ident: bib46 article-title: MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components publication-title: Nat. Cell Biol. – volume: 18 start-page: 1778 year: 2008 end-page: 1784 ident: bib12 article-title: Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1 publication-title: Curr. Biol. – volume: 22 start-page: 900 year: 2012 end-page: 906 ident: bib53 article-title: Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores publication-title: Curr. Biol. – volume: 28 start-page: 1291 year: 2014 end-page: 1309 ident: bib75 article-title: Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation publication-title: Genes Dev. – volume: 14 start-page: 54 year: 2007 end-page: 59 ident: bib11 article-title: The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment publication-title: Nat. Struct. Mol. Biol. – volume: 22 start-page: 759 year: 2011 end-page: 768 ident: bib15 article-title: The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis publication-title: Mol. Biol. Cell – volume: 9 year: 2020 ident: bib41 article-title: chTOG is a conserved mitotic error correction factor publication-title: eLife – volume: 19 start-page: 679 year: 2022 end-page: 682 ident: bib82 article-title: ColabFold: making protein folding accessible to all publication-title: Nat. Methods – volume: 10 year: 2014 ident: bib76 article-title: Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation publication-title: PLoS Genet. – volume: 189 start-page: 713 year: 2010 end-page: 723 ident: bib17 article-title: Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B publication-title: J. Cell Biol. – volume: 190 start-page: 73 year: 2010 end-page: 87 ident: bib37 article-title: Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine publication-title: J. Cell Biol. – volume: 17 start-page: 101 year: 2003 end-page: 114 ident: bib5 article-title: The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity publication-title: Genes Dev. – volume: 24 start-page: 543 year: 2023 end-page: 559 ident: bib3 article-title: Principles and dynamics of spindle assembly checkpoint signalling publication-title: Nat. Rev. Mol. Cell Biol. – volume: 266 start-page: 115 year: 2001 end-page: 125 ident: bib67 article-title: Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae publication-title: Mol. Genet. Genomics. – year: 1974 ident: bib87 article-title: Methods in Yeast Genetics: Laboratory Manual – volume: 25 start-page: 3389 year: 1997 end-page: 3402 ident: bib83 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res. – volume: 13 year: 2023 ident: bib19 article-title: Structure of the Ndc80 complex and its interactions at the yeast kinetochore-microtubule interface publication-title: Open Biol. – volume: 31 start-page: 925 year: 2008 end-page: 932 ident: bib98 article-title: The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes publication-title: Mol. Cell – volume: 21 year: 2020 ident: bib32 article-title: A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint publication-title: EMBO Rep. – volume: 467 start-page: 805 year: 2010 end-page: 810 ident: bib6 article-title: The Ndc80 kinetochore complex forms oligomeric arrays along microtubules publication-title: Nature – volume: 17 start-page: 868 year: 2015 end-page: 879 ident: bib64 article-title: The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling publication-title: Nat. Cell Biol. – volume: 6 year: 2017 ident: bib20 article-title: The Ndc80 complex bridges two Dam1 complex rings publication-title: eLife – volume: 6 start-page: 5 year: 2017 ident: bib1 article-title: A molecular view of kinetochore assembly and function publication-title: Biology – volume: 339 start-page: 1071 year: 2013 end-page: 1074 ident: bib36 article-title: Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast publication-title: Science – volume: 9 start-page: 759 year: 1998 end-page: 774 ident: bib61 article-title: New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication publication-title: Mol. Biol. Cell – year: 2024 ident: bib60 article-title: A communication hub for phosphoregulation of kinetochore-microtubule attachment publication-title: Curr. Biol. – volume: 132 start-page: 233 year: 2008 end-page: 246 ident: bib44 article-title: Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment publication-title: Cell – volume: 3 year: 2007 ident: bib73 article-title: Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis publication-title: PLoS Genet. – volume: 22 start-page: 1473 year: 2011 end-page: 1485 ident: bib72 article-title: Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast publication-title: Mol. Biol. Cell – volume: 17 start-page: 1915 year: 2016 end-page: 1922 ident: bib49 article-title: Conserved tetramer junction in the kinetochore Ndc80 complex publication-title: Cell Rep. – volume: 29 start-page: 479 year: 2018 end-page: 489 ident: bib63 article-title: Mps1 promotes chromosome meiotic chromosome biorientation through Dam1 publication-title: Mol. Biol. Cell – volume: 32 start-page: 703 year: 2015 end-page: 710 ident: bib90 article-title: New cassettes for single-step drug resistance and prototrophic marker switching in fission yeast publication-title: Yeast – volume: 10 year: 2021 ident: bib40 article-title: Structural basis of Stu2 recruitment to yeast kinetochores publication-title: eLife – volume: 190 start-page: 89 year: 2010 end-page: 100 ident: bib34 article-title: Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling publication-title: J. Cell Biol. – volume: 112 start-page: 195 year: 1981 end-page: 203 ident: bib100 article-title: “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A publication-title: Anal. Biochem. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib81 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 15 start-page: 160 year: 2005 end-page: 165 ident: bib45 article-title: Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis publication-title: Curr. Biol. – volume: 16 start-page: 1489 year: 2006 end-page: 1501 ident: bib62 article-title: Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase publication-title: Curr. Biol. – volume: 10 year: 2015 ident: bib74 article-title: Role of intrinsic and extrinsic factors in the regulation of the mitotic checkpoint kinase Bub1 publication-title: PLoS One – volume: 19 start-page: 1161 year: 2012 end-page: 1167 ident: bib16 article-title: Multimodal microtubule binding by the Ndc80 kinetochore complex publication-title: Nat. Struct. Mol. Biol. – volume: 103 start-page: 375 year: 2000 end-page: 386 ident: bib97 article-title: Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast publication-title: Cell – volume: 17 start-page: 700 year: 2001 end-page: 712 ident: bib102 article-title: AL2CO: calculation of positional conservation in a protein sequence alignment publication-title: Bioinformatics – volume: 189 start-page: 41 year: 2010 end-page: 56 ident: bib58 article-title: N-terminal regions of Mps1 kinase determine functional bifurcation publication-title: J. Cell Biol. – volume: 18 start-page: 1785 year: 2008 end-page: 1791 ident: bib13 article-title: Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1) publication-title: Curr. Biol. – volume: 17 start-page: 2175 year: 2007 end-page: 2182 ident: bib35 article-title: Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism publication-title: Curr. Biol. – volume: 152 start-page: 349 year: 2001 end-page: 360 ident: bib4 article-title: The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation publication-title: J. Cell Biol. – volume: 6 start-page: 1599 year: 1996 end-page: 1608 ident: bib55 article-title: GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion publication-title: Curr. Biol. – volume: 13 start-page: 2152 year: 2022 ident: bib79 article-title: Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments publication-title: Nat. Commun. – volume: 27 start-page: 137 year: 2017 end-page: 143 ident: bib47 article-title: Generation of a spindle checkpoint arrest from synthetic signaling assemblies publication-title: Curr. Biol. – volume: 9 start-page: 1295 year: 2017 end-page: 1303 ident: bib23 article-title: Unique phylogenetic distributions of the Ska and Dam1 complexes support functional analogy and suggest multiple parallel displacements of Ska by Dam1 publication-title: Genome Biol. Evol. – volume: 8 start-page: 91 year: 2008 ident: bib92 article-title: An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol publication-title: BMC Biotechnol. – volume: 468 start-page: 576 year: 2010 end-page: 579 ident: bib57 article-title: Tension directly stabilizes reconstituted kinetochore-microtubule attachments publication-title: Nature – volume: 30 start-page: 4491 year: 2020 end-page: 4499.e5 ident: bib18 article-title: Cdk1 phosphorylation of the Dam1 complex strengthens kinetochore-microtubule attachments publication-title: Curr. Biol. – volume: 307 start-page: 130 year: 2005 end-page: 133 ident: bib77 article-title: The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes publication-title: Science – volume: 273 start-page: 953 year: 1996 end-page: 956 ident: bib65 article-title: Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption publication-title: Science – volume: 6 start-page: 917 year: 2009 end-page: 922 ident: bib99 article-title: An auxin-based degron system for the rapid depletion of proteins in nonplant cells publication-title: Nat. Methods – volume: 32 start-page: 5200 year: 2022 end-page: 5208.e8 ident: bib38 article-title: MPS1 localizes to end-on microtubule-attached kinetochores to promote microtubule release publication-title: Curr. Biol. – volume: 348 start-page: 1260 year: 2015 end-page: 1264 ident: bib43 article-title: CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C publication-title: Science – volume: 348 start-page: 1264 year: 2015 end-page: 1267 ident: bib42 article-title: CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling publication-title: Science – volume: 13 start-page: 1979 year: 2003 end-page: 1984 ident: bib96 article-title: Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes publication-title: Curr. Biol. – volume: 266 start-page: 115 year: 2001 ident: 10.1016/j.cub.2024.04.054_bib67 article-title: Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae publication-title: Mol. Genet. Genomics. doi: 10.1007/s004380100533 – volume: 10 year: 2014 ident: 10.1016/j.cub.2024.04.054_bib76 article-title: Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004411 – volume: 221 year: 2022 ident: 10.1016/j.cub.2024.04.054_bib21 article-title: Three interacting regions of the Ndc80 and Dam1 complexes support microtubule tip-coupling under load publication-title: J. Cell Biol. doi: 10.1083/jcb.202107016 – volume: 6 start-page: 1599 year: 1996 ident: 10.1016/j.cub.2024.04.054_bib55 article-title: GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)70783-5 – volume: 17 start-page: 700 year: 2001 ident: 10.1016/j.cub.2024.04.054_bib102 article-title: AL2CO: calculation of positional conservation in a protein sequence alignment publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.8.700 – volume: 348 start-page: 1264 year: 2015 ident: 10.1016/j.cub.2024.04.054_bib42 article-title: CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling publication-title: Science doi: 10.1126/science.aaa4055 – volume: 189 start-page: 41 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib58 article-title: N-terminal regions of Mps1 kinase determine functional bifurcation publication-title: J. Cell Biol. doi: 10.1083/jcb.200910027 – volume: 6 start-page: 5 year: 2017 ident: 10.1016/j.cub.2024.04.054_bib1 article-title: A molecular view of kinetochore assembly and function publication-title: Biology doi: 10.3390/biology6010005 – volume: 19 start-page: 679 year: 2022 ident: 10.1016/j.cub.2024.04.054_bib82 article-title: ColabFold: making protein folding accessible to all publication-title: Nat. Methods doi: 10.1038/s41592-022-01488-1 – volume: 17 start-page: 2175 year: 2007 ident: 10.1016/j.cub.2024.04.054_bib35 article-title: Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.11.032 – volume: 6 start-page: 917 year: 2009 ident: 10.1016/j.cub.2024.04.054_bib99 article-title: An auxin-based degron system for the rapid depletion of proteins in nonplant cells publication-title: Nat. Methods doi: 10.1038/nmeth.1401 – volume: 19 start-page: 1161 year: 2012 ident: 10.1016/j.cub.2024.04.054_bib16 article-title: Multimodal microtubule binding by the Ndc80 kinetochore complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2411 – volume: 22 start-page: 900 year: 2012 ident: 10.1016/j.cub.2024.04.054_bib53 article-title: Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.03.052 – volume: 382 start-page: 1184 year: 2023 ident: 10.1016/j.cub.2024.04.054_bib22 article-title: Structural mechanism of outer kinetochore Dam1-Ndc80 complex assembly on microtubules publication-title: Science doi: 10.1126/science.adj8736 – volume: 313 start-page: 680 year: 2006 ident: 10.1016/j.cub.2024.04.054_bib66 article-title: Anaphase inactivation of the spindle checkpoint publication-title: Science doi: 10.1126/science.1127205 – volume: 189 start-page: 641 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib70 article-title: The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex publication-title: J. Cell Biol. doi: 10.1083/jcb.200912021 – volume: 22 start-page: 759 year: 2011 ident: 10.1016/j.cub.2024.04.054_bib15 article-title: The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-08-0671 – volume: 8 year: 2019 ident: 10.1016/j.cub.2024.04.054_bib24 article-title: Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling publication-title: eLife – volume: 9 start-page: 1295 year: 2017 ident: 10.1016/j.cub.2024.04.054_bib23 article-title: Unique phylogenetic distributions of the Ska and Dam1 complexes support functional analogy and suggest multiple parallel displacements of Ska by Dam1 publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evx088 – volume: 8 start-page: 78 year: 2006 ident: 10.1016/j.cub.2024.04.054_bib54 article-title: The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores publication-title: Nat. Cell Biol. doi: 10.1038/ncb1341 – volume: 220 year: 2021 ident: 10.1016/j.cub.2024.04.054_bib31 article-title: Kinetochore-bound Mps1 regulates kinetochore-microtubule attachments via Ndc80 phosphorylation publication-title: J. Cell Biol. doi: 10.1083/jcb.202106130 – volume: 9 year: 2020 ident: 10.1016/j.cub.2024.04.054_bib41 article-title: chTOG is a conserved mitotic error correction factor publication-title: eLife doi: 10.7554/eLife.61773 – volume: 56 start-page: 619 year: 1989 ident: 10.1016/j.cub.2024.04.054_bib86 article-title: Elevated recombination rates in transcriptionally active DNA publication-title: Cell doi: 10.1016/0092-8674(89)90584-9 – volume: 348 start-page: 1260 year: 2015 ident: 10.1016/j.cub.2024.04.054_bib43 article-title: CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C publication-title: Science doi: 10.1126/science.aaa4029 – volume: 194 start-page: 281 year: 1991 ident: 10.1016/j.cub.2024.04.054_bib88 article-title: Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast publication-title: Methods Enzymol. doi: 10.1016/0076-6879(91)94022-5 – year: 2024 ident: 10.1016/j.cub.2024.04.054_bib59 article-title: Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor publication-title: Curr. Biol. doi: 10.1016/j.cub.2024.03.062 – volume: 192 start-page: 753 year: 2012 ident: 10.1016/j.cub.2024.04.054_bib71 article-title: A redundant function for the N-terminal tail of Ndc80 in kinetochore-microtubule interaction in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.112.143818 – volume: 17 start-page: 101 year: 2003 ident: 10.1016/j.cub.2024.04.054_bib5 article-title: The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity publication-title: Genes Dev. doi: 10.1101/gad.1040903 – volume: 14 start-page: 746 year: 2012 ident: 10.1016/j.cub.2024.04.054_bib46 article-title: MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components publication-title: Nat. Cell Biol. doi: 10.1038/ncb2515 – volume: 190 start-page: 89 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib34 article-title: Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling publication-title: J. Cell Biol. doi: 10.1083/jcb.201001050 – volume: 18 start-page: 1785 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib13 article-title: Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1) publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.11.007 – volume: 24 start-page: 543 year: 2023 ident: 10.1016/j.cub.2024.04.054_bib3 article-title: Principles and dynamics of spindle assembly checkpoint signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-023-00593-z – volume: 29 start-page: 479 year: 2018 ident: 10.1016/j.cub.2024.04.054_bib63 article-title: Mps1 promotes chromosome meiotic chromosome biorientation through Dam1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E17-08-0503 – volume: 323 start-page: 1350 year: 2009 ident: 10.1016/j.cub.2024.04.054_bib78 article-title: Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates publication-title: Science doi: 10.1126/science.1167000 – volume: 375 start-page: 376 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib93 article-title: A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method publication-title: Anal. Biochem. doi: 10.1016/j.ab.2007.12.013 – volume: 9 start-page: 759 year: 1998 ident: 10.1016/j.cub.2024.04.054_bib61 article-title: New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication publication-title: Mol. Biol. Cell doi: 10.1091/mbc.9.4.759 – volume: 16 start-page: 1489 year: 2006 ident: 10.1016/j.cub.2024.04.054_bib62 article-title: Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.06.063 – volume: 28 start-page: 1291 year: 2014 ident: 10.1016/j.cub.2024.04.054_bib75 article-title: Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation publication-title: Genes Dev. doi: 10.1101/gad.240291.114 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.cub.2024.04.054_bib81 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 12 start-page: 407 year: 2011 ident: 10.1016/j.cub.2024.04.054_bib10 article-title: A blueprint for kinetochores - new insights into the molecular mechanics of cell division publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3133 – volume: 218 start-page: 3188 year: 2019 ident: 10.1016/j.cub.2024.04.054_bib48 article-title: Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 publication-title: J. Cell Biol. doi: 10.1083/jcb.201905026 – volume: 273 start-page: 953 year: 1996 ident: 10.1016/j.cub.2024.04.054_bib65 article-title: Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption publication-title: Science doi: 10.1126/science.273.5277.953 – volume: 17 start-page: 1915 year: 2016 ident: 10.1016/j.cub.2024.04.054_bib49 article-title: Conserved tetramer junction in the kinetochore Ndc80 complex publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.10.065 – volume: 6 year: 2017 ident: 10.1016/j.cub.2024.04.054_bib20 article-title: The Ndc80 complex bridges two Dam1 complex rings publication-title: eLife doi: 10.7554/eLife.21069 – volume: 190 start-page: 73 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib37 article-title: Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine publication-title: J. Cell Biol. doi: 10.1083/jcb.201001036 – volume: 468 start-page: 576 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib57 article-title: Tension directly stabilizes reconstituted kinetochore-microtubule attachments publication-title: Nature doi: 10.1038/nature09594 – volume: 6 start-page: 343 year: 2009 ident: 10.1016/j.cub.2024.04.054_bib94 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat. Methods doi: 10.1038/nmeth.1318 – volume: 13 start-page: 1979 year: 2003 ident: 10.1016/j.cub.2024.04.054_bib96 article-title: Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.10.057 – volume: 14 start-page: 54 year: 2007 ident: 10.1016/j.cub.2024.04.054_bib11 article-title: The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1186 – volume: 189 start-page: 713 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib17 article-title: Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B publication-title: J. Cell Biol. doi: 10.1083/jcb.200910142 – volume: 467 start-page: 805 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib6 article-title: The Ndc80 kinetochore complex forms oligomeric arrays along microtubules publication-title: Nature doi: 10.1038/nature09423 – volume: 30 start-page: 4491 year: 2020 ident: 10.1016/j.cub.2024.04.054_bib18 article-title: Cdk1 phosphorylation of the Dam1 complex strengthens kinetochore-microtubule attachments publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.08.054 – volume: 165 start-page: 1428 year: 2016 ident: 10.1016/j.cub.2024.04.054_bib39 article-title: A TOG protein confers tension sensitivity to kinetochore-microtubule attachments publication-title: Cell doi: 10.1016/j.cell.2016.04.030 – volume: 182 start-page: 1055 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib9 article-title: Orientation and structure of the Ndc80 complex on the microtubule lattice publication-title: J. Cell Biol. doi: 10.1083/jcb.200804170 – volume: 102 start-page: 5363 year: 2005 ident: 10.1016/j.cub.2024.04.054_bib8 article-title: Molecular organization of the Ndc80 complex, an essential kinetochore component publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0501168102 – volume: 112 start-page: 195 year: 1981 ident: 10.1016/j.cub.2024.04.054_bib100 article-title: “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A publication-title: Anal. Biochem. doi: 10.1016/0003-2697(81)90281-5 – volume: 183 start-page: 1591 year: 2009 ident: 10.1016/j.cub.2024.04.054_bib27 article-title: Analysis of Ipl1-mediated phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.109.109041 – volume: 152 start-page: 349 year: 2001 ident: 10.1016/j.cub.2024.04.054_bib4 article-title: The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation publication-title: J. Cell Biol. doi: 10.1083/jcb.152.2.349 – volume: 13 year: 2023 ident: 10.1016/j.cub.2024.04.054_bib19 article-title: Structure of the Ndc80 complex and its interactions at the yeast kinetochore-microtubule interface publication-title: Open Biol. doi: 10.1098/rsob.220378 – volume: 24 start-page: 145 year: 1992 ident: 10.1016/j.cub.2024.04.054_bib101 article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979 publication-title: Biotechnology – volume: 22 start-page: 1217 year: 2011 ident: 10.1016/j.cub.2024.04.054_bib14 article-title: The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-07-0626 – volume: 10 year: 2021 ident: 10.1016/j.cub.2024.04.054_bib40 article-title: Structural basis of Stu2 recruitment to yeast kinetochores publication-title: eLife doi: 10.7554/eLife.65389 – volume: 27 start-page: 137 year: 2017 ident: 10.1016/j.cub.2024.04.054_bib47 article-title: Generation of a spindle checkpoint arrest from synthetic signaling assemblies publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.11.014 – volume: 14 start-page: 953 year: 1998 ident: 10.1016/j.cub.2024.04.054_bib91 article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – volume: 116 start-page: 17355 year: 2019 ident: 10.1016/j.cub.2024.04.054_bib69 article-title: Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1901653116 – volume: 131 year: 2018 ident: 10.1016/j.cub.2024.04.054_bib2 article-title: The kinetochore-microtubule interface at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.214577 – volume: 50 start-page: W276 year: 2022 ident: 10.1016/j.cub.2024.04.054_bib84 article-title: Search and sequence analysis tools services from EMBL-EBI in 2022 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac240 – volume: 32 start-page: 703 year: 2015 ident: 10.1016/j.cub.2024.04.054_bib90 article-title: New cassettes for single-step drug resistance and prototrophic marker switching in fission yeast publication-title: Yeast doi: 10.1002/yea.3097 – volume: 190 start-page: 25 year: 2010 ident: 10.1016/j.cub.2024.04.054_bib33 article-title: Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex publication-title: J. Cell Biol. doi: 10.1083/jcb.201002133 – volume: 25 start-page: 1189 year: 2009 ident: 10.1016/j.cub.2024.04.054_bib85 article-title: Jalview Version 2--a multiple sequence alignment editor and analysis workbench publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp033 – volume: 21 year: 2020 ident: 10.1016/j.cub.2024.04.054_bib32 article-title: A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint publication-title: EMBO Rep. doi: 10.15252/embr.202050257 – volume: 22 start-page: 1473 year: 2011 ident: 10.1016/j.cub.2024.04.054_bib72 article-title: Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-08-0673 – volume: 3 year: 2007 ident: 10.1016/j.cub.2024.04.054_bib73 article-title: Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030213 – volume: 127 start-page: 983 year: 2006 ident: 10.1016/j.cub.2024.04.054_bib28 article-title: The conserved KMN network constitutes the core microtubule-binding site of the kinetochore publication-title: Cell doi: 10.1016/j.cell.2006.09.039 – volume: 132 start-page: 233 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib44 article-title: Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment publication-title: Cell doi: 10.1016/j.cell.2007.11.046 – volume: 164 start-page: 535 year: 2004 ident: 10.1016/j.cub.2024.04.054_bib51 article-title: Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast publication-title: J. Cell Biol. doi: 10.1083/jcb.200308100 – volume: 339 start-page: 1071 year: 2013 ident: 10.1016/j.cub.2024.04.054_bib36 article-title: Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast publication-title: Science doi: 10.1126/science.1232518 – volume: 27 start-page: 14 year: 2018 ident: 10.1016/j.cub.2024.04.054_bib80 article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 133 start-page: 427 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib7 article-title: Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex publication-title: Cell doi: 10.1016/j.cell.2008.03.020 – volume: 17 start-page: 868 year: 2015 ident: 10.1016/j.cub.2024.04.054_bib64 article-title: The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling publication-title: Nat. Cell Biol. doi: 10.1038/ncb3179 – volume: 32 start-page: 5200 year: 2022 ident: 10.1016/j.cub.2024.04.054_bib38 article-title: MPS1 localizes to end-on microtubule-attached kinetochores to promote microtubule release publication-title: Curr. Biol. doi: 10.1016/j.cub.2022.10.047 – volume: 194 start-page: 3 year: 1991 ident: 10.1016/j.cub.2024.04.054_bib89 article-title: Getting started with yeast publication-title: Methods Enzymol. doi: 10.1016/0076-6879(91)94004-V – volume: 115 start-page: 2740 year: 2018 ident: 10.1016/j.cub.2024.04.054_bib25 article-title: Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1718553115 – volume: 8 start-page: 91 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib92 article-title: An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-8-91 – volume: 103 start-page: 375 year: 2000 ident: 10.1016/j.cub.2024.04.054_bib97 article-title: Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast publication-title: Cell doi: 10.1016/S0092-8674(00)00130-6 – volume: 196 start-page: 451 year: 2012 ident: 10.1016/j.cub.2024.04.054_bib52 article-title: Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction publication-title: J. Cell Biol. doi: 10.1083/jcb.201110013 – volume: 13 start-page: 532 year: 1999 ident: 10.1016/j.cub.2024.04.054_bib95 article-title: The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast publication-title: Genes Dev. doi: 10.1101/gad.13.5.532 – volume: 41 start-page: 143 year: 2017 ident: 10.1016/j.cub.2024.04.054_bib26 article-title: Mps1 regulates kinetochore-microtubule attachment stability via the Ska complex to ensure error-free chromosome segregation publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.03.025 – year: 2024 ident: 10.1016/j.cub.2024.04.054_bib60 article-title: A communication hub for phosphoregulation of kinetochore-microtubule attachment publication-title: Curr. Biol. doi: 10.1016/j.cub.2024.04.067 – volume: 13 start-page: 2152 year: 2022 ident: 10.1016/j.cub.2024.04.054_bib79 article-title: Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments publication-title: Nat. Commun. doi: 10.1038/s41467-022-29542-8 – volume: 31 start-page: 925 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib98 article-title: The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.07.020 – year: 1974 ident: 10.1016/j.cub.2024.04.054_bib87 – volume: 10 year: 2015 ident: 10.1016/j.cub.2024.04.054_bib74 article-title: Role of intrinsic and extrinsic factors in the regulation of the mitotic checkpoint kinase Bub1 publication-title: PLoS One doi: 10.1371/journal.pone.0144673 – volume: 14 start-page: 8282 year: 1994 ident: 10.1016/j.cub.2024.04.054_bib50 article-title: The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase publication-title: Mol. Cell Biol. – volume: 307 start-page: 130 year: 2005 ident: 10.1016/j.cub.2024.04.054_bib77 article-title: The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes publication-title: Science doi: 10.1126/science.1101366 – volume: 15 start-page: 160 year: 2005 ident: 10.1016/j.cub.2024.04.054_bib45 article-title: Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.01.010 – volume: 30 start-page: 3862 year: 2020 ident: 10.1016/j.cub.2024.04.054_bib56 article-title: A biosensor for the mitotic kinase MPS1 reveals spatiotemporal activity dynamics and regulation publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.07.062 – volume: 127 start-page: 969 year: 2006 ident: 10.1016/j.cub.2024.04.054_bib29 article-title: Kinetochore microtubule dynamics and attachment stability are regulated by Hec1 publication-title: Cell doi: 10.1016/j.cell.2006.09.047 – volume: 25 start-page: 3389 year: 1997 ident: 10.1016/j.cub.2024.04.054_bib83 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 18 start-page: 1778 year: 2008 ident: 10.1016/j.cub.2024.04.054_bib12 article-title: Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.08.012 – volume: 8 year: 2018 ident: 10.1016/j.cub.2024.04.054_bib68 article-title: Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis publication-title: Open Biol. doi: 10.1098/rsob.180109 – volume: 28 start-page: 1099 year: 2009 ident: 10.1016/j.cub.2024.04.054_bib30 article-title: Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling publication-title: EMBO J. doi: 10.1038/emboj.2009.62 – reference: 38834024 - Curr Biol. 2024 Jun 3;34(11):R530-R533. doi: 10.1016/j.cub.2024.04.070. – reference: 37986816 - bioRxiv. 2023 Nov 07:2023.11.07.566082. doi: 10.1101/2023.11.07.566082. |
SSID | ssj0012896 |
Score | 2.5005257 |
Snippet | Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2294 |
SubjectTerms | bi-orientation Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chromosome Segregation Dam1 complex kinetochore Kinetochores - metabolism Mps1 Ndc80 complex Nuclear Proteins - genetics Nuclear Proteins - metabolism Nuf2 Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism SAC Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism spindle assembly checkpoint |
Title | A conserved site on Ndc80 complex facilitates dynamic recruitment of Mps1 to yeast kinetochores to promote accurate chromosome segregation |
URI | https://dx.doi.org/10.1016/j.cub.2024.04.054 https://www.ncbi.nlm.nih.gov/pubmed/38776906 https://www.proquest.com/docview/3059258706 https://pubmed.ncbi.nlm.nih.gov/PMC11178286 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiDfLozISJ6RoU8eJ7eNSUVVU7QGo2FsUj226PJLVJkH0L_CrmXGSFQuiB6Rc4tiS5bHnkfn8DWMvjfGiEocucd5liSx8keAuMQlICEZq67JYDObsvDi5kG-X-XKPHU13YQhWOer-QadHbT22zMfVnK9Xq_n7SJZG9k3Sv814_TqTOl7iW77eZhIwoIj5SuycUO8psxkxXtBbDBGFjGynufyXbfrb9_wTQvmbTTq-w26PziRfDPO9y_Z8fY_dHMpLXt1nPxccCCy9-e4dpywxb2p-7kCnPCLJ_Q8eKhhoun3L3VCcnuN6bPpVRJ_zJvCzdXvIu4ZfUZUf_gW90q5BnYlhOrWuI5zP8wqgJ9YJDpfU0jbfPG89BvOfougfsIvjNx-OTpKx9gJKKRddAoW2KhfeobsDApRTVvkCCpMHm_oMMCDXAM4qYxxGcCEL2hJPjMxDJTXo7CHbr5vaP2ZcgxISNHo2TsvgRAXGWqsK51JQIVUzlk6rXsJITE71Mb6WEwLtc4mCKklQZYpPLmfs1XbIemDluK6znERZ7mytEq3GdcNeTGIv8chRHqWqfdO3JapII3JKEM_Yo2EbbGeRaaWI-3nG9M4G2XYgOu_dL_XqMtJ6o9VRdKn_yf_N9ym7RW8RxpY9Y_vdpvfP0WHq7AG7sTh99_H0IJ6MXwB3GWU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxJvlaSROSNGmiRM7x1JRbaG7F1ppb1Y8tukWSFabBNG_wK9mxklWLIgekHLyQ7I89jwyn79h7E1RuKRMDmxknU0jkbs8wlNSRCDAF0IZm4ZiMPNFPjsXH5bZco8djW9hCFY56P5epwdtPbRMh92crler6adAlkb2TdC_TXp-fQO9AUm382T5bptKwIgiJCxxdETDx9RmAHlBZzBGTESgO83Ev4zT387nnxjK34zS8V12Z_Am-WG_4Htsz1X32c2-vuTVA_bzkAOhpTffneWUJuZ1xRcWVMwDlNz94L6EnqfbNdz21ek5bsimWwX4Oa89n6-bA97W_IrK_PAv6Ja2NSpNjNOpdR3wfI6XAB3RTnC4oJam_uZ44zCa_xxk_5CdH78_O5pFQ_EFFFOWtBHkysgscRb9HUhAWmmkyyEvMm9ilwJG5ArAGlkUFkM4n3pliChGZL4UClT6iO1XdeWeMK5AJgIUujZWCW-TEgpjjMytjUH6WE5YPO66hoGZnApkfNUjBO1So6A0CUrH-GViwt5up6x7Wo7rBotRlHrnbGk0G9dNez2KXeOdo0RKWbm6azTqyCLJKEM8YY_7Y7BdRaqkJPLnCVM7B2Q7gPi8d3uq1UXg9UazI-lV_9P_W-8rdmt2Nj_VpyeLj8_YbeoJmLb0OdtvN517gd5Ta16G2_ELRsca4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conserved+site+on+Ndc80+complex+facilitates+dynamic+recruitment+of+Mps1+to+yeast+kinetochores+to+promote+accurate+chromosome+segregation&rft.jtitle=Current+biology&rft.au=Parnell%2C+Emily+J.&rft.au=Jenson%2C+Erin+E.&rft.au=Miller%2C+Matthew+P.&rft.date=2024-06-03&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=34&rft.issue=11&rft.spage=2294&rft.epage=2307.e4&rft_id=info:doi/10.1016%2Fj.cub.2024.04.054&rft.externalDocID=S0960982224005281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |