The stress-free state of human erythrocytes: Data-driven inference of a transferable RBC model
The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postul...
Saved in:
Published in | Biophysical journal Vol. 122; no. 8; pp. 1517 - 1525 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.04.2023
The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties. |
---|---|
AbstractList | The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties. The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties. |
Author | Economides, Athena Amoudruz, Lucas Koumoutsakos, Petros Arampatzis, Georgios |
Author_xml | – sequence: 1 givenname: Lucas orcidid: 0000-0002-2688-5949 surname: Amoudruz fullname: Amoudruz, Lucas organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 2 givenname: Athena surname: Economides fullname: Economides, Athena organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 3 givenname: Georgios surname: Arampatzis fullname: Arampatzis, Georgios organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 4 givenname: Petros orcidid: 0000-0001-8337-2122 surname: Koumoutsakos fullname: Koumoutsakos, Petros email: petros@seas.harvard.edu organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36926695$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtrFDEYDVKx29Uf4Ivk0ZdZc5nJTPRBdL0VCoLUV0Mm-eJmmUnWZHZh_70Zt5W2D4UPEr6cSzjnAp2FGAChl5SsKKHizXbV77YrRhhfkTJUPkEL2tSsIqQTZ2hBCBEVr2Vzji5y3hJCWUPoM3TOhWRCyGaBfl1vAOcpQc6VSzDf9QQ4OrzZjzpgSMdpk6I5TpDf4k960pVN_gAB--AgQTD_wBpPSYdcNrofAP_4uMZjtDA8R0-dHjK8uDmX6OeXz9frb9XV96-X6w9XlakbNlW9ptCDNJp0lkpGuLVGGNk5QVrnXCca6Lix0FrHWeNaWwsNndO96KkhvOFL9P6ku9v3I1gDofxnULvkR52OKmqv7r8Ev1G_40GVHOu2411ReH2jkOKfPeRJjT4bGAYdIO6zYq2kLamp5AX66q7Zf5fbVAugPQFMijkncMr4EquPs7cfiunsK9RWlf7U3J8iZYr2EtEHzFvxxzjvThwoAR88JJWNn4uxPoGZlI3-EfZfAl61Ew |
CitedBy_id | crossref_primary_10_1016_j_bpj_2024_04_015 crossref_primary_10_1039_D3SM00208J crossref_primary_10_3389_fphy_2023_1279883 |
Cites_doi | 10.1529/biophysj.107.104505 10.1073/pnas.0504243102 10.1073/pnas.1210236109 10.1103/PhysRevApplied.15.034062 10.1016/j.cma.2019.112758 10.1038/nphys3621 10.1103/PhysRevLett.121.118103 10.1016/S0006-3495(99)76937-7 10.1061/(ASCE)0733-9399(2007)133:7(816) 10.1016/j.bpj.2015.01.028 10.1016/S0006-3495(79)85238-8 10.1016/j.jcp.2019.108905 10.1146/annurev-fluid-010313-141349 10.1017/jfm.2012.637 10.1529/biophysj.104.047332 10.1016/j.cma.2021.114264 10.1016/S0006-3495(04)74378-7 10.1051/jp2:1996161 10.1063/1.4979271 10.1016/j.bpj.2010.02.002 10.1016/j.actbio.2004.09.001 10.1017/jfm.2014.14 10.1017/jfm.2015.187 10.1172/JCI106273 10.1016/0026-2862(70)90034-8 10.1016/j.cpc.2020.107298 10.1016/j.cma.2010.02.001 10.1039/b904584h 10.1063/1.4871300 10.1016/0026-2862(72)90069-6 10.1039/C6SM00154H 10.1103/PhysRevE.75.066707 10.1103/PhysRevLett.98.188302 10.1007/s10237-013-0530-z 10.1103/PhysRevE.94.062412 10.1115/1.4037450 10.1137/16M1107401 10.2478/s11658-012-0005-8 10.1371/journal.pone.0215447 10.1017/jfm.2013.496 10.1103/PhysRevE.84.026314 10.1007/s12195-008-0019-5 10.1016/j.bpj.2019.05.022 |
ContentType | Journal Article |
Copyright | 2023 Biophysical Society Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved. 2023 Biophysical Society. 2023 Biophysical Society |
Copyright_xml | – notice: 2023 Biophysical Society – notice: Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: 2023 Biophysical Society. 2023 Biophysical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bpj.2023.03.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 1525 |
ExternalDocumentID | PMC10147838 36926695 10_1016_j_bpj_2023_03_019 S0006349523001728 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 4.4 457 5GY 5RE 62- 6J9 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AFRAH AFTJW AGKMS AHMBA ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DU5 E3Z EBS EJD F5P FCP FDB FRP IH2 IXB JIG KQ8 L7B M41 N9A O-L O9- OK1 P2P RCE RNS RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ X7M YWH ZA5 ~02 --K .GJ 2WC 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AEXQZ AFKRA AFPUW AGCQF AGHFR AGQPQ AI. AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALIPV APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HYE HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PQQKQ PRG PROAC PSQYO Q2X R2- RIG ROL S0X UKHRP UKR VH1 WOW YNY YYP ZGI ZXP ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c452t-ba1ebe9ca08d19203ddc6c98f607fff865e83cde7df325f7d46ae8fab6b1c0353 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:34:07 EDT 2025 Fri Jul 11 00:52:46 EDT 2025 Thu Apr 03 07:05:59 EDT 2025 Thu Apr 24 23:13:23 EDT 2025 Tue Jul 01 02:25:51 EDT 2025 Fri Feb 23 02:37:08 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-ba1ebe9ca08d19203ddc6c98f607fff865e83cde7df325f7d46ae8fab6b1c0353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8337-2122 0000-0002-2688-5949 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10147838 |
PMID | 36926695 |
PQID | 2791704193 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10147838 proquest_miscellaneous_2791704193 pubmed_primary_36926695 crossref_citationtrail_10_1016_j_bpj_2023_03_019 crossref_primary_10_1016_j_bpj_2023_03_019 elsevier_sciencedirect_doi_10_1016_j_bpj_2023_03_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-18 |
PublicationDateYYYYMMDD | 2023-04-18 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2023 |
Publisher | Elsevier Inc The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: The Biophysical Society |
References | Hochmuth, Marple, Sutera (bib45) 1970; 2 Raue, Kreutz, Timmer (bib33) 2013; 371 Peng, Salehyar, Zhu (bib8) 2015; 771 Lee, Wong, Discher (bib13) 1999; 77 Mills, Qie, Suresh (bib21) 2004; 1 Yazdani, Karniadakis (bib38) 2016; 12 Martin, Wälchli, Koumoutsakos (bib34) 2021; 389 Bian, Litvinov, Koumoutsakos (bib28) 2020; 359 Abkarian, Faivre, Viallat (bib48) 2007; 98 Levant, Steinberg (bib14) 2016; 94 Tomaiuolo, Simeone, Guido (bib24) 2009; 5 Geekiyanage, Balanant, Gu (bib40) 2019; 14 Yazdani, Bagchi (bib49) 2011; 84 Khairy, Foo, Howard (bib5) 2010; 1 Gerald Lim, Wortis, Mukhopadhyay (bib4) 2008; 4 Fischer, Korzeniewski (bib25) 2015; 108 Wälchli, Martin, Koumoutsakos (bib39) 2020 Fedosov (bib29) 2010 Amoudruz (bib50) 2022 Cordasco, Bagchi (bib17) 2017; 29 Economides, Arampatzis, Koumoutsakos (bib1) 2021; 15 Tsubota, Wada, Liu (bib15) 2014; 13 Arampatzis, Wälchli, Koumoutsakos (bib19) 2018; 40 Li, Dao, Lim, Suresh (bib16) 2005; 88 Ching, Chen (bib32) 2007; 133 Freund (bib3) 2014; 46 Jülicher (bib27) 1996; 6 Evans, Fung (bib20) 1972; 4 Hochmuth, Worthy, Evans (bib23) 1979; 26 Suresh, Spatz, Seufferlein (bib22) 2005; 1 Caro, Pedley, Parker (bib2) 2011 Yazdani, Bagchi (bib43) 2013; 718 Alexeev, Amoudruz, Koumoutsakos (bib30) 2020; 254 Noguchi, Gompper (bib44) 2005; 102 Cordasco, Yazdani, Bagchi (bib6) 2014; 26 Turlier, Fedosov, Betz (bib37) 2016; 12 Wu, Angelikopoulos, Koumoutsakos (bib31) 2017; 4 Fischer (bib10) 2004; 86 Reichel, Mauer, Fedosov (bib18) 2019; 117 Dupin, Halliday, Munn (bib42) 2007; 75 Fischer (bib47) 2007; 93 Mauer, Mendez, Fedosov (bib9) 2018; 121 Dupire, Socol, Viallat (bib11) 2012; 109 Peng, Mashayekh, Zhu (bib7) 2014; 742 Švelc, Svetina (bib12) 2012; 17 Fedosov, Caswell, Karniadakis (bib35) 2010; 199 Kotsalos, Latt, Chopard (bib41) 2019; 398 Chien, Usami, Bertles (bib46) 1970; 49 Fedosov, Caswell, Karniadakis (bib36) 2010; 98 Fischer, Korzeniewski (bib26) 2013; 736 Hochmuth (10.1016/j.bpj.2023.03.019_bib23) 1979; 26 Dupin (10.1016/j.bpj.2023.03.019_bib42) 2007; 75 Economides (10.1016/j.bpj.2023.03.019_bib1) 2021; 15 Ching (10.1016/j.bpj.2023.03.019_bib32) 2007; 133 Li (10.1016/j.bpj.2023.03.019_bib16) 2005; 88 Kotsalos (10.1016/j.bpj.2023.03.019_bib41) 2019; 398 Fischer (10.1016/j.bpj.2023.03.019_bib25) 2015; 108 Geekiyanage (10.1016/j.bpj.2023.03.019_bib40) 2019; 14 Raue (10.1016/j.bpj.2023.03.019_bib33) 2013; 371 Jülicher (10.1016/j.bpj.2023.03.019_bib27) 1996; 6 Fedosov (10.1016/j.bpj.2023.03.019_bib29) 2010 Wälchli (10.1016/j.bpj.2023.03.019_bib39) 2020 Wu (10.1016/j.bpj.2023.03.019_bib31) 2017; 4 Bian (10.1016/j.bpj.2023.03.019_bib28) 2020; 359 Levant (10.1016/j.bpj.2023.03.019_bib14) 2016; 94 Cordasco (10.1016/j.bpj.2023.03.019_bib6) 2014; 26 Alexeev (10.1016/j.bpj.2023.03.019_bib30) 2020; 254 Khairy (10.1016/j.bpj.2023.03.019_bib5) 2010; 1 Mauer (10.1016/j.bpj.2023.03.019_bib9) 2018; 121 Tsubota (10.1016/j.bpj.2023.03.019_bib15) 2014; 13 Evans (10.1016/j.bpj.2023.03.019_bib20) 1972; 4 Mills (10.1016/j.bpj.2023.03.019_bib21) 2004; 1 Cordasco (10.1016/j.bpj.2023.03.019_bib17) 2017; 29 Yazdani (10.1016/j.bpj.2023.03.019_bib38) 2016; 12 Turlier (10.1016/j.bpj.2023.03.019_bib37) 2016; 12 Caro (10.1016/j.bpj.2023.03.019_bib2) 2011 Dupire (10.1016/j.bpj.2023.03.019_bib11) 2012; 109 Fischer (10.1016/j.bpj.2023.03.019_bib26) 2013; 736 Amoudruz (10.1016/j.bpj.2023.03.019_bib50) 2022 Freund (10.1016/j.bpj.2023.03.019_bib3) 2014; 46 Fedosov (10.1016/j.bpj.2023.03.019_bib35) 2010; 199 Švelc (10.1016/j.bpj.2023.03.019_bib12) 2012; 17 Lee (10.1016/j.bpj.2023.03.019_bib13) 1999; 77 Fedosov (10.1016/j.bpj.2023.03.019_bib36) 2010; 98 Chien (10.1016/j.bpj.2023.03.019_bib46) 1970; 49 Yazdani (10.1016/j.bpj.2023.03.019_bib43) 2013; 718 Peng (10.1016/j.bpj.2023.03.019_bib8) 2015; 771 Peng (10.1016/j.bpj.2023.03.019_bib7) 2014; 742 Tomaiuolo (10.1016/j.bpj.2023.03.019_bib24) 2009; 5 Reichel (10.1016/j.bpj.2023.03.019_bib18) 2019; 117 Noguchi (10.1016/j.bpj.2023.03.019_bib44) 2005; 102 Arampatzis (10.1016/j.bpj.2023.03.019_bib19) 2018; 40 Suresh (10.1016/j.bpj.2023.03.019_bib22) 2005; 1 Fischer (10.1016/j.bpj.2023.03.019_bib47) 2007; 93 Abkarian (10.1016/j.bpj.2023.03.019_bib48) 2007; 98 Yazdani (10.1016/j.bpj.2023.03.019_bib49) 2011; 84 Fischer (10.1016/j.bpj.2023.03.019_bib10) 2004; 86 Hochmuth (10.1016/j.bpj.2023.03.019_bib45) 1970; 2 Gerald Lim (10.1016/j.bpj.2023.03.019_bib4) 2008; 4 Martin (10.1016/j.bpj.2023.03.019_bib34) 2021; 389 |
References_xml | – volume: 133 start-page: 816 year: 2007 end-page: 832 ident: bib32 article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging publication-title: J. Eng. Mech. – volume: 718 start-page: 569 year: 2013 end-page: 595 ident: bib43 article-title: Influence of membrane viscosity on capsule dynamics in shear flow publication-title: J. Fluid Mech. – volume: 88 start-page: 3707 year: 2005 end-page: 3719 ident: bib16 article-title: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte publication-title: Biophys. J. – year: 2022 ident: bib50 article-title: cselab/tRBC-UQ: v1.0.0 publication-title: Zendo – volume: 1 start-page: 169 year: 2004 end-page: 180 ident: bib21 publication-title: Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell with Optical Tweezers – volume: 84 start-page: 026314 year: 2011 ident: bib49 article-title: Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – volume: 742 start-page: 96 year: 2014 end-page: 118 ident: bib7 article-title: Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton publication-title: J. Fluid Mech. – volume: 4 start-page: 335 year: 1972 end-page: 347 ident: bib20 article-title: Improved measurements of the erythrocyte geometry publication-title: Microvasc. Res. – volume: 15 start-page: 034062 year: 2021 ident: bib1 article-title: Hierarchical Bayesian uncertainty quantification for a model of the red blood cell publication-title: Phys. Rev. Appl. – volume: 94 start-page: 062412 year: 2016 end-page: 062414 ident: bib14 article-title: Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow publication-title: Phys. Rev. E – volume: 736 start-page: 351 year: 2013 end-page: 365 ident: bib26 article-title: Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of the suspending medium publication-title: J. Fluid Mech. – volume: 13 start-page: 735 year: 2014 end-page: 746 ident: bib15 article-title: Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion publication-title: Biomech. Model. Mechanobiol. – volume: 77 start-page: 853 year: 1999 end-page: 864 ident: bib13 article-title: Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton publication-title: Biophys. J. – volume: 26 start-page: 101 year: 1979 end-page: 114 ident: bib23 article-title: Red cell extensional recovery and the determination of membrane viscosity publication-title: Biophys. J. – volume: 86 start-page: 3304 year: 2004 end-page: 3313 ident: bib10 article-title: Shape memory of human red blood cells publication-title: Biophys. J. – volume: 109 start-page: 20808 year: 2012 end-page: 20813 ident: bib11 article-title: Full dynamics of a red blood cell in shear flow publication-title: Proc. Natl. Acad. Sci. USA – volume: 389 start-page: 114264 year: 2021 ident: bib34 article-title: Korali: efficient and scalable software framework for Bayesian uncertainty quantification and stochastic optimization publication-title: Comput. Method. Appl. Mech. Eng. – volume: 1 start-page: 173 year: 2010 end-page: 181 ident: bib5 article-title: Shapes of red blood cells: comparison of 3D confocal images with the bilayer-couple model publication-title: Cell. Mol. Bioeng. – volume: 4 start-page: 011008 year: 2017 ident: bib31 article-title: Bayesian annealed sequential importance sampling (BASIS): an unbiased version of transitional Markov chain Monte Carlo publication-title: . – volume: 12 start-page: 4339 year: 2016 end-page: 4351 ident: bib38 article-title: Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction publication-title: Soft Matter – volume: 4 start-page: 139 year: 2008 end-page: 204 ident: bib4 article-title: Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane publication-title: Soft Matter – volume: 12 start-page: 513 year: 2016 end-page: 519 ident: bib37 article-title: Equilibrium physics breakdown reveals the active nature of red blood cell flickering publication-title: Nat. Phys. – volume: 26 start-page: 041902 year: 2014 ident: bib6 article-title: Comparison of erythrocyte dynamics in shear flow under different stress-free configurations publication-title: Phys. Fluids – volume: 6 start-page: 1797 year: 1996 end-page: 1824 ident: bib27 article-title: The morphology of vesicles of higher topological genus: conformal degeneracy and conformal modes publication-title: J. Phys. II France. – volume: 98 start-page: 188302 year: 2007 end-page: 188305 ident: bib48 article-title: Swinging of red blood cells under shear flow publication-title: Phys. Rev. Lett. – volume: 102 start-page: 14159 year: 2005 end-page: 14164 ident: bib44 article-title: Shape transitions of fluid vesicles and red blood cells in capillary flows publication-title: Proc. Natl. Acad. Sci. USA – volume: 49 start-page: 623 year: 1970 end-page: 634 ident: bib46 article-title: Abnormal rheology of oxygenated blood in sickle cell anemia publication-title: J. Clin. Invest. – volume: 254 start-page: 107298 year: 2020 ident: bib30 article-title: Mirheo: high-performance mesoscale simulations for microfluidics publication-title: Comput. Phys. Commun. – volume: 29 start-page: 041901 year: 2017 end-page: 041918 ident: bib17 article-title: On the shape memory of red blood cells publication-title: Phys. Fluids – volume: 1 start-page: 15 year: 2005 end-page: 30 ident: bib22 article-title: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria publication-title: Acta Biomater. – year: 2010 ident: bib29 article-title: Multiscale Modeling of Blood Flow and Soft Matter – year: 2011 ident: bib2 article-title: The Mechanics of the Circulation – volume: 46 start-page: 67 year: 2014 end-page: 95 ident: bib3 article-title: Numerical simulation of flowing blood cells publication-title: Annu. Rev. Fluid Mech. – volume: 40 start-page: B788 year: 2018 end-page: B811 ident: bib19 article-title: Langevin diffusion for population based sampling with an application in Bayesian inference for pharmacodynamics publication-title: SIAM J. Sci. Comput. – volume: 359 start-page: 112758 year: 2020 ident: bib28 article-title: Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity publication-title: Comput. Methods Appl. Mech. Eng. – volume: 98 start-page: 2215 year: 2010 end-page: 2225 ident: bib36 article-title: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics publication-title: Biophys. J. – volume: 398 start-page: 108905 year: 2019 ident: bib41 article-title: Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow publication-title: J. Comput. Phys. – volume: 117 start-page: 14 year: 2019 end-page: 24 ident: bib18 article-title: High-throughput microfluidic characterization of erythrocyte shapes and mechanical variability publication-title: Biophys. J. – volume: 5 start-page: 3736 year: 2009 end-page: 3740 ident: bib24 article-title: Red blood cell deformation in microconfined flow publication-title: Soft Matter – volume: 75 start-page: 066707 year: 2007 ident: bib42 article-title: Modeling the flow of dense suspensions of deformable particles in three dimensions publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – volume: 17 start-page: 217 year: 2012 end-page: 227 ident: bib12 article-title: Stress-free state of the red blood cell membrane and the deformation of its skeleton publication-title: Cell. Mol. Biol. Lett. – year: 2020 ident: bib39 article-title: Load balancing in large scale Bayesian inference publication-title: Proceedings of the Platform for Advanced Scientific Computing Conference – PASC ’20 – volume: 199 start-page: 1937 year: 2010 ident: bib35 article-title: Systematic coarse-graining of spectrin-level red blood cell models publication-title: Comput. Methods Appl. Mech. Eng. – volume: 14 start-page: e0215447 year: 2019 ident: bib40 article-title: A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies publication-title: PLoS One – volume: 93 start-page: 2553 year: 2007 end-page: 2561 ident: bib47 article-title: Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium publication-title: Biophys. J. – volume: 2 start-page: 409 year: 1970 end-page: 419 ident: bib45 article-title: Capillary blood flow: I. Erythrocyte deformation in glass capillaries publication-title: Microvasc. Res. – volume: 771 start-page: 449 year: 2015 end-page: 467 ident: bib8 article-title: Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states publication-title: J. Fluid Mech. – volume: 371 start-page: 20110544 year: 2013 ident: bib33 article-title: Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 121 start-page: 118103 year: 2018 ident: bib9 article-title: Flow-induced transitions of red blood cell shapes under shear publication-title: Phys. Rev. Lett. – volume: 108 start-page: 1352 year: 2015 end-page: 1360 ident: bib25 article-title: Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium publication-title: Biophys. J. – volume: 93 start-page: 2553 year: 2007 ident: 10.1016/j.bpj.2023.03.019_bib47 article-title: Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium publication-title: Biophys. J. doi: 10.1529/biophysj.107.104505 – volume: 102 start-page: 14159 year: 2005 ident: 10.1016/j.bpj.2023.03.019_bib44 article-title: Shape transitions of fluid vesicles and red blood cells in capillary flows publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504243102 – volume: 109 start-page: 20808 year: 2012 ident: 10.1016/j.bpj.2023.03.019_bib11 article-title: Full dynamics of a red blood cell in shear flow publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1210236109 – volume: 15 start-page: 034062 year: 2021 ident: 10.1016/j.bpj.2023.03.019_bib1 article-title: Hierarchical Bayesian uncertainty quantification for a model of the red blood cell publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.034062 – volume: 359 start-page: 112758 year: 2020 ident: 10.1016/j.bpj.2023.03.019_bib28 article-title: Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112758 – volume: 12 start-page: 513 year: 2016 ident: 10.1016/j.bpj.2023.03.019_bib37 article-title: Equilibrium physics breakdown reveals the active nature of red blood cell flickering publication-title: Nat. Phys. doi: 10.1038/nphys3621 – volume: 121 start-page: 118103 year: 2018 ident: 10.1016/j.bpj.2023.03.019_bib9 article-title: Flow-induced transitions of red blood cell shapes under shear publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.118103 – volume: 77 start-page: 853 year: 1999 ident: 10.1016/j.bpj.2023.03.019_bib13 article-title: Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)76937-7 – volume: 4 start-page: 139 year: 2008 ident: 10.1016/j.bpj.2023.03.019_bib4 article-title: Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane publication-title: Soft Matter – volume: 133 start-page: 816 year: 2007 ident: 10.1016/j.bpj.2023.03.019_bib32 article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2007)133:7(816) – volume: 108 start-page: 1352 year: 2015 ident: 10.1016/j.bpj.2023.03.019_bib25 article-title: Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.01.028 – volume: 26 start-page: 101 year: 1979 ident: 10.1016/j.bpj.2023.03.019_bib23 article-title: Red cell extensional recovery and the determination of membrane viscosity publication-title: Biophys. J. doi: 10.1016/S0006-3495(79)85238-8 – volume: 398 start-page: 108905 year: 2019 ident: 10.1016/j.bpj.2023.03.019_bib41 article-title: Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108905 – volume: 371 start-page: 20110544 year: 2013 ident: 10.1016/j.bpj.2023.03.019_bib33 article-title: Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 46 start-page: 67 year: 2014 ident: 10.1016/j.bpj.2023.03.019_bib3 article-title: Numerical simulation of flowing blood cells publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010313-141349 – volume: 718 start-page: 569 year: 2013 ident: 10.1016/j.bpj.2023.03.019_bib43 article-title: Influence of membrane viscosity on capsule dynamics in shear flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.637 – volume: 88 start-page: 3707 year: 2005 ident: 10.1016/j.bpj.2023.03.019_bib16 article-title: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte publication-title: Biophys. J. doi: 10.1529/biophysj.104.047332 – volume: 389 start-page: 114264 year: 2021 ident: 10.1016/j.bpj.2023.03.019_bib34 article-title: Korali: efficient and scalable software framework for Bayesian uncertainty quantification and stochastic optimization publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114264 – volume: 1 start-page: 169 year: 2004 ident: 10.1016/j.bpj.2023.03.019_bib21 – volume: 86 start-page: 3304 year: 2004 ident: 10.1016/j.bpj.2023.03.019_bib10 article-title: Shape memory of human red blood cells publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74378-7 – volume: 6 start-page: 1797 year: 1996 ident: 10.1016/j.bpj.2023.03.019_bib27 article-title: The morphology of vesicles of higher topological genus: conformal degeneracy and conformal modes publication-title: J. Phys. II France. doi: 10.1051/jp2:1996161 – volume: 29 start-page: 041901 year: 2017 ident: 10.1016/j.bpj.2023.03.019_bib17 article-title: On the shape memory of red blood cells publication-title: Phys. Fluids doi: 10.1063/1.4979271 – year: 2011 ident: 10.1016/j.bpj.2023.03.019_bib2 – volume: 98 start-page: 2215 year: 2010 ident: 10.1016/j.bpj.2023.03.019_bib36 article-title: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.02.002 – volume: 1 start-page: 15 year: 2005 ident: 10.1016/j.bpj.2023.03.019_bib22 article-title: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria publication-title: Acta Biomater. doi: 10.1016/j.actbio.2004.09.001 – volume: 742 start-page: 96 year: 2014 ident: 10.1016/j.bpj.2023.03.019_bib7 article-title: Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.14 – volume: 771 start-page: 449 year: 2015 ident: 10.1016/j.bpj.2023.03.019_bib8 article-title: Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.187 – volume: 49 start-page: 623 year: 1970 ident: 10.1016/j.bpj.2023.03.019_bib46 article-title: Abnormal rheology of oxygenated blood in sickle cell anemia publication-title: J. Clin. Invest. doi: 10.1172/JCI106273 – year: 2020 ident: 10.1016/j.bpj.2023.03.019_bib39 article-title: Load balancing in large scale Bayesian inference – volume: 2 start-page: 409 year: 1970 ident: 10.1016/j.bpj.2023.03.019_bib45 article-title: Capillary blood flow: I. Erythrocyte deformation in glass capillaries publication-title: Microvasc. Res. doi: 10.1016/0026-2862(70)90034-8 – volume: 254 start-page: 107298 year: 2020 ident: 10.1016/j.bpj.2023.03.019_bib30 article-title: Mirheo: high-performance mesoscale simulations for microfluidics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107298 – volume: 199 start-page: 1937 year: 2010 ident: 10.1016/j.bpj.2023.03.019_bib35 article-title: Systematic coarse-graining of spectrin-level red blood cell models publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.02.001 – volume: 5 start-page: 3736 year: 2009 ident: 10.1016/j.bpj.2023.03.019_bib24 article-title: Red blood cell deformation in microconfined flow publication-title: Soft Matter doi: 10.1039/b904584h – volume: 26 start-page: 041902 year: 2014 ident: 10.1016/j.bpj.2023.03.019_bib6 article-title: Comparison of erythrocyte dynamics in shear flow under different stress-free configurations publication-title: Phys. Fluids doi: 10.1063/1.4871300 – volume: 4 start-page: 335 year: 1972 ident: 10.1016/j.bpj.2023.03.019_bib20 article-title: Improved measurements of the erythrocyte geometry publication-title: Microvasc. Res. doi: 10.1016/0026-2862(72)90069-6 – year: 2022 ident: 10.1016/j.bpj.2023.03.019_bib50 article-title: cselab/tRBC-UQ: v1.0.0 publication-title: Zendo – volume: 12 start-page: 4339 year: 2016 ident: 10.1016/j.bpj.2023.03.019_bib38 article-title: Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction publication-title: Soft Matter doi: 10.1039/C6SM00154H – volume: 75 start-page: 066707 year: 2007 ident: 10.1016/j.bpj.2023.03.019_bib42 article-title: Modeling the flow of dense suspensions of deformable particles in three dimensions publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.75.066707 – volume: 98 start-page: 188302 year: 2007 ident: 10.1016/j.bpj.2023.03.019_bib48 article-title: Swinging of red blood cells under shear flow publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.188302 – volume: 13 start-page: 735 year: 2014 ident: 10.1016/j.bpj.2023.03.019_bib15 article-title: Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-013-0530-z – volume: 94 start-page: 062412 year: 2016 ident: 10.1016/j.bpj.2023.03.019_bib14 article-title: Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.062412 – volume: 4 start-page: 011008 year: 2017 ident: 10.1016/j.bpj.2023.03.019_bib31 article-title: Bayesian annealed sequential importance sampling (BASIS): an unbiased version of transitional Markov chain Monte Carlo publication-title: ASCE-ASME J. Risk Uncertain. Eng. Sys. B. doi: 10.1115/1.4037450 – volume: 40 start-page: B788 year: 2018 ident: 10.1016/j.bpj.2023.03.019_bib19 article-title: Langevin diffusion for population based sampling with an application in Bayesian inference for pharmacodynamics publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1107401 – volume: 17 start-page: 217 year: 2012 ident: 10.1016/j.bpj.2023.03.019_bib12 article-title: Stress-free state of the red blood cell membrane and the deformation of its skeleton publication-title: Cell. Mol. Biol. Lett. doi: 10.2478/s11658-012-0005-8 – volume: 14 start-page: e0215447 year: 2019 ident: 10.1016/j.bpj.2023.03.019_bib40 article-title: A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies publication-title: PLoS One doi: 10.1371/journal.pone.0215447 – volume: 736 start-page: 351 year: 2013 ident: 10.1016/j.bpj.2023.03.019_bib26 article-title: Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of the suspending medium publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.496 – volume: 84 start-page: 026314 year: 2011 ident: 10.1016/j.bpj.2023.03.019_bib49 article-title: Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.84.026314 – volume: 1 start-page: 173 year: 2010 ident: 10.1016/j.bpj.2023.03.019_bib5 article-title: Shapes of red blood cells: comparison of 3D confocal images with the bilayer-couple model publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-008-0019-5 – year: 2010 ident: 10.1016/j.bpj.2023.03.019_bib29 – volume: 117 start-page: 14 year: 2019 ident: 10.1016/j.bpj.2023.03.019_bib18 article-title: High-throughput microfluidic characterization of erythrocyte shapes and mechanical variability publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.05.022 |
SSID | ssj0012501 |
Score | 2.4598706 |
Snippet | The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1517 |
SubjectTerms | Bayes Theorem Computer Simulation Erythrocytes - physiology Humans Viscosity |
Title | The stress-free state of human erythrocytes: Data-driven inference of a transferable RBC model |
URI | https://dx.doi.org/10.1016/j.bpj.2023.03.019 https://www.ncbi.nlm.nih.gov/pubmed/36926695 https://www.proquest.com/docview/2791704193 https://pubmed.ncbi.nlm.nih.gov/PMC10147838 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lUPBF1HpZrRLBJyF2ZpLJJL7Z1VIUBcXCPhlyxS1ldhmnD_vve05mZumq9KEwDHNJIJyT5HzhXD5C3kTVgNlrNLMpeSZcpZmTrmHRJcl5KJzIxaq_fpNn5-Lzol7skfmUC4NhlePeP-zpebcevxyP0jxeL5eY4wvmFfA9gGg8yGDCLxcqJ_EtTraeBDDxI2ueZNh68mzmGC-3vniH_OG5zikW2_m_bfoXe_4dQnnDJp0-IPdHMEk_DON9SPZi-4gcDPSSm0PyC-YAHZJBWOoiPgOypKtEMzMfjd0GWRL8BuDme_rR9paFDnc_upzSALGxpX1Gt7HDNCv642ROM3_OY3J--unn_IyNfArMi7rqmbMlqEx7W6gAwK7gIXjptUqyaFJKStZRcR9iExKv6tQEIW1UyYLySl_wmj8h--2qjc8I1QlrSHkHcAVWfUg6KuibRCgrycEszkgxSdL4sdg4cl5cmimq7MKA8A0K3xRwlXpG3m67rIdKG7c1FpN6zM50MWAJbuv2elKlgWWEvhHbxtXVH1M1cG4tBMDZGXk6qHY7Ci41wBhdz4jaUfq2AZbo3v3TLn_nUt3IhNworp7fbbwvyD18Q-9VqY7Ift9dxZcAgnr3Ks9yuH_5rq4BpM4HHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4lm2vIzECck0iRPH5kYXqi20PaBW2hOWn2IrlF2l6WH_PTNOsmIB9YCUQxSPJWvGnvmi8cxHyNsgawh7tWImRsdKWyhmha1ZsFFw7jNbpmbVp2didlF-mVfzHTIda2HwWuXg-3ufnrz18OVg0ObBarHAGl8Ir4DvAUTjj4y8RW4DGqiRv-F4frhJJUCMH2jzBEPxMbWZLnnZ1eV7JBBPjU6x286_g9Pf4PPPO5S_BaWjB-T-gCbpx37BD8lOaB6ROz2_5Pox-Q6bgPbVICy2Ad8BWtJlpImaj4Z2jTQJbg148wP9ZDrDfIvujy7GOkAUNrRL8Da0WGdFvx1OaSLQeUIujj6fT2dsIFRgrqyKjlmTg82UM5n0gOwy7r0TTskosjrGKEUVJHc-1D7yooq1L4UJMhqwXu4yXvGnZLdZNuEZoSpiEylnAa_AsfdRBQlzY-nzQnCIixOSjZrUbug2jqQXP_V4rexSg_I1Kl9n8ORqQt5tpqz6Vhs3CZejefTWftEQCm6a9mY0pYZzhMkR04Tl9ZUuavhxzUrAsxOy15t2swouFOAYVU2I3DL6RgB7dG-PNIsfqVc3UiHXksv9_1vva3J3dn56ok-Oz74-J_dwBFNZuXxBdrv2OrwERNTZV2nH_wKpfAlI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stress-free+state+of+human+erythrocytes%3A+Data-driven+inference+of+a+transferable+RBC+model&rft.jtitle=Biophysical+journal&rft.au=Amoudruz%2C+Lucas&rft.au=Economides%2C+Athena&rft.au=Arampatzis%2C+Georgios&rft.au=Koumoutsakos%2C+Petros&rft.date=2023-04-18&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=122&rft.issue=8&rft.spage=1517&rft.epage=1525&rft_id=info:doi/10.1016%2Fj.bpj.2023.03.019&rft.externalDocID=S0006349523001728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |