The stress-free state of human erythrocytes: Data-driven inference of a transferable RBC model

The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postul...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 122; no. 8; pp. 1517 - 1525
Main Authors Amoudruz, Lucas, Economides, Athena, Arampatzis, Georgios, Koumoutsakos, Petros
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.04.2023
The Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.
AbstractList The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.
The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.
Author Economides, Athena
Amoudruz, Lucas
Koumoutsakos, Petros
Arampatzis, Georgios
Author_xml – sequence: 1
  givenname: Lucas
  orcidid: 0000-0002-2688-5949
  surname: Amoudruz
  fullname: Amoudruz, Lucas
  organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Athena
  surname: Economides
  fullname: Economides, Athena
  organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 3
  givenname: Georgios
  surname: Arampatzis
  fullname: Arampatzis, Georgios
  organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 4
  givenname: Petros
  orcidid: 0000-0001-8337-2122
  surname: Koumoutsakos
  fullname: Koumoutsakos, Petros
  email: petros@seas.harvard.edu
  organization: Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36926695$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtrFDEYDVKx29Uf4Ivk0ZdZc5nJTPRBdL0VCoLUV0Mm-eJmmUnWZHZh_70Zt5W2D4UPEr6cSzjnAp2FGAChl5SsKKHizXbV77YrRhhfkTJUPkEL2tSsIqQTZ2hBCBEVr2Vzji5y3hJCWUPoM3TOhWRCyGaBfl1vAOcpQc6VSzDf9QQ4OrzZjzpgSMdpk6I5TpDf4k960pVN_gAB--AgQTD_wBpPSYdcNrofAP_4uMZjtDA8R0-dHjK8uDmX6OeXz9frb9XV96-X6w9XlakbNlW9ptCDNJp0lkpGuLVGGNk5QVrnXCca6Lix0FrHWeNaWwsNndO96KkhvOFL9P6ku9v3I1gDofxnULvkR52OKmqv7r8Ev1G_40GVHOu2411ReH2jkOKfPeRJjT4bGAYdIO6zYq2kLamp5AX66q7Zf5fbVAugPQFMijkncMr4EquPs7cfiunsK9RWlf7U3J8iZYr2EtEHzFvxxzjvThwoAR88JJWNn4uxPoGZlI3-EfZfAl61Ew
CitedBy_id crossref_primary_10_1016_j_bpj_2024_04_015
crossref_primary_10_1039_D3SM00208J
crossref_primary_10_3389_fphy_2023_1279883
Cites_doi 10.1529/biophysj.107.104505
10.1073/pnas.0504243102
10.1073/pnas.1210236109
10.1103/PhysRevApplied.15.034062
10.1016/j.cma.2019.112758
10.1038/nphys3621
10.1103/PhysRevLett.121.118103
10.1016/S0006-3495(99)76937-7
10.1061/(ASCE)0733-9399(2007)133:7(816)
10.1016/j.bpj.2015.01.028
10.1016/S0006-3495(79)85238-8
10.1016/j.jcp.2019.108905
10.1146/annurev-fluid-010313-141349
10.1017/jfm.2012.637
10.1529/biophysj.104.047332
10.1016/j.cma.2021.114264
10.1016/S0006-3495(04)74378-7
10.1051/jp2:1996161
10.1063/1.4979271
10.1016/j.bpj.2010.02.002
10.1016/j.actbio.2004.09.001
10.1017/jfm.2014.14
10.1017/jfm.2015.187
10.1172/JCI106273
10.1016/0026-2862(70)90034-8
10.1016/j.cpc.2020.107298
10.1016/j.cma.2010.02.001
10.1039/b904584h
10.1063/1.4871300
10.1016/0026-2862(72)90069-6
10.1039/C6SM00154H
10.1103/PhysRevE.75.066707
10.1103/PhysRevLett.98.188302
10.1007/s10237-013-0530-z
10.1103/PhysRevE.94.062412
10.1115/1.4037450
10.1137/16M1107401
10.2478/s11658-012-0005-8
10.1371/journal.pone.0215447
10.1017/jfm.2013.496
10.1103/PhysRevE.84.026314
10.1007/s12195-008-0019-5
10.1016/j.bpj.2019.05.022
ContentType Journal Article
Copyright 2023 Biophysical Society
Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2023 Biophysical Society. 2023 Biophysical Society
Copyright_xml – notice: 2023 Biophysical Society
– notice: Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: 2023 Biophysical Society. 2023 Biophysical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bpj.2023.03.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 1525
ExternalDocumentID PMC10147838
36926695
10_1016_j_bpj_2023_03_019
S0006349523001728
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
4.4
457
5GY
5RE
62-
6J9
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AFRAH
AFTJW
AGKMS
AHMBA
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
IH2
IXB
JIG
KQ8
L7B
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
X7M
YWH
ZA5
~02
--K
.GJ
2WC
3O-
53G
6TJ
7X2
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAEDT
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AEXQZ
AFKRA
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HYE
HZ~
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PHGZM
PHGZT
PQQKQ
PRG
PROAC
PSQYO
Q2X
R2-
RIG
ROL
S0X
UKHRP
UKR
VH1
WOW
YNY
YYP
ZGI
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c452t-ba1ebe9ca08d19203ddc6c98f607fff865e83cde7df325f7d46ae8fab6b1c0353
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Thu Aug 21 18:34:07 EDT 2025
Fri Jul 11 00:52:46 EDT 2025
Thu Apr 03 07:05:59 EDT 2025
Thu Apr 24 23:13:23 EDT 2025
Tue Jul 01 02:25:51 EDT 2025
Fri Feb 23 02:37:08 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-ba1ebe9ca08d19203ddc6c98f607fff865e83cde7df325f7d46ae8fab6b1c0353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8337-2122
0000-0002-2688-5949
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10147838
PMID 36926695
PQID 2791704193
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10147838
proquest_miscellaneous_2791704193
pubmed_primary_36926695
crossref_citationtrail_10_1016_j_bpj_2023_03_019
crossref_primary_10_1016_j_bpj_2023_03_019
elsevier_sciencedirect_doi_10_1016_j_bpj_2023_03_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-18
PublicationDateYYYYMMDD 2023-04-18
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2023
Publisher Elsevier Inc
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: The Biophysical Society
References Hochmuth, Marple, Sutera (bib45) 1970; 2
Raue, Kreutz, Timmer (bib33) 2013; 371
Peng, Salehyar, Zhu (bib8) 2015; 771
Lee, Wong, Discher (bib13) 1999; 77
Mills, Qie, Suresh (bib21) 2004; 1
Yazdani, Karniadakis (bib38) 2016; 12
Martin, Wälchli, Koumoutsakos (bib34) 2021; 389
Bian, Litvinov, Koumoutsakos (bib28) 2020; 359
Abkarian, Faivre, Viallat (bib48) 2007; 98
Levant, Steinberg (bib14) 2016; 94
Tomaiuolo, Simeone, Guido (bib24) 2009; 5
Geekiyanage, Balanant, Gu (bib40) 2019; 14
Yazdani, Bagchi (bib49) 2011; 84
Khairy, Foo, Howard (bib5) 2010; 1
Gerald Lim, Wortis, Mukhopadhyay (bib4) 2008; 4
Fischer, Korzeniewski (bib25) 2015; 108
Wälchli, Martin, Koumoutsakos (bib39) 2020
Fedosov (bib29) 2010
Amoudruz (bib50) 2022
Cordasco, Bagchi (bib17) 2017; 29
Economides, Arampatzis, Koumoutsakos (bib1) 2021; 15
Tsubota, Wada, Liu (bib15) 2014; 13
Arampatzis, Wälchli, Koumoutsakos (bib19) 2018; 40
Li, Dao, Lim, Suresh (bib16) 2005; 88
Ching, Chen (bib32) 2007; 133
Freund (bib3) 2014; 46
Jülicher (bib27) 1996; 6
Evans, Fung (bib20) 1972; 4
Hochmuth, Worthy, Evans (bib23) 1979; 26
Suresh, Spatz, Seufferlein (bib22) 2005; 1
Caro, Pedley, Parker (bib2) 2011
Yazdani, Bagchi (bib43) 2013; 718
Alexeev, Amoudruz, Koumoutsakos (bib30) 2020; 254
Noguchi, Gompper (bib44) 2005; 102
Cordasco, Yazdani, Bagchi (bib6) 2014; 26
Turlier, Fedosov, Betz (bib37) 2016; 12
Wu, Angelikopoulos, Koumoutsakos (bib31) 2017; 4
Fischer (bib10) 2004; 86
Reichel, Mauer, Fedosov (bib18) 2019; 117
Dupin, Halliday, Munn (bib42) 2007; 75
Fischer (bib47) 2007; 93
Mauer, Mendez, Fedosov (bib9) 2018; 121
Dupire, Socol, Viallat (bib11) 2012; 109
Peng, Mashayekh, Zhu (bib7) 2014; 742
Švelc, Svetina (bib12) 2012; 17
Fedosov, Caswell, Karniadakis (bib35) 2010; 199
Kotsalos, Latt, Chopard (bib41) 2019; 398
Chien, Usami, Bertles (bib46) 1970; 49
Fedosov, Caswell, Karniadakis (bib36) 2010; 98
Fischer, Korzeniewski (bib26) 2013; 736
Hochmuth (10.1016/j.bpj.2023.03.019_bib23) 1979; 26
Dupin (10.1016/j.bpj.2023.03.019_bib42) 2007; 75
Economides (10.1016/j.bpj.2023.03.019_bib1) 2021; 15
Ching (10.1016/j.bpj.2023.03.019_bib32) 2007; 133
Li (10.1016/j.bpj.2023.03.019_bib16) 2005; 88
Kotsalos (10.1016/j.bpj.2023.03.019_bib41) 2019; 398
Fischer (10.1016/j.bpj.2023.03.019_bib25) 2015; 108
Geekiyanage (10.1016/j.bpj.2023.03.019_bib40) 2019; 14
Raue (10.1016/j.bpj.2023.03.019_bib33) 2013; 371
Jülicher (10.1016/j.bpj.2023.03.019_bib27) 1996; 6
Fedosov (10.1016/j.bpj.2023.03.019_bib29) 2010
Wälchli (10.1016/j.bpj.2023.03.019_bib39) 2020
Wu (10.1016/j.bpj.2023.03.019_bib31) 2017; 4
Bian (10.1016/j.bpj.2023.03.019_bib28) 2020; 359
Levant (10.1016/j.bpj.2023.03.019_bib14) 2016; 94
Cordasco (10.1016/j.bpj.2023.03.019_bib6) 2014; 26
Alexeev (10.1016/j.bpj.2023.03.019_bib30) 2020; 254
Khairy (10.1016/j.bpj.2023.03.019_bib5) 2010; 1
Mauer (10.1016/j.bpj.2023.03.019_bib9) 2018; 121
Tsubota (10.1016/j.bpj.2023.03.019_bib15) 2014; 13
Evans (10.1016/j.bpj.2023.03.019_bib20) 1972; 4
Mills (10.1016/j.bpj.2023.03.019_bib21) 2004; 1
Cordasco (10.1016/j.bpj.2023.03.019_bib17) 2017; 29
Yazdani (10.1016/j.bpj.2023.03.019_bib38) 2016; 12
Turlier (10.1016/j.bpj.2023.03.019_bib37) 2016; 12
Caro (10.1016/j.bpj.2023.03.019_bib2) 2011
Dupire (10.1016/j.bpj.2023.03.019_bib11) 2012; 109
Fischer (10.1016/j.bpj.2023.03.019_bib26) 2013; 736
Amoudruz (10.1016/j.bpj.2023.03.019_bib50) 2022
Freund (10.1016/j.bpj.2023.03.019_bib3) 2014; 46
Fedosov (10.1016/j.bpj.2023.03.019_bib35) 2010; 199
Švelc (10.1016/j.bpj.2023.03.019_bib12) 2012; 17
Lee (10.1016/j.bpj.2023.03.019_bib13) 1999; 77
Fedosov (10.1016/j.bpj.2023.03.019_bib36) 2010; 98
Chien (10.1016/j.bpj.2023.03.019_bib46) 1970; 49
Yazdani (10.1016/j.bpj.2023.03.019_bib43) 2013; 718
Peng (10.1016/j.bpj.2023.03.019_bib8) 2015; 771
Peng (10.1016/j.bpj.2023.03.019_bib7) 2014; 742
Tomaiuolo (10.1016/j.bpj.2023.03.019_bib24) 2009; 5
Reichel (10.1016/j.bpj.2023.03.019_bib18) 2019; 117
Noguchi (10.1016/j.bpj.2023.03.019_bib44) 2005; 102
Arampatzis (10.1016/j.bpj.2023.03.019_bib19) 2018; 40
Suresh (10.1016/j.bpj.2023.03.019_bib22) 2005; 1
Fischer (10.1016/j.bpj.2023.03.019_bib47) 2007; 93
Abkarian (10.1016/j.bpj.2023.03.019_bib48) 2007; 98
Yazdani (10.1016/j.bpj.2023.03.019_bib49) 2011; 84
Fischer (10.1016/j.bpj.2023.03.019_bib10) 2004; 86
Hochmuth (10.1016/j.bpj.2023.03.019_bib45) 1970; 2
Gerald Lim (10.1016/j.bpj.2023.03.019_bib4) 2008; 4
Martin (10.1016/j.bpj.2023.03.019_bib34) 2021; 389
References_xml – volume: 133
  start-page: 816
  year: 2007
  end-page: 832
  ident: bib32
  article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging
  publication-title: J. Eng. Mech.
– volume: 718
  start-page: 569
  year: 2013
  end-page: 595
  ident: bib43
  article-title: Influence of membrane viscosity on capsule dynamics in shear flow
  publication-title: J. Fluid Mech.
– volume: 88
  start-page: 3707
  year: 2005
  end-page: 3719
  ident: bib16
  article-title: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte
  publication-title: Biophys. J.
– year: 2022
  ident: bib50
  article-title: cselab/tRBC-UQ: v1.0.0
  publication-title: Zendo
– volume: 1
  start-page: 169
  year: 2004
  end-page: 180
  ident: bib21
  publication-title: Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell with Optical Tweezers
– volume: 84
  start-page: 026314
  year: 2011
  ident: bib49
  article-title: Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
– volume: 742
  start-page: 96
  year: 2014
  end-page: 118
  ident: bib7
  article-title: Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 335
  year: 1972
  end-page: 347
  ident: bib20
  article-title: Improved measurements of the erythrocyte geometry
  publication-title: Microvasc. Res.
– volume: 15
  start-page: 034062
  year: 2021
  ident: bib1
  article-title: Hierarchical Bayesian uncertainty quantification for a model of the red blood cell
  publication-title: Phys. Rev. Appl.
– volume: 94
  start-page: 062412
  year: 2016
  end-page: 062414
  ident: bib14
  article-title: Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow
  publication-title: Phys. Rev. E
– volume: 736
  start-page: 351
  year: 2013
  end-page: 365
  ident: bib26
  article-title: Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of the suspending medium
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 735
  year: 2014
  end-page: 746
  ident: bib15
  article-title: Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion
  publication-title: Biomech. Model. Mechanobiol.
– volume: 77
  start-page: 853
  year: 1999
  end-page: 864
  ident: bib13
  article-title: Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton
  publication-title: Biophys. J.
– volume: 26
  start-page: 101
  year: 1979
  end-page: 114
  ident: bib23
  article-title: Red cell extensional recovery and the determination of membrane viscosity
  publication-title: Biophys. J.
– volume: 86
  start-page: 3304
  year: 2004
  end-page: 3313
  ident: bib10
  article-title: Shape memory of human red blood cells
  publication-title: Biophys. J.
– volume: 109
  start-page: 20808
  year: 2012
  end-page: 20813
  ident: bib11
  article-title: Full dynamics of a red blood cell in shear flow
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 389
  start-page: 114264
  year: 2021
  ident: bib34
  article-title: Korali: efficient and scalable software framework for Bayesian uncertainty quantification and stochastic optimization
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 1
  start-page: 173
  year: 2010
  end-page: 181
  ident: bib5
  article-title: Shapes of red blood cells: comparison of 3D confocal images with the bilayer-couple model
  publication-title: Cell. Mol. Bioeng.
– volume: 4
  start-page: 011008
  year: 2017
  ident: bib31
  article-title: Bayesian annealed sequential importance sampling (BASIS): an unbiased version of transitional Markov chain Monte Carlo
  publication-title: .
– volume: 12
  start-page: 4339
  year: 2016
  end-page: 4351
  ident: bib38
  article-title: Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction
  publication-title: Soft Matter
– volume: 4
  start-page: 139
  year: 2008
  end-page: 204
  ident: bib4
  article-title: Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane
  publication-title: Soft Matter
– volume: 12
  start-page: 513
  year: 2016
  end-page: 519
  ident: bib37
  article-title: Equilibrium physics breakdown reveals the active nature of red blood cell flickering
  publication-title: Nat. Phys.
– volume: 26
  start-page: 041902
  year: 2014
  ident: bib6
  article-title: Comparison of erythrocyte dynamics in shear flow under different stress-free configurations
  publication-title: Phys. Fluids
– volume: 6
  start-page: 1797
  year: 1996
  end-page: 1824
  ident: bib27
  article-title: The morphology of vesicles of higher topological genus: conformal degeneracy and conformal modes
  publication-title: J. Phys. II France.
– volume: 98
  start-page: 188302
  year: 2007
  end-page: 188305
  ident: bib48
  article-title: Swinging of red blood cells under shear flow
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 14159
  year: 2005
  end-page: 14164
  ident: bib44
  article-title: Shape transitions of fluid vesicles and red blood cells in capillary flows
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 49
  start-page: 623
  year: 1970
  end-page: 634
  ident: bib46
  article-title: Abnormal rheology of oxygenated blood in sickle cell anemia
  publication-title: J. Clin. Invest.
– volume: 254
  start-page: 107298
  year: 2020
  ident: bib30
  article-title: Mirheo: high-performance mesoscale simulations for microfluidics
  publication-title: Comput. Phys. Commun.
– volume: 29
  start-page: 041901
  year: 2017
  end-page: 041918
  ident: bib17
  article-title: On the shape memory of red blood cells
  publication-title: Phys. Fluids
– volume: 1
  start-page: 15
  year: 2005
  end-page: 30
  ident: bib22
  article-title: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria
  publication-title: Acta Biomater.
– year: 2010
  ident: bib29
  article-title: Multiscale Modeling of Blood Flow and Soft Matter
– year: 2011
  ident: bib2
  article-title: The Mechanics of the Circulation
– volume: 46
  start-page: 67
  year: 2014
  end-page: 95
  ident: bib3
  article-title: Numerical simulation of flowing blood cells
  publication-title: Annu. Rev. Fluid Mech.
– volume: 40
  start-page: B788
  year: 2018
  end-page: B811
  ident: bib19
  article-title: Langevin diffusion for population based sampling with an application in Bayesian inference for pharmacodynamics
  publication-title: SIAM J. Sci. Comput.
– volume: 359
  start-page: 112758
  year: 2020
  ident: bib28
  article-title: Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 98
  start-page: 2215
  year: 2010
  end-page: 2225
  ident: bib36
  article-title: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics
  publication-title: Biophys. J.
– volume: 398
  start-page: 108905
  year: 2019
  ident: bib41
  article-title: Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow
  publication-title: J. Comput. Phys.
– volume: 117
  start-page: 14
  year: 2019
  end-page: 24
  ident: bib18
  article-title: High-throughput microfluidic characterization of erythrocyte shapes and mechanical variability
  publication-title: Biophys. J.
– volume: 5
  start-page: 3736
  year: 2009
  end-page: 3740
  ident: bib24
  article-title: Red blood cell deformation in microconfined flow
  publication-title: Soft Matter
– volume: 75
  start-page: 066707
  year: 2007
  ident: bib42
  article-title: Modeling the flow of dense suspensions of deformable particles in three dimensions
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
– volume: 17
  start-page: 217
  year: 2012
  end-page: 227
  ident: bib12
  article-title: Stress-free state of the red blood cell membrane and the deformation of its skeleton
  publication-title: Cell. Mol. Biol. Lett.
– year: 2020
  ident: bib39
  article-title: Load balancing in large scale Bayesian inference
  publication-title: Proceedings of the Platform for Advanced Scientific Computing Conference – PASC ’20
– volume: 199
  start-page: 1937
  year: 2010
  ident: bib35
  article-title: Systematic coarse-graining of spectrin-level red blood cell models
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 14
  start-page: e0215447
  year: 2019
  ident: bib40
  article-title: A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies
  publication-title: PLoS One
– volume: 93
  start-page: 2553
  year: 2007
  end-page: 2561
  ident: bib47
  article-title: Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium
  publication-title: Biophys. J.
– volume: 2
  start-page: 409
  year: 1970
  end-page: 419
  ident: bib45
  article-title: Capillary blood flow: I. Erythrocyte deformation in glass capillaries
  publication-title: Microvasc. Res.
– volume: 771
  start-page: 449
  year: 2015
  end-page: 467
  ident: bib8
  article-title: Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states
  publication-title: J. Fluid Mech.
– volume: 371
  start-page: 20110544
  year: 2013
  ident: bib33
  article-title: Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 121
  start-page: 118103
  year: 2018
  ident: bib9
  article-title: Flow-induced transitions of red blood cell shapes under shear
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 1352
  year: 2015
  end-page: 1360
  ident: bib25
  article-title: Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium
  publication-title: Biophys. J.
– volume: 93
  start-page: 2553
  year: 2007
  ident: 10.1016/j.bpj.2023.03.019_bib47
  article-title: Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.104505
– volume: 102
  start-page: 14159
  year: 2005
  ident: 10.1016/j.bpj.2023.03.019_bib44
  article-title: Shape transitions of fluid vesicles and red blood cells in capillary flows
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504243102
– volume: 109
  start-page: 20808
  year: 2012
  ident: 10.1016/j.bpj.2023.03.019_bib11
  article-title: Full dynamics of a red blood cell in shear flow
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1210236109
– volume: 15
  start-page: 034062
  year: 2021
  ident: 10.1016/j.bpj.2023.03.019_bib1
  article-title: Hierarchical Bayesian uncertainty quantification for a model of the red blood cell
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.034062
– volume: 359
  start-page: 112758
  year: 2020
  ident: 10.1016/j.bpj.2023.03.019_bib28
  article-title: Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112758
– volume: 12
  start-page: 513
  year: 2016
  ident: 10.1016/j.bpj.2023.03.019_bib37
  article-title: Equilibrium physics breakdown reveals the active nature of red blood cell flickering
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3621
– volume: 121
  start-page: 118103
  year: 2018
  ident: 10.1016/j.bpj.2023.03.019_bib9
  article-title: Flow-induced transitions of red blood cell shapes under shear
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.118103
– volume: 77
  start-page: 853
  year: 1999
  ident: 10.1016/j.bpj.2023.03.019_bib13
  article-title: Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)76937-7
– volume: 4
  start-page: 139
  year: 2008
  ident: 10.1016/j.bpj.2023.03.019_bib4
  article-title: Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane
  publication-title: Soft Matter
– volume: 133
  start-page: 816
  year: 2007
  ident: 10.1016/j.bpj.2023.03.019_bib32
  article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2007)133:7(816)
– volume: 108
  start-page: 1352
  year: 2015
  ident: 10.1016/j.bpj.2023.03.019_bib25
  article-title: Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.01.028
– volume: 26
  start-page: 101
  year: 1979
  ident: 10.1016/j.bpj.2023.03.019_bib23
  article-title: Red cell extensional recovery and the determination of membrane viscosity
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(79)85238-8
– volume: 398
  start-page: 108905
  year: 2019
  ident: 10.1016/j.bpj.2023.03.019_bib41
  article-title: Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108905
– volume: 371
  start-page: 20110544
  year: 2013
  ident: 10.1016/j.bpj.2023.03.019_bib33
  article-title: Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 46
  start-page: 67
  year: 2014
  ident: 10.1016/j.bpj.2023.03.019_bib3
  article-title: Numerical simulation of flowing blood cells
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010313-141349
– volume: 718
  start-page: 569
  year: 2013
  ident: 10.1016/j.bpj.2023.03.019_bib43
  article-title: Influence of membrane viscosity on capsule dynamics in shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.637
– volume: 88
  start-page: 3707
  year: 2005
  ident: 10.1016/j.bpj.2023.03.019_bib16
  article-title: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.047332
– volume: 389
  start-page: 114264
  year: 2021
  ident: 10.1016/j.bpj.2023.03.019_bib34
  article-title: Korali: efficient and scalable software framework for Bayesian uncertainty quantification and stochastic optimization
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114264
– volume: 1
  start-page: 169
  year: 2004
  ident: 10.1016/j.bpj.2023.03.019_bib21
– volume: 86
  start-page: 3304
  year: 2004
  ident: 10.1016/j.bpj.2023.03.019_bib10
  article-title: Shape memory of human red blood cells
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74378-7
– volume: 6
  start-page: 1797
  year: 1996
  ident: 10.1016/j.bpj.2023.03.019_bib27
  article-title: The morphology of vesicles of higher topological genus: conformal degeneracy and conformal modes
  publication-title: J. Phys. II France.
  doi: 10.1051/jp2:1996161
– volume: 29
  start-page: 041901
  year: 2017
  ident: 10.1016/j.bpj.2023.03.019_bib17
  article-title: On the shape memory of red blood cells
  publication-title: Phys. Fluids
  doi: 10.1063/1.4979271
– year: 2011
  ident: 10.1016/j.bpj.2023.03.019_bib2
– volume: 98
  start-page: 2215
  year: 2010
  ident: 10.1016/j.bpj.2023.03.019_bib36
  article-title: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.02.002
– volume: 1
  start-page: 15
  year: 2005
  ident: 10.1016/j.bpj.2023.03.019_bib22
  article-title: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2004.09.001
– volume: 742
  start-page: 96
  year: 2014
  ident: 10.1016/j.bpj.2023.03.019_bib7
  article-title: Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.14
– volume: 771
  start-page: 449
  year: 2015
  ident: 10.1016/j.bpj.2023.03.019_bib8
  article-title: Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.187
– volume: 49
  start-page: 623
  year: 1970
  ident: 10.1016/j.bpj.2023.03.019_bib46
  article-title: Abnormal rheology of oxygenated blood in sickle cell anemia
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI106273
– year: 2020
  ident: 10.1016/j.bpj.2023.03.019_bib39
  article-title: Load balancing in large scale Bayesian inference
– volume: 2
  start-page: 409
  year: 1970
  ident: 10.1016/j.bpj.2023.03.019_bib45
  article-title: Capillary blood flow: I. Erythrocyte deformation in glass capillaries
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(70)90034-8
– volume: 254
  start-page: 107298
  year: 2020
  ident: 10.1016/j.bpj.2023.03.019_bib30
  article-title: Mirheo: high-performance mesoscale simulations for microfluidics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107298
– volume: 199
  start-page: 1937
  year: 2010
  ident: 10.1016/j.bpj.2023.03.019_bib35
  article-title: Systematic coarse-graining of spectrin-level red blood cell models
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.02.001
– volume: 5
  start-page: 3736
  year: 2009
  ident: 10.1016/j.bpj.2023.03.019_bib24
  article-title: Red blood cell deformation in microconfined flow
  publication-title: Soft Matter
  doi: 10.1039/b904584h
– volume: 26
  start-page: 041902
  year: 2014
  ident: 10.1016/j.bpj.2023.03.019_bib6
  article-title: Comparison of erythrocyte dynamics in shear flow under different stress-free configurations
  publication-title: Phys. Fluids
  doi: 10.1063/1.4871300
– volume: 4
  start-page: 335
  year: 1972
  ident: 10.1016/j.bpj.2023.03.019_bib20
  article-title: Improved measurements of the erythrocyte geometry
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(72)90069-6
– year: 2022
  ident: 10.1016/j.bpj.2023.03.019_bib50
  article-title: cselab/tRBC-UQ: v1.0.0
  publication-title: Zendo
– volume: 12
  start-page: 4339
  year: 2016
  ident: 10.1016/j.bpj.2023.03.019_bib38
  article-title: Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction
  publication-title: Soft Matter
  doi: 10.1039/C6SM00154H
– volume: 75
  start-page: 066707
  year: 2007
  ident: 10.1016/j.bpj.2023.03.019_bib42
  article-title: Modeling the flow of dense suspensions of deformable particles in three dimensions
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.75.066707
– volume: 98
  start-page: 188302
  year: 2007
  ident: 10.1016/j.bpj.2023.03.019_bib48
  article-title: Swinging of red blood cells under shear flow
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.188302
– volume: 13
  start-page: 735
  year: 2014
  ident: 10.1016/j.bpj.2023.03.019_bib15
  article-title: Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-013-0530-z
– volume: 94
  start-page: 062412
  year: 2016
  ident: 10.1016/j.bpj.2023.03.019_bib14
  article-title: Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.062412
– volume: 4
  start-page: 011008
  year: 2017
  ident: 10.1016/j.bpj.2023.03.019_bib31
  article-title: Bayesian annealed sequential importance sampling (BASIS): an unbiased version of transitional Markov chain Monte Carlo
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Sys. B.
  doi: 10.1115/1.4037450
– volume: 40
  start-page: B788
  year: 2018
  ident: 10.1016/j.bpj.2023.03.019_bib19
  article-title: Langevin diffusion for population based sampling with an application in Bayesian inference for pharmacodynamics
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1107401
– volume: 17
  start-page: 217
  year: 2012
  ident: 10.1016/j.bpj.2023.03.019_bib12
  article-title: Stress-free state of the red blood cell membrane and the deformation of its skeleton
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.2478/s11658-012-0005-8
– volume: 14
  start-page: e0215447
  year: 2019
  ident: 10.1016/j.bpj.2023.03.019_bib40
  article-title: A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0215447
– volume: 736
  start-page: 351
  year: 2013
  ident: 10.1016/j.bpj.2023.03.019_bib26
  article-title: Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of the suspending medium
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.496
– volume: 84
  start-page: 026314
  year: 2011
  ident: 10.1016/j.bpj.2023.03.019_bib49
  article-title: Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.84.026314
– volume: 1
  start-page: 173
  year: 2010
  ident: 10.1016/j.bpj.2023.03.019_bib5
  article-title: Shapes of red blood cells: comparison of 3D confocal images with the bilayer-couple model
  publication-title: Cell. Mol. Bioeng.
  doi: 10.1007/s12195-008-0019-5
– year: 2010
  ident: 10.1016/j.bpj.2023.03.019_bib29
– volume: 117
  start-page: 14
  year: 2019
  ident: 10.1016/j.bpj.2023.03.019_bib18
  article-title: High-throughput microfluidic characterization of erythrocyte shapes and mechanical variability
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.05.022
SSID ssj0012501
Score 2.4598706
Snippet The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1517
SubjectTerms Bayes Theorem
Computer Simulation
Erythrocytes - physiology
Humans
Viscosity
Title The stress-free state of human erythrocytes: Data-driven inference of a transferable RBC model
URI https://dx.doi.org/10.1016/j.bpj.2023.03.019
https://www.ncbi.nlm.nih.gov/pubmed/36926695
https://www.proquest.com/docview/2791704193
https://pubmed.ncbi.nlm.nih.gov/PMC10147838
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lUPBF1HpZrRLBJyF2ZpLJJL7Z1VIUBcXCPhlyxS1ldhmnD_vve05mZumq9KEwDHNJIJyT5HzhXD5C3kTVgNlrNLMpeSZcpZmTrmHRJcl5KJzIxaq_fpNn5-Lzol7skfmUC4NhlePeP-zpebcevxyP0jxeL5eY4wvmFfA9gGg8yGDCLxcqJ_EtTraeBDDxI2ueZNh68mzmGC-3vniH_OG5zikW2_m_bfoXe_4dQnnDJp0-IPdHMEk_DON9SPZi-4gcDPSSm0PyC-YAHZJBWOoiPgOypKtEMzMfjd0GWRL8BuDme_rR9paFDnc_upzSALGxpX1Gt7HDNCv642ROM3_OY3J--unn_IyNfArMi7rqmbMlqEx7W6gAwK7gIXjptUqyaFJKStZRcR9iExKv6tQEIW1UyYLySl_wmj8h--2qjc8I1QlrSHkHcAVWfUg6KuibRCgrycEszkgxSdL4sdg4cl5cmimq7MKA8A0K3xRwlXpG3m67rIdKG7c1FpN6zM50MWAJbuv2elKlgWWEvhHbxtXVH1M1cG4tBMDZGXk6qHY7Ci41wBhdz4jaUfq2AZbo3v3TLn_nUt3IhNworp7fbbwvyD18Q-9VqY7Ift9dxZcAgnr3Ks9yuH_5rq4BpM4HHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4lm2vIzECck0iRPH5kYXqi20PaBW2hOWn2IrlF2l6WH_PTNOsmIB9YCUQxSPJWvGnvmi8cxHyNsgawh7tWImRsdKWyhmha1ZsFFw7jNbpmbVp2didlF-mVfzHTIda2HwWuXg-3ufnrz18OVg0ObBarHAGl8Ir4DvAUTjj4y8RW4DGqiRv-F4frhJJUCMH2jzBEPxMbWZLnnZ1eV7JBBPjU6x286_g9Pf4PPPO5S_BaWjB-T-gCbpx37BD8lOaB6ROz2_5Pox-Q6bgPbVICy2Ad8BWtJlpImaj4Z2jTQJbg148wP9ZDrDfIvujy7GOkAUNrRL8Da0WGdFvx1OaSLQeUIujj6fT2dsIFRgrqyKjlmTg82UM5n0gOwy7r0TTskosjrGKEUVJHc-1D7yooq1L4UJMhqwXu4yXvGnZLdZNuEZoSpiEylnAa_AsfdRBQlzY-nzQnCIixOSjZrUbug2jqQXP_V4rexSg_I1Kl9n8ORqQt5tpqz6Vhs3CZejefTWftEQCm6a9mY0pYZzhMkR04Tl9ZUuavhxzUrAsxOy15t2swouFOAYVU2I3DL6RgB7dG-PNIsfqVc3UiHXksv9_1vva3J3dn56ok-Oz74-J_dwBFNZuXxBdrv2OrwERNTZV2nH_wKpfAlI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stress-free+state+of+human+erythrocytes%3A+Data-driven+inference+of+a+transferable+RBC+model&rft.jtitle=Biophysical+journal&rft.au=Amoudruz%2C+Lucas&rft.au=Economides%2C+Athena&rft.au=Arampatzis%2C+Georgios&rft.au=Koumoutsakos%2C+Petros&rft.date=2023-04-18&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=122&rft.issue=8&rft.spage=1517&rft.epage=1525&rft_id=info:doi/10.1016%2Fj.bpj.2023.03.019&rft.externalDocID=S0006349523001728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon