Oedometric-like setup for the study of water transport in porous media by quasi-elastic neutron scattering

In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permean...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 92; no. 2; pp. 024106 - 24114
Main Authors Wolanin, Julie, Giraud, Jérôme, Payre, Claude, Benoit, Marianne, Antonelli, Claire, Quemener, Damien, Tahiri, Iliass, Vandamme, Matthieu, Zanotti, Jean-Marc, Plazanet, Marie
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.02.2021
Subjects
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/5.0030297

Cover

Loading…
Abstract In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10−9 s–10−12 s. Moreover, it can easily be modified for other scattering techniques.
AbstractList In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10-9 s-10-12 s. Moreover, it can easily be modified for other scattering techniques.In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10-9 s-10-12 s. Moreover, it can easily be modified for other scattering techniques.
In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10−9 s–10−12 s. Moreover, it can easily be modified for other scattering techniques.
In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10 s-10 s. Moreover, it can easily be modified for other scattering techniques.
Author Payre, Claude
Giraud, Jérôme
Wolanin, Julie
Antonelli, Claire
Vandamme, Matthieu
Plazanet, Marie
Zanotti, Jean-Marc
Benoit, Marianne
Quemener, Damien
Tahiri, Iliass
Author_xml – sequence: 1
  givenname: Julie
  surname: Wolanin
  fullname: Wolanin, Julie
  organization: University Grenoble Alpes, CNRS, LIPhy
– sequence: 2
  givenname: Jérôme
  surname: Giraud
  fullname: Giraud, Jérôme
  organization: University Grenoble Alpes, CNRS, LIPhy
– sequence: 3
  givenname: Claude
  surname: Payre
  fullname: Payre, Claude
  organization: Institut Laue-Langevin, 71 Av. des Martyrs
– sequence: 4
  givenname: Marianne
  surname: Benoit
  fullname: Benoit, Marianne
  organization: Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS
– sequence: 5
  givenname: Claire
  surname: Antonelli
  fullname: Antonelli, Claire
  organization: Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS
– sequence: 6
  givenname: Damien
  surname: Quemener
  fullname: Quemener, Damien
  organization: Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS
– sequence: 7
  givenname: Iliass
  surname: Tahiri
  fullname: Tahiri, Iliass
  organization: Laboratoire Navier, Ecole des Ponts ParisTech, University Gustave Eiffel, CNRS
– sequence: 8
  givenname: Matthieu
  surname: Vandamme
  fullname: Vandamme, Matthieu
  organization: Laboratoire Navier, Ecole des Ponts ParisTech, University Gustave Eiffel, CNRS
– sequence: 9
  givenname: Jean-Marc
  surname: Zanotti
  fullname: Zanotti, Jean-Marc
  organization: Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay
– sequence: 10
  givenname: Marie
  surname: Plazanet
  fullname: Plazanet, Marie
  organization: University Grenoble Alpes, CNRS, LIPhy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33648089$$D View this record in MEDLINE/PubMed
https://hal.umontpellier.fr/hal-03162209$$DView record in HAL
BookMark eNqd0UFrHCEUAGApKc0m7aF_oAi9tIVJ1NEZ5xhC2wQWcknOos6bxu2sTtRJ2H9ft7ubQMmpXh4-Pp-8907QkQ8eEPpIyRklTX0uzgipCevaN2hBieyqtmH1EVqULK-alstjdJLSipQjKH2Hjuu64bLABVrdQB_WkKOz1eh-A06Q5wkPIeJ8X2557jc4DPhJZyipqH2aQszYeVximBNeQ-80Nhv8MOvkKhh1ys5iD3OOweNkdS5Pnf_1Hr0d9Jjgwz6eorsf328vr6rlzc_ry4tlZblguTKUciEplVoIw420DeuY5IOxrANBTC9tq4WRhgy91bI1TUOhF70FbTV0pD5FX3d17_WopujWOm5U0E5dXSzVNkdq2jBGukda7JednWJ4mCFltXbJwjhqD6U5xXgnOBGkbQv9_A9dhTn60slWMV7T7q_6tFezKZN5_v8w8QLOd8DGkFKEQVmXdXbBl-G6UVGitjtVQu13-tLP84tD0dfst51Nh6r_hx9DfIFq6of6D9p3vEo
CODEN RSINAK
CitedBy_id crossref_primary_10_1107_S1600577522005914
crossref_primary_10_1021_acs_langmuir_1c02427
crossref_primary_10_1021_acs_jpcb_1c06791
crossref_primary_10_1021_acs_jpclett_1c03141
Cites_doi 10.1039/b600349d
10.1002/adv.22114
10.1088/0953-8984/13/37/302
10.1002/polb.23220
10.1021/ma1008786
10.1039/f19868203447
10.1016/s0921-4526(96)00991-x
10.1016/j.ijhydene.2017.04.081
10.1016/j.fluid.2010.09.044
10.1103/physrevapplied.5.044020
10.1021/la5045656
10.1103/physreve.51.4558
10.1139/p66-109
10.3189/172756405781813681
10.1021/jp3001898
10.1002/marc.200700346
10.1039/c3fd00060e
10.1039/c2cs35384a
10.1021/jp065039q
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under license by AIP Publishing.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under license by AIP Publishing.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
1XC
VOOES
DOI 10.1063/5.0030297
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID oai_HAL_hal_03162209v1
33648089
10_1063_5_0030297
rsi
Genre Journal Article
GrantInformation_xml – fundername: Agence Nationale de La Recherche
  grantid: ANR-TWIST-17-CE08-0003-01
  funderid: https://doi.org/10.13039/501100001665
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADIYS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
VXZ
8FD
H8D
L7M
7X8
1XC
VOOES
ID FETCH-LOGICAL-c452t-b11458118a55b4b8c629284fbc29e50bd8c7a5b8b0fdca87b661ed5dceacae903
ISSN 0034-6748
1089-7623
IngestDate Thu Jul 10 06:45:19 EDT 2025
Fri Jul 11 12:17:38 EDT 2025
Mon Jun 30 04:36:29 EDT 2025
Wed Feb 19 02:29:18 EST 2025
Tue Jul 01 03:22:41 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Fri Jun 21 00:13:53 EDT 2024
Thu Jun 23 13:45:02 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Published under license by AIP Publishing.
0034-6748/2021/92(2)/024106/9/$30.00
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-b11458118a55b4b8c629284fbc29e50bd8c7a5b8b0fdca87b661ed5dceacae903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6474-3944
0000-0002-3946-4529
0000-0002-7041-8299
0000-0001-7155-4295
0000000239464529
0000000164743944
0000000171554295
0000000270418299
0000-0001-9522-3781
0000-0001-6201-5468
OpenAccessLink https://hal.umontpellier.fr/hal-03162209
PMID 33648089
PQID 2492431977
PQPubID 2050675
PageCount 9
ParticipantIDs pubmed_primary_33648089
crossref_citationtrail_10_1063_5_0030297
scitation_primary_10_1063_5_0030297
proquest_miscellaneous_2495405077
crossref_primary_10_1063_5_0030297
hal_primary_oai_HAL_hal_03162209v1
proquest_journals_2492431977
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210201
2021-02-01
2021-Feb-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 20210201
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References McKeown, Budd (c15) 2006; 35
Poinsignon, Ramsay (c5) 1986; 82
Mitra, Mukhopadhyay, Tsukushi, Ikeda (c7) 2001; 13
Pissis, Kyritsis (c8) 2013; 51
Wei, Zhou, Lu, Zhu, Liu, Lu, Zhang (c23) 2011; 302
Coasne, Galarneau, Pellenq, Di Renzo (c4) 2013; 42
Polak-Kraśna, Fuhrhop, Rochat, Burrows, Georgiadis, Bowen, Mays (c19) 2017; 42
Sears (c22) 1966; 44
Lan, Peng, Chen (c17) 2018; 37
Taschin, Bartolini, Marcelli, Righini, Torre (c1) 2013; 167
Bellissent-Funel, Chen, Zanotti (c6) 1995; 51
Emmler, Heinrich, Fritsch, Budd, Chaukura, Ehlers, Rätzke, Faupel (c20) 2010; 43
Lappegard, Kohler (c13) 2005; 40
Weber, Su, Antonietti, Thomas (c18) 2007; 28
Macminn, Dufresne, Wettlaufer (c9) 2016; 5
Spagnoli, Morfin, Gonzalez, Çarçabal, Plazanet (c11) 2015; 31
Kneisel, Lewis (c12) 1996; 53
Briman, Rébiscoul, Diat, Zanotti, Jollivet, Barboux, Gin (c3) 2012; 116
Perrin, Lyonnard, Volino (c10) 2007; 111
Teixeira, Zanotti, Bellissent-Funel, Chen (c2) 1997; 234-236
(2023070414372591700_c16) 2018
(2023070414372591700_c1) 2013; 167
(2023070414372591700_c10) 2007; 111
(2023070414372591700_c7) 2001; 13
(2023070414372591700_c15) 2006; 35
(2023070414372591700_c9) 2016; 5
(2023070414372591700_c12) 1996; 53
(2023070414372591700_c8) 2013; 51
(2023070414372591700_c21) 1988
(2023070414372591700_c22) 1966; 44
(2023070414372591700_c4) 2013; 42
(2023070414372591700_c19) 2017; 42
(2023070414372591700_c2) 1997; 234-236
(2023070414372591700_c5) 1986; 82
(2023070414372591700_c18) 2007; 28
(2023070414372591700_c3) 2012; 116
(2023070414372591700_c13) 2005; 40
(2023070414372591700_c17) 2018; 37
(2023070414372591700_c20) 2010; 43
(2023070414372591700_c6) 1995; 51
(2023070414372591700_c14) 2006
(2023070414372591700_c11) 2015; 31
(2023070414372591700_c23) 2011; 302
References_xml – volume: 53
  start-page: 97
  year: 1996
  ident: c12
  publication-title: Part. Accel.
– volume: 5
  start-page: 044020
  year: 2016
  ident: c9
  publication-title: Phys. Rev. Appl.
– volume: 37
  start-page: 3297
  year: 2018
  ident: c17
  publication-title: Adv. Polym. Technol.
– volume: 13
  start-page: 8455
  year: 2001
  ident: c7
  publication-title: J. Phys. Condens. Matter
– volume: 35
  start-page: 675
  year: 2006
  ident: c15
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 4141
  year: 2013
  ident: c4
  publication-title: Chem. Soc. Rev.
– volume: 31
  start-page: 2554
  year: 2015
  ident: c11
  publication-title: Langmuir
– volume: 116
  start-page: 7021
  year: 2012
  ident: c3
  publication-title: J. Phys. Chem. C
– volume: 44
  start-page: 1299
  year: 1966
  ident: c22
  publication-title: Can. J. Phys.
– volume: 167
  start-page: 293
  year: 2013
  ident: c1
  publication-title: Faraday Discuss.
– volume: 234-236
  start-page: 370
  year: 1997
  ident: c2
  publication-title: Phys. B
– volume: 51
  start-page: 159
  year: 2013
  ident: c8
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 302
  start-page: 316
  year: 2011
  ident: c23
  publication-title: Fluid Phase Equilib.
– volume: 28
  start-page: 1871
  year: 2007
  ident: c18
  publication-title: Macromol. Rapid Commun.
– volume: 42
  start-page: 23915
  year: 2017
  ident: c19
  publication-title: Int. J. Hydrogen Energy
– volume: 82
  start-page: 3447
  year: 1986
  ident: c5
  publication-title: J. Chem. Soc., Faraday Trans. 1
– volume: 43
  start-page: 6075
  year: 2010
  ident: c20
  publication-title: Macromolecules
– volume: 40
  start-page: 37
  year: 2005
  ident: c13
  publication-title: Ann. Glaciol.
– volume: 51
  start-page: 4558
  year: 1995
  ident: c6
  publication-title: Phys. Rev. E
– volume: 111
  start-page: 3393
  year: 2007
  ident: c10
  publication-title: J. Phys. Chem. C
– volume: 53
  start-page: 97
  year: 1996
  ident: 2023070414372591700_c12
  publication-title: Part. Accel.
– volume: 35
  start-page: 675
  year: 2006
  ident: 2023070414372591700_c15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b600349d
– volume: 37
  start-page: 3297
  year: 2018
  ident: 2023070414372591700_c17
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.22114
– volume: 13
  start-page: 8455
  year: 2001
  ident: 2023070414372591700_c7
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/13/37/302
– volume: 51
  start-page: 159
  year: 2013
  ident: 2023070414372591700_c8
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23220
– volume: 43
  start-page: 6075
  year: 2010
  ident: 2023070414372591700_c20
  publication-title: Macromolecules
  doi: 10.1021/ma1008786
– volume: 82
  start-page: 3447
  year: 1986
  ident: 2023070414372591700_c5
  publication-title: J. Chem. Soc., Faraday Trans. 1
  doi: 10.1039/f19868203447
– year: 2018
  ident: 2023070414372591700_c16
– volume: 234-236
  start-page: 370
  year: 1997
  ident: 2023070414372591700_c2
  publication-title: Phys. B
  doi: 10.1016/s0921-4526(96)00991-x
– volume: 42
  start-page: 23915
  year: 2017
  ident: 2023070414372591700_c19
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.081
– volume: 302
  start-page: 316
  year: 2011
  ident: 2023070414372591700_c23
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2010.09.044
– volume: 5
  start-page: 044020
  year: 2016
  ident: 2023070414372591700_c9
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/physrevapplied.5.044020
– volume: 31
  start-page: 2554
  year: 2015
  ident: 2023070414372591700_c11
  publication-title: Langmuir
  doi: 10.1021/la5045656
– volume: 51
  start-page: 4558
  year: 1995
  ident: 2023070414372591700_c6
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.51.4558
– start-page: 460
  year: 2006
  ident: 2023070414372591700_c14
– volume: 44
  start-page: 1299
  year: 1966
  ident: 2023070414372591700_c22
  publication-title: Can. J. Phys.
  doi: 10.1139/p66-109
– volume: 40
  start-page: 37
  year: 2005
  ident: 2023070414372591700_c13
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756405781813681
– volume: 116
  start-page: 7021
  year: 2012
  ident: 2023070414372591700_c3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3001898
– volume: 28
  start-page: 1871
  year: 2007
  ident: 2023070414372591700_c18
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200700346
– volume-title: Quasielastic Neutron Scattering
  year: 1988
  ident: 2023070414372591700_c21
– volume: 167
  start-page: 293
  year: 2013
  ident: 2023070414372591700_c1
  publication-title: Faraday Discuss.
  doi: 10.1039/c3fd00060e
– volume: 42
  start-page: 4141
  year: 2013
  ident: 2023070414372591700_c4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35384a
– volume: 111
  start-page: 3393
  year: 2007
  ident: 2023070414372591700_c10
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp065039q
SSID ssj0000511
Score 2.3554542
Snippet In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence...
SourceID hal
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 024106
SubjectTerms Chemical potential
Chemical Sciences
Elastic scattering
Hydraulic pressure
Material chemistry
Microporosity
Modulus of elasticity
Neutron scattering
Polymers
Porous materials
Porous media
Pressure dependence
Scientific apparatus & instruments
Temperature dependence
Water circulation
Title Oedometric-like setup for the study of water transport in porous media by quasi-elastic neutron scattering
URI http://dx.doi.org/10.1063/5.0030297
https://www.ncbi.nlm.nih.gov/pubmed/33648089
https://www.proquest.com/docview/2492431977
https://www.proquest.com/docview/2495405077
https://hal.umontpellier.fr/hal-03162209
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QF4QIxrYSBzeRiaAmkSu8ljGRvV1G1ItNLeIttxRKBLSpOMy6_n2HGcjlVo8FJVzlGa-nw5Psf-_BmhV8kgIYQy4viCCiegqedEgicOJB-CkdSjXK_oHp_Q8Sw4OiNnvd6PFdZSXfE34tfafSX_41VoA7-qXbL_4Fl7U2iA7-Bf-AQPw-e1fHwqk-JcHYklnHn2Ve6VsqoXljhYtnrR35lSQqxaGXNNHC-Wivuq942oDPRbzcrMkZBKKwHXXNZqhnyvFFp9sx3dWh1vu9ul2U2pyEaK014pHQajDNWwfecsN4d91fPMIuhDtmS1BtZRs0yvV-vfBefW4iMzU-P7c7Ds1v1lXmTtDiOAtWEEmDkLb9DSnG2YdcPIgTDchDa5ps3E5shbwaC3EmghtRhoqYKrYwAkXeA4NVXmq5O5uoGuXdw_OY0PZ5NJPD04m26gLQ8KDAjpW6P3x5NP3ShO9NnN9qlaVSrqv7W3vpTLbHxWTNqrZcotdAO80fAqVlKX6R1029QceNQAaBv1ZH4XbZuoXuJdIz3--h768geisEYUBkRhQBTWiMJFijWisEUUznLcIAprRGH-E19CFDaIwh2i7qPZ4cF0f-yY0zgcERCvcjhUziSEepQRwgMeCupFkNukXHiRJC5PQjFkhIfcTRPBwiGHzE8mJBEwtDMZuf4DtJkXuXyEcEIjzyXKNmVBlFJGWeiGw1RRtCR0bR_ttv0at12nTkyZx5oyQf2YxMYFffTCmi4afZa1RuAce10pqo9Hk1i1wZhGPc-NLgZ9tNP6LjbveBkrPU1IsaFI6qPn9jJEYLWsxnIJHatsVNnjKpuHjc_tT_k-DeCvRX300oLgb8-5xuqiWHYW8SJJH1_jSZ6gm917t4M2IQLIp5A9V_yZAfpvlOjG5Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oedometric-like+setup+for+the+study+of+water+transport+in+porous+media+by+quasi-elastic+neutron+scattering&rft.jtitle=Review+of+scientific+instruments&rft.au=Wolanin%2C+Julie&rft.au=Giraud%2C+J%C3%A9r%C3%B4me&rft.au=Payre%2C+Claude&rft.au=Benoit%2C+Marianne&rft.date=2021-02-01&rft.issn=1089-7623&rft.eissn=1089-7623&rft.volume=92&rft.issue=2&rft.spage=024106&rft_id=info:doi/10.1063%2F5.0030297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon