NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidat...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 299; no. 8; p. 104975
Main Authors Myakala, Komuraiah, Wang, Xiaoxin X., Shults, Nataliia V., Krawczyk, Ewa, Jones, Bryce A., Yang, Xiaoping, Rosenberg, Avi Z., Ginley, Brandon, Sarder, Pinaki, Brodsky, Leonid, Jang, Yura, Na, Chan Hyun, Qi, Yue, Zhang, Xu, Guha, Udayan, Wu, Ci, Bansal, Shivani, Ma, Junfeng, Cheema, Amrita, Albanese, Chris, Hirschey, Matthew D., Yoshida, Teruhiko, Kopp, Jeffrey B., Panov, Julia, Levi, Moshe
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2023
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.
AbstractList Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.
Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction ( i.e. , albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.
Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.
ArticleNumber 104975
Author Wang, Xiaoxin X.
Wu, Ci
Ginley, Brandon
Panov, Julia
Sarder, Pinaki
Guha, Udayan
Bansal, Shivani
Ma, Junfeng
Levi, Moshe
Myakala, Komuraiah
Rosenberg, Avi Z.
Krawczyk, Ewa
Jang, Yura
Na, Chan Hyun
Zhang, Xu
Shults, Nataliia V.
Kopp, Jeffrey B.
Albanese, Chris
Hirschey, Matthew D.
Yang, Xiaoping
Cheema, Amrita
Yoshida, Teruhiko
Brodsky, Leonid
Qi, Yue
Jones, Bryce A.
Author_xml – sequence: 1
  givenname: Komuraiah
  orcidid: 0000-0003-3233-047X
  surname: Myakala
  fullname: Myakala, Komuraiah
  organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
– sequence: 2
  givenname: Xiaoxin X.
  surname: Wang
  fullname: Wang, Xiaoxin X.
  email: Xiaoxin.Wang@georgetown.edu
  organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
– sequence: 3
  givenname: Nataliia V.
  surname: Shults
  fullname: Shults, Nataliia V.
  organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
– sequence: 4
  givenname: Ewa
  surname: Krawczyk
  fullname: Krawczyk, Ewa
  organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
– sequence: 5
  givenname: Bryce A.
  surname: Jones
  fullname: Jones, Bryce A.
  organization: Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
– sequence: 6
  givenname: Xiaoping
  surname: Yang
  fullname: Yang, Xiaoping
  organization: Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
– sequence: 7
  givenname: Avi Z.
  surname: Rosenberg
  fullname: Rosenberg, Avi Z.
  organization: Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
– sequence: 8
  givenname: Brandon
  surname: Ginley
  fullname: Ginley, Brandon
  organization: Departments of Pathology and Anatomical Sciences, SUNY, Buffalo, New York, USA
– sequence: 9
  givenname: Pinaki
  surname: Sarder
  fullname: Sarder, Pinaki
  organization: Department of Medicine-Quantitative Health, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
– sequence: 10
  givenname: Leonid
  orcidid: 0000-0003-0023-5785
  surname: Brodsky
  fullname: Brodsky, Leonid
  organization: Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
– sequence: 11
  givenname: Yura
  surname: Jang
  fullname: Jang, Yura
  organization: Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
– sequence: 12
  givenname: Chan Hyun
  surname: Na
  fullname: Na, Chan Hyun
  organization: Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
– sequence: 13
  givenname: Yue
  surname: Qi
  fullname: Qi, Yue
  organization: Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 14
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 15
  givenname: Udayan
  surname: Guha
  fullname: Guha, Udayan
  organization: Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 16
  givenname: Ci
  surname: Wu
  fullname: Wu, Ci
  organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
– sequence: 17
  givenname: Shivani
  surname: Bansal
  fullname: Bansal, Shivani
  organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
– sequence: 18
  givenname: Junfeng
  orcidid: 0000-0002-5183-5425
  surname: Ma
  fullname: Ma, Junfeng
  organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
– sequence: 19
  givenname: Amrita
  surname: Cheema
  fullname: Cheema, Amrita
  organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
– sequence: 20
  givenname: Chris
  surname: Albanese
  fullname: Albanese, Chris
  organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
– sequence: 21
  givenname: Matthew D.
  orcidid: 0000-0003-4541-5376
  surname: Hirschey
  fullname: Hirschey, Matthew D.
  organization: Division of Endocrinology, Metabolism, and Nutrition, and Pharmacology and Cancer Biology, Department of Medicine, Duke University, Durham, North Carolina, USA
– sequence: 22
  givenname: Teruhiko
  orcidid: 0000-0002-2049-7347
  surname: Yoshida
  fullname: Yoshida, Teruhiko
  organization: Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 23
  givenname: Jeffrey B.
  surname: Kopp
  fullname: Kopp, Jeffrey B.
  organization: Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 24
  givenname: Julia
  orcidid: 0000-0003-2392-4073
  surname: Panov
  fullname: Panov, Julia
  organization: Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
– sequence: 25
  givenname: Moshe
  surname: Levi
  fullname: Levi, Moshe
  email: Moshe.Levi@georgetown.edu
  organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37429506$$D View this record in MEDLINE/PubMed
BookMark eNp9UctqFUEQbSRibqIf4EZm6Wau_Z4ZXEhIfEHQjYK4afpRY-o60x2newL5ezu5iaiL1KYo6jzgnCNyEFMEQp4zumWU6Ve77c75Ladc1FsOnXpENoz2ohWKfTsgG0o5aweu-kNylPOO1pEDe0IORSf5oKjekO-fTs6aGYp1acI8N3MK62QL5AbjONl5tgVTbGwMzYwl-YsUw4K2Gdfobz8Ym4DWQUHf_MQQ4breGWyGp-TxaKcMz-72Mfn67u2X0w_t-ef3H09PzlsvFS-t9Q6c7AVXHdVOMReCABlGRrnSivfjqEF3XnZggYtej0oEGIUPPjgtwYpj8mave7m6GYKHWBY7mcsFZ7tcm2TR_PuJeGF-pCtTM2OC96IqvLxTWNKvFXIxM2YP02QjpDUb3suuk3roeYW--Nvsj8t9ohXQ7QF-STkvMBqP5TbE6o1TNTU33Zmdqd2Zm-7MvrvKZP8x78Uf4rzec6AGfIWwmOwRooeAC_hiQsIH2L8BPbCz7Q
CitedBy_id crossref_primary_10_1038_s41598_024_80492_1
crossref_primary_10_1111_acel_70004
crossref_primary_10_1172_jci_insight_181443
crossref_primary_10_3390_ijms25136936
crossref_primary_10_26508_lsa_202302505
crossref_primary_10_1016_j_tem_2024_07_010
crossref_primary_10_1039_D4SC07963A
crossref_primary_10_3390_biom14060733
crossref_primary_10_1016_j_aca_2024_343074
crossref_primary_10_3389_fendo_2024_1384953
crossref_primary_10_1152_ajprenal_00061_2024
crossref_primary_10_1186_s12964_024_01903_4
crossref_primary_10_2215_CJN_0000000624
crossref_primary_10_1097_CM9_0000000000003022
crossref_primary_10_3389_fimmu_2024_1346446
crossref_primary_10_1016_j_mito_2024_101957
crossref_primary_10_3390_ijms251810222
crossref_primary_10_1016_j_ekir_2024_12_029
crossref_primary_10_3390_antiox14010039
crossref_primary_10_4239_wjd_v15_i10_2041
crossref_primary_10_1016_j_bcp_2024_116669
crossref_primary_10_3390_antiox14030267
Cites_doi 10.1016/j.cmet.2018.02.011
10.2337/dci18-0033
10.1172/JCI72271
10.1172/JCI138538
10.1016/j.cell.2010.10.002
10.3390/antiox8060171
10.1038/s41581-019-0234-4
10.3389/fphar.2019.01192
10.1186/1471-2105-12-323
10.1016/j.isci.2021.102390
10.1021/acs.jproteome.0c00587
10.1038/s41577-022-00760-x
10.1038/s41598-020-77370-x
10.1038/nature08778
10.1681/ASN.2013020126
10.1016/j.celrep.2019.09.050
10.1172/JCI140695
10.1038/s41419-018-1057-0
10.1681/ASN.2018121259
10.1007/978-1-4939-7493-1_7
10.1073/pnas.2011226118
10.1172/JCI77632
10.1038/nprot.2008.211
10.1172/JCI136329
10.3945/ajcn.110.001917
10.1186/gb-2007-8-9-r183
10.1007/978-1-62703-739-6_31
10.1016/S0140-6736(19)32131-2
10.1038/s41577-021-00524-z
10.1681/ASN.2017020222
10.1186/1478-7954-8-29
10.1038/nrneph.2018.9
10.1681/ASN.2019080803
10.1038/nrneph.2015.173
10.1038/s41590-019-0556-1
10.1083/jcb.30.1.23
10.1111/dom.13969
10.2215/CJN.11491116
10.1016/j.cmet.2019.08.003
10.1681/ASN.2020081188
10.1152/ajprenal.00404.2009
10.1038/s41590-018-0255-3
10.1152/ajprenal.00614.2020
10.3390/ijms221910822
10.1186/s13059-014-0550-8
10.1093/bioinformatics/btu170
10.1038/s41586-018-0287-8
10.1056/NEJMoa1811744
10.1016/j.cmet.2010.11.003
10.2215/CJN.03640413
10.3390/cells10112945
10.1126/science.aat8657
10.1089/ars.2013.5482
10.1038/nature17184
10.2215/CJN.18771220
10.1093/bioinformatics/bts635
10.1093/nar/gkaa1011
10.1073/pnas.1911252116
10.1056/NEJMoa1310799
10.1146/annurev-immunol-032713-120231
10.34067/KID.0002352020
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jbc.2023.104975
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC10413283
37429506
10_1016_j_jbc_2023_104975
S0021925823020033
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK116567
– fundername: NIDDK NIH HHS
  grantid: F30 DK129003
– fundername: NCATS NIH HHS
  grantid: TL1 TR001431
– fundername: NIDDK NIH HHS
  grantid: R01 DK127830
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0R~
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
ADVLN
AENEX
AEXQZ
AFFNX
AFMIJ
AFOSN
AFPKN
AI.
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZE2
ZGI
ZY4
~02
~KM
.7T
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
5PM
ID FETCH-LOGICAL-c452t-acbeb48325706b51bdd3e4df10256528ff6e67c47eae2386f53def3cdcdb64ea3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:40:06 EDT 2025
Fri Jul 11 06:23:07 EDT 2025
Wed Feb 19 02:10:01 EST 2025
Tue Jul 01 01:59:54 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Tue Jul 16 04:31:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords GLP-1
NR
SGLT2

TBARS
KIM-1
NAD
ARB
4-HNE
FAO
ACEI
STING
cGAS-STING
DKD
diabetic kidney disease
mitochondrial DNA damage
mitochondria
sirtuin 3
inflammation, diabetes
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-acbeb48325706b51bdd3e4df10256528ff6e67c47eae2386f53def3cdcdb64ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4541-5376
0000-0002-5183-5425
0000-0003-2392-4073
0000-0003-0023-5785
0000-0002-2049-7347
0000-0003-3233-047X
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2023.104975
PMID 37429506
PQID 2847746982
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10413283
proquest_miscellaneous_2847746982
pubmed_primary_37429506
crossref_citationtrail_10_1016_j_jbc_2023_104975
crossref_primary_10_1016_j_jbc_2023_104975
elsevier_sciencedirect_doi_10_1016_j_jbc_2023_104975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2023
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Minhas, Liu, Moon, Joshi, Dove, Mhatre (bib25) 2019; 20
Someya, Yu, Hallows, Xu, Vann, Leeuwenburgh (bib35) 2010; 143
Wang, Jiang, Shen, Adorini, Pruzanski, Gonzalez (bib53) 2009; 297
Myakala, Jones, Wang, Levi (bib16) 2021; 320
Galvan, Mise, Danesh (bib20) 2021; 8
Tahir, Renuse, Udainiya, Madugundu, Cutler, Nirujogi (bib62) 2021; 20
Rybka, Suzuki, Gavrish, Dibrova, Gychka, Shults (bib38) 2019; 8
Matthews, Paldanius, Proot, Chiang, Stumvoll, Del Prato (bib8) 2019; 394
Breyer, Coffman, Flessner, Fried, Harris, Ketchum (bib3) 2013; 8
Haag, Gulen, Reymond, Gibelin, Abrami, Decout (bib31) 2018; 559
Nacarelli, Zhang (bib22) 2019; 6
Zhou, Wang, Qiu, Airhart, Liu, Stempien-Otero (bib24) 2020; 130
Sharma, Karl, Mathew, Gangoiti, Wassel, Saito (bib42) 2013; 24
Bolger, Lohse, Usadel (bib55) 2014; 30
Winiarska, Knysak, Nabrdalik, Gumprecht, Stompor (bib13) 2021; 22
Mise, Galvan, Danesh (bib39) 2020; 1
Alicic, Rooney, Tuttle (bib10) 2017; 12
Sedor, Freedman (bib1) 2019; 30
Forbes, Thorburn (bib41) 2018; 14
Morigi, Perico, Rota, Longaretti, Conti, Rottoli (bib48) 2015; 125
Huang, Sherman, Tan, Collins, Alvord, Roayaei (bib60) 2007; 8
Rath, Sharma, Gupta, Ast, Chan, Durham (bib61) 2021; 49
Perkovic, Jardine, Neal, Bompoint, Heerspink, Charytan (bib11) 2019; 380
Thomas, Cooper, Zimmet (bib2) 2016; 12
Wang, Wang, Luo, Myakala, Dobrinskikh, Rosenberg (bib15) 2018; 29
Srivastava, Li, Kitada, Fujita, Yamada, Goodwin (bib47) 2018; 9
Ablasser, Hur (bib28) 2020; 21
Shimazu, Hirschey, Hua, Dittenhafer-Reed, Schwer, Lombard (bib33) 2010; 12
Weibel, Kistler, Scherle (bib54) 1966; 30
Ahmad, Draves, Rosca (bib19) 2021; 10
Srivastava, Li, Takagaki, Kitada, Goodwin, Kanasaki (bib46) 2021; 24
Furda, Santos, Meyer, Van Houten (bib51) 2014; 1105
Wu, Raman, Coffey, Sheng, Wahba, Seasock (bib43) 2021; 131
Tao, Vassilopoulos, Parisiadou, Yan, Gius (bib36) 2014; 20
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha (bib56) 2013; 29
Decout, Katz, Venkatraman, Ablasser (bib27) 2021; 21
Fernandez-Marcos, Auwerx (bib37) 2011; 93
Yasuda, Hasegawa, Sakamaki, Muraoka, Kawaguchi, Kusahana (bib45) 2021; 32
Xu, Boyd, Tree, Samkari, Zhao (bib50) 2019; 116
Gregg, Li, Wang, Burrows, Ali, Rolka (bib6) 2014; 370
Tang, Yiu (bib40) 2020; 16
Michos, Tuttle (bib12) 2021; 16
Rajman, Chwalek, Sinclair (bib21) 2018; 27
Li, Dewey (bib57) 2011; 12
Love, Huber, Anders (bib58) 2014; 15
Tran, Zsengeller, Berg, Khankin, Bhasin, Kim (bib44) 2016; 531
Marchi, Guilbaud, Tait, Yamazaki, Galluzzi (bib17) 2022; 23
Ji, Yin, Li, Zhu, Ye, Pan (bib18) 2020; 10
Schneider, Chevillotte, Rice (bib26) 2014; 32
Tyanova, Cox (bib63) 2018; 1711
Ginley, Lutnick, Jen, Fogo, Jain, Rosenberg (bib52) 2019; 30
Davies, D'Alessio, Fradkin, Kernan, Mathieu, Mingrone (bib9) 2018; 41
Miguel, Tituana, Herrero, Herrero, Serra, Cuevas (bib49) 2021; 131
Chung, Dhillon, Huang, Sheng, Shrestha, Qiu (bib30) 2019; 30
Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard (bib34) 2010; 464
Maekawa, Inoue, Ouchi, Jao, Inoue, Nishi (bib32) 2019; 29
Barrera-Chimal, Jaisser (bib7) 2020; 22
Boyle, Thompson, Gregg, Barker, Williamson (bib4) 2010; 8
Ablasser, Chen (bib29) 2019; 363
Reidy, Kang, Hostetter, Susztak (bib5) 2014; 124
Andrade-Oliveira, Foresto-Neto, Watanabe, Zatz, Camara (bib14) 2019; 10
Hou, Wei, Lautrup, Yang, Wang, Cordonnier (bib23) 2021; 118
Huang da, Sherman, Lempicki (bib59) 2009; 4
Andrade-Oliveira (10.1016/j.jbc.2023.104975_bib14) 2019; 10
Srivastava (10.1016/j.jbc.2023.104975_bib46) 2021; 24
Sedor (10.1016/j.jbc.2023.104975_bib1) 2019; 30
Li (10.1016/j.jbc.2023.104975_bib57) 2011; 12
Haag (10.1016/j.jbc.2023.104975_bib31) 2018; 559
Mise (10.1016/j.jbc.2023.104975_bib39) 2020; 1
Tyanova (10.1016/j.jbc.2023.104975_bib63) 2018; 1711
Schneider (10.1016/j.jbc.2023.104975_bib26) 2014; 32
Chung (10.1016/j.jbc.2023.104975_bib30) 2019; 30
Minhas (10.1016/j.jbc.2023.104975_bib25) 2019; 20
Rath (10.1016/j.jbc.2023.104975_bib61) 2021; 49
Morigi (10.1016/j.jbc.2023.104975_bib48) 2015; 125
Ablasser (10.1016/j.jbc.2023.104975_bib28) 2020; 21
Xu (10.1016/j.jbc.2023.104975_bib50) 2019; 116
Alicic (10.1016/j.jbc.2023.104975_bib10) 2017; 12
Reidy (10.1016/j.jbc.2023.104975_bib5) 2014; 124
Davies (10.1016/j.jbc.2023.104975_bib9) 2018; 41
Rybka (10.1016/j.jbc.2023.104975_bib38) 2019; 8
Ji (10.1016/j.jbc.2023.104975_bib18) 2020; 10
Ablasser (10.1016/j.jbc.2023.104975_bib29) 2019; 363
Myakala (10.1016/j.jbc.2023.104975_bib16) 2021; 320
Love (10.1016/j.jbc.2023.104975_bib58) 2014; 15
Tang (10.1016/j.jbc.2023.104975_bib40) 2020; 16
Srivastava (10.1016/j.jbc.2023.104975_bib47) 2018; 9
Ginley (10.1016/j.jbc.2023.104975_bib52) 2019; 30
Furda (10.1016/j.jbc.2023.104975_bib51) 2014; 1105
Weibel (10.1016/j.jbc.2023.104975_bib54) 1966; 30
Shimazu (10.1016/j.jbc.2023.104975_bib33) 2010; 12
Someya (10.1016/j.jbc.2023.104975_bib35) 2010; 143
Thomas (10.1016/j.jbc.2023.104975_bib2) 2016; 12
Tahir (10.1016/j.jbc.2023.104975_bib62) 2021; 20
Rajman (10.1016/j.jbc.2023.104975_bib21) 2018; 27
Michos (10.1016/j.jbc.2023.104975_bib12) 2021; 16
Marchi (10.1016/j.jbc.2023.104975_bib17) 2022; 23
Breyer (10.1016/j.jbc.2023.104975_bib3) 2013; 8
Matthews (10.1016/j.jbc.2023.104975_bib8) 2019; 394
Tao (10.1016/j.jbc.2023.104975_bib36) 2014; 20
Huang da (10.1016/j.jbc.2023.104975_bib59) 2009; 4
Nacarelli (10.1016/j.jbc.2023.104975_bib22) 2019; 6
Wang (10.1016/j.jbc.2023.104975_bib15) 2018; 29
Maekawa (10.1016/j.jbc.2023.104975_bib32) 2019; 29
Huang (10.1016/j.jbc.2023.104975_bib60) 2007; 8
Forbes (10.1016/j.jbc.2023.104975_bib41) 2018; 14
Bolger (10.1016/j.jbc.2023.104975_bib55) 2014; 30
Barrera-Chimal (10.1016/j.jbc.2023.104975_bib7) 2020; 22
Ahmad (10.1016/j.jbc.2023.104975_bib19) 2021; 10
Yasuda (10.1016/j.jbc.2023.104975_bib45) 2021; 32
Winiarska (10.1016/j.jbc.2023.104975_bib13) 2021; 22
Miguel (10.1016/j.jbc.2023.104975_bib49) 2021; 131
Boyle (10.1016/j.jbc.2023.104975_bib4) 2010; 8
Hou (10.1016/j.jbc.2023.104975_bib23) 2021; 118
Hirschey (10.1016/j.jbc.2023.104975_bib34) 2010; 464
Perkovic (10.1016/j.jbc.2023.104975_bib11) 2019; 380
Decout (10.1016/j.jbc.2023.104975_bib27) 2021; 21
Zhou (10.1016/j.jbc.2023.104975_bib24) 2020; 130
Wang (10.1016/j.jbc.2023.104975_bib53) 2009; 297
Gregg (10.1016/j.jbc.2023.104975_bib6) 2014; 370
Dobin (10.1016/j.jbc.2023.104975_bib56) 2013; 29
Wu (10.1016/j.jbc.2023.104975_bib43) 2021; 131
Galvan (10.1016/j.jbc.2023.104975_bib20) 2021; 8
Sharma (10.1016/j.jbc.2023.104975_bib42) 2013; 24
Fernandez-Marcos (10.1016/j.jbc.2023.104975_bib37) 2011; 93
Tran (10.1016/j.jbc.2023.104975_bib44) 2016; 531
References_xml – volume: 380
  start-page: 2295
  year: 2019
  end-page: 2306
  ident: bib11
  article-title: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
  publication-title: N. Engl. J. Med.
– volume: 8
  start-page: 171
  year: 2019
  ident: bib38
  article-title: Transmission electron microscopy study of mitochondria in aging brain synapses
  publication-title: Antioxidants (Basel)
– volume: 12
  start-page: 654
  year: 2010
  end-page: 661
  ident: bib33
  article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
  publication-title: Cell Metab.
– volume: 12
  start-page: 73
  year: 2016
  end-page: 81
  ident: bib2
  article-title: Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease
  publication-title: Nat. Rev. Nephrol.
– volume: 41
  start-page: 2669
  year: 2018
  end-page: 2701
  ident: bib9
  article-title: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD)
  publication-title: Diabetes Care
– volume: 8
  start-page: R183
  year: 2007
  ident: bib60
  article-title: The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists
  publication-title: Genome Biol.
– volume: 30
  start-page: 784
  year: 2019
  end-page: 799.e5
  ident: bib30
  article-title: Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis
  publication-title: Cell Metab.
– volume: 16
  start-page: 206
  year: 2020
  end-page: 222
  ident: bib40
  article-title: Innate immunity in diabetic kidney disease
  publication-title: Nat. Rev. Nephrol.
– volume: 8
  year: 2021
  ident: bib20
  article-title: Mitochondrial regulation of diabetic kidney disease
  publication-title: Front. Med. (Lausanne)
– volume: 125
  start-page: 715
  year: 2015
  end-page: 726
  ident: bib48
  article-title: Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury
  publication-title: J. Clin. Invest.
– volume: 24
  year: 2021
  ident: bib46
  article-title: Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys
  publication-title: iScience
– volume: 124
  start-page: 2333
  year: 2014
  end-page: 2340
  ident: bib5
  article-title: Molecular mechanisms of diabetic kidney disease
  publication-title: J. Clin. Invest.
– volume: 21
  start-page: 548
  year: 2021
  end-page: 569
  ident: bib27
  article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases
  publication-title: Nat. Rev. Immunol.
– volume: 21
  start-page: 17
  year: 2020
  end-page: 29
  ident: bib28
  article-title: Regulation of cGAS- and RLR-mediated immunity to nucleic acids
  publication-title: Nat. Immunol.
– volume: 30
  start-page: 23
  year: 1966
  end-page: 38
  ident: bib54
  article-title: Practical stereological methods for morphometric cytology
  publication-title: J. Cell Biol.
– volume: 118
  year: 2021
  ident: bib23
  article-title: NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 670
  year: 2021
  end-page: 683
  ident: bib62
  article-title: Mutation-specific and common phosphotyrosine signatures of KRAS G12D and G13D alleles
  publication-title: J. Proteome Res.
– volume: 131
  year: 2021
  ident: bib49
  article-title: Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis
  publication-title: J. Clin. Invest.
– volume: 30
  start-page: 1782
  year: 2019
  end-page: 1783
  ident: bib1
  article-title: Biologic underpinnings of type 1 diabetic kidney disease
  publication-title: J. Am. Soc. Nephrol.
– volume: 131
  year: 2021
  ident: bib43
  article-title: The key role of NLRP3 and STING in APOL1-associated podocytopathy
  publication-title: J. Clin. Invest.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib58
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 10
  year: 2020
  ident: bib18
  article-title: Effects of inflammatory and anti-inflammatory environments on the macrophage mitochondrial function
  publication-title: Sci. Rep.
– volume: 130
  start-page: 6054
  year: 2020
  end-page: 6063
  ident: bib24
  article-title: Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure
  publication-title: J. Clin. Invest.
– volume: 10
  start-page: 1192
  year: 2019
  ident: bib14
  article-title: Inflammation in renal diseases: new and old players
  publication-title: Front. Pharmacol.
– volume: 32
  start-page: 1355
  year: 2021
  end-page: 1370
  ident: bib45
  article-title: Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy
  publication-title: J. Am. Soc. Nephrol.
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib56
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 116
  start-page: 17792
  year: 2019
  end-page: 17799
  ident: bib50
  article-title: Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 297
  start-page: F1587
  year: 2009
  end-page: 1596
  ident: bib53
  article-title: The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 6
  year: 2019
  ident: bib22
  article-title: NAD(+) metabolism controls inflammation during senescence
  publication-title: Mol. Cell. Oncol.
– volume: 49
  start-page: D1541
  year: 2021
  end-page: D1547
  ident: bib61
  article-title: MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 982
  year: 2020
  end-page: 992
  ident: bib39
  article-title: Shaping up mitochondria in diabetic nephropathy
  publication-title: Kidney360
– volume: 22
  start-page: 16
  year: 2020
  end-page: 31
  ident: bib7
  article-title: Pathophysiologic mechanisms in diabetic kidney disease: a focus on current and future therapeutic targets
  publication-title: Diabetes Obes. Metab.
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: bib55
  article-title: Trimmomatic: a flexible trimmer for illumina sequence data
  publication-title: Bioinformatics
– volume: 1105
  start-page: 419
  year: 2014
  end-page: 437
  ident: bib51
  article-title: Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells
  publication-title: Methods Mol. Biol.
– volume: 32
  start-page: 513
  year: 2014
  end-page: 545
  ident: bib26
  article-title: Interferon-stimulated genes: a complex web of host defenses
  publication-title: Annu. Rev. Immunol.
– volume: 320
  start-page: F1133
  year: 2021
  end-page: F1151
  ident: bib16
  article-title: Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in db/db mice and KKAy mice compared with valsartan treatment
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 20
  start-page: 50
  year: 2019
  end-page: 63
  ident: bib25
  article-title: Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation
  publication-title: Nat. Immunol.
– volume: 559
  start-page: 269
  year: 2018
  end-page: 273
  ident: bib31
  article-title: Targeting STING with covalent small-molecule inhibitors
  publication-title: Nature
– volume: 16
  start-page: 1578
  year: 2021
  end-page: 1580
  ident: bib12
  article-title: GLP-1 receptor agonists in diabetic kidney disease
  publication-title: Clin. J. Am. Soc. Nephrol.
– volume: 363
  year: 2019
  ident: bib29
  article-title: cGAS in action: expanding roles in immunity and inflammation
  publication-title: Science
– volume: 14
  start-page: 291
  year: 2018
  end-page: 312
  ident: bib41
  article-title: Mitochondrial dysfunction in diabetic kidney disease
  publication-title: Nat. Rev. Nephrol.
– volume: 12
  start-page: 323
  year: 2011
  ident: bib57
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
– volume: 464
  start-page: 121
  year: 2010
  end-page: 125
  ident: bib34
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
– volume: 20
  start-page: 1646
  year: 2014
  end-page: 1654
  ident: bib36
  article-title: Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis
  publication-title: Antioxid. Redox Signal.
– volume: 370
  start-page: 1514
  year: 2014
  end-page: 1523
  ident: bib6
  article-title: Changes in diabetes-related complications in the United States, 1990-2010
  publication-title: N. Engl. J. Med.
– volume: 27
  start-page: 529
  year: 2018
  end-page: 547
  ident: bib21
  article-title: Therapeutic potential of NAD-Boosting molecules: the in vivo evidence
  publication-title: Cell Metab.
– volume: 394
  start-page: 1519
  year: 2019
  end-page: 1529
  ident: bib8
  article-title: Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial
  publication-title: Lancet
– volume: 10
  start-page: 2945
  year: 2021
  ident: bib19
  article-title: Mitochondria in diabetic kidney disease
  publication-title: Cells
– volume: 12
  start-page: 2032
  year: 2017
  end-page: 2045
  ident: bib10
  article-title: Diabetic kidney disease: challenges, progress, and possibilities
  publication-title: Clin. J. Am. Soc. Nephrol.
– volume: 24
  start-page: 1901
  year: 2013
  end-page: 1912
  ident: bib42
  article-title: Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease
  publication-title: J. Am. Soc. Nephrol.
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  ident: bib59
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
– volume: 29
  start-page: 1261
  year: 2019
  end-page: 1273.e6
  ident: bib32
  article-title: Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury
  publication-title: Cell Rep.
– volume: 531
  start-page: 528
  year: 2016
  end-page: 532
  ident: bib44
  article-title: PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection
  publication-title: Nature
– volume: 9
  start-page: 997
  year: 2018
  ident: bib47
  article-title: SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis
  publication-title: Cell Death Dis.
– volume: 143
  start-page: 802
  year: 2010
  end-page: 812
  ident: bib35
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
– volume: 8
  start-page: 1603
  year: 2013
  end-page: 1605
  ident: bib3
  article-title: Diabetic nephropathy: a national dialogue
  publication-title: Clin. J. Am. Soc. Nephrol.
– volume: 30
  start-page: 1953
  year: 2019
  end-page: 1967
  ident: bib52
  article-title: Computational segmentation and classification of diabetic glomerulosclerosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 23
  start-page: 159
  year: 2022
  end-page: 173
  ident: bib17
  article-title: Mitochondrial control of inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 29
  start-page: 118
  year: 2018
  end-page: 137
  ident: bib15
  article-title: FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity
  publication-title: J. Am. Soc. Nephrol.
– volume: 8
  start-page: 29
  year: 2010
  ident: bib4
  article-title: Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence
  publication-title: Popul. Health Metr.
– volume: 22
  year: 2021
  ident: bib13
  article-title: Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists
  publication-title: Int. J. Mol. Sci.
– volume: 93
  start-page: 884S
  year: 2011
  end-page: 890
  ident: bib37
  article-title: Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis
  publication-title: Am. J. Clin. Nutr.
– volume: 1711
  start-page: 133
  year: 2018
  end-page: 148
  ident: bib63
  article-title: Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research
  publication-title: Methods Mol. Biol.
– volume: 27
  start-page: 529
  year: 2018
  ident: 10.1016/j.jbc.2023.104975_bib21
  article-title: Therapeutic potential of NAD-Boosting molecules: the in vivo evidence
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.02.011
– volume: 41
  start-page: 2669
  year: 2018
  ident: 10.1016/j.jbc.2023.104975_bib9
  article-title: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD)
  publication-title: Diabetes Care
  doi: 10.2337/dci18-0033
– volume: 124
  start-page: 2333
  year: 2014
  ident: 10.1016/j.jbc.2023.104975_bib5
  article-title: Molecular mechanisms of diabetic kidney disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI72271
– volume: 130
  start-page: 6054
  year: 2020
  ident: 10.1016/j.jbc.2023.104975_bib24
  article-title: Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI138538
– volume: 143
  start-page: 802
  year: 2010
  ident: 10.1016/j.jbc.2023.104975_bib35
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.002
– volume: 8
  start-page: 171
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib38
  article-title: Transmission electron microscopy study of mitochondria in aging brain synapses
  publication-title: Antioxidants (Basel)
  doi: 10.3390/antiox8060171
– volume: 16
  start-page: 206
  year: 2020
  ident: 10.1016/j.jbc.2023.104975_bib40
  article-title: Innate immunity in diabetic kidney disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0234-4
– volume: 10
  start-page: 1192
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib14
  article-title: Inflammation in renal diseases: new and old players
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01192
– volume: 12
  start-page: 323
  year: 2011
  ident: 10.1016/j.jbc.2023.104975_bib57
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 24
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib46
  article-title: Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102390
– volume: 20
  start-page: 670
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib62
  article-title: Mutation-specific and common phosphotyrosine signatures of KRAS G12D and G13D alleles
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.0c00587
– volume: 23
  start-page: 159
  year: 2022
  ident: 10.1016/j.jbc.2023.104975_bib17
  article-title: Mitochondrial control of inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-022-00760-x
– volume: 10
  year: 2020
  ident: 10.1016/j.jbc.2023.104975_bib18
  article-title: Effects of inflammatory and anti-inflammatory environments on the macrophage mitochondrial function
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77370-x
– volume: 464
  start-page: 121
  year: 2010
  ident: 10.1016/j.jbc.2023.104975_bib34
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
  doi: 10.1038/nature08778
– volume: 24
  start-page: 1901
  year: 2013
  ident: 10.1016/j.jbc.2023.104975_bib42
  article-title: Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2013020126
– volume: 29
  start-page: 1261
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib32
  article-title: Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.09.050
– volume: 131
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib49
  article-title: Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI140695
– volume: 9
  start-page: 997
  year: 2018
  ident: 10.1016/j.jbc.2023.104975_bib47
  article-title: SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-1057-0
– volume: 30
  start-page: 1953
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib52
  article-title: Computational segmentation and classification of diabetic glomerulosclerosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2018121259
– volume: 1711
  start-page: 133
  year: 2018
  ident: 10.1016/j.jbc.2023.104975_bib63
  article-title: Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7493-1_7
– volume: 118
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib23
  article-title: NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2011226118
– volume: 125
  start-page: 715
  year: 2015
  ident: 10.1016/j.jbc.2023.104975_bib48
  article-title: Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI77632
– volume: 4
  start-page: 44
  year: 2009
  ident: 10.1016/j.jbc.2023.104975_bib59
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 131
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib43
  article-title: The key role of NLRP3 and STING in APOL1-associated podocytopathy
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI136329
– volume: 93
  start-page: 884S
  year: 2011
  ident: 10.1016/j.jbc.2023.104975_bib37
  article-title: Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.110.001917
– volume: 8
  start-page: R183
  year: 2007
  ident: 10.1016/j.jbc.2023.104975_bib60
  article-title: The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-9-r183
– volume: 1105
  start-page: 419
  year: 2014
  ident: 10.1016/j.jbc.2023.104975_bib51
  article-title: Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-739-6_31
– volume: 394
  start-page: 1519
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib8
  article-title: Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32131-2
– volume: 21
  start-page: 548
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib27
  article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00524-z
– volume: 29
  start-page: 118
  year: 2018
  ident: 10.1016/j.jbc.2023.104975_bib15
  article-title: FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2017020222
– volume: 8
  start-page: 29
  year: 2010
  ident: 10.1016/j.jbc.2023.104975_bib4
  article-title: Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence
  publication-title: Popul. Health Metr.
  doi: 10.1186/1478-7954-8-29
– volume: 14
  start-page: 291
  year: 2018
  ident: 10.1016/j.jbc.2023.104975_bib41
  article-title: Mitochondrial dysfunction in diabetic kidney disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2018.9
– volume: 30
  start-page: 1782
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib1
  article-title: Biologic underpinnings of type 1 diabetic kidney disease
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2019080803
– volume: 12
  start-page: 73
  year: 2016
  ident: 10.1016/j.jbc.2023.104975_bib2
  article-title: Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2015.173
– volume: 21
  start-page: 17
  year: 2020
  ident: 10.1016/j.jbc.2023.104975_bib28
  article-title: Regulation of cGAS- and RLR-mediated immunity to nucleic acids
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0556-1
– volume: 8
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib20
  article-title: Mitochondrial regulation of diabetic kidney disease
  publication-title: Front. Med. (Lausanne)
– volume: 30
  start-page: 23
  year: 1966
  ident: 10.1016/j.jbc.2023.104975_bib54
  article-title: Practical stereological methods for morphometric cytology
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.30.1.23
– volume: 22
  start-page: 16
  year: 2020
  ident: 10.1016/j.jbc.2023.104975_bib7
  article-title: Pathophysiologic mechanisms in diabetic kidney disease: a focus on current and future therapeutic targets
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13969
– volume: 12
  start-page: 2032
  year: 2017
  ident: 10.1016/j.jbc.2023.104975_bib10
  article-title: Diabetic kidney disease: challenges, progress, and possibilities
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.11491116
– volume: 30
  start-page: 784
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib30
  article-title: Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.003
– volume: 32
  start-page: 1355
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib45
  article-title: Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2020081188
– volume: 297
  start-page: F1587
  year: 2009
  ident: 10.1016/j.jbc.2023.104975_bib53
  article-title: The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00404.2009
– volume: 20
  start-page: 50
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib25
  article-title: Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0255-3
– volume: 320
  start-page: F1133
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib16
  article-title: Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in db/db mice and KKAy mice compared with valsartan treatment
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00614.2020
– volume: 22
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib13
  article-title: Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms221910822
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.jbc.2023.104975_bib58
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 6
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib22
  article-title: NAD(+) metabolism controls inflammation during senescence
  publication-title: Mol. Cell. Oncol.
– volume: 30
  start-page: 2114
  year: 2014
  ident: 10.1016/j.jbc.2023.104975_bib55
  article-title: Trimmomatic: a flexible trimmer for illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 559
  start-page: 269
  year: 2018
  ident: 10.1016/j.jbc.2023.104975_bib31
  article-title: Targeting STING with covalent small-molecule inhibitors
  publication-title: Nature
  doi: 10.1038/s41586-018-0287-8
– volume: 380
  start-page: 2295
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib11
  article-title: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1811744
– volume: 12
  start-page: 654
  year: 2010
  ident: 10.1016/j.jbc.2023.104975_bib33
  article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.11.003
– volume: 8
  start-page: 1603
  year: 2013
  ident: 10.1016/j.jbc.2023.104975_bib3
  article-title: Diabetic nephropathy: a national dialogue
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.03640413
– volume: 10
  start-page: 2945
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib19
  article-title: Mitochondria in diabetic kidney disease
  publication-title: Cells
  doi: 10.3390/cells10112945
– volume: 363
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib29
  article-title: cGAS in action: expanding roles in immunity and inflammation
  publication-title: Science
  doi: 10.1126/science.aat8657
– volume: 20
  start-page: 1646
  year: 2014
  ident: 10.1016/j.jbc.2023.104975_bib36
  article-title: Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2013.5482
– volume: 531
  start-page: 528
  year: 2016
  ident: 10.1016/j.jbc.2023.104975_bib44
  article-title: PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection
  publication-title: Nature
  doi: 10.1038/nature17184
– volume: 16
  start-page: 1578
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib12
  article-title: GLP-1 receptor agonists in diabetic kidney disease
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.18771220
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.jbc.2023.104975_bib56
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 49
  start-page: D1541
  year: 2021
  ident: 10.1016/j.jbc.2023.104975_bib61
  article-title: MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1011
– volume: 116
  start-page: 17792
  year: 2019
  ident: 10.1016/j.jbc.2023.104975_bib50
  article-title: Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1911252116
– volume: 370
  start-page: 1514
  year: 2014
  ident: 10.1016/j.jbc.2023.104975_bib6
  article-title: Changes in diabetes-related complications in the United States, 1990-2010
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1310799
– volume: 32
  start-page: 513
  year: 2014
  ident: 10.1016/j.jbc.2023.104975_bib26
  article-title: Interferon-stimulated genes: a complex web of host defenses
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120231
– volume: 1
  start-page: 982
  year: 2020
  ident: 10.1016/j.jbc.2023.104975_bib39
  article-title: Shaping up mitochondria in diabetic nephropathy
  publication-title: Kidney360
  doi: 10.34067/KID.0002352020
SSID ssj0000491
Score 2.5550117
Snippet Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104975
SubjectTerms Animals
Diabetes Mellitus, Experimental - pathology
Diabetes Mellitus, Type 2 - metabolism
Diabetic Nephropathies - metabolism
DNA, Mitochondrial - metabolism
Inflammation - metabolism
Interferons - metabolism
Mice
Mitochondria - metabolism
NAD - metabolism
Nucleotidyltransferases - metabolism

Title NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease
URI https://dx.doi.org/10.1016/j.jbc.2023.104975
https://www.ncbi.nlm.nih.gov/pubmed/37429506
https://www.proquest.com/docview/2847746982
https://pubmed.ncbi.nlm.nih.gov/PMC10413283
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ9oPejFaKt2_WjGxHiwYbPADKzHTdU0NjYxaZV4ITPDTMp2F8yWTd3-9b7HMMCutdFeCAEGJvx-PN68T0LeaDMS8FvVHqx0pMeYlJ5gwngG2AHnlJEaE5y_HEeHp-xzwpMuILPOLqnkUF1dm1dyG1ThGOCKWbL_gWx7UzgA-4AvbAFh2P4TxseTD9gCGnCcYa-LeZlhMy4bYgVI26zE2j0whw8XBF2Rwaz28V_mYhyt7TVX--d5VoB86Dtsph2TenqrLdtkC4u4bnEtbCtxLmY2y6ycLxci78zN3xvLdJKL8hc8ORm21p2z5ay6sLIeCzLCFL-1J48W4lJdrazQvhR9K0UQtjFyjenMpc-sRXfa-JDA1m4faiuBQSfE9ILkWvluTQ3T4VRi-ckgRBf1e9t6ZaNsNnqhfbw3rLEwAC-8S-4FsJRAWXj0tasoD-NtV8VmKs7zXccAbjzmb7rLn2uTzRDbns5y8og8bECjE8ucx-SOLrbJzqQQVTlf0be0Dv-t_Srb5P6BA3OH_ABi0Y5YtCUW7ROLArFon1jUEQsuo45Y1BKLNsR6Qk4_fTw5OPSaJhyeYjyoPKGklgzkPo9HkeS-zLJQs8z4qCzzYGxMpKNYsVgLDepfZHiYaROqTGUyYlqET8lWURZ6l1Afxo-Yn0mjYya4L6JICdCfJY8UvCk-ICP3elPVVKjHRimz1IUiTlNAJEVEUovIgLxrh_y05Vluupg5zNJGv7R6Ywr0umnYa4dvCjigQ00UulxepKjaxdiCNRiQZxbvdhZhDJoeH0UDMl5jQnsB1nVfP1PkZ3V9d3gsSM5x-Px2831BHnRf4EuyVS2W-hVozpXcqy1Oe_UH8BvEJcm2
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD+metabolism+modulates+inflammation+and+mitochondria+function+in+diabetic+kidney+disease&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Myakala%2C+Komuraiah&rft.au=Wang%2C+Xiaoxin+X.&rft.au=Shults%2C+Nataliia+V.&rft.au=Krawczyk%2C+Ewa&rft.date=2023-08-01&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016%2Fj.jbc.2023.104975&rft.externalDocID=S0021925823020033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon