NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease
Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidat...
Saved in:
Published in | The Journal of biological chemistry Vol. 299; no. 8; p. 104975 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2023
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease. |
---|---|
AbstractList | Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease. Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction ( i.e. , albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease. Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease. |
ArticleNumber | 104975 |
Author | Wang, Xiaoxin X. Wu, Ci Ginley, Brandon Panov, Julia Sarder, Pinaki Guha, Udayan Bansal, Shivani Ma, Junfeng Levi, Moshe Myakala, Komuraiah Rosenberg, Avi Z. Krawczyk, Ewa Jang, Yura Na, Chan Hyun Zhang, Xu Shults, Nataliia V. Kopp, Jeffrey B. Albanese, Chris Hirschey, Matthew D. Yang, Xiaoping Cheema, Amrita Yoshida, Teruhiko Brodsky, Leonid Qi, Yue Jones, Bryce A. |
Author_xml | – sequence: 1 givenname: Komuraiah orcidid: 0000-0003-3233-047X surname: Myakala fullname: Myakala, Komuraiah organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA – sequence: 2 givenname: Xiaoxin X. surname: Wang fullname: Wang, Xiaoxin X. email: Xiaoxin.Wang@georgetown.edu organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA – sequence: 3 givenname: Nataliia V. surname: Shults fullname: Shults, Nataliia V. organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA – sequence: 4 givenname: Ewa surname: Krawczyk fullname: Krawczyk, Ewa organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA – sequence: 5 givenname: Bryce A. surname: Jones fullname: Jones, Bryce A. organization: Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA – sequence: 6 givenname: Xiaoping surname: Yang fullname: Yang, Xiaoping organization: Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA – sequence: 7 givenname: Avi Z. surname: Rosenberg fullname: Rosenberg, Avi Z. organization: Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA – sequence: 8 givenname: Brandon surname: Ginley fullname: Ginley, Brandon organization: Departments of Pathology and Anatomical Sciences, SUNY, Buffalo, New York, USA – sequence: 9 givenname: Pinaki surname: Sarder fullname: Sarder, Pinaki organization: Department of Medicine-Quantitative Health, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA – sequence: 10 givenname: Leonid orcidid: 0000-0003-0023-5785 surname: Brodsky fullname: Brodsky, Leonid organization: Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel – sequence: 11 givenname: Yura surname: Jang fullname: Jang, Yura organization: Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA – sequence: 12 givenname: Chan Hyun surname: Na fullname: Na, Chan Hyun organization: Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA – sequence: 13 givenname: Yue surname: Qi fullname: Qi, Yue organization: Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA – sequence: 14 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA – sequence: 15 givenname: Udayan surname: Guha fullname: Guha, Udayan organization: Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA – sequence: 16 givenname: Ci surname: Wu fullname: Wu, Ci organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA – sequence: 17 givenname: Shivani surname: Bansal fullname: Bansal, Shivani organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA – sequence: 18 givenname: Junfeng orcidid: 0000-0002-5183-5425 surname: Ma fullname: Ma, Junfeng organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA – sequence: 19 givenname: Amrita surname: Cheema fullname: Cheema, Amrita organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA – sequence: 20 givenname: Chris surname: Albanese fullname: Albanese, Chris organization: Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA – sequence: 21 givenname: Matthew D. orcidid: 0000-0003-4541-5376 surname: Hirschey fullname: Hirschey, Matthew D. organization: Division of Endocrinology, Metabolism, and Nutrition, and Pharmacology and Cancer Biology, Department of Medicine, Duke University, Durham, North Carolina, USA – sequence: 22 givenname: Teruhiko orcidid: 0000-0002-2049-7347 surname: Yoshida fullname: Yoshida, Teruhiko organization: Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA – sequence: 23 givenname: Jeffrey B. surname: Kopp fullname: Kopp, Jeffrey B. organization: Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA – sequence: 24 givenname: Julia orcidid: 0000-0003-2392-4073 surname: Panov fullname: Panov, Julia organization: Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel – sequence: 25 givenname: Moshe surname: Levi fullname: Levi, Moshe email: Moshe.Levi@georgetown.edu organization: Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37429506$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctqFUEQbSRibqIf4EZm6Wau_Z4ZXEhIfEHQjYK4afpRY-o60x2newL5ezu5iaiL1KYo6jzgnCNyEFMEQp4zumWU6Ve77c75Ladc1FsOnXpENoz2ohWKfTsgG0o5aweu-kNylPOO1pEDe0IORSf5oKjekO-fTs6aGYp1acI8N3MK62QL5AbjONl5tgVTbGwMzYwl-YsUw4K2Gdfobz8Ym4DWQUHf_MQQ4breGWyGp-TxaKcMz-72Mfn67u2X0w_t-ef3H09PzlsvFS-t9Q6c7AVXHdVOMReCABlGRrnSivfjqEF3XnZggYtej0oEGIUPPjgtwYpj8mave7m6GYKHWBY7mcsFZ7tcm2TR_PuJeGF-pCtTM2OC96IqvLxTWNKvFXIxM2YP02QjpDUb3suuk3roeYW--Nvsj8t9ohXQ7QF-STkvMBqP5TbE6o1TNTU33Zmdqd2Zm-7MvrvKZP8x78Uf4rzec6AGfIWwmOwRooeAC_hiQsIH2L8BPbCz7Q |
CitedBy_id | crossref_primary_10_1038_s41598_024_80492_1 crossref_primary_10_1111_acel_70004 crossref_primary_10_1172_jci_insight_181443 crossref_primary_10_3390_ijms25136936 crossref_primary_10_26508_lsa_202302505 crossref_primary_10_1016_j_tem_2024_07_010 crossref_primary_10_1039_D4SC07963A crossref_primary_10_3390_biom14060733 crossref_primary_10_1016_j_aca_2024_343074 crossref_primary_10_3389_fendo_2024_1384953 crossref_primary_10_1152_ajprenal_00061_2024 crossref_primary_10_1186_s12964_024_01903_4 crossref_primary_10_2215_CJN_0000000624 crossref_primary_10_1097_CM9_0000000000003022 crossref_primary_10_3389_fimmu_2024_1346446 crossref_primary_10_1016_j_mito_2024_101957 crossref_primary_10_3390_ijms251810222 crossref_primary_10_1016_j_ekir_2024_12_029 crossref_primary_10_3390_antiox14010039 crossref_primary_10_4239_wjd_v15_i10_2041 crossref_primary_10_1016_j_bcp_2024_116669 crossref_primary_10_3390_antiox14030267 |
Cites_doi | 10.1016/j.cmet.2018.02.011 10.2337/dci18-0033 10.1172/JCI72271 10.1172/JCI138538 10.1016/j.cell.2010.10.002 10.3390/antiox8060171 10.1038/s41581-019-0234-4 10.3389/fphar.2019.01192 10.1186/1471-2105-12-323 10.1016/j.isci.2021.102390 10.1021/acs.jproteome.0c00587 10.1038/s41577-022-00760-x 10.1038/s41598-020-77370-x 10.1038/nature08778 10.1681/ASN.2013020126 10.1016/j.celrep.2019.09.050 10.1172/JCI140695 10.1038/s41419-018-1057-0 10.1681/ASN.2018121259 10.1007/978-1-4939-7493-1_7 10.1073/pnas.2011226118 10.1172/JCI77632 10.1038/nprot.2008.211 10.1172/JCI136329 10.3945/ajcn.110.001917 10.1186/gb-2007-8-9-r183 10.1007/978-1-62703-739-6_31 10.1016/S0140-6736(19)32131-2 10.1038/s41577-021-00524-z 10.1681/ASN.2017020222 10.1186/1478-7954-8-29 10.1038/nrneph.2018.9 10.1681/ASN.2019080803 10.1038/nrneph.2015.173 10.1038/s41590-019-0556-1 10.1083/jcb.30.1.23 10.1111/dom.13969 10.2215/CJN.11491116 10.1016/j.cmet.2019.08.003 10.1681/ASN.2020081188 10.1152/ajprenal.00404.2009 10.1038/s41590-018-0255-3 10.1152/ajprenal.00614.2020 10.3390/ijms221910822 10.1186/s13059-014-0550-8 10.1093/bioinformatics/btu170 10.1038/s41586-018-0287-8 10.1056/NEJMoa1811744 10.1016/j.cmet.2010.11.003 10.2215/CJN.03640413 10.3390/cells10112945 10.1126/science.aat8657 10.1089/ars.2013.5482 10.1038/nature17184 10.2215/CJN.18771220 10.1093/bioinformatics/bts635 10.1093/nar/gkaa1011 10.1073/pnas.1911252116 10.1056/NEJMoa1310799 10.1146/annurev-immunol-032713-120231 10.34067/KID.0002352020 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jbc.2023.104975 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC10413283 37429506 10_1016_j_jbc_2023_104975 S0021925823020033 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK116567 – fundername: NIDDK NIH HHS grantid: F30 DK129003 – fundername: NCATS NIH HHS grantid: TL1 TR001431 – fundername: NIDDK NIH HHS grantid: R01 DK127830 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0R~ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM ADVLN AENEX AEXQZ AFFNX AFMIJ AFOSN AFPKN AI. AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XJT XSW Y6R YQT YSK YWH YYP YZZ ZE2 ZGI ZY4 ~02 ~KM .7T AALRI AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AIGII AKBMS AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM PKN Z5M 7X8 5PM |
ID | FETCH-LOGICAL-c452t-acbeb48325706b51bdd3e4df10256528ff6e67c47eae2386f53def3cdcdb64ea3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:40:06 EDT 2025 Fri Jul 11 06:23:07 EDT 2025 Wed Feb 19 02:10:01 EST 2025 Tue Jul 01 01:59:54 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Tue Jul 16 04:31:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | GLP-1 NR SGLT2 ▪ TBARS KIM-1 NAD ARB 4-HNE FAO ACEI STING cGAS-STING DKD diabetic kidney disease mitochondrial DNA damage mitochondria sirtuin 3 inflammation, diabetes |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c452t-acbeb48325706b51bdd3e4df10256528ff6e67c47eae2386f53def3cdcdb64ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4541-5376 0000-0002-5183-5425 0000-0003-2392-4073 0000-0003-0023-5785 0000-0002-2049-7347 0000-0003-3233-047X |
OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2023.104975 |
PMID | 37429506 |
PQID | 2847746982 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10413283 proquest_miscellaneous_2847746982 pubmed_primary_37429506 crossref_citationtrail_10_1016_j_jbc_2023_104975 crossref_primary_10_1016_j_jbc_2023_104975 elsevier_sciencedirect_doi_10_1016_j_jbc_2023_104975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2023 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Minhas, Liu, Moon, Joshi, Dove, Mhatre (bib25) 2019; 20 Someya, Yu, Hallows, Xu, Vann, Leeuwenburgh (bib35) 2010; 143 Wang, Jiang, Shen, Adorini, Pruzanski, Gonzalez (bib53) 2009; 297 Myakala, Jones, Wang, Levi (bib16) 2021; 320 Galvan, Mise, Danesh (bib20) 2021; 8 Tahir, Renuse, Udainiya, Madugundu, Cutler, Nirujogi (bib62) 2021; 20 Rybka, Suzuki, Gavrish, Dibrova, Gychka, Shults (bib38) 2019; 8 Matthews, Paldanius, Proot, Chiang, Stumvoll, Del Prato (bib8) 2019; 394 Breyer, Coffman, Flessner, Fried, Harris, Ketchum (bib3) 2013; 8 Haag, Gulen, Reymond, Gibelin, Abrami, Decout (bib31) 2018; 559 Nacarelli, Zhang (bib22) 2019; 6 Zhou, Wang, Qiu, Airhart, Liu, Stempien-Otero (bib24) 2020; 130 Sharma, Karl, Mathew, Gangoiti, Wassel, Saito (bib42) 2013; 24 Bolger, Lohse, Usadel (bib55) 2014; 30 Winiarska, Knysak, Nabrdalik, Gumprecht, Stompor (bib13) 2021; 22 Mise, Galvan, Danesh (bib39) 2020; 1 Alicic, Rooney, Tuttle (bib10) 2017; 12 Sedor, Freedman (bib1) 2019; 30 Forbes, Thorburn (bib41) 2018; 14 Morigi, Perico, Rota, Longaretti, Conti, Rottoli (bib48) 2015; 125 Huang, Sherman, Tan, Collins, Alvord, Roayaei (bib60) 2007; 8 Rath, Sharma, Gupta, Ast, Chan, Durham (bib61) 2021; 49 Perkovic, Jardine, Neal, Bompoint, Heerspink, Charytan (bib11) 2019; 380 Thomas, Cooper, Zimmet (bib2) 2016; 12 Wang, Wang, Luo, Myakala, Dobrinskikh, Rosenberg (bib15) 2018; 29 Srivastava, Li, Kitada, Fujita, Yamada, Goodwin (bib47) 2018; 9 Ablasser, Hur (bib28) 2020; 21 Shimazu, Hirschey, Hua, Dittenhafer-Reed, Schwer, Lombard (bib33) 2010; 12 Weibel, Kistler, Scherle (bib54) 1966; 30 Ahmad, Draves, Rosca (bib19) 2021; 10 Srivastava, Li, Takagaki, Kitada, Goodwin, Kanasaki (bib46) 2021; 24 Furda, Santos, Meyer, Van Houten (bib51) 2014; 1105 Wu, Raman, Coffey, Sheng, Wahba, Seasock (bib43) 2021; 131 Tao, Vassilopoulos, Parisiadou, Yan, Gius (bib36) 2014; 20 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha (bib56) 2013; 29 Decout, Katz, Venkatraman, Ablasser (bib27) 2021; 21 Fernandez-Marcos, Auwerx (bib37) 2011; 93 Yasuda, Hasegawa, Sakamaki, Muraoka, Kawaguchi, Kusahana (bib45) 2021; 32 Xu, Boyd, Tree, Samkari, Zhao (bib50) 2019; 116 Gregg, Li, Wang, Burrows, Ali, Rolka (bib6) 2014; 370 Tang, Yiu (bib40) 2020; 16 Michos, Tuttle (bib12) 2021; 16 Rajman, Chwalek, Sinclair (bib21) 2018; 27 Li, Dewey (bib57) 2011; 12 Love, Huber, Anders (bib58) 2014; 15 Tran, Zsengeller, Berg, Khankin, Bhasin, Kim (bib44) 2016; 531 Marchi, Guilbaud, Tait, Yamazaki, Galluzzi (bib17) 2022; 23 Ji, Yin, Li, Zhu, Ye, Pan (bib18) 2020; 10 Schneider, Chevillotte, Rice (bib26) 2014; 32 Tyanova, Cox (bib63) 2018; 1711 Ginley, Lutnick, Jen, Fogo, Jain, Rosenberg (bib52) 2019; 30 Davies, D'Alessio, Fradkin, Kernan, Mathieu, Mingrone (bib9) 2018; 41 Miguel, Tituana, Herrero, Herrero, Serra, Cuevas (bib49) 2021; 131 Chung, Dhillon, Huang, Sheng, Shrestha, Qiu (bib30) 2019; 30 Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard (bib34) 2010; 464 Maekawa, Inoue, Ouchi, Jao, Inoue, Nishi (bib32) 2019; 29 Barrera-Chimal, Jaisser (bib7) 2020; 22 Boyle, Thompson, Gregg, Barker, Williamson (bib4) 2010; 8 Ablasser, Chen (bib29) 2019; 363 Reidy, Kang, Hostetter, Susztak (bib5) 2014; 124 Andrade-Oliveira, Foresto-Neto, Watanabe, Zatz, Camara (bib14) 2019; 10 Hou, Wei, Lautrup, Yang, Wang, Cordonnier (bib23) 2021; 118 Huang da, Sherman, Lempicki (bib59) 2009; 4 Andrade-Oliveira (10.1016/j.jbc.2023.104975_bib14) 2019; 10 Srivastava (10.1016/j.jbc.2023.104975_bib46) 2021; 24 Sedor (10.1016/j.jbc.2023.104975_bib1) 2019; 30 Li (10.1016/j.jbc.2023.104975_bib57) 2011; 12 Haag (10.1016/j.jbc.2023.104975_bib31) 2018; 559 Mise (10.1016/j.jbc.2023.104975_bib39) 2020; 1 Tyanova (10.1016/j.jbc.2023.104975_bib63) 2018; 1711 Schneider (10.1016/j.jbc.2023.104975_bib26) 2014; 32 Chung (10.1016/j.jbc.2023.104975_bib30) 2019; 30 Minhas (10.1016/j.jbc.2023.104975_bib25) 2019; 20 Rath (10.1016/j.jbc.2023.104975_bib61) 2021; 49 Morigi (10.1016/j.jbc.2023.104975_bib48) 2015; 125 Ablasser (10.1016/j.jbc.2023.104975_bib28) 2020; 21 Xu (10.1016/j.jbc.2023.104975_bib50) 2019; 116 Alicic (10.1016/j.jbc.2023.104975_bib10) 2017; 12 Reidy (10.1016/j.jbc.2023.104975_bib5) 2014; 124 Davies (10.1016/j.jbc.2023.104975_bib9) 2018; 41 Rybka (10.1016/j.jbc.2023.104975_bib38) 2019; 8 Ji (10.1016/j.jbc.2023.104975_bib18) 2020; 10 Ablasser (10.1016/j.jbc.2023.104975_bib29) 2019; 363 Myakala (10.1016/j.jbc.2023.104975_bib16) 2021; 320 Love (10.1016/j.jbc.2023.104975_bib58) 2014; 15 Tang (10.1016/j.jbc.2023.104975_bib40) 2020; 16 Srivastava (10.1016/j.jbc.2023.104975_bib47) 2018; 9 Ginley (10.1016/j.jbc.2023.104975_bib52) 2019; 30 Furda (10.1016/j.jbc.2023.104975_bib51) 2014; 1105 Weibel (10.1016/j.jbc.2023.104975_bib54) 1966; 30 Shimazu (10.1016/j.jbc.2023.104975_bib33) 2010; 12 Someya (10.1016/j.jbc.2023.104975_bib35) 2010; 143 Thomas (10.1016/j.jbc.2023.104975_bib2) 2016; 12 Tahir (10.1016/j.jbc.2023.104975_bib62) 2021; 20 Rajman (10.1016/j.jbc.2023.104975_bib21) 2018; 27 Michos (10.1016/j.jbc.2023.104975_bib12) 2021; 16 Marchi (10.1016/j.jbc.2023.104975_bib17) 2022; 23 Breyer (10.1016/j.jbc.2023.104975_bib3) 2013; 8 Matthews (10.1016/j.jbc.2023.104975_bib8) 2019; 394 Tao (10.1016/j.jbc.2023.104975_bib36) 2014; 20 Huang da (10.1016/j.jbc.2023.104975_bib59) 2009; 4 Nacarelli (10.1016/j.jbc.2023.104975_bib22) 2019; 6 Wang (10.1016/j.jbc.2023.104975_bib15) 2018; 29 Maekawa (10.1016/j.jbc.2023.104975_bib32) 2019; 29 Huang (10.1016/j.jbc.2023.104975_bib60) 2007; 8 Forbes (10.1016/j.jbc.2023.104975_bib41) 2018; 14 Bolger (10.1016/j.jbc.2023.104975_bib55) 2014; 30 Barrera-Chimal (10.1016/j.jbc.2023.104975_bib7) 2020; 22 Ahmad (10.1016/j.jbc.2023.104975_bib19) 2021; 10 Yasuda (10.1016/j.jbc.2023.104975_bib45) 2021; 32 Winiarska (10.1016/j.jbc.2023.104975_bib13) 2021; 22 Miguel (10.1016/j.jbc.2023.104975_bib49) 2021; 131 Boyle (10.1016/j.jbc.2023.104975_bib4) 2010; 8 Hou (10.1016/j.jbc.2023.104975_bib23) 2021; 118 Hirschey (10.1016/j.jbc.2023.104975_bib34) 2010; 464 Perkovic (10.1016/j.jbc.2023.104975_bib11) 2019; 380 Decout (10.1016/j.jbc.2023.104975_bib27) 2021; 21 Zhou (10.1016/j.jbc.2023.104975_bib24) 2020; 130 Wang (10.1016/j.jbc.2023.104975_bib53) 2009; 297 Gregg (10.1016/j.jbc.2023.104975_bib6) 2014; 370 Dobin (10.1016/j.jbc.2023.104975_bib56) 2013; 29 Wu (10.1016/j.jbc.2023.104975_bib43) 2021; 131 Galvan (10.1016/j.jbc.2023.104975_bib20) 2021; 8 Sharma (10.1016/j.jbc.2023.104975_bib42) 2013; 24 Fernandez-Marcos (10.1016/j.jbc.2023.104975_bib37) 2011; 93 Tran (10.1016/j.jbc.2023.104975_bib44) 2016; 531 |
References_xml | – volume: 380 start-page: 2295 year: 2019 end-page: 2306 ident: bib11 article-title: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy publication-title: N. Engl. J. Med. – volume: 8 start-page: 171 year: 2019 ident: bib38 article-title: Transmission electron microscopy study of mitochondria in aging brain synapses publication-title: Antioxidants (Basel) – volume: 12 start-page: 654 year: 2010 end-page: 661 ident: bib33 article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production publication-title: Cell Metab. – volume: 12 start-page: 73 year: 2016 end-page: 81 ident: bib2 article-title: Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease publication-title: Nat. Rev. Nephrol. – volume: 41 start-page: 2669 year: 2018 end-page: 2701 ident: bib9 article-title: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD) publication-title: Diabetes Care – volume: 8 start-page: R183 year: 2007 ident: bib60 article-title: The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists publication-title: Genome Biol. – volume: 30 start-page: 784 year: 2019 end-page: 799.e5 ident: bib30 article-title: Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis publication-title: Cell Metab. – volume: 16 start-page: 206 year: 2020 end-page: 222 ident: bib40 article-title: Innate immunity in diabetic kidney disease publication-title: Nat. Rev. Nephrol. – volume: 8 year: 2021 ident: bib20 article-title: Mitochondrial regulation of diabetic kidney disease publication-title: Front. Med. (Lausanne) – volume: 125 start-page: 715 year: 2015 end-page: 726 ident: bib48 article-title: Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury publication-title: J. Clin. Invest. – volume: 24 year: 2021 ident: bib46 article-title: Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys publication-title: iScience – volume: 124 start-page: 2333 year: 2014 end-page: 2340 ident: bib5 article-title: Molecular mechanisms of diabetic kidney disease publication-title: J. Clin. Invest. – volume: 21 start-page: 548 year: 2021 end-page: 569 ident: bib27 article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases publication-title: Nat. Rev. Immunol. – volume: 21 start-page: 17 year: 2020 end-page: 29 ident: bib28 article-title: Regulation of cGAS- and RLR-mediated immunity to nucleic acids publication-title: Nat. Immunol. – volume: 30 start-page: 23 year: 1966 end-page: 38 ident: bib54 article-title: Practical stereological methods for morphometric cytology publication-title: J. Cell Biol. – volume: 118 year: 2021 ident: bib23 article-title: NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 670 year: 2021 end-page: 683 ident: bib62 article-title: Mutation-specific and common phosphotyrosine signatures of KRAS G12D and G13D alleles publication-title: J. Proteome Res. – volume: 131 year: 2021 ident: bib49 article-title: Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis publication-title: J. Clin. Invest. – volume: 30 start-page: 1782 year: 2019 end-page: 1783 ident: bib1 article-title: Biologic underpinnings of type 1 diabetic kidney disease publication-title: J. Am. Soc. Nephrol. – volume: 131 year: 2021 ident: bib43 article-title: The key role of NLRP3 and STING in APOL1-associated podocytopathy publication-title: J. Clin. Invest. – volume: 15 start-page: 550 year: 2014 ident: bib58 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 10 year: 2020 ident: bib18 article-title: Effects of inflammatory and anti-inflammatory environments on the macrophage mitochondrial function publication-title: Sci. Rep. – volume: 130 start-page: 6054 year: 2020 end-page: 6063 ident: bib24 article-title: Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure publication-title: J. Clin. Invest. – volume: 10 start-page: 1192 year: 2019 ident: bib14 article-title: Inflammation in renal diseases: new and old players publication-title: Front. Pharmacol. – volume: 32 start-page: 1355 year: 2021 end-page: 1370 ident: bib45 article-title: Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy publication-title: J. Am. Soc. Nephrol. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib56 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 116 start-page: 17792 year: 2019 end-page: 17799 ident: bib50 article-title: Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 297 start-page: F1587 year: 2009 end-page: 1596 ident: bib53 article-title: The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria publication-title: Am. J. Physiol. Renal Physiol. – volume: 6 year: 2019 ident: bib22 article-title: NAD(+) metabolism controls inflammation during senescence publication-title: Mol. Cell. Oncol. – volume: 49 start-page: D1541 year: 2021 end-page: D1547 ident: bib61 article-title: MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations publication-title: Nucleic Acids Res. – volume: 1 start-page: 982 year: 2020 end-page: 992 ident: bib39 article-title: Shaping up mitochondria in diabetic nephropathy publication-title: Kidney360 – volume: 22 start-page: 16 year: 2020 end-page: 31 ident: bib7 article-title: Pathophysiologic mechanisms in diabetic kidney disease: a focus on current and future therapeutic targets publication-title: Diabetes Obes. Metab. – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: bib55 article-title: Trimmomatic: a flexible trimmer for illumina sequence data publication-title: Bioinformatics – volume: 1105 start-page: 419 year: 2014 end-page: 437 ident: bib51 article-title: Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells publication-title: Methods Mol. Biol. – volume: 32 start-page: 513 year: 2014 end-page: 545 ident: bib26 article-title: Interferon-stimulated genes: a complex web of host defenses publication-title: Annu. Rev. Immunol. – volume: 320 start-page: F1133 year: 2021 end-page: F1151 ident: bib16 article-title: Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in db/db mice and KKAy mice compared with valsartan treatment publication-title: Am. J. Physiol. Renal Physiol. – volume: 20 start-page: 50 year: 2019 end-page: 63 ident: bib25 article-title: Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation publication-title: Nat. Immunol. – volume: 559 start-page: 269 year: 2018 end-page: 273 ident: bib31 article-title: Targeting STING with covalent small-molecule inhibitors publication-title: Nature – volume: 16 start-page: 1578 year: 2021 end-page: 1580 ident: bib12 article-title: GLP-1 receptor agonists in diabetic kidney disease publication-title: Clin. J. Am. Soc. Nephrol. – volume: 363 year: 2019 ident: bib29 article-title: cGAS in action: expanding roles in immunity and inflammation publication-title: Science – volume: 14 start-page: 291 year: 2018 end-page: 312 ident: bib41 article-title: Mitochondrial dysfunction in diabetic kidney disease publication-title: Nat. Rev. Nephrol. – volume: 12 start-page: 323 year: 2011 ident: bib57 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 464 start-page: 121 year: 2010 end-page: 125 ident: bib34 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature – volume: 20 start-page: 1646 year: 2014 end-page: 1654 ident: bib36 article-title: Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis publication-title: Antioxid. Redox Signal. – volume: 370 start-page: 1514 year: 2014 end-page: 1523 ident: bib6 article-title: Changes in diabetes-related complications in the United States, 1990-2010 publication-title: N. Engl. J. Med. – volume: 27 start-page: 529 year: 2018 end-page: 547 ident: bib21 article-title: Therapeutic potential of NAD-Boosting molecules: the in vivo evidence publication-title: Cell Metab. – volume: 394 start-page: 1519 year: 2019 end-page: 1529 ident: bib8 article-title: Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial publication-title: Lancet – volume: 10 start-page: 2945 year: 2021 ident: bib19 article-title: Mitochondria in diabetic kidney disease publication-title: Cells – volume: 12 start-page: 2032 year: 2017 end-page: 2045 ident: bib10 article-title: Diabetic kidney disease: challenges, progress, and possibilities publication-title: Clin. J. Am. Soc. Nephrol. – volume: 24 start-page: 1901 year: 2013 end-page: 1912 ident: bib42 article-title: Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease publication-title: J. Am. Soc. Nephrol. – volume: 4 start-page: 44 year: 2009 end-page: 57 ident: bib59 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. – volume: 29 start-page: 1261 year: 2019 end-page: 1273.e6 ident: bib32 article-title: Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury publication-title: Cell Rep. – volume: 531 start-page: 528 year: 2016 end-page: 532 ident: bib44 article-title: PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection publication-title: Nature – volume: 9 start-page: 997 year: 2018 ident: bib47 article-title: SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis publication-title: Cell Death Dis. – volume: 143 start-page: 802 year: 2010 end-page: 812 ident: bib35 article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction publication-title: Cell – volume: 8 start-page: 1603 year: 2013 end-page: 1605 ident: bib3 article-title: Diabetic nephropathy: a national dialogue publication-title: Clin. J. Am. Soc. Nephrol. – volume: 30 start-page: 1953 year: 2019 end-page: 1967 ident: bib52 article-title: Computational segmentation and classification of diabetic glomerulosclerosis publication-title: J. Am. Soc. Nephrol. – volume: 23 start-page: 159 year: 2022 end-page: 173 ident: bib17 article-title: Mitochondrial control of inflammation publication-title: Nat. Rev. Immunol. – volume: 29 start-page: 118 year: 2018 end-page: 137 ident: bib15 article-title: FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity publication-title: J. Am. Soc. Nephrol. – volume: 8 start-page: 29 year: 2010 ident: bib4 article-title: Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence publication-title: Popul. Health Metr. – volume: 22 year: 2021 ident: bib13 article-title: Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists publication-title: Int. J. Mol. Sci. – volume: 93 start-page: 884S year: 2011 end-page: 890 ident: bib37 article-title: Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis publication-title: Am. J. Clin. Nutr. – volume: 1711 start-page: 133 year: 2018 end-page: 148 ident: bib63 article-title: Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research publication-title: Methods Mol. Biol. – volume: 27 start-page: 529 year: 2018 ident: 10.1016/j.jbc.2023.104975_bib21 article-title: Therapeutic potential of NAD-Boosting molecules: the in vivo evidence publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.02.011 – volume: 41 start-page: 2669 year: 2018 ident: 10.1016/j.jbc.2023.104975_bib9 article-title: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD) publication-title: Diabetes Care doi: 10.2337/dci18-0033 – volume: 124 start-page: 2333 year: 2014 ident: 10.1016/j.jbc.2023.104975_bib5 article-title: Molecular mechanisms of diabetic kidney disease publication-title: J. Clin. Invest. doi: 10.1172/JCI72271 – volume: 130 start-page: 6054 year: 2020 ident: 10.1016/j.jbc.2023.104975_bib24 article-title: Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure publication-title: J. Clin. Invest. doi: 10.1172/JCI138538 – volume: 143 start-page: 802 year: 2010 ident: 10.1016/j.jbc.2023.104975_bib35 article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction publication-title: Cell doi: 10.1016/j.cell.2010.10.002 – volume: 8 start-page: 171 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib38 article-title: Transmission electron microscopy study of mitochondria in aging brain synapses publication-title: Antioxidants (Basel) doi: 10.3390/antiox8060171 – volume: 16 start-page: 206 year: 2020 ident: 10.1016/j.jbc.2023.104975_bib40 article-title: Innate immunity in diabetic kidney disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-019-0234-4 – volume: 10 start-page: 1192 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib14 article-title: Inflammation in renal diseases: new and old players publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01192 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.jbc.2023.104975_bib57 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 24 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib46 article-title: Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys publication-title: iScience doi: 10.1016/j.isci.2021.102390 – volume: 20 start-page: 670 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib62 article-title: Mutation-specific and common phosphotyrosine signatures of KRAS G12D and G13D alleles publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.0c00587 – volume: 23 start-page: 159 year: 2022 ident: 10.1016/j.jbc.2023.104975_bib17 article-title: Mitochondrial control of inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-022-00760-x – volume: 10 year: 2020 ident: 10.1016/j.jbc.2023.104975_bib18 article-title: Effects of inflammatory and anti-inflammatory environments on the macrophage mitochondrial function publication-title: Sci. Rep. doi: 10.1038/s41598-020-77370-x – volume: 464 start-page: 121 year: 2010 ident: 10.1016/j.jbc.2023.104975_bib34 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature doi: 10.1038/nature08778 – volume: 24 start-page: 1901 year: 2013 ident: 10.1016/j.jbc.2023.104975_bib42 article-title: Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2013020126 – volume: 29 start-page: 1261 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib32 article-title: Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.09.050 – volume: 131 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib49 article-title: Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis publication-title: J. Clin. Invest. doi: 10.1172/JCI140695 – volume: 9 start-page: 997 year: 2018 ident: 10.1016/j.jbc.2023.104975_bib47 article-title: SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1057-0 – volume: 30 start-page: 1953 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib52 article-title: Computational segmentation and classification of diabetic glomerulosclerosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2018121259 – volume: 1711 start-page: 133 year: 2018 ident: 10.1016/j.jbc.2023.104975_bib63 article-title: Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7493-1_7 – volume: 118 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib23 article-title: NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2011226118 – volume: 125 start-page: 715 year: 2015 ident: 10.1016/j.jbc.2023.104975_bib48 article-title: Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury publication-title: J. Clin. Invest. doi: 10.1172/JCI77632 – volume: 4 start-page: 44 year: 2009 ident: 10.1016/j.jbc.2023.104975_bib59 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.211 – volume: 131 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib43 article-title: The key role of NLRP3 and STING in APOL1-associated podocytopathy publication-title: J. Clin. Invest. doi: 10.1172/JCI136329 – volume: 93 start-page: 884S year: 2011 ident: 10.1016/j.jbc.2023.104975_bib37 article-title: Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.110.001917 – volume: 8 start-page: R183 year: 2007 ident: 10.1016/j.jbc.2023.104975_bib60 article-title: The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists publication-title: Genome Biol. doi: 10.1186/gb-2007-8-9-r183 – volume: 1105 start-page: 419 year: 2014 ident: 10.1016/j.jbc.2023.104975_bib51 article-title: Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-739-6_31 – volume: 394 start-page: 1519 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib8 article-title: Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial publication-title: Lancet doi: 10.1016/S0140-6736(19)32131-2 – volume: 21 start-page: 548 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib27 article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00524-z – volume: 29 start-page: 118 year: 2018 ident: 10.1016/j.jbc.2023.104975_bib15 article-title: FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2017020222 – volume: 8 start-page: 29 year: 2010 ident: 10.1016/j.jbc.2023.104975_bib4 article-title: Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence publication-title: Popul. Health Metr. doi: 10.1186/1478-7954-8-29 – volume: 14 start-page: 291 year: 2018 ident: 10.1016/j.jbc.2023.104975_bib41 article-title: Mitochondrial dysfunction in diabetic kidney disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2018.9 – volume: 30 start-page: 1782 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib1 article-title: Biologic underpinnings of type 1 diabetic kidney disease publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2019080803 – volume: 12 start-page: 73 year: 2016 ident: 10.1016/j.jbc.2023.104975_bib2 article-title: Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2015.173 – volume: 21 start-page: 17 year: 2020 ident: 10.1016/j.jbc.2023.104975_bib28 article-title: Regulation of cGAS- and RLR-mediated immunity to nucleic acids publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0556-1 – volume: 8 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib20 article-title: Mitochondrial regulation of diabetic kidney disease publication-title: Front. Med. (Lausanne) – volume: 30 start-page: 23 year: 1966 ident: 10.1016/j.jbc.2023.104975_bib54 article-title: Practical stereological methods for morphometric cytology publication-title: J. Cell Biol. doi: 10.1083/jcb.30.1.23 – volume: 22 start-page: 16 year: 2020 ident: 10.1016/j.jbc.2023.104975_bib7 article-title: Pathophysiologic mechanisms in diabetic kidney disease: a focus on current and future therapeutic targets publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13969 – volume: 12 start-page: 2032 year: 2017 ident: 10.1016/j.jbc.2023.104975_bib10 article-title: Diabetic kidney disease: challenges, progress, and possibilities publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.11491116 – volume: 30 start-page: 784 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib30 article-title: Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.003 – volume: 32 start-page: 1355 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib45 article-title: Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2020081188 – volume: 297 start-page: F1587 year: 2009 ident: 10.1016/j.jbc.2023.104975_bib53 article-title: The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00404.2009 – volume: 20 start-page: 50 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib25 article-title: Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0255-3 – volume: 320 start-page: F1133 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib16 article-title: Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in db/db mice and KKAy mice compared with valsartan treatment publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00614.2020 – volume: 22 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib13 article-title: Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms221910822 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.jbc.2023.104975_bib58 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 6 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib22 article-title: NAD(+) metabolism controls inflammation during senescence publication-title: Mol. Cell. Oncol. – volume: 30 start-page: 2114 year: 2014 ident: 10.1016/j.jbc.2023.104975_bib55 article-title: Trimmomatic: a flexible trimmer for illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 559 start-page: 269 year: 2018 ident: 10.1016/j.jbc.2023.104975_bib31 article-title: Targeting STING with covalent small-molecule inhibitors publication-title: Nature doi: 10.1038/s41586-018-0287-8 – volume: 380 start-page: 2295 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib11 article-title: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1811744 – volume: 12 start-page: 654 year: 2010 ident: 10.1016/j.jbc.2023.104975_bib33 article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.11.003 – volume: 8 start-page: 1603 year: 2013 ident: 10.1016/j.jbc.2023.104975_bib3 article-title: Diabetic nephropathy: a national dialogue publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.03640413 – volume: 10 start-page: 2945 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib19 article-title: Mitochondria in diabetic kidney disease publication-title: Cells doi: 10.3390/cells10112945 – volume: 363 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib29 article-title: cGAS in action: expanding roles in immunity and inflammation publication-title: Science doi: 10.1126/science.aat8657 – volume: 20 start-page: 1646 year: 2014 ident: 10.1016/j.jbc.2023.104975_bib36 article-title: Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5482 – volume: 531 start-page: 528 year: 2016 ident: 10.1016/j.jbc.2023.104975_bib44 article-title: PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection publication-title: Nature doi: 10.1038/nature17184 – volume: 16 start-page: 1578 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib12 article-title: GLP-1 receptor agonists in diabetic kidney disease publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.18771220 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.jbc.2023.104975_bib56 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 49 start-page: D1541 year: 2021 ident: 10.1016/j.jbc.2023.104975_bib61 article-title: MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1011 – volume: 116 start-page: 17792 year: 2019 ident: 10.1016/j.jbc.2023.104975_bib50 article-title: Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1911252116 – volume: 370 start-page: 1514 year: 2014 ident: 10.1016/j.jbc.2023.104975_bib6 article-title: Changes in diabetes-related complications in the United States, 1990-2010 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1310799 – volume: 32 start-page: 513 year: 2014 ident: 10.1016/j.jbc.2023.104975_bib26 article-title: Interferon-stimulated genes: a complex web of host defenses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120231 – volume: 1 start-page: 982 year: 2020 ident: 10.1016/j.jbc.2023.104975_bib39 article-title: Shaping up mitochondria in diabetic nephropathy publication-title: Kidney360 doi: 10.34067/KID.0002352020 |
SSID | ssj0000491 |
Score | 2.5550117 |
Snippet | Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104975 |
SubjectTerms | Animals Diabetes Mellitus, Experimental - pathology Diabetes Mellitus, Type 2 - metabolism Diabetic Nephropathies - metabolism DNA, Mitochondrial - metabolism Inflammation - metabolism Interferons - metabolism Mice Mitochondria - metabolism NAD - metabolism Nucleotidyltransferases - metabolism ▪ |
Title | NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease |
URI | https://dx.doi.org/10.1016/j.jbc.2023.104975 https://www.ncbi.nlm.nih.gov/pubmed/37429506 https://www.proquest.com/docview/2847746982 https://pubmed.ncbi.nlm.nih.gov/PMC10413283 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ9oPejFaKt2_WjGxHiwYbPADKzHTdU0NjYxaZV4ITPDTMp2F8yWTd3-9b7HMMCutdFeCAEGJvx-PN68T0LeaDMS8FvVHqx0pMeYlJ5gwngG2AHnlJEaE5y_HEeHp-xzwpMuILPOLqnkUF1dm1dyG1ThGOCKWbL_gWx7UzgA-4AvbAFh2P4TxseTD9gCGnCcYa-LeZlhMy4bYgVI26zE2j0whw8XBF2Rwaz28V_mYhyt7TVX--d5VoB86Dtsph2TenqrLdtkC4u4bnEtbCtxLmY2y6ycLxci78zN3xvLdJKL8hc8ORm21p2z5ay6sLIeCzLCFL-1J48W4lJdrazQvhR9K0UQtjFyjenMpc-sRXfa-JDA1m4faiuBQSfE9ILkWvluTQ3T4VRi-ckgRBf1e9t6ZaNsNnqhfbw3rLEwAC-8S-4FsJRAWXj0tasoD-NtV8VmKs7zXccAbjzmb7rLn2uTzRDbns5y8og8bECjE8ucx-SOLrbJzqQQVTlf0be0Dv-t_Srb5P6BA3OH_ABi0Y5YtCUW7ROLArFon1jUEQsuo45Y1BKLNsR6Qk4_fTw5OPSaJhyeYjyoPKGklgzkPo9HkeS-zLJQs8z4qCzzYGxMpKNYsVgLDepfZHiYaROqTGUyYlqET8lWURZ6l1Afxo-Yn0mjYya4L6JICdCfJY8UvCk-ICP3elPVVKjHRimz1IUiTlNAJEVEUovIgLxrh_y05Vluupg5zNJGv7R6Ywr0umnYa4dvCjigQ00UulxepKjaxdiCNRiQZxbvdhZhDJoeH0UDMl5jQnsB1nVfP1PkZ3V9d3gsSM5x-Px2831BHnRf4EuyVS2W-hVozpXcqy1Oe_UH8BvEJcm2 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD+metabolism+modulates+inflammation+and+mitochondria+function+in+diabetic+kidney+disease&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Myakala%2C+Komuraiah&rft.au=Wang%2C+Xiaoxin+X.&rft.au=Shults%2C+Nataliia+V.&rft.au=Krawczyk%2C+Ewa&rft.date=2023-08-01&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016%2Fj.jbc.2023.104975&rft.externalDocID=S0021925823020033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |