Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression

State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion battery to store and deliver energy in a system. At present, many algorithms have been applied to perform prognostics for SOH estimation, especiall...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 53; no. 6; pp. 832 - 839
Main Authors Liu, Datong, Pang, Jingyue, Zhou, Jianbao, Peng, Yu, Pecht, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion battery to store and deliver energy in a system. At present, many algorithms have been applied to perform prognostics for SOH estimation, especially data-driven prognostics algorithms supporting uncertainty representation and management. To describe the uncertainty in evaluation and prediction, we used the Gaussian Process Regression (GPR), a data-driven approach, to perform SOH prediction with mean and variance values as the uncertainty representation of SOH. Then, in order to realize multiple-step-ahead prognostics, we utilized an improved GPR method—combination Gaussian Process Functional Regression (GPFR)—to capture the actual trend of SOH, including global capacity degradation and local regeneration. Experimental results confirm that the proposed method can be effectively applied to lithium-ion battery monitoring and prognostics by quantitative comparison with the other GPR and GPFR models.
AbstractList State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion battery to store and deliver energy in a system. At present, many algorithms have been applied to perform prognostics for SOH estimation, especially data-driven prognostics algorithms supporting uncertainty representation and management. To describe the uncertainty in evaluation and prediction, we used the Gaussian Process Regression (GPR), a data-driven approach, to perform SOH prediction with mean and variance values as the uncertainty representation of SOH. Then, in order to realize multiple-step-ahead prognostics, we utilized an improved GPR method—combination Gaussian Process Functional Regression (GPFR)—to capture the actual trend of SOH, including global capacity degradation and local regeneration. Experimental results confirm that the proposed method can be effectively applied to lithium-ion battery monitoring and prognostics by quantitative comparison with the other GPR and GPFR models.
State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion battery to store and deliver energy in a system. At present, many algorithms have been applied to perform prognostics for SOH estimation, especially data-driven prognostics algorithms supporting uncertainty representation and management. To describe the uncertainty in evaluation and prediction, we used the Gaussian Process Regression (GPR), a data-driven approach, to perform SOH prediction with mean and variance values as the uncertainty representation of SOH. Then, in order to realize multiple-step-ahead prognostics, we utilized an improved GPR methodacombination Gaussian Process Functional Regression (GPFR)ato capture the actual trend of SOH, including global capacity degradation and local regeneration. Experimental results confirm that the proposed method can be effectively applied to lithium-ion battery monitoring and prognostics by quantitative comparison with the other GPR and GPFR models.
Author Liu, Datong
Pecht, Michael
Peng, Yu
Zhou, Jianbao
Pang, Jingyue
Author_xml – sequence: 1
  givenname: Datong
  surname: Liu
  fullname: Liu, Datong
  email: liudatong@hit.edu.cn
  organization: Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China
– sequence: 2
  givenname: Jingyue
  surname: Pang
  fullname: Pang, Jingyue
  organization: Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China
– sequence: 3
  givenname: Jianbao
  surname: Zhou
  fullname: Zhou, Jianbao
  organization: Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China
– sequence: 4
  givenname: Yu
  surname: Peng
  fullname: Peng, Yu
  organization: Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China
– sequence: 5
  givenname: Michael
  surname: Pecht
  fullname: Pecht, Michael
  organization: CALCE, University of Maryland, College Park, MD 20742, USA
BookMark eNqFUE1LAzEQzaGCbfUvyB69bM3HfoIHpWgVCnrQc0iys23KblKTrODJv27W1YsXYSCZN-89Zt4CzYw1gNAFwSuCSXF1WPVaOeugW1FM2ArHIniG5hjTIqUlyU7RwvsDxrjEhMzR57OzO2N90MonrXWJDyJAYttkD6IL-wTiqBdBWzOCnQ57PfTp2EoRAjgNPv48NEmElO2lNhN7IwbvtTDJ0VkFProPRo0T0SUOdi5CsTlDJ63oPJz_vEv0en_3sn5It0-bx_XtNlVZTkMqqoaKSrFcyKIEmYOiZStxWStSERA1I7QQRNYVJSVuW0YblolcqVrKtmpkzZbocvKN27wN8Sjea6-g64QBO3hOWEkLVrGsiNTriRqD9N5By5UO3zcFJ3THCeZj1vzAf7PmY9YcxyI4yos_8qOLCbqP_4U3kxBiDu8aHPdKg1HQaAcq8Mbq_yy-AL6zphU
CitedBy_id crossref_primary_10_1016_j_actaastro_2018_10_029
crossref_primary_10_1214_24_AOAS1931
crossref_primary_10_1007_s40843_023_2665_8
crossref_primary_10_1016_j_microrel_2017_10_013
crossref_primary_10_1109_TII_2022_3168667
crossref_primary_10_1016_j_cirpj_2021_02_004
crossref_primary_10_1016_j_est_2022_104371
crossref_primary_10_3390_en6094682
crossref_primary_10_1016_j_jpowsour_2017_05_004
crossref_primary_10_1109_TR_2024_3359212
crossref_primary_10_1016_j_asoc_2019_02_035
crossref_primary_10_1016_j_jpowsour_2016_12_040
crossref_primary_10_3390_en15072498
crossref_primary_10_1016_j_jpowsour_2018_08_064
crossref_primary_10_1016_j_jpowsour_2022_231026
crossref_primary_10_1016_j_engfailanal_2016_04_014
crossref_primary_10_1080_00949655_2016_1202953
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1007_s00521_022_07291_5
crossref_primary_10_1016_j_est_2022_106319
crossref_primary_10_1016_j_ress_2022_108391
crossref_primary_10_1177_1748006X15579322
crossref_primary_10_3390_en12224366
crossref_primary_10_1109_TTE_2022_3226683
crossref_primary_10_1016_j_isci_2021_102060
crossref_primary_10_1016_j_jtte_2023_06_001
crossref_primary_10_1109_ACCESS_2020_2987426
crossref_primary_10_3390_app11041492
crossref_primary_10_1021_acs_iecr_3c02849
crossref_primary_10_1016_j_rineng_2023_101709
crossref_primary_10_3390_batteries11010026
crossref_primary_10_4028_www_scientific_net_MSF_929_93
crossref_primary_10_1007_s44196_023_00346_y
crossref_primary_10_1016_j_slast_2024_100221
crossref_primary_10_1016_j_rser_2021_111903
crossref_primary_10_1109_ACCESS_2021_3110049
crossref_primary_10_1016_j_est_2021_103558
crossref_primary_10_3390_en14217206
crossref_primary_10_1149_2_0611807jes
crossref_primary_10_1021_acs_chemrev_1c00108
crossref_primary_10_1080_08839514_2021_1901033
crossref_primary_10_1016_j_jclepro_2020_125700
crossref_primary_10_1109_TVT_2020_3000970
crossref_primary_10_1109_ACCESS_2019_2939593
crossref_primary_10_1115_1_4042987
crossref_primary_10_1109_TPEL_2024_3395180
crossref_primary_10_1108_IMDS_03_2019_0195
crossref_primary_10_1016_j_joule_2019_11_018
crossref_primary_10_1016_j_ifacol_2018_11_734
crossref_primary_10_3390_app8081301
crossref_primary_10_3390_en13040812
crossref_primary_10_1177_14759217221127252
crossref_primary_10_1016_j_jclepro_2020_120813
crossref_primary_10_1016_j_microrel_2017_06_045
crossref_primary_10_1088_1755_1315_93_1_012040
crossref_primary_10_1590_0001_3765202320201723
crossref_primary_10_3390_s16050623
crossref_primary_10_1109_TIM_2025_3541804
crossref_primary_10_3390_s22207835
crossref_primary_10_1016_j_microrel_2015_02_025
crossref_primary_10_3390_en14010218
crossref_primary_10_1038_s44172_024_00304_2
crossref_primary_10_1016_j_ijepes_2020_106369
crossref_primary_10_1016_j_egyr_2024_10_048
crossref_primary_10_1007_s13042_018_0865_y
crossref_primary_10_1145_2883591_2883606
crossref_primary_10_3390_math10162991
crossref_primary_10_3390_batteries10060193
crossref_primary_10_1109_TR_2017_2742298
crossref_primary_10_1016_j_seta_2020_100752
crossref_primary_10_1109_TIA_2022_3170842
crossref_primary_10_1016_j_microrel_2015_06_133
crossref_primary_10_1016_j_ymssp_2023_110796
crossref_primary_10_1016_j_apenergy_2016_05_051
crossref_primary_10_1002_est2_542
crossref_primary_10_1016_j_jpowsour_2018_08_073
crossref_primary_10_3389_fenrg_2022_999676
crossref_primary_10_1016_j_ress_2019_03_015
crossref_primary_10_1016_j_ress_2020_107194
crossref_primary_10_3390_app131810243
crossref_primary_10_1007_s12541_023_00832_5
crossref_primary_10_1002_eem2_12386
crossref_primary_10_1016_j_ifacol_2017_08_863
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_1016_j_est_2024_110575
crossref_primary_10_1109_TIE_2018_2842782
crossref_primary_10_1088_1742_6596_1132_1_012075
crossref_primary_10_1115_1_4049234
crossref_primary_10_1016_j_electacta_2022_141300
crossref_primary_10_1109_TIM_2016_2622838
crossref_primary_10_3390_en17071679
crossref_primary_10_4271_2015_01_9147
crossref_primary_10_1016_j_ress_2021_107542
crossref_primary_10_1016_j_isatra_2020_12_020
crossref_primary_10_1109_TIE_2018_2880703
crossref_primary_10_1016_j_seta_2022_102915
crossref_primary_10_1002_er_3598
crossref_primary_10_1007_s43236_021_00318_5
crossref_primary_10_1109_TIM_2017_2708204
crossref_primary_10_1002_er_5413
crossref_primary_10_1016_j_est_2023_107443
crossref_primary_10_1016_j_energy_2023_126706
crossref_primary_10_1016_j_est_2021_103644
crossref_primary_10_1109_TIM_2014_2348613
crossref_primary_10_1016_j_est_2021_103077
crossref_primary_10_1016_j_apenergy_2015_08_119
crossref_primary_10_1007_s43236_019_00016_3
crossref_primary_10_1039_D1TA00998B
crossref_primary_10_1016_j_microrel_2018_03_032
crossref_primary_10_1016_j_ress_2018_02_022
crossref_primary_10_1002_eom2_12345
crossref_primary_10_1007_s00521_022_07322_1
crossref_primary_10_3390_en12122247
crossref_primary_10_1016_j_energy_2022_125503
crossref_primary_10_1016_j_jpowsour_2021_230024
crossref_primary_10_2514_1_I011235
crossref_primary_10_2514_1_I010385
crossref_primary_10_1109_TSMC_2015_2389757
crossref_primary_10_3390_wevj12030156
crossref_primary_10_1016_j_est_2021_102893
crossref_primary_10_1016_j_microrel_2021_114405
crossref_primary_10_1016_j_measurement_2014_11_031
crossref_primary_10_3390_electronics10222732
crossref_primary_10_1109_TR_2016_2570542
crossref_primary_10_1016_j_jclepro_2018_06_182
crossref_primary_10_1109_ACCESS_2022_3217478
crossref_primary_10_1109_TEC_2024_3385093
crossref_primary_10_1016_j_jpowsour_2023_233670
crossref_primary_10_1109_TMC_2017_2688321
crossref_primary_10_3390_en16155682
crossref_primary_10_1002_adts_202000109
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_3390_batteries10020060
crossref_primary_10_1016_j_est_2024_113623
crossref_primary_10_1557_mre_2018_11
crossref_primary_10_1016_j_ress_2022_108978
crossref_primary_10_1016_j_apenergy_2024_124629
crossref_primary_10_3390_en8042889
crossref_primary_10_2113_JEEG24_3_399
crossref_primary_10_1016_j_ijhydene_2022_12_135
crossref_primary_10_1109_TIA_2022_3210081
crossref_primary_10_1109_TIE_2016_2606588
crossref_primary_10_1016_j_jclepro_2021_125814
crossref_primary_10_17531_ein_2016_4_18
crossref_primary_10_1016_j_apenergy_2019_113813
crossref_primary_10_3390_en11123318
crossref_primary_10_1016_j_ymssp_2019_106486
crossref_primary_10_1016_j_rser_2021_111287
crossref_primary_10_1016_j_jpowsour_2015_01_164
crossref_primary_10_1155_2018_8358025
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1016_j_energy_2022_125883
crossref_primary_10_1007_s00521_020_05105_0
crossref_primary_10_1177_1748006X14550662
crossref_primary_10_3390_machines10020072
crossref_primary_10_1115_1_4050798
crossref_primary_10_1016_j_est_2023_107698
crossref_primary_10_1109_ACCESS_2019_2905740
crossref_primary_10_1016_j_eswa_2018_08_033
crossref_primary_10_1016_j_cja_2017_11_004
crossref_primary_10_1109_TTE_2019_2944802
crossref_primary_10_1109_ACCESS_2018_2854224
crossref_primary_10_3390_batteries3040032
crossref_primary_10_3390_batteries8120290
crossref_primary_10_1016_j_est_2019_100951
crossref_primary_10_1109_TIE_2017_2764869
crossref_primary_10_1016_j_est_2023_106797
crossref_primary_10_1088_1742_6596_1123_1_012025
crossref_primary_10_1007_s00521_013_1520_x
crossref_primary_10_1016_j_jpowsour_2019_227281
crossref_primary_10_1016_j_ymssp_2022_108917
crossref_primary_10_1142_S0218213018500367
crossref_primary_10_3233_JIFS_169549
crossref_primary_10_1016_j_est_2022_105992
crossref_primary_10_1088_1757_899X_793_1_012063
crossref_primary_10_1016_j_eswa_2021_116091
crossref_primary_10_1016_j_measurement_2019_07_064
crossref_primary_10_1016_j_est_2022_105073
crossref_primary_10_1155_2022_8264297
crossref_primary_10_1016_j_jpowsour_2020_228806
crossref_primary_10_1016_j_jpowsour_2021_230063
crossref_primary_10_1631_jzus_A2100006
crossref_primary_10_1038_s41598_024_63160_2
crossref_primary_10_1109_ACCESS_2020_3026552
crossref_primary_10_3390_app6060166
crossref_primary_10_1016_j_est_2023_108046
crossref_primary_10_1016_j_est_2023_109014
crossref_primary_10_1016_j_cja_2017_11_010
crossref_primary_10_3390_molecules27185762
crossref_primary_10_1016_j_apenergy_2022_119011
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_3390_wevj12030113
crossref_primary_10_1016_j_est_2023_107513
crossref_primary_10_1016_j_xcrp_2021_100352
crossref_primary_10_1109_TIE_2018_2813964
crossref_primary_10_3390_wevj14090247
crossref_primary_10_1016_j_jpowsour_2016_09_120
crossref_primary_10_1016_j_rser_2019_109254
crossref_primary_10_1016_j_est_2024_110678
crossref_primary_10_1109_TETCI_2018_2880693
crossref_primary_10_1109_ACCESS_2019_2913163
crossref_primary_10_1016_j_conengprac_2024_105852
crossref_primary_10_1016_j_compstruct_2022_116579
crossref_primary_10_1016_j_rser_2020_110017
crossref_primary_10_1109_TII_2018_2794997
crossref_primary_10_1016_j_est_2023_109285
crossref_primary_10_1109_TIA_2021_3112392
crossref_primary_10_3390_en16052313
crossref_primary_10_1038_s41598_021_91241_z
crossref_primary_10_3390_su14042313
crossref_primary_10_1155_2014_564894
crossref_primary_10_3390_app8060925
crossref_primary_10_1016_j_est_2022_104512
crossref_primary_10_1137_20M1315968
crossref_primary_10_3390_pr11030678
crossref_primary_10_1016_j_egyr_2021_09_131
crossref_primary_10_1016_j_ymssp_2017_11_016
crossref_primary_10_1177_01423312211040901
crossref_primary_10_1109_ACCESS_2017_2759094
crossref_primary_10_3390_en10111687
crossref_primary_10_1177_0142331216642836
crossref_primary_10_1016_j_ress_2014_06_014
crossref_primary_10_1109_TIM_2021_3111009
crossref_primary_10_1016_j_est_2021_102726
crossref_primary_10_3390_en14082117
crossref_primary_10_1016_j_est_2023_109037
crossref_primary_10_3390_pr7100661
crossref_primary_10_1080_23789689_2019_1708177
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_3390_sym9010004
crossref_primary_10_1002_er_8536
crossref_primary_10_1016_j_est_2022_105978
crossref_primary_10_3390_en13020375
crossref_primary_10_3390_batteries9070351
crossref_primary_10_1002_qre_2688
crossref_primary_10_1007_s40747_023_01262_6
crossref_primary_10_3390_pr8050605
crossref_primary_10_1038_s41467_022_32422_w
crossref_primary_10_1016_j_est_2021_103245
crossref_primary_10_1016_j_jclepro_2017_11_107
crossref_primary_10_3390_en9110896
crossref_primary_10_1039_D1EE01812D
crossref_primary_10_3390_data3040049
crossref_primary_10_3390_en14092371
crossref_primary_10_1016_j_microrel_2017_03_021
crossref_primary_10_1007_s00521_020_05031_1
crossref_primary_10_1109_ACCESS_2022_3156657
crossref_primary_10_1109_TIE_2022_3167142
crossref_primary_10_1109_TNNLS_2021_3130812
crossref_primary_10_3390_en7106492
crossref_primary_10_1016_j_jpowsour_2020_228069
crossref_primary_10_1016_j_neucom_2020_07_081
crossref_primary_10_1007_s11668_022_01532_4
crossref_primary_10_1016_j_apenergy_2021_118348
crossref_primary_10_1016_j_est_2022_104984
crossref_primary_10_1016_j_mtener_2020_100537
crossref_primary_10_1016_j_electacta_2024_144360
crossref_primary_10_1016_j_jechem_2022_06_049
crossref_primary_10_1115_1_4028035
crossref_primary_10_1016_j_apenergy_2023_121660
crossref_primary_10_1149_2_1061814jes
crossref_primary_10_1016_j_microrel_2017_03_007
crossref_primary_10_1016_j_microrel_2017_03_008
crossref_primary_10_1016_j_jpowsour_2016_04_119
crossref_primary_10_1109_ACCESS_2019_2923095
crossref_primary_10_1016_j_apenergy_2016_08_138
crossref_primary_10_1016_j_promfg_2019_06_156
crossref_primary_10_1016_j_energy_2022_124812
crossref_primary_10_1109_ACCESS_2019_2932719
crossref_primary_10_3390_batteries8040029
crossref_primary_10_1016_j_apenergy_2022_119624
crossref_primary_10_1038_s44296_024_00011_1
crossref_primary_10_1109_ACCESS_2019_2947294
crossref_primary_10_1016_j_apenergy_2018_03_053
crossref_primary_10_1016_j_jpowsour_2020_228716
crossref_primary_10_1007_s12239_021_0031_5
crossref_primary_10_1016_j_compchemeng_2023_108275
crossref_primary_10_1155_2019_5327319
crossref_primary_10_3390_wevj15020038
crossref_primary_10_1016_j_est_2020_101409
crossref_primary_10_1016_j_est_2021_102816
crossref_primary_10_3390_s18113916
crossref_primary_10_4271_2017_01_9078
crossref_primary_10_1016_j_est_2022_104720
crossref_primary_10_1016_j_rser_2023_114077
crossref_primary_10_1016_j_isatra_2020_03_007
crossref_primary_10_1016_j_prime_2024_100457
crossref_primary_10_1016_j_rser_2025_115408
crossref_primary_10_1177_0959651820950849
crossref_primary_10_3390_en11061420
crossref_primary_10_1016_j_apenergy_2018_10_095
crossref_primary_10_1109_TIM_2020_2996004
crossref_primary_10_1016_j_est_2023_107180
crossref_primary_10_1109_ACCESS_2020_3038182
crossref_primary_10_1007_s12598_022_02138_3
crossref_primary_10_1016_j_measurement_2017_08_030
crossref_primary_10_1109_TIA_2022_3170525
crossref_primary_10_3390_en17061272
crossref_primary_10_1016_j_jpowsour_2018_03_015
crossref_primary_10_1002_aic_14760
crossref_primary_10_1016_j_energy_2021_120851
crossref_primary_10_1016_j_est_2020_101410
crossref_primary_10_1109_TIM_2025_3548227
crossref_primary_10_3389_fenrg_2023_1059701
crossref_primary_10_1002_ente_202200402
crossref_primary_10_1016_j_ifacol_2020_11_064
Cites_doi 10.1109/AUTEST.2007.4374280
10.1109/MIM.2008.4579269
10.1109/PHM.2012.6228830
10.1111/j.1541-0420.2007.00758.x
10.1109/AERO.2008.4526631
10.1109/AERO.2003.1234169
10.1109/TIM.2012.2215142
10.1109/TIM.2008.2005965
10.1007/978-3-540-88682-2_36
10.1109/AUTEST.2008.4662684
10.1109/AERO.2010.5446841
10.1016/j.eswa.2011.03.063
10.1109/PHM.2012.6228849
10.1016/j.chemolab.2006.09.004
10.1016/j.jpowsour.2011.03.101
10.1109/TVT.2004.842461
10.24846/v19i3y201001
10.1109/TPEL.2009.2034966
10.1177/0142331208092030
10.1109/VPPC.2009.5289654
10.36001/phmconf.2011.v3i1.2073
10.1109/EUROCON.2011.5929179
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.microrel.2013.03.010
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 839
ExternalDocumentID 10_1016_j_microrel_2013_03_010
S0026271413000747
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSH
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c452t-a8d2a8c35ab67eb5ec27fb079c181ea93126a1b982170ff32d34a5cc9bbf8db93
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Fri Jul 11 11:24:45 EDT 2025
Tue Jul 01 05:01:24 EDT 2025
Thu Apr 24 23:10:42 EDT 2025
Sun Apr 06 06:54:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-a8d2a8c35ab67eb5ec27fb079c181ea93126a1b982170ff32d34a5cc9bbf8db93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1372638346
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1372638346
crossref_citationtrail_10_1016_j_microrel_2013_03_010
crossref_primary_10_1016_j_microrel_2013_03_010
elsevier_sciencedirect_doi_10_1016_j_microrel_2013_03_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics and reliability
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wei H, Nick W, Michael O, Michael P. Prognostics of Lithium-ion Batteries using Extended Kalman Filtering. In: IMAPS advanced technology workshop on high reliability microelectronics for military applications; 2011. p. 1–4.
Williams CKI, Rasmussen CE. Gaussian processes for regression. In: Advances in neural information processing systems 8. MIT Press; 1996.
Kozlowski JD. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques. In: Proceedings of IEEE aerospace conference; 2003. p. 3257–70.
Heng-Juan C, Qiang M, Wei L, Zhonglai W, Michael P. Application of unscented particle filter in remaining useful life prediction of lithium-ion batteries. In: 2012 Prognostics & system health management conference (PHM-2012 Beijing); 2012. p. 1–6.
Shi, Wang (b0090) 2007; 63
Orchard, Tang, Saha, Goebel, Vachtsevanos (b0120) 2010; 19
Chaochao C, Michael P. Prognostics of lithium-ion batteries using model-based and data-driven methods. In: 2012 Prognostics & system health management conference. (PHM-2012 Beijing); 2012. p. 1–6.
Ananth, Ming-Hsuan (b0150) 2008; 5302
Saha B, Goebel K. Battery data set, NASA ames prognostics data repository. NASA Ames, Moffett Field, CA; 2007.
Jingliang, Jay (b0005) 2011; 196
Saha, Goebel, Poll, Christophersen (b0075) 2009; 58
Tao, Julian, Elaine (b0135) 2007; 87
Le D, Tang XD. Lithium-ion battery state of health estimation using ah-v characterization. In: Annual conference of the prognostics and health management society; 2011. p. 367–73.
Nick W, Wei H, Michael P. Model based Battery Management System for Condition based Maintenance. In: MFPT 2012 proceedings: the prognostics and health management solutions conference; 2012. p. 1–13.
Kejun Q, Chengke Z, Yue Y, Allan M. Temperature effect on electric vehicle battery cycle life in vehicle-to-grid applications. In: 2010 China international conference on electricity distribution (CICED); 2010. p. 1–6.
Bhangu, Bentley, Stone, Bingham (b0015) 2011; 54
Jack, David, Aaron (b0155) 2005; 18
Bhaskar, Kai, Jon (b0025) 2009; 31
Kim (b0110) 2010; 25
Yunong Z, Leithead WE, Leith DJ. Time-series Gaussian process regression based on toeplitz computation of O(N2) operations and O(N)-level storage. In: Decision and control, 2005 and 2005 European control conference; 2005. p. 3711–16.
Pattipati B, Pattipati K, Christopherson JP, Namburu SM, Prokhorov DV, Liu Q. Automotive battery management systems. In: 2008 IEEE Autotestcon; 2008. p. 581–6.
Goebel, Saha, Saxena, Celaya, Christophersen (b0085) 2008; 4
Dai HF, Wei XZ, Sun ZC. A new SOH prediction concept for the power lithium-ion battery used on HEVs. In: Vehicle power and propulsion conference; 2009. p. 1649–53.
Rasmussen, Williams (b0140) 2006
MacKay D. Introduction to Gaussian processes. Tech-nical report. UK: Cambridge University; 1997. <Seehttp://wol.ra.phy.cam.ac.uk/mackay/README.html>.
.
Alvin, Craig, Pritpal, Terrill, David (b0060) 1999; 80
Saha S, Saha B, Saxena A, Goebel K. Distributed prognostic health management with gaussian process regression, In: IEEE Aerospace conference; 2010. p. 1–8.
Kocijan J, Tanko V. Prognosis of gear health using gaussian process model. In: 2011 IEEE international conference on computer as a tool (EUROCON); 2011. p. 1–4.
Girard, Murray-Smith (b0170) 2005
Wei H, Williard N, Chaochao C, Michael P. State of charge estimation for electric vehicle batteries under an adaptive filtering framework. In: 2012 Prognostics & System Health Management Conference. (PHM-2012 Beijing); 2012. p. 1–5.
Huimin C, Li XR. Distributed active learning with application to battery health management. In: Proceedings of the 14th international conference on information fusion (FUSION); 2011. p. 1–7.
Anton S, Volker T. Transductive and Inductive methods for approximate gaussian process regression. In: Advances in nerual information processing systems 15. MIT Press; 2003.
Widodo, Shim, Caesarendra, Yang (b0190) 2011; 38
Olivares, Cerda Munoz, Orchard, Silva (b0185) 2013; 62
Saha B, Goebel K. Uncertainty management for diagnostics and prognostics of batteries using Bayesian techniques. In: Proceedings of the IEEE aerospace conference; 2008. p. 1–8.
Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using Bayesian regression and state estimation. In: 2007 IEEE Autotestcon; 2007. p. 646–53.
Jingliang (10.1016/j.microrel.2013.03.010_b0005) 2011; 196
10.1016/j.microrel.2013.03.010_b0105
Alvin (10.1016/j.microrel.2013.03.010_b0060) 1999; 80
10.1016/j.microrel.2013.03.010_b0125
Olivares (10.1016/j.microrel.2013.03.010_b0185) 2013; 62
Kim (10.1016/j.microrel.2013.03.010_b0110) 2010; 25
Shi (10.1016/j.microrel.2013.03.010_b0090) 2007; 63
Bhangu (10.1016/j.microrel.2013.03.010_b0015) 2011; 54
Orchard (10.1016/j.microrel.2013.03.010_b0120) 2010; 19
Saha (10.1016/j.microrel.2013.03.010_b0075) 2009; 58
10.1016/j.microrel.2013.03.010_b0050
10.1016/j.microrel.2013.03.010_b0070
10.1016/j.microrel.2013.03.010_b0010
10.1016/j.microrel.2013.03.010_b0175
10.1016/j.microrel.2013.03.010_b0130
10.1016/j.microrel.2013.03.010_b0030
Ananth (10.1016/j.microrel.2013.03.010_b0150) 2008; 5302
10.1016/j.microrel.2013.03.010_b0035
10.1016/j.microrel.2013.03.010_b0055
Girard (10.1016/j.microrel.2013.03.010_b0170) 2005
Goebel (10.1016/j.microrel.2013.03.010_b0085) 2008; 4
Tao (10.1016/j.microrel.2013.03.010_b0135) 2007; 87
Jack (10.1016/j.microrel.2013.03.010_b0155) 2005; 18
10.1016/j.microrel.2013.03.010_b0160
10.1016/j.microrel.2013.03.010_b0180
10.1016/j.microrel.2013.03.010_b0080
10.1016/j.microrel.2013.03.010_b0065
10.1016/j.microrel.2013.03.010_b0020
10.1016/j.microrel.2013.03.010_b0040
Bhaskar (10.1016/j.microrel.2013.03.010_b0025) 2009; 31
10.1016/j.microrel.2013.03.010_b0145
10.1016/j.microrel.2013.03.010_b0045
10.1016/j.microrel.2013.03.010_b0100
Rasmussen (10.1016/j.microrel.2013.03.010_b0140) 2006
Widodo (10.1016/j.microrel.2013.03.010_b0190) 2011; 38
10.1016/j.microrel.2013.03.010_b0165
References_xml – reference: Heng-Juan C, Qiang M, Wei L, Zhonglai W, Michael P. Application of unscented particle filter in remaining useful life prediction of lithium-ion batteries. In: 2012 Prognostics & system health management conference (PHM-2012 Beijing); 2012. p. 1–6.
– volume: 25
  start-page: 1013
  year: 2010
  end-page: 1022
  ident: b0110
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: IEEE Trans Power Electron
– reference: Williams CKI, Rasmussen CE. Gaussian processes for regression. In: Advances in neural information processing systems 8. MIT Press; 1996.
– volume: 31
  start-page: 293
  year: 2009
  end-page: 308
  ident: b0025
  article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries
  publication-title: Trans Inst Measure Control
– volume: 62
  start-page: 364
  year: 2013
  end-page: 376
  ident: b0185
  article-title: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena
  publication-title: IEEE T Instrum Meas
– reference: Wei H, Williard N, Chaochao C, Michael P. State of charge estimation for electric vehicle batteries under an adaptive filtering framework. In: 2012 Prognostics & System Health Management Conference. (PHM-2012 Beijing); 2012. p. 1–5.
– volume: 196
  start-page: 6007
  year: 2011
  end-page: 6014
  ident: b0005
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
– reference: Kocijan J, Tanko V. Prognosis of gear health using gaussian process model. In: 2011 IEEE international conference on computer as a tool (EUROCON); 2011. p. 1–4.
– reference: Le D, Tang XD. Lithium-ion battery state of health estimation using ah-v characterization. In: Annual conference of the prognostics and health management society; 2011. p. 367–73.
– reference: Huimin C, Li XR. Distributed active learning with application to battery health management. In: Proceedings of the 14th international conference on information fusion (FUSION); 2011. p. 1–7.
– volume: 4
  start-page: 33
  year: 2008
  end-page: 40
  ident: b0085
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum Meas Mag
– reference: Pattipati B, Pattipati K, Christopherson JP, Namburu SM, Prokhorov DV, Liu Q. Automotive battery management systems. In: 2008 IEEE Autotestcon; 2008. p. 581–6.
– volume: 58
  start-page: 291
  year: 2009
  end-page: 296
  ident: b0075
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: Instrument Measure, IEEE Trans
– reference: Kejun Q, Chengke Z, Yue Y, Allan M. Temperature effect on electric vehicle battery cycle life in vehicle-to-grid applications. In: 2010 China international conference on electricity distribution (CICED); 2010. p. 1–6.
– volume: 5302
  start-page: 468
  year: 2008
  end-page: 482
  ident: b0150
  article-title: Online sparse matrix gaussian process regression and vision applications
  publication-title: Lect Notes Comput Sci
– reference: Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using Bayesian regression and state estimation. In: 2007 IEEE Autotestcon; 2007. p. 646–53.
– volume: 18
  start-page: 1441
  year: 2005
  end-page: 1448
  ident: b0155
  article-title: Gaussian process dynamical models
  publication-title: Adv Neural Inform Process Syst (NIPS)
– volume: 80
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0060
  article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J Power Sources
– reference: Dai HF, Wei XZ, Sun ZC. A new SOH prediction concept for the power lithium-ion battery used on HEVs. In: Vehicle power and propulsion conference; 2009. p. 1649–53.
– volume: 19
  start-page: 209
  year: 2010
  end-page: 218
  ident: b0120
  article-title: Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices
  publication-title: Studies Inform Control
– reference: Saha S, Saha B, Saxena A, Goebel K. Distributed prognostic health management with gaussian process regression, In: IEEE Aerospace conference; 2010. p. 1–8.
– reference: >.
– volume: 38
  start-page: 11763
  year: 2011
  end-page: 11769
  ident: b0190
  article-title: Intelligent prognostics for battery health monitoring based on sample entropy
  publication-title: Expert Syst Appl
– reference: Saha B, Goebel K. Battery data set, NASA ames prognostics data repository. NASA Ames, Moffett Field, CA; 2007. <
– volume: 54
  start-page: 783
  year: 2011
  end-page: 794
  ident: b0015
  article-title: Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles
  publication-title: IEEE Trans Vehicular Technol
– reference: Chaochao C, Michael P. Prognostics of lithium-ion batteries using model-based and data-driven methods. In: 2012 Prognostics & system health management conference. (PHM-2012 Beijing); 2012. p. 1–6.
– reference: Kozlowski JD. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques. In: Proceedings of IEEE aerospace conference; 2003. p. 3257–70.
– reference: Saha B, Goebel K. Uncertainty management for diagnostics and prognostics of batteries using Bayesian techniques. In: Proceedings of the IEEE aerospace conference; 2008. p. 1–8.
– volume: 63
  start-page: 714
  year: 2007
  end-page: 723
  ident: b0090
  article-title: Gaussian process functional regression modeling for batch data
  publication-title: Biometrics
– year: 2006
  ident: b0140
  article-title: Gaussian processes for machine learning
– reference: MacKay D. Introduction to Gaussian processes. Tech-nical report. UK: Cambridge University; 1997. <Seehttp://wol.ra.phy.cam.ac.uk/mackay/README.html>.
– reference: Nick W, Wei H, Michael P. Model based Battery Management System for Condition based Maintenance. In: MFPT 2012 proceedings: the prognostics and health management solutions conference; 2012. p. 1–13.
– volume: 87
  start-page: 59
  year: 2007
  end-page: 71
  ident: b0135
  article-title: Gaussian process regression for multivariate spectroscopic calibration
  publication-title: Chem Intell Lab Syst
– reference: Wei H, Nick W, Michael O, Michael P. Prognostics of Lithium-ion Batteries using Extended Kalman Filtering. In: IMAPS advanced technology workshop on high reliability microelectronics for military applications; 2011. p. 1–4.
– year: 2005
  ident: b0170
  article-title: Gaussian processes: prediction at a noisy input and application to iterative multiple-step ahead fore-casting of time-series. Switching and learning in feedback systems
– reference: Yunong Z, Leithead WE, Leith DJ. Time-series Gaussian process regression based on toeplitz computation of O(N2) operations and O(N)-level storage. In: Decision and control, 2005 and 2005 European control conference; 2005. p. 3711–16.
– reference: Anton S, Volker T. Transductive and Inductive methods for approximate gaussian process regression. In: Advances in nerual information processing systems 15. MIT Press; 2003.
– year: 2006
  ident: 10.1016/j.microrel.2013.03.010_b0140
– ident: 10.1016/j.microrel.2013.03.010_b0045
– ident: 10.1016/j.microrel.2013.03.010_b0070
  doi: 10.1109/AUTEST.2007.4374280
– volume: 4
  start-page: 33
  year: 2008
  ident: 10.1016/j.microrel.2013.03.010_b0085
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum Meas Mag
  doi: 10.1109/MIM.2008.4579269
– ident: 10.1016/j.microrel.2013.03.010_b0035
  doi: 10.1109/PHM.2012.6228830
– volume: 63
  start-page: 714
  year: 2007
  ident: 10.1016/j.microrel.2013.03.010_b0090
  article-title: Gaussian process functional regression modeling for batch data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00758.x
– ident: 10.1016/j.microrel.2013.03.010_b0175
  doi: 10.1109/AERO.2008.4526631
– ident: 10.1016/j.microrel.2013.03.010_b0020
  doi: 10.1109/AERO.2003.1234169
– volume: 62
  start-page: 364
  year: 2013
  ident: 10.1016/j.microrel.2013.03.010_b0185
  article-title: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena
  publication-title: IEEE T Instrum Meas
  doi: 10.1109/TIM.2012.2215142
– ident: 10.1016/j.microrel.2013.03.010_b0010
– volume: 58
  start-page: 291
  year: 2009
  ident: 10.1016/j.microrel.2013.03.010_b0075
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: Instrument Measure, IEEE Trans
  doi: 10.1109/TIM.2008.2005965
– volume: 5302
  start-page: 468
  year: 2008
  ident: 10.1016/j.microrel.2013.03.010_b0150
  article-title: Online sparse matrix gaussian process regression and vision applications
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-540-88682-2_36
– ident: 10.1016/j.microrel.2013.03.010_b0050
  doi: 10.1109/AUTEST.2008.4662684
– ident: 10.1016/j.microrel.2013.03.010_b0165
  doi: 10.1109/AERO.2010.5446841
– volume: 38
  start-page: 11763
  year: 2011
  ident: 10.1016/j.microrel.2013.03.010_b0190
  article-title: Intelligent prognostics for battery health monitoring based on sample entropy
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.03.063
– ident: 10.1016/j.microrel.2013.03.010_b0040
  doi: 10.1109/PHM.2012.6228849
– volume: 87
  start-page: 59
  year: 2007
  ident: 10.1016/j.microrel.2013.03.010_b0135
  article-title: Gaussian process regression for multivariate spectroscopic calibration
  publication-title: Chem Intell Lab Syst
  doi: 10.1016/j.chemolab.2006.09.004
– year: 2005
  ident: 10.1016/j.microrel.2013.03.010_b0170
– ident: 10.1016/j.microrel.2013.03.010_b0180
– volume: 196
  start-page: 6007
  issue: 15
  year: 2011
  ident: 10.1016/j.microrel.2013.03.010_b0005
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– ident: 10.1016/j.microrel.2013.03.010_b0145
– volume: 54
  start-page: 783
  issue: 3
  year: 2011
  ident: 10.1016/j.microrel.2013.03.010_b0015
  article-title: Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles
  publication-title: IEEE Trans Vehicular Technol
  doi: 10.1109/TVT.2004.842461
– volume: 19
  start-page: 209
  year: 2010
  ident: 10.1016/j.microrel.2013.03.010_b0120
  article-title: Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices
  publication-title: Studies Inform Control
  doi: 10.24846/v19i3y201001
– ident: 10.1016/j.microrel.2013.03.010_b0130
– volume: 80
  start-page: 293
  issue: 1–2
  year: 1999
  ident: 10.1016/j.microrel.2013.03.010_b0060
  article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J Power Sources
– ident: 10.1016/j.microrel.2013.03.010_b0055
– ident: 10.1016/j.microrel.2013.03.010_b0080
– volume: 25
  start-page: 1013
  year: 2010
  ident: 10.1016/j.microrel.2013.03.010_b0110
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2009.2034966
– ident: 10.1016/j.microrel.2013.03.010_b0160
– volume: 31
  start-page: 293
  year: 2009
  ident: 10.1016/j.microrel.2013.03.010_b0025
  article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries
  publication-title: Trans Inst Measure Control
  doi: 10.1177/0142331208092030
– ident: 10.1016/j.microrel.2013.03.010_b0105
  doi: 10.1109/VPPC.2009.5289654
– ident: 10.1016/j.microrel.2013.03.010_b0030
– ident: 10.1016/j.microrel.2013.03.010_b0100
  doi: 10.36001/phmconf.2011.v3i1.2073
– ident: 10.1016/j.microrel.2013.03.010_b0125
  doi: 10.1109/EUROCON.2011.5929179
– volume: 18
  start-page: 1441
  year: 2005
  ident: 10.1016/j.microrel.2013.03.010_b0155
  article-title: Gaussian process dynamical models
  publication-title: Adv Neural Inform Process Syst (NIPS)
– ident: 10.1016/j.microrel.2013.03.010_b0065
SSID ssj0007011
Score 2.536829
Snippet State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 832
SubjectTerms Algorithms
Gaussian
Health
Lithium-ion batteries
Monitoring
Regression
Representations
Uncertainty
Title Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression
URI https://dx.doi.org/10.1016/j.microrel.2013.03.010
https://www.proquest.com/docview/1372638346
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iFz2IK-5E8BqnSdOkOQ7iOCoMHhS8lWzVEe0Ms1z1r5vXtG4IHoRemialvBfe0rzvewideCkdkzakJcbmhDMpSF5SR2zucumMsNrUBbID0b_jV_fZ_QI6a7EwUFbZ2P5o02tr3Yx0Gml2xsMhYHyZYJKCFa5p4AHBziXs8tPXzzIPmdDYNY8JArO_oISfTl-g6G3i4QiCpjXZKSBpf3dQP0x17X96a2i1CRxxN37bOlrw1QZa-UInuInebiYjqJsD5mUcglFco4XwqMQR7YiBUSNCFWEwBOCPw_kLgVtT02yGrBmDW3M4DAWJhKw5zr7Q8ymgLfE44gowuMP4FxFP_EOspa220F3v_PasT5oGC8TyjM2Izh3TuU0zbYT0JvOWydIkUtng971WKWVCU6PykLckZZkyl3KdWauMKXNnVLqNFqtR5XcQ5kYJ77LMKmE5D1ZUOhUiM2qpA5I0uYuyVqqFbdjHoQnGc9GWmT0VrTYK0EaRhIsmu6jzsW4c-Tf-XKFapRXfdlIRnMSfa49bLYfnUzg70ZUfzacFTSULpirlYu8f799Hyyy20yAJPUCLs8ncH4agZmaO6l17hJa6l9f9wTtzjftP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFLZKOcAc0LCJzrAYiavb2Ens-IgqOgVKxaGVerO8hWlF06rLdeavj1-cQEFIc0DKJY4dRX7OW-z3fQ-hD14Ix4QNYYmxBcmY4KQoqSO2cIVwhltt6gTZKR_Psy-LfNFBwxYLA2mVje6POr3W1k3LoJnNwXa5BIwv40xQ0MI1DfwD9DALvy-UMejf_M7zEAmNZfMYJ9D9BCa86q8h623n4QyCpjXbKUBp_22h_tLVtQEanaMnjeeIP8aPe4o6vnqGzk74BJ-j2--7DSTOAfUyDt4oruFCeFPiCHfEQKkRsYrQGDzw6-VxTeDW1DybIWzGYNccDk1hSkLYHHtf6eMe4JZ4G4EFGOxh3EbEO_8jJtNWL9B89Gk2HJOmwgKxWc4ORBeO6cKmuTZceJN7y0RpEiFtMPxey5QyrqmRRQhckrJMmUsznVsrjSkLZ2T6EnWrTeVfIZwZyb3Lcyu5zUAOwsngmlFLHbCkiR7K21lVtqEfhyoYP1WbZ7ZSrTQUSEMl4aJJDw1-jdtGAo57R8hWaOqPpaSClbh37PtWyuH5Hg5PdOU3x72iqWBBV6UZv_iP979Dj8azbxM1-Tz9eokes1hbgyT0Neoedkf_Jng4B_O2XsF3Jjr83Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostics+for+state+of+health+estimation+of+lithium-ion+batteries+based+on+combination+Gaussian+process+functional+regression&rft.jtitle=Microelectronics+and+reliability&rft.au=Liu%2C+Datong&rft.au=Pang%2C+Jingyue&rft.au=Zhou%2C+Jianbao&rft.au=Peng%2C+Yu&rft.date=2013-06-01&rft.issn=0026-2714&rft.volume=53&rft.issue=6&rft.spage=832&rft.epage=839&rft_id=info:doi/10.1016%2Fj.microrel.2013.03.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon